Sparse Coding

                                                                        Shao-Chuan Wang


                                                                        Review of PCA
               A Friendly Guide To Sparse Coding                        Introducing
                                                                        Sparsity

                                                                        Solving the
                                                                        Optimization
                                                                        Problem
                                   Shao-Chuan Wang
                                                                        Learning
                                                                        Dictionary
                Research Center for Information Technology Innovation
                                                                        Applications
                                   Academia Sinica
                        E-mail: scwang ASCII(64) ntu.edu.tw


                                   December 3, 2009




Sparse Coding : Shao-Chuan Wang (Academia Sinica)                                     1 / 18
Outline

                                                      Sparse Coding

                                                    Shao-Chuan Wang

   1 Review of PCA                                  Review of PCA

                                                    Introducing
                                                    Sparsity
   2 Introducing Sparsity                           Solving the
                                                    Optimization
                                                    Problem

   3 Solving the Optimization Problem               Learning
                                                    Dictionary

                                                    Applications

   4 Learning Dictionary


   5 Applications




Sparse Coding : Shao-Chuan Wang (Academia Sinica)                 2 / 18
PCA Review

                                                                            Sparse Coding

                                                                          Shao-Chuan Wang


                                                                          Review of PCA

  x∈        m,
          D = [d1 , d2 , d3 , ...dp ] ∈ where dj ∈  m×p , If x m.         Introducing
                                                                          Sparsity
  can be approximated by the linear combination of D, i.e.,               Solving the
                                                                          Optimization
                                                                          Problem
                                       x ∼ x = Dα,
                                           ˆ                        (1)   Learning
                                                                          Dictionary

  where α ∈           p   and α is new coordinate in terms of the new     Applications

  basis D.




Sparse Coding : Shao-Chuan Wang (Academia Sinica)                                       3 / 18
PCA Review

                                                                    Sparse Coding

                                                                  Shao-Chuan Wang


                                                                  Review of PCA

                                                                  Introducing
                                                                  Sparsity
  We want x is as close as possible to x, i.e., minimize
            ˆ
                                                                  Solving the
  reconstruction error; If we define the error metric, L2 norm     Optimization
                                                                  Problem
  for instance,
                       Error = x − Dα 2   2                 (2)   Learning
                                                                  Dictionary

                                                                  Applications
  How to get D?




Sparse Coding : Shao-Chuan Wang (Academia Sinica)                               4 / 18
PCA Review

                                                                          Sparse Coding

                                                                        Shao-Chuan Wang


                                                                        Review of PCA

                                                                        Introducing
  If our goal is to minimize total error, then given a dataset          Sparsity

  S = {x (i) , y (i) }N ...
                      i=0
                                                                        Solving the
                                                                        Optimization
                                                                        Problem

                              min             x (i) − Dα(i)   2
                                                              2   (3)   Learning
                                                                        Dictionary
                               D,α
                                       i                                Applications




Sparse Coding : Shao-Chuan Wang (Academia Sinica)                                     5 / 18
PCA Review

                                                                             Sparse Coding

                                                                           Shao-Chuan Wang


                                                                           Review of PCA

  Without loss of generality, let’s assume diT dj = δij (For any           Introducing
                                                                           Sparsity
  vectors spaces, the basis can be orthonormalized by
                                                                           Solving the
  Gram-Schmidt process), from Eq. (1) we know that D T                     Optimization
                                                                           Problem
  satisfies D T x = D T x = α.
                       ˆ
                                                                           Learning
                                                                           Dictionary
                            min             x (i) − DD T x (i)   2
                                                                 2   (4)   Applications
                              D
                                     i




Sparse Coding : Shao-Chuan Wang (Academia Sinica)                                        6 / 18
PCA Review

                                                                                           Sparse Coding

                                                                                         Shao-Chuan Wang


                                                                                         Review of PCA
  Using Pythagorean theorem, (4) becomes,
                                                                                         Introducing
                                                                                         Sparsity
                                             (i)               T (i)   2
                         min             x         − DD x              2                 Solving the
                          D                                                              Optimization
                                 i                                                       Problem

