SlideShare a Scribd company logo
1 of 64
In this section we will show how to integrate
rational functions, that is, functions of the form
P(x)
Q(x)
where P and Q are polynomials.
Integrals of Rational Functions
In this section we will show how to integrate
rational functions, that is, functions of the form
P(x)
Q(x)
where P and Q are polynomials.
Rational Decomposition Theorem
Given reduced P/Q where deg P < deg Q,
then P/Q = F1 + F2 + .. + Fn where
Fi = orA
(ax + b)k
Ax + B
(ax2 + bx + c)k
and that (ax + b)k or (ax2 + bx + c)k are
factors of Q(x).
Integrals of Rational Functions
Therefore finding the integrals of rational
functions is reduced to finding integrals of
orA
(ax + b)k
Ax + B
(ax2 + bx + c)k
Integrals of Rational Functions
Therefore finding the integrals of rational
functions is reduced to finding integrals of
orA
(ax + b)k
Ax + B
(ax2 + bx + c)k
Integrals of Rational Functions
The integrals ∫ are straight forward
with the substitution method by setting
u = ax + b.
dx
(ax + b)k
Therefore finding the integrals of rational
functions is reduced to finding integrals of
orA
(ax + b)k
Ax + B
(ax2 + bx + c)k
Integrals of Rational Functions
The integrals ∫ are straight forward
with the substitution method by setting
u = ax + b.
dx
(ax + b)k
To integrate ∫ dx, we need to
complete the square of the denominator.
Ax + B
(ax2 + bx + c)k
Integrals of Rational Functions
x
x2 + 6x + 10Example A. Find ∫ dx
Complete the square of x2 + 6x + 10 – it’s irreducible.
Integrals of Rational Functions
x
x2 + 6x + 10Example A. Find ∫ dx
x2 + 6x + 10 = (x2 + 6x ) + 10
Integrals of Rational Functions
Complete the square of x2 + 6x + 10 – it’s irreducible.
x
x2 + 6x + 10Example A. Find ∫ dx
x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9
Integrals of Rational Functions
Complete the square of x2 + 6x + 10 – it’s irreducible.
x
x2 + 6x + 10Example A. Find ∫ dx
x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9
= (x + 3)2 + 1
Integrals of Rational Functions
Complete the square of x2 + 6x + 10 – it’s irreducible.
x
x2 + 6x + 10Example A. Find ∫ dx
x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9
= (x + 3)2 + 1
x
x2 + 6x + 10∫ dx
= ∫
x
(x + 3)2 + 1
dx
Hence
Integrals of Rational Functions
Complete the square of x2 + 6x + 10 – it’s irreducible.
x
x2 + 6x + 10Example A. Find ∫ dx
x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9
= (x + 3)2 + 1
x
x2 + 6x + 10∫ dx
Set u = x + 3
= ∫
x
(x + 3)2 + 1
dx
substitution
Hence
Integrals of Rational Functions
Complete the square of x2 + 6x + 10 – it’s irreducible.
x
x2 + 6x + 10Example A. Find ∫ dx
x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9
= (x + 3)2 + 1
x
x2 + 6x + 10∫ dx
Set u = x + 3
x = u – 3
dx = du= ∫
x
(x + 3)2 + 1
dx
substitution
Hence
Integrals of Rational Functions
Complete the square of x2 + 6x + 10 – it’s irreducible.
x
x2 + 6x + 10Example A. Find ∫ dx
x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9
