CE-632
Foundation Analysis and
DesignDesign
Lateral Earth PressureLateral Earth PressureLateral Earth PressureLateral Earth Pressure
1
Foundation Analysis and Design: Dr. Amit Prashant
Lateral Earth PressureLateral Earth PressureLateral Earth PressureLateral Earth Pressure
Lateral earth pressures are a function of type and amount of
wall movement shear strength properties weight of soil andwall movement, shear strength properties, weight of soil and
drainage
2
Foundation Analysis and Design: Dr. Amit Prashant
Lateral Earth PressureLateral Earth PressureLateral Earth PressureLateral Earth Pressure
Lateral Earth pressure is a function of wall movement (or
relative lateral movement in the backfill soil)
3
Foundation Analysis and Design: Dr. Amit Prashant
Lateral Earth Pressure at RestLateral Earth Pressure at Rest
Coefficient of earth pressure at rest, o h vK σ σ′ ′=
(No Lateral Movement)
p ,
The vertical al stress at any depth, z, is:
o h v
v q zσ γ′ ′= +
K′ ′ + u = pore water pressureh o vK uσ σ= + u = pore water pressure
Elastic Solution:
1
oK
ν
ν
=
−
Poisson’s
ratio
4
Foundation Analysis and Design: Dr. Amit Prashant
Coefficient of Earth Pressure at RestCoefficient of Earth Pressure at RestCoefficient of Earth Pressure at RestCoefficient of Earth Pressure at Rest
For coarse-grained soils (Jaky 1944)For coarse grained soils (Jaky, 1944)
K0 = 1 – sin φ’
For fine-grained normally consolidated soils (Massarch 1979)For fine grained, normally consolidated soils (Massarch, 1979)
⎥
⎦
⎤
⎢
⎣
⎡
+=
100
(%)
42.044.0
PI
Ko
Brooker and Ireland, 1965
K0 = 0.95 – sin φ’
⎦⎣ 100
0 φ
For overconsolidates clays
OCRKK COC )()( = cP
OCR =
Mayne and Kulway, 1982
K0 = (1 – sin φ’).OCRsin φ’
OCRKK NCoOCo )()( =
o
OCR
'σ
5
K0 (1 sin φ ).OCR
Foundation Analysis and Design: Dr. Amit Prashant
Rankine’sRankine’s Theory: Active Earth PressureTheory: Active Earth Pressureyy
6
Foundation Analysis and Design: Dr. Amit Prashant
Rankine’sRankine’s Theory: Active Earth PressureTheory: Active Earth Pressureyy
( ) 21 sin
tan 45K
φ φ′− ′⎛ ⎞
⎜ ⎟
( )
( )
tan 45
1 sin 2
aK
φ
= = −⎜ ⎟′+ ⎝ ⎠
D th f
2c′
Depth of
Tension Crack
c
a
z
Kγ
=
7
Foundation Analysis and Design: Dr. Amit Prashant
Rankine’sRankine’s Theory: Passive Earth PressureTheory: Passive Earth Pressureyy
8
Foundation Analysis and Design: Dr. Amit Prashant
Rankine’sRankine’s Theory: Passive Earth PressureTheory: Passive Earth Pressureyy
( )
( )
21 sin
tan 45K
φ φ′+ ′⎛ ⎞
= = +⎜ ⎟
⎝ ⎠( )
tan 45
1 sin 2
pK
φ
+⎜ ⎟′− ⎝ ⎠
9
Foundation Analysis and Design: Dr. Amit Prashant
Rankine’sRankine’s Theory: Special CasesTheory: Special Casesy py p
Submergence:
h a vK uσ σ′= +
Pore Pressure
v v u
u
σ σ′ = −⎡
⎢
=⎣⎣
Inclined Backfill:
β
( ) ( ) ( )
( ) ( ) ( )
2 2
2 2
cos cos cos
cos cos cos
aK
β β φ
β β φ
′− −
=
′+ −
1
p
a
K
K
= Thrust
β( ) ( ) ( )cos cos cosβ β φ+ a β
Inclined but Smooth Back face of wall:
w
β
w PA1 is
w
PA1
PA
1A AP W P= +
w
PA1
PA
β
H1
A1
calculated for