                  =      min (            x (i)        2
                                                       2   −           DD T x (i)   2
                                                                                    2)   Learning
                          D                                                              Dictionary
                                     i                          i
                                                                                         Applications
                    ˆ
                  ⇒ D = arg max                            DD T x (i)      2
                                                                           2
                                         D
                                                   i




Sparse Coding : Shao-Chuan Wang (Academia Sinica)                                                      7 / 18
PCA Review

                                                                                       Sparse Coding

                                                                                     Shao-Chuan Wang


                                                                                     Review of PCA
  This optimization problem can be rewritten as
                                                                                     Introducing
                                                                                     Sparsity
                 ˆ
                 D = arg max                        DD x T (i)      2
                                                                    2                Solving the
                                     D                                               Optimization
                                            i                                        Problem

                       = arg max                 djT (       x (i) (x (i) )T )dk ,   Learning
                                                                                     Dictionary
                                     D
                                           j,k           i
                                                                                     Applications

  and solve the eigenvalue problems of covariance matrix
       (i) (i) T
    i x (x ) .




Sparse Coding : Shao-Chuan Wang (Academia Sinica)                                                  8 / 18
Introducing Sparsity

                                                                           Sparse Coding

                                                                         Shao-Chuan Wang


  How about regularization?                                              Review of PCA

                                                                         Introducing
                                                                         Sparsity
              min            x (i) − Dα(i)          2
                                                    2   +λψ(α), λ ≥ 0,   Solving the
              D,α
                      i                                                  Optimization
                                                                         Problem

  where λψ(α) is called regularization, or sparsity, or prior            Learning
                                                                         Dictionary
  term, and λ is the strength of regularization. Intuitively,            Applications
  ψ(α) is a term to ”confine” the ”quota” of αi and therefore
  make α ”sparse”. In fact, regularized linear regression also
  introduces the sparsity on θ coefficients.




Sparse Coding : Shao-Chuan Wang (Academia Sinica)                                      9 / 18
Introducing Sparsity

                                                                 Sparse Coding

                                                               Shao-Chuan Wang


                                                               Review of PCA

  Hence, we can conclude that sparse coding is a more          Introducing
                                                               Sparsity
  generalized form of principle component analysis. (PCA +     Solving the
  Sparsity = Sparse PCA (Zou et al., 2004)). diT dj may = 0.   Optimization
                                                               Problem
  Also if m = p, then no dimension ”reduction” anymore, and    Learning
                                                               Dictionary
  only sparsity affect the basis. Or even, we can make p > m,
                                                               Applications
  using an over-complete basis and let sparsity dominate D
  and α.




Sparse Coding : Shao-Chuan Wang (Academia Sinica)                           10 / 18
Solve the Optimization Problem

                                                               Sparse Coding

                                                             Shao-Chuan Wang


                                                             Review of PCA

                                                             Introducing
  How to solve the optimization problem? ⇒ Too Hard!.        Sparsity

                                                             Solving the
  Hence, we assume D is known first (i.e., designed D). Two   Optimization
  greedy algorithms are the most popular:                    Problem

                                                             Learning
          Matching Pursuit                                   Dictionary

                                                             Applications
          Orthogonal Matching Pursuit




Sparse Coding : Shao-Chuan Wang (Academia Sinica)                         11 / 18
Matching Pursuit

                                                                                  Sparse Coding
                                                    2
                          minp x − Dα               2   s.t. α   0   ≤L   (5)   Shao-Chuan Wang
                         α∈
                                         r                                      Review of PCA
  1: α ← 0.                                                                     Introducing
                                                                                Sparsity
  2: r ← x (residual).
                                                                                Solving the
  3: while α 0 < L do                                                           Optimization
                                                                                Problem
       Pick the element who correlates the most with the
                                                                                Learning
  residual.                                                                     Dictionary

                                                                                Applications
                            ˆ ← arg maxi=1,...,p
                            i                               diT r