= (x + 3)2 + 1
x
x2 + 6x + 10∫ dx
Set u = x + 3
x = u – 3
dx = du= ∫
x
(x + 3)2 + 1
dx
substitution
= ∫
u – 3
u2 + 1
du
Hence
Integrals of Rational Functions
Complete the square of x2 + 6x + 10 – it’s irreducible.
x
x2 + 6x + 10Example A. Find ∫ dx
x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9
= (x + 3)2 + 1
x
x2 + 6x + 10∫ dx
Set u = x + 3
x = u – 3
dx = du= ∫
x
(x + 3)2 + 1
dx
substitution
= ∫
u – 3
u2 + 1
du
= ∫
u
u2 + 1 du – 3 ∫
1
u2 + 1 du
Hence
Integrals of Rational Functions
Complete the square of x2 + 6x + 10 – it’s irreducible.
x
x2 + 6x + 10Example A. Find ∫ dx
x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9
= (x + 3)2 + 1
x
x2 + 6x + 10∫ dx
Set u = x + 3
x = u – 3
dx = du= ∫
x
(x + 3)2 + 1
dx
substitution
= ∫
u – 3
u2 + 1
du
= ∫
u
u2 + 1 du – 3 ∫
1
u2 + 1 du
Hence
Integrals of Rational Functions
Set w = u2 + 1
substitution
Complete the square of x2 + 6x + 10 – it’s irreducible.
x
x2 + 6x + 10Example A. Find ∫ dx
Set w = u2 + 1
= 2u
substitution
dw
du
Integrals of Rational Functions
= ∫
u
u2 + 1 du – 3 ∫
1
u2 + 1 du Set w = u2 + 1
Set w = u2 + 1
= 2u
substitution
dw
du
du =
dw
2u
Integrals of Rational Functions
= ∫
u
u2 + 1 du – 3 ∫
1
u2 + 1 du Set w = u2 + 1
Set w = u2 + 1
= 2u
substitution
dw
du
du =
dw
2u
= ∫
u
w
– 3 ∫
1
u2 + 1 du
dw
2u
Integrals of Rational Functions
= ∫
u
u2 + 1 du – 3 ∫
1
u2 + 1 du Set w = u2 + 1
Set w = u2 + 1
= 2u
substitution
dw
du
du =
dw
2u
= ∫
u
w
– 3 ∫
1
u2 + 1 du
dw
2u
= ½ ∫ 1
w – 3 tan-1(u) + cdw
Integrals of Rational Functions
Set w = u2 + 1
= 2u
substitution
dw
du
du =
dw
2u
= ∫
u
w
– 3 ∫
1
u2 + 1 du
dw
2u
= ½ ∫ 1
w – 3 tan-1(u) + cdw
= ½ Ln(w) – 3 tan-1(x + 3) + c
Integrals of Rational Functions
Set w = u2 + 1
= 2u
substitution
dw
du
du =
dw
2u
= ∫
u
w
– 3 ∫
1
u2 + 1 du
dw
2u
= ½ ∫ 1
w – 3 tan-1(u) + cdw
= ½ Ln(lwl) – 3 tan-1(x + 3) + c
= ½ Ln((x + 3)2 + 1) – 3 tan-1(x + 3) + c
Integrals of Rational Functions
Set w = u2 + 1
= 2u
substitution
dw
du
du =
dw
2u
= ∫
u
w
– 3 ∫
1
u2 + 1 du
dw
2u
= ½ ∫ 1
w – 3 tan-1(u) + cdw
= ½ Ln(lwl) – 3 tan-1(x + 3) + c
= ½ Ln((x + 3)2 + 1) – 3 tan-1(x + 3) + c
Integrals of Rational Functions
3x
x2 + 7x + 10Example: Find ∫ dx
Set w = u2 + 1
= 2u
substitution
dw
du
du =
dw
2u
= ∫
u
w
– 3 ∫
1
u2 + 1 du
dw
2u
= ½ ∫ 1
w – 3 tan-1(u) + cdw
= ½ Ln(lwl) – 3 tan-1(x + 3) + c
= ½ Ln((x + 3)2 + 1) – 3 tan-1(x + 3) + c
Integrals of Rational Functions
Since x2 + 7x + 10 = (x + 2)(x + 5), we can
decompose the rational expression.
3x
x2 + 7x + 10Example: Find ∫ dx
Set w = u2 + 1
= 2u
substitution
dw
du
du =
dw
2u
= ∫
u
w
– 3 ∫
1
u2 + 1 du
dw
2u
= ½ ∫ 1
w – 3 tan-1(u) + cdw
= ½ Ln(lwl) – 3 tan-1(x + 3) + c
= ½ Ln((x + 3)2 + 1) – 3 tan-1(x + 3) + c
Integrals of Rational Functions
3x
x2 + 7x + 10Example: Find ∫ dx
Since x2 + 7x + 10 = (x + 2)(x + 5), we can
decompose the rational expression.
Specifically 3x
(x + 2)(x + 5) =
A
(x + 2)
+ B
(x + 5)
Integrals of Rational Functions