H1 height
10
β
Foundation Analysis and Design: Dr. Amit Prashant
Rankine’s Theory: Special CasesRankine’s Theory: Special CasesRankine’s Theory: Special CasesRankine’s Theory: Special Cases
β
Inclined Backfill with c‘ φ‘ soil:
Thrust
β
Inclined Backfill with c -φ soil:
⎧ ⎫′⎛ ⎞
β
2
2 2
2cos 2 cos sin
1
1
cos
a
c
z
K
β φ φ
γ
φ
⎧ ⎫′⎛ ⎞
′ ′+⎪ ⎪⎜ ⎟
⎝ ⎠⎪ ⎪
= −⎨ ⎬
′ ′ ′⎛ ⎞ ⎛ ⎞⎪ ⎪
( )2 2 2 2 2
cos
4cos cos cos 4 cos 8 cos cos sin
c c
z z
φ
β β φ φ β φ φ
γ γ
′ ′⎛ ⎞ ⎛ ⎞⎪ ⎪
′ ′ ′ ′− − + +⎜ ⎟ ⎜ ⎟⎪ ⎪
⎝ ⎠ ⎝ ⎠⎩ ⎭
2
2
2cos 2 cos sin
1
1
c
z
K
β φ φ
γ
⎧ ⎫′⎛ ⎞
′ ′+⎪ ⎪⎜ ⎟
⎝ ⎠⎪ ⎪
= −⎨ ⎬
( )
2 2
2 2 2 2 2
1
cos
4cos cos cos 4 cos 8 cos cos sin
pK
c c
z z
φ
β β φ φ β φ φ
γ γ
⎨ ⎬
′ ′ ′⎛ ⎞ ⎛ ⎞⎪ ⎪
′ ′ ′ ′+ − + +⎜ ⎟ ⎜ ⎟⎪ ⎪
⎝ ⎠ ⎝ ⎠⎩ ⎭ 11
Foundation Analysis and Design: Dr. Amit Prashant
Coulomb’s Theory: Active Earth PressureCoulomb’s Theory: Active Earth Pressure
Wall Friction:
Coulomb’s
theory
underestimates
Active EPActive EP
12
Foundation Analysis and Design: Dr. Amit Prashant
Coulomb’s Theory: Passive Earth PressureCoulomb’s Theory: Passive Earth Pressure
Wall Friction:
Coulomb’s
theory
overestimates
Passive EPPassive EP
13
Foundation Analysis and Design: Dr. Amit Prashant
Coulomb’s Theory: SolutionsCoulomb’s Theory: Solutionsyy
14
Foundation Analysis and Design: Dr. Amit Prashant
Culmann’sCulmann’s Graphical Method: Active EPGraphical Method: Active EPpp
δ = Wall friction C1
C2
C3
C4
C
B
1
E4
E
θ
E2
E3
E4
E1
D3
D4
D
φ'A
D1
D2
φ
ψ =90-θ-δ
A
15
Foundation Analysis and Design: Dr. Amit Prashant
Culmann’sCulmann’s Graphical Method: Passive EPGraphical Method: Passive EPpp
δ = Wall friction C1
C2
C3
C4
C
E1
f
B
C1
2
E2
E3
E4
E
θ
4
A φ'
ψ
=90 θ+δ
Ea
Pres
Lin
A
D1
D2
φ'
16
=90-θ+δ
rth
sure
ne
D3
D4
D
Foundation Analysis and Design: Dr. Amit Prashant
Seismic EarthSeismic Earth Pressure:byPressure:by MononobeMononobe--Okabe MethodOkabe Method
Active Earth PressureActive Earth Pressure
Wall movement : angle of internal friction of soil
θ b tt l f ll
vk W
β
θ: batter angle of wall
δ: angle of friction between the
wall and the backfill
hk W
W φ
Failure surface
H
wall and the backfill
β: slope of the backfill top
surfaceW φ
α
θ
AEP
δ
F
( )
1
tan
1
h
v
k
k
ψ −
=
−
and ( )ψ φ β≤ −
AEα
( )2
cos
K
φ θ ψ− −
=
( )
( )
( ) ( )
( ) ( )
2
2 sin sin
cos cos cos 1
cos cos
AEK
δ φ φ β ψ
ψ θ δ θ ψ
δ θ ψ β θ
=
⎡ ⎤+ − −
+ + +⎢ ⎥
+ + −⎢ ⎥⎣ ⎦
17
⎣ ⎦
( )21
1
2
AE v AEP H k Kγ= − Assumed to be acting at H/2.
Foundation Analysis and Design: Dr. Amit Prashant
Seismic EarthSeismic Earth Pressure:byPressure:by MononobeMononobe--Okabe MethodOkabe Method
Passive Earth PressurePassive Earth Pressure
Wall movement
vk W
β
hk W
v
W
φPEP F
Failure surface
H
W
PEα
θ
δ
( )
1
tan
1
h
v
k
k
ψ −
=
−
( )ψ φ β≤ +and
PEα
( )2
cos
K
φ θ ψ+ −
=
( )v
( )
( ) ( )
( ) ( )
2
2 sin sin
cos cos cos 1
cos cos
PEK
δ φ φ β ψ
ψ θ δ θ ψ
δ θ ψ β θ
=
⎡ ⎤+ + −
− + −⎢ ⎥
− + −⎢ ⎥⎣ ⎦
18
⎣ ⎦
( )21
1
2
PE v PEP H k Kγ= −

9 ce 632 earth pressure ppt.pdf

  • 1.