         Subtract the contribution and update α
                                   α[ˆ ← α[ˆ + dˆ r
                                     i]    i]     i
                                                   T
                                               T
                                   r ← r − (dˆ r )dˆ
                                              i     i

      end while
Sparse Coding : Shao-Chuan Wang (Academia Sinica)                                            12 / 18
Orthogonal Matching Pursuit

                                                                                          Sparse Coding
                                                    2
                          minp x − Dα               2   s.t. α   0   ≤L           (6)   Shao-Chuan Wang
                         α∈
                                         r                                              Review of PCA
  1: Γ = ø.                                                                             Introducing
                                                                                        Sparsity
  2: while α 0 < L do
                                                                                        Solving the
      Pick the element that most reduces the objective                                  Optimization
                                                                                        Problem

                 ˆ ← arg mini∈ΓC {minα x − DΓ
                 i                                                   {i} α
                                                                             2}         Learning
                                                                             2          Dictionary

                                                                                        Applications
         Update the active set: Γ ← Γ {ˆ
                                       i}.
         Update α and the residual

                               αΓ ← (DΓ D Γ )−1 D Γ T x,
                                      T


                                      r ← x − DαΓ .

      end while
Sparse Coding : Shao-Chuan Wang (Academia Sinica)                                                    13 / 18
Learning Dictionary

                                                                                          Sparse Coding

                                                                                        Shao-Chuan Wang

  How do we learn D from the data?                                                      Review of PCA

                                                                                        Introducing
               min             x (i) − Dα(i)        2
                                                    2   +λ α   0,1,2 , λ   ≥ 0,   (7)   Sparsity
                D,α
                        i                                                               Solving the
                                                                                        Optimization
                                                                                        Problem

                                                                                        Learning
          Brute force                                                                   Dictionary

          K-means-like                                                                  Applications

                 FOCUSS (K. Engan et al., 2003)
                 K-SVD (M. Aharon et al., 2005)
          Online Dictionary Learning (J. Mairal et al., 2009)




Sparse Coding : Shao-Chuan Wang (Academia Sinica)                                                    14 / 18
K-SVD (M. Aharon et al., 2005)

  1: Initialize D ∈ m×k with random normalized dictionary;                            Sparse Coding

  2: Repeat until convergence {                                                     Shao-Chuan Wang

      Sparse Coding Stage:                                                          Review of PCA
      Use pursuit algorithm to compute sparse code α(i) of x (i)                    Introducing
                                                                                    Sparsity
      Codebook Update Stage:
                                                                                    Solving the
      For j = 1, 2, ..., k do {                                                     Optimization
                                                                                    Problem
        Define the cluster of examples that use dj
          ω ← {i | 1 ≤ i ≤ M, α(i) [j] = 0}.                                        Learning
                                                                                    Dictionary
        For each i ∈ ω do r (i) ← x (i) − Dα(i) .                                   Applications


          ˆ ˆ
          d, β ← arg               min               r (i) + α(i) [j]dj − d β 2 ,
                                                                              2
                                d ,β∈    |ω|
                                               ı∈ω

             dj      ˆ                                ˆ
                   ← d, and replace α(i) [j] = 0 with β.

         }
  }
Sparse Coding : Shao-Chuan Wang (Academia Sinica)                                                15 / 18
Applications

                                                                         Sparse Coding

                                                    Image De-noise     Shao-Chuan Wang

                                                    (Roth and Black,
                                                                       Review of PCA
                                                    2009)
                                                                       Introducing
                                                                       Sparsity

                                                                       Solving the
                                                                       Optimization
                                                                       Problem

                                                                       Learning
                                                                       Dictionary

                                                                       Applications




Sparse Coding : Shao-Chuan Wang (Academia Sinica)                                   16 / 18
Applications

                                                                             Sparse Coding

                                                    Image De-noise         Shao-Chuan Wang

                                                    (Roth and Black,
                                                                           Review of PCA
                                                    2009)
                                                                           Introducing
                                                                           Sparsity
                                                    Edge Detection (J.
                                                                           Solving the
                                                    Marial et al., 2008)   Optimization
                                                                           Problem