Clear denominators: 3x
(x + 2)(x + 5) =
A
(x + 2)
+
B
(x + 5)
Integrals of Rational Functions
3x = A(x + 5) + B(x + 2)
Clear denominators: 3x
(x + 2)(x + 5) =
A
(x + 2)
+
B
(x + 5)
Integrals of Rational Functions
3x = A(x + 5) + B(x + 2)
Evaluate at x = -5, we get -15 = -3B
Clear denominators: 3x
(x + 2)(x + 5) =
A
(x + 2)
+
B
(x + 5)
Integrals of Rational Functions
3x = A(x + 5) + B(x + 2)
Evaluate at x = -5, we get -15 = -3B so B = 5
Clear denominators: 3x
(x + 2)(x + 5) =
A
(x + 2)
+
B
(x + 5)
Integrals of Rational Functions
3x = A(x + 5) + B(x + 2)
Evaluate at x = -5, we get -15 = -3B so B = 5
Evaluate at x = -2, we get -6 = 3A
Clear denominators: 3x
(x + 2)(x + 5) =
A
(x + 2)
+
B
(x + 5)
Integrals of Rational Functions
3x = A(x + 5) + B(x + 2)
Evaluate at x = -5, we get -15 = -3B so B = 5
Evaluate at x = -2, we get -6 = 3A so A = -2
Clear denominators: 3x
(x + 2)(x + 5) =
A
(x + 2)
+
B
(x + 5)
Integrals of Rational Functions
Hence 3x
(x + 2)(x + 5) =
-2
(x + 2)
+ 5
(x + 5)
3x = A(x + 5) + B(x + 2)
Evaluate at x = -5, we get -15 = -3B so B = 5
Evaluate at x = -2, we get -6 = 3A so A = -2
Clear denominators: 3x
(x + 2)(x + 5) =
A
(x + 2)
+
B
(x + 5)
Integrals of Rational Functions
Hence x
(x + 2)(x + 5) =
-2
(x + 2)
+ 5
(x + 5)
3x = A(x + 5) + B(x + 2)
Evaluate at x = -5, we get -15 = -3B so B = 5
Evaluate at x = -2, we get -6 = 3A so A = -2
3x
x2 + 7x + 10So ∫ dx
Clear denominators: 3x
(x + 2)(x + 5) =
A
(x + 2)
+
B
(x + 5)
Integrals of Rational Functions
Hence x
(x + 2)(x + 5) =
-2
(x + 2)
+ 5
(x + 5)
3x = A(x + 5) + B(x + 2)
Evaluate at x = -5, we get -15 = -3B so B = 5
Evaluate at x = -2, we get -6 = 3A so A = -2
3x
x2 + 7x + 10So ∫ dx
= ∫ dx
-2
(x + 2)
+ 5
(x + 5)
Clear denominators: 3x
(x + 2)(x + 5) =
A
(x + 2)
+
B
(x + 5)
Integrals of Rational Functions
Hence x
(x + 2)(x + 5) =
-2
(x + 2)
+ 5
(x + 5)
3x = A(x + 5) + B(x + 2)
Evaluate at x = -5, we get -15 = -3B so B = 5
Evaluate at x = -2, we get -6 = 3A so A = -2
3x
x2 + 7x + 10So ∫ dx
= -2Ln(lx + 2l) + 5Ln(lx + 5l) + c
= ∫ dx
-2
(x + 2)
+ 5
(x + 5)
Clear denominators: 3x
(x + 2)(x + 5) =
A
(x + 2)
+
B
(x + 5)
Integrals of Rational Functions
1
(x2 + 1)2xExample: Find ∫ dx
Integrals of Rational Functions
1
(x2 + 1)2x =
Ax + B
(x2 + 1)
+ Cx + D
(x2 + 1)2 + E
x
1
(x2 + 1)2xExample: Find ∫ dx
Integrals of Rational Functions
1
(x2 + 1)2xExample: Find ∫ dx
1
(x2 + 1)2x =
Ax + B
(x2 + 1)
+ Cx + D
(x2 + 1)2 + E
x
Clear denominators
Integrals of Rational Functions
1
(x2 + 1)2x =
Ax + B
(x2 + 1)
+ Cx + D
(x2 + 1)2 + E
x
Clear denominators
1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2
1
(x2 + 1)2xExample: Find ∫ dx
Integrals of Rational Functions
1
(x2 + 1)2x =
Ax + B
(x2 + 1)
+ Cx + D
(x2 + 1)2 + E
x
Clear denominators
1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2
Evaluate this at x = 0, we get 1 = E
1
(x2 + 1)2xExample: Find ∫ dx
Integrals of Rational Functions
1