    CE-632 Foundation Analysis and DesignDesign LateralEarth PressureLateral Earth PressureLateral Earth PressureLateral Earth Pressure 1
  • 2.
    Foundation Analysis andDesign: Dr. Amit Prashant Lateral Earth PressureLateral Earth PressureLateral Earth PressureLateral Earth Pressure Lateral earth pressures are a function of type and amount of wall movement shear strength properties weight of soil andwall movement, shear strength properties, weight of soil and drainage 2
  • 3.
    Foundation Analysis andDesign: Dr. Amit Prashant Lateral Earth PressureLateral Earth PressureLateral Earth PressureLateral Earth Pressure Lateral Earth pressure is a function of wall movement (or relative lateral movement in the backfill soil) 3
  • 4.
    Foundation Analysis andDesign: Dr. Amit Prashant Lateral Earth Pressure at RestLateral Earth Pressure at Rest Coefficient of earth pressure at rest, o h vK σ σ′ ′= (No Lateral Movement) p , The vertical al stress at any depth, z, is: o h v v q zσ γ′ ′= + K′ ′ + u = pore water pressureh o vK uσ σ= + u = pore water pressure Elastic Solution: 1 oK ν ν = − Poisson’s ratio 4
  • 5.
    Foundation Analysis andDesign: Dr. Amit Prashant Coefficient of Earth Pressure at RestCoefficient of Earth Pressure at RestCoefficient of Earth Pressure at RestCoefficient of Earth Pressure at Rest For coarse-grained soils (Jaky 1944)For coarse grained soils (Jaky, 1944) K0 = 1 – sin φ’ For fine-grained normally consolidated soils (Massarch 1979)For fine grained, normally consolidated soils (Massarch, 1979) ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ += 100 (%) 42.044.0 PI Ko Brooker and Ireland, 1965 K0 = 0.95 – sin φ’ ⎦⎣ 100 0 φ For overconsolidates clays OCRKK COC )()( = cP OCR = Mayne and Kulway, 1982 K0 = (1 – sin φ’).OCRsin φ’ OCRKK NCoOCo )()( = o OCR 'σ 5 K0 (1 sin φ ).OCR
  • 6.
    Foundation Analysis andDesign: Dr. Amit Prashant Rankine’sRankine’s Theory: Active Earth PressureTheory: Active Earth Pressureyy 6
  • 7.
    Foundation Analysis andDesign: Dr. Amit Prashant Rankine’sRankine’s Theory: Active Earth PressureTheory: Active Earth Pressureyy ( ) 21 sin tan 45K φ φ′− ′⎛ ⎞ ⎜ ⎟ ( ) ( ) tan 45 1 sin 2 aK φ = = −⎜ ⎟′+ ⎝ ⎠ D th f 2c′ Depth of Tension Crack c a z Kγ = 7
  • 8.
    Foundation Analysis andDesign: Dr. Amit Prashant Rankine’sRankine’s Theory: Passive Earth PressureTheory: Passive Earth Pressureyy 8
  • 9.
    Foundation Analysis andDesign: Dr. Amit Prashant Rankine’sRankine’s Theory: Passive Earth PressureTheory: Passive Earth Pressureyy ( ) ( ) 21 sin tan 45K φ φ′+ ′⎛ ⎞ = = +⎜ ⎟ ⎝ ⎠( ) tan 45 1 sin 2 pK φ +⎜ ⎟′− ⎝ ⎠ 9
  • 10.
    Foundation Analysis andDesign: Dr. Amit Prashant Rankine’sRankine’s Theory: Special CasesTheory: Special Casesy py p Submergence: h a vK uσ σ′= + Pore Pressure v v u u σ σ′ = −⎡ ⎢ =⎣⎣ Inclined Backfill: β ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 cos cos cos cos cos cos aK β β φ β β φ ′− − = ′+ − 1 p a K K = Thrust β( ) ( ) ( )cos cos cosβ β φ+ a β Inclined but Smooth Back face of wall: w β w PA1 is w PA1 PA 1A AP W P= + w PA1 PA β H1 A1 calculated for H1 height 10 β
  • 11.