                                                                           Learning
                                                                           Dictionary

                                                                           Applications




Sparse Coding : Shao-Chuan Wang (Academia Sinica)                                       16 / 18
Applications

                                                                             Sparse Coding

                                                    Image De-noise         Shao-Chuan Wang

                                                    (Roth and Black,
                                                                           Review of PCA
                                                    2009)
                                                                           Introducing
                                                                           Sparsity
                                                    Edge Detection (J.
                                                                           Solving the
                                                    Marial et al., 2008)   Optimization
                                                                           Problem
                                                    Image In-painting      Learning
                                                    (Roth and Black,       Dictionary

                                                    2009)                  Applications




Sparse Coding : Shao-Chuan Wang (Academia Sinica)                                       16 / 18
Applications

                                                                             Sparse Coding

                                                    Image De-noise         Shao-Chuan Wang

                                                    (Roth and Black,
                                                                           Review of PCA
                                                    2009)
                                                                           Introducing
                                                                           Sparsity
                                                    Edge Detection (J.
                                                                           Solving the
                                                    Marial et al., 2008)   Optimization
                                                                           Problem
                                                    Image In-painting      Learning
                                                    (Roth and Black,       Dictionary

                                                    2009)                  Applications


                                                    Super-resolution
                                                    (Yang et al, 2008)




Sparse Coding : Shao-Chuan Wang (Academia Sinica)                                       16 / 18
Applications

                                                                             Sparse Coding

                                                    Image De-noise         Shao-Chuan Wang

                                                    (Roth and Black,
                                                                           Review of PCA
                                                    2009)
                                                                           Introducing
                                                                           Sparsity
                                                    Edge Detection (J.
                                                                           Solving the
                                                    Marial et al., 2008)   Optimization
                                                                           Problem
                                                    Image In-painting      Learning
                                                    (Roth and Black,       Dictionary

                                                    2009)                  Applications


                                                    Super-resolution
                                                    (Yang et al, 2008)
                                                    Signal Compression
                                                    (in replace of VQ
                                                    using K-means)

Sparse Coding : Shao-Chuan Wang (Academia Sinica)                                       16 / 18
Bibliography I

                                                                       Sparse Coding

                                                                     Shao-Chuan Wang
         H. Zou, T. Hastie, and R. Tibshirani,
                                                                     Review of PCA
         Sparse Principal Component Analysis. Journal of
                                                                     Introducing
         Computational and Graphical Statistics, 2004.               Sparsity

                                                                     Solving the
         K. Kreutz-Delgado, J. F. Murray, B. D. Rao,K. Engan,        Optimization
                                                                     Problem
         T.-W. Lee and T. J. Sejnowski,
                                                                     Learning
         Dictionary learning algorithms for sparse representation.   Dictionary

         Neural Computation, 2003.                                   Applications


         M. Aharon, M. Elad, and A. M. Bruckstein,
         The K-SVD: An algorithm for designing of overcomplete
         dictionaries for sparse representations. IEEE
         Transactions on Signal Processing, November 2006.


Sparse Coding : Shao-Chuan Wang (Academia Sinica)                                 17 / 18
Bibliography II

                                                                      Sparse Coding

                                                                    Shao-Chuan Wang
         S. Roth, M. J. Black
         Fields of Experts. IJCV, 2009.                             Review of PCA

                                                                    Introducing
         J. Mairal, M. Leordeanu, F. Bach, M. Hebert, and J.        Sparsity

         Ponce,                                                     Solving the
                                                                    Optimization
         Discriminative Sparse Image Models for Class-Specific       Problem

         Edge Detection and Image Interpretation. ECCV 2008.        Learning
                                                                    Dictionary

         J. Mairal, F. Bach, J. Ponce, and G. Sapiro,               Applications

         Online dictionary learning for sparse coding. ICML 2009.
         J. Yang, J. Wright, T. Huang, Y. Ma,
         Image Super-Resolution as Sparse Representation of
         Raw Image Patches. CVPR 2008.