(x2 + 1)2x =
Ax + B
(x2 + 1)
+ Cx + D
(x2 + 1)2 + E
x
Clear denominators
1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2
Evaluate this at x = 0, we get 1 = E
Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
1
(x2 + 1)2xExample: Find ∫ dx
Integrals of Rational Functions
1
(x2 + 1)2x =
Ax + B
(x2 + 1)
+ Cx + D
(x2 + 1)2 + E
x
Clear denominators
1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2
Evaluate this at x = 0, we get 1 = E
Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
There is no x4-term,
1
(x2 + 1)2xExample: Find ∫ dx
Integrals of Rational Functions
1
(x2 + 1)2x =
Ax + B
(x2 + 1)
+ Cx + D
(x2 + 1)2 + E
x
Clear denominators
1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2
Evaluate this at x = 0, we get 1 = E
Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
There is no x4-term, hence Ax4 + x4 = 0,
1
(x2 + 1)2xExample: Find ∫ dx
Integrals of Rational Functions
1
(x2 + 1)2x =
Ax + B
(x2 + 1)
+ Cx + D
(x2 + 1)2 + E
x
Clear denominators
1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2
Evaluate this at x = 0, we get 1 = E
Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
There is no x4-term, hence Ax4 + x4 = 0, so A = -1
1
(x2 + 1)2xExample: Find ∫ dx
Integrals of Rational Functions
1
(x2 + 1)2x =
Ax + B
(x2 + 1)
+ Cx + D
(x2 + 1)2 + E
x
Clear denominators
1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2
Evaluate this at x = 0, we get 1 = E
Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
There is no x4-term, hence Ax4 + x4 = 0, so A = -1
There is no x3-term,
1
(x2 + 1)2xExample: Find ∫ dx
Integrals of Rational Functions
1
(x2 + 1)2x =
Ax + B
(x2 + 1)
+ Cx + D
(x2 + 1)2 + E
x
Clear denominators
1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2
Evaluate this at x = 0, we get 1 = E
Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
There is no x4-term, hence Ax4 + x4 = 0, so A = -1
There is no x3-term, hence Bx3 = 0,
1
(x2 + 1)2xExample: Find ∫ dx
Integrals of Rational Functions
1
(x2 + 1)2x =
Ax + B
(x2 + 1)
+ Cx + D
(x2 + 1)2 + E
x
Clear denominators
1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2
Evaluate this at x = 0, we get 1 = E
Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
There is no x4-term, hence Ax4 + x4 = 0, so A = -1
There is no x3-term, hence Bx3 = 0, so B = 0
1
(x2 + 1)2xExample: Find ∫ dx
Integrals of Rational Functions
1
(x2 + 1)2x =
Ax + B
(x2 + 1)
+ Cx + D
(x2 + 1)2 + E
x
Clear denominators
1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2
Evaluate this at x = 0, we get 1 = E
Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
There is no x4-term, hence Ax4 + x4 = 0, so A = -1
There is no x3-term, hence Bx3 = 0, so B = 0
So we've1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
1
(x2 + 1)2xExample: Find ∫ dx
Integrals of Rational Functions
There is no x-term in
1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
Integrals of Rational Functions
