The document discusses challenges with using reinforcement learning for robotics. While simulations allow fast training of agents, there is often a "reality gap" when transferring learning to real robots. Other approaches like imitation learning and self-supervised learning can be safer alternatives that don't require trial-and-error. To better apply reinforcement learning, robots may need model-based approaches that learn forward models of the world, as well as techniques like active localization that allow robots to gather targeted information through interactive perception. Closing the reality gap will require finding ways to better match simulations to reality or allow robots to learn from real-world experiences.