Sparse Coding : Shao-Chuan Wang (Academia Sinica)                                18 / 18

A Friendly Guide To Sparse Coding

  • 1.
    Sparse Coding Shao-Chuan Wang Review of PCA A Friendly Guide To Sparse Coding Introducing Sparsity Solving the Optimization Problem Shao-Chuan Wang Learning Dictionary Research Center for Information Technology Innovation Applications Academia Sinica E-mail: scwang ASCII(64) ntu.edu.tw December 3, 2009 Sparse Coding : Shao-Chuan Wang (Academia Sinica) 1 / 18
  • 2.
    Outline Sparse Coding Shao-Chuan Wang 1 Review of PCA Review of PCA Introducing Sparsity 2 Introducing Sparsity Solving the Optimization Problem 3 Solving the Optimization Problem Learning Dictionary Applications 4 Learning Dictionary 5 Applications Sparse Coding : Shao-Chuan Wang (Academia Sinica) 2 / 18
  • 3.
    PCA Review Sparse Coding Shao-Chuan Wang Review of PCA x∈ m, D = [d1 , d2 , d3 , ...dp ] ∈ where dj ∈ m×p , If x m. Introducing Sparsity can be approximated by the linear combination of D, i.e., Solving the Optimization Problem x ∼ x = Dα, ˆ (1) Learning Dictionary where α ∈ p and α is new coordinate in terms of the new Applications basis D. Sparse Coding : Shao-Chuan Wang (Academia Sinica) 3 / 18
  • 4.
    PCA Review Sparse Coding Shao-Chuan Wang Review of PCA Introducing Sparsity We want x is as close as possible to x, i.e., minimize ˆ Solving the reconstruction error; If we define the error metric, L2 norm Optimization Problem for instance, Error = x − Dα 2 2 (2) Learning Dictionary Applications How to get D? Sparse Coding : Shao-Chuan Wang (Academia Sinica) 4 / 18
  • 5.
    PCA Review Sparse Coding Shao-Chuan Wang Review of PCA Introducing If our goal is to minimize total error, then given a dataset Sparsity S = {x (i) , y (i) }N ... i=0 Solving the Optimization Problem min x (i) − Dα(i) 2 2 (3) Learning Dictionary D,α i Applications Sparse Coding : Shao-Chuan Wang (Academia Sinica) 5 / 18
  • 6.
    PCA Review Sparse Coding Shao-Chuan Wang Review of PCA Without loss of generality, let’s assume diT dj = δij (For any Introducing Sparsity vectors spaces, the basis can be orthonormalized by Solving the Gram-Schmidt process), from Eq. (1) we know that D T Optimization Problem satisfies D T x = D T x = α. ˆ Learning Dictionary min x (i) − DD T x (i) 2 2 (4) Applications D i Sparse Coding : Shao-Chuan Wang (Academia Sinica) 6 / 18
  • 7.
    PCA Review Sparse Coding Shao-Chuan Wang Review of PCA Using Pythagorean theorem, (4) becomes, Introducing Sparsity (i) T (i) 2 min x − DD x 2 Solving the D Optimization i Problem = min ( x (i) 2 2 − DD T x (i) 2 2) Learning D Dictionary i i Applications ˆ ⇒ D = arg max DD T x (i) 2 2 D i Sparse Coding : Shao-Chuan Wang (Academia Sinica) 7 / 18
  • 8.
    PCA Review Sparse Coding Shao-Chuan Wang Review of PCA This optimization problem can be rewritten as Introducing Sparsity ˆ D = arg max DD x T (i) 2 2 Solving the D Optimization i Problem = arg max djT ( x (i) (x (i) )T )dk , Learning Dictionary D j,k i Applications and solve the eigenvalue problems of covariance matrix (i) (i) T i x (x ) . Sparse Coding : Shao-Chuan Wang (Academia Sinica) 8 / 18
  • 9.