There is no x-term in
1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
Hence Dx = 0, or D = 0.
Integrals of Rational Functions
There is no x-term in
1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
Hence Dx = 0, or D = 0. So the expression is
1 = -x2
(x2 + 1)+Cx2 +1(x2 + 1)2
Integrals of Rational Functions
There is no x-term in
1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
Hence Dx = 0, or D = 0. So the expression is
1 = -x2
(x2 + 1)+Cx2 +1(x2 + 1)2
Expand this
Integrals of Rational Functions
There is no x-term in
1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
Hence Dx = 0, or D = 0. So the expression is
1 = -x2
(x2 + 1)+Cx2 +1(x2 + 1)2
Expand this
1 = -x4 – x2
Cx2 + x4 + 2x2 + 1+
Integrals of Rational Functions
There is no x-term in
1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
Hence Dx = 0, or D = 0. So the expression is
1 = -x2
(x2 + 1)+Cx2 +1(x2 + 1)2
Expand this
1 = -x4 – x2
Cx2 + x4 + 2x2 + 1+
Hence Cx2 + x2 = 0 or C = -1
Integrals of Rational Functions
There is no x-term in
1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
Hence Dx = 0, or D = 0. So the expression is
1 = -x2
(x2 + 1)+Cx2 +1(x2 + 1)2
Expand this
1 = -x4 – x2
Cx2 + x4 + 2x2 + 1+
Hence Cx2 + x2 = 0 or C = -1
Put it all together
1
(x2 + 1)2x =
-x
(x2 + 1)
+ -x
(x2 + 1)2 + 1
x
Integrals of Rational Functions
1
(x2 + 1)2xTherefore ∫ dx
= ∫
-x dx
(x2 + 1)
+ -x dx
(x2 + 1)2 + dx
x∫ ∫
Integrals of Rational Functions
1
(x2 + 1)2xTherefore ∫ dx
= ∫
-x dx
(x2 + 1)
+ -x dx
(x2 + 1)2 + dx
x∫ ∫
substitution
set u = x2 + 1
Integrals of Rational Functions
1
(x2 + 1)2xTherefore ∫ dx
= ∫
-x dx
(x2 + 1)
+ -x dx
(x2 + 1)2 + dx
x∫ ∫
substitution
set u = x2 + 1
du
dx = 2x
Integrals of Rational Functions
1
(x2 + 1)2xTherefore ∫ dx
= ∫
-x dx
(x2 + 1)
+ -x dx
(x2 + 1)2 + dx
x∫ ∫
substitution
set u = x2 + 1
du
dx = 2x
du
2xdx =
Integrals of Rational Functions
absolute value arguments for Ln: P -
22,36,61-64
Integrals of Rational Functions
1
(x2 + 1)2xTherefore ∫ dx
= ∫
-x dx
(x2 + 1)
+ -x dx
(x2 + 1)2 + dx
x∫ ∫
substitution
set u = x2 + 1
du
dx = 2x
du
2xdx == ∫
-x
u
du
2x
+ ∫
-x
u2
du
2x
+ Ln(lxl)
Integrals of Rational Functions
1
(x2 + 1)2xTherefore ∫ dx
= ∫
-x dx
(x2 + 1)
+ -x dx
(x2 + 1)2 + dx
x∫ ∫
substitution
set u = x2 + 1
du
dx = 2x
du
2xdx == ∫
-x
u
du
2x
+ ∫
-x
u2
du
2x
+ Ln(lxl)
= - ½ ∫
du
u + Ln(lxl)½ ∫
du
u2–
Integrals of Rational Functions
1
(x2 + 1)2xTherefore ∫ dx
= ∫
-x dx
(x2 + 1)
+ -x dx
(x2 + 1)2 + dx
x∫ ∫
substitution
set u = x2 + 1
du
dx = 2x
du
2xdx == ∫
-x
u
du
2x
+ ∫
-x
u2
du
2x
+ Ln(x)
= - ½ ∫
du
u + Ln(x)½ ∫
du
u2–
= - ½ Ln(u) + ½ u-1 + Ln(x) + c
Integrals of Rational Functions
1
(x2 + 1)2xTherefore ∫ dx
= ∫
-x dx
(x2 + 1)
+ -x dx
(x2 + 1)2 + dx
x∫ ∫
substitution
set u = x2 + 1
du
dx = 2x
du
2xdx == ∫
-x
u
du
2x
+ ∫
-x
u2
du
2x
+ Ln(x)
= - ½ ∫
du
u + Ln(x)½ ∫
du
u2–
= - ½ Ln(u) + ½ u-1 + Ln(x) + c
= - ½ Ln(x2 + 1) + + Ln(x) + c1
2(x2 + 1)