    Foundation Analysis andDesign: Dr. Amit Prashant Rankine’s Theory: Special CasesRankine’s Theory: Special CasesRankine’s Theory: Special CasesRankine’s Theory: Special Cases β Inclined Backfill with c‘ φ‘ soil: Thrust β Inclined Backfill with c -φ soil: ⎧ ⎫′⎛ ⎞ β 2 2 2 2cos 2 cos sin 1 1 cos a c z K β φ φ γ φ ⎧ ⎫′⎛ ⎞ ′ ′+⎪ ⎪⎜ ⎟ ⎝ ⎠⎪ ⎪ = −⎨ ⎬ ′ ′ ′⎛ ⎞ ⎛ ⎞⎪ ⎪ ( )2 2 2 2 2 cos 4cos cos cos 4 cos 8 cos cos sin c c z z φ β β φ φ β φ φ γ γ ′ ′⎛ ⎞ ⎛ ⎞⎪ ⎪ ′ ′ ′ ′− − + +⎜ ⎟ ⎜ ⎟⎪ ⎪ ⎝ ⎠ ⎝ ⎠⎩ ⎭ 2 2 2cos 2 cos sin 1 1 c z K β φ φ γ ⎧ ⎫′⎛ ⎞ ′ ′+⎪ ⎪⎜ ⎟ ⎝ ⎠⎪ ⎪ = −⎨ ⎬ ( ) 2 2 2 2 2 2 2 1 cos 4cos cos cos 4 cos 8 cos cos sin pK c c z z φ β β φ φ β φ φ γ γ ⎨ ⎬ ′ ′ ′⎛ ⎞ ⎛ ⎞⎪ ⎪ ′ ′ ′ ′+ − + +⎜ ⎟ ⎜ ⎟⎪ ⎪ ⎝ ⎠ ⎝ ⎠⎩ ⎭ 11
  • 12.
    Foundation Analysis andDesign: Dr. Amit Prashant Coulomb’s Theory: Active Earth PressureCoulomb’s Theory: Active Earth Pressure Wall Friction: Coulomb’s theory underestimates Active EPActive EP 12
  • 13.
    Foundation Analysis andDesign: Dr. Amit Prashant Coulomb’s Theory: Passive Earth PressureCoulomb’s Theory: Passive Earth Pressure Wall Friction: Coulomb’s theory overestimates Passive EPPassive EP 13
  • 14.
    Foundation Analysis andDesign: Dr. Amit Prashant Coulomb’s Theory: SolutionsCoulomb’s Theory: Solutionsyy 14
  • 15.
    Foundation Analysis andDesign: Dr. Amit Prashant Culmann’sCulmann’s Graphical Method: Active EPGraphical Method: Active EPpp δ = Wall friction C1 C2 C3 C4 C B 1 E4 E θ E2 E3 E4 E1 D3 D4 D φ'A D1 D2 φ ψ =90-θ-δ A 15
  • 16.
    Foundation Analysis andDesign: Dr. Amit Prashant Culmann’sCulmann’s Graphical Method: Passive EPGraphical Method: Passive EPpp δ = Wall friction C1 C2 C3 C4 C E1 f B C1 2 E2 E3 E4 E θ 4 A φ' ψ =90 θ+δ Ea Pres Lin A D1 D2 φ' 16 =90-θ+δ rth sure ne D3 D4 D
  • 17.
    Foundation Analysis andDesign: Dr. Amit Prashant Seismic EarthSeismic Earth Pressure:byPressure:by MononobeMononobe--Okabe MethodOkabe Method Active Earth PressureActive Earth Pressure Wall movement : angle of internal friction of soil θ b tt l f ll vk W β θ: batter angle of wall δ: angle of friction between the wall and the backfill hk W W φ Failure surface H wall and the backfill β: slope of the backfill top surfaceW φ α θ AEP δ F ( ) 1 tan 1 h v k k ψ − = − and ( )ψ φ β≤ − AEα ( )2 cos K φ θ ψ− − = ( ) ( ) ( ) ( ) ( ) ( ) 2 2 sin sin cos cos cos 1 cos cos AEK δ φ φ β ψ ψ θ δ θ ψ δ θ ψ β θ = ⎡ ⎤+ − − + + +⎢ ⎥ + + −⎢ ⎥⎣ ⎦ 17 ⎣ ⎦ ( )21 1 2 AE v AEP H k Kγ= − Assumed to be acting at H/2.
  • 18.
    Foundation Analysis andDesign: Dr. Amit Prashant Seismic EarthSeismic Earth Pressure:byPressure:by MononobeMononobe--Okabe MethodOkabe Method Passive Earth PressurePassive Earth Pressure Wall movement vk W β hk W v W φPEP F Failure surface H W PEα θ δ ( ) 1 tan 1 h v k k ψ − = − ( )ψ φ β≤ +and PEα ( )2 cos K φ θ ψ+ − = ( )v ( ) ( ) ( ) ( ) ( ) 2 2 sin sin cos cos cos 1 cos cos PEK δ φ φ β ψ ψ θ δ θ ψ δ θ ψ β θ = ⎡ ⎤+ + − − + −⎢ ⎥ − + −⎢ ⎥⎣ ⎦ 18 ⎣ ⎦ ( )21 1 2 PE v PEP H k Kγ= −