    Introducing Sparsity Sparse Coding Shao-Chuan Wang How about regularization? Review of PCA Introducing Sparsity min x (i) − Dα(i) 2 2 +λψ(α), λ ≥ 0, Solving the D,α i Optimization Problem where λψ(α) is called regularization, or sparsity, or prior Learning Dictionary term, and λ is the strength of regularization. Intuitively, Applications ψ(α) is a term to ”confine” the ”quota” of αi and therefore make α ”sparse”. In fact, regularized linear regression also introduces the sparsity on θ coefficients. Sparse Coding : Shao-Chuan Wang (Academia Sinica) 9 / 18
  • 10.
    Introducing Sparsity Sparse Coding Shao-Chuan Wang Review of PCA Hence, we can conclude that sparse coding is a more Introducing Sparsity generalized form of principle component analysis. (PCA + Solving the Sparsity = Sparse PCA (Zou et al., 2004)). diT dj may = 0. Optimization Problem Also if m = p, then no dimension ”reduction” anymore, and Learning Dictionary only sparsity affect the basis. Or even, we can make p > m, Applications using an over-complete basis and let sparsity dominate D and α. Sparse Coding : Shao-Chuan Wang (Academia Sinica) 10 / 18
  • 11.
    Solve the OptimizationProblem Sparse Coding Shao-Chuan Wang Review of PCA Introducing How to solve the optimization problem? ⇒ Too Hard!. Sparsity Solving the Hence, we assume D is known first (i.e., designed D). Two Optimization greedy algorithms are the most popular: Problem Learning Matching Pursuit Dictionary Applications Orthogonal Matching Pursuit Sparse Coding : Shao-Chuan Wang (Academia Sinica) 11 / 18
  • 12.
    Matching Pursuit Sparse Coding 2 minp x − Dα 2 s.t. α 0 ≤L (5) Shao-Chuan Wang α∈ r Review of PCA 1: α ← 0. Introducing Sparsity 2: r ← x (residual). Solving the 3: while α 0 < L do Optimization Problem Pick the element who correlates the most with the Learning residual. Dictionary Applications ˆ ← arg maxi=1,...,p i diT r Subtract the contribution and update α α[ˆ ← α[ˆ + dˆ r i] i] i T T r ← r − (dˆ r )dˆ i i end while Sparse Coding : Shao-Chuan Wang (Academia Sinica) 12 / 18
  • 13.
    Orthogonal Matching Pursuit Sparse Coding 2 minp x − Dα 2 s.t. α 0 ≤L (6) Shao-Chuan Wang α∈ r Review of PCA 1: Γ = ø. Introducing Sparsity 2: while α 0 < L do Solving the Pick the element that most reduces the objective Optimization Problem ˆ ← arg mini∈ΓC {minα x − DΓ i {i} α 2} Learning 2 Dictionary Applications Update the active set: Γ ← Γ {ˆ i}. Update α and the residual αΓ ← (DΓ D Γ )−1 D Γ T x, T r ← x − DαΓ . end while Sparse Coding : Shao-Chuan Wang (Academia Sinica) 13 / 18
  • 14.
    Learning Dictionary Sparse Coding Shao-Chuan Wang How do we learn D from the data? Review of PCA Introducing min x (i) − Dα(i) 2 2 +λ α 0,1,2 , λ ≥ 0, (7) Sparsity D,α i Solving the Optimization Problem Learning Brute force Dictionary K-means-like Applications FOCUSS (K. Engan et al., 2003) K-SVD (M. Aharon et al., 2005) Online Dictionary Learning (J. Mairal et al., 2009) Sparse Coding : Shao-Chuan Wang (Academia Sinica) 14 / 18
  • 15.
    K-SVD (M. Aharonet al., 2005) 1: Initialize D ∈ m×k with random normalized dictionary; Sparse Coding 2: Repeat until convergence { Shao-Chuan Wang Sparse Coding Stage: Review of PCA Use pursuit algorithm to compute sparse code α(i) of x (i) Introducing Sparsity Codebook Update Stage: Solving the For j = 1, 2, ..., k do { Optimization Problem Define the cluster of examples that use dj ω ← {i | 1 ≤ i ≤ M, α(i) [j] = 0}. Learning Dictionary For each i ∈ ω do r (i) ← x (i) − Dα(i) . Applications ˆ ˆ d, β ← arg min r (i) + α(i) [j]dj − d β 2 , 2 d ,β∈ |ω| ı∈ω dj ˆ ˆ ← d, and replace α(i) [j] = 0 with β. } } Sparse Coding : Shao-Chuan Wang (Academia Sinica) 15 / 18