More Related Content

What's hot

22 infinite series send-x
22 infinite series send-x22 infinite series send-x
22 infinite series send-xmath266
 
10 fluid pressures x
10 fluid pressures x10 fluid pressures x
10 fluid pressures xmath266
 
3 areas, riemann sums, and the fundamental theorem of calculus x
3 areas, riemann sums, and the fundamental theorem of calculus x3 areas, riemann sums, and the fundamental theorem of calculus x
3 areas, riemann sums, and the fundamental theorem of calculus xmath266
 
9 work x
9 work x9 work x
9 work xmath266
 
5 volumes and solids of revolution i x
5 volumes and solids of revolution i x5 volumes and solids of revolution i x
5 volumes and solids of revolution i xmath266
 
8 arc length and area of surfaces x
8 arc length and area of surfaces x8 arc length and area of surfaces x
8 arc length and area of surfaces xmath266
 
4.2 more derivatives as rates
4.2 more derivatives as rates4.2 more derivatives as rates
4.2 more derivatives as ratesmath265
 
26 alternating series and conditional convergence x
26 alternating series and conditional convergence x26 alternating series and conditional convergence x
26 alternating series and conditional convergence xmath266
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite IntegralJelaiAujero
 
1.1 review on algebra 1
1.1 review on algebra 11.1 review on algebra 1
1.1 review on algebra 1math265
 
11 the inverse trigonometric functions x
11 the inverse trigonometric functions x11 the inverse trigonometric functions x
11 the inverse trigonometric functions xmath266
 
30 green's theorem
30 green's theorem30 green's theorem
30 green's theoremmath267
 
3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiationmath265
 
12 derivatives and integrals of inverse trigonometric functions x
12 derivatives and integrals of inverse trigonometric functions x12 derivatives and integrals of inverse trigonometric functions x
12 derivatives and integrals of inverse trigonometric functions xmath266
 
25 the ratio, root, and ratio comparison test x
25 the ratio, root, and ratio  comparison test x25 the ratio, root, and ratio  comparison test x
25 the ratio, root, and ratio comparison test xmath266
 
4.3 related rates
4.3 related rates4.3 related rates
4.3 related ratesmath265
 
3.3 graphs of factorable polynomials and rational functions
3.3 graphs of factorable polynomials and rational functions3.3 graphs of factorable polynomials and rational functions
3.3 graphs of factorable polynomials and rational functionsmath265
 
Techniques of Integration ppt.ppt
Techniques of Integration ppt.pptTechniques of Integration ppt.ppt
Techniques of