  • 16.
    Applications Sparse Coding Image De-noise Shao-Chuan Wang (Roth and Black, Review of PCA 2009) Introducing Sparsity Solving the Optimization Problem Learning Dictionary Applications Sparse Coding : Shao-Chuan Wang (Academia Sinica) 16 / 18
  • 17.
    Applications Sparse Coding Image De-noise Shao-Chuan Wang (Roth and Black, Review of PCA 2009) Introducing Sparsity Edge Detection (J. Solving the Marial et al., 2008) Optimization Problem Learning Dictionary Applications Sparse Coding : Shao-Chuan Wang (Academia Sinica) 16 / 18
  • 18.
    Applications Sparse Coding Image De-noise Shao-Chuan Wang (Roth and Black, Review of PCA 2009) Introducing Sparsity Edge Detection (J. Solving the Marial et al., 2008) Optimization Problem Image In-painting Learning (Roth and Black, Dictionary 2009) Applications Sparse Coding : Shao-Chuan Wang (Academia Sinica) 16 / 18
  • 19.
    Applications Sparse Coding Image De-noise Shao-Chuan Wang (Roth and Black, Review of PCA 2009) Introducing Sparsity Edge Detection (J. Solving the Marial et al., 2008) Optimization Problem Image In-painting Learning (Roth and Black, Dictionary 2009) Applications Super-resolution (Yang et al, 2008) Sparse Coding : Shao-Chuan Wang (Academia Sinica) 16 / 18
  • 20.
    Applications Sparse Coding Image De-noise Shao-Chuan Wang (Roth and Black, Review of PCA 2009) Introducing Sparsity Edge Detection (J. Solving the Marial et al., 2008) Optimization Problem Image In-painting Learning (Roth and Black, Dictionary 2009) Applications Super-resolution (Yang et al, 2008) Signal Compression (in replace of VQ using K-means) Sparse Coding : Shao-Chuan Wang (Academia Sinica) 16 / 18
  • 21.
    Bibliography I Sparse Coding Shao-Chuan Wang H. Zou, T. Hastie, and R. Tibshirani, Review of PCA Sparse Principal Component Analysis. Journal of Introducing Computational and Graphical Statistics, 2004. Sparsity Solving the K. Kreutz-Delgado, J. F. Murray, B. D. Rao,K. Engan, Optimization Problem T.-W. Lee and T. J. Sejnowski, Learning Dictionary learning algorithms for sparse representation. Dictionary Neural Computation, 2003. Applications M. Aharon, M. Elad, and A. M. Bruckstein, The K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representations. IEEE Transactions on Signal Processing, November 2006. Sparse Coding : Shao-Chuan Wang (Academia Sinica) 17 / 18
  • 22.
    Bibliography II Sparse Coding Shao-Chuan Wang S. Roth, M. J. Black Fields of Experts. IJCV, 2009. Review of PCA Introducing J. Mairal, M. Leordeanu, F. Bach, M. Hebert, and J. Sparsity Ponce, Solving the Optimization Discriminative Sparse Image Models for Class-Specific Problem Edge Detection and Image Interpretation. ECCV 2008. Learning Dictionary J. Mairal, F. Bach, J. Ponce, and G. Sapiro, Applications Online dictionary learning for sparse coding. ICML 2009. J. Yang, J. Wright, T. Huang, Y. Ma, Image Super-Resolution as Sparse Representation of Raw Image Patches. CVPR 2008. Sparse Coding : Shao-Chuan Wang (Academia Sinica) 18 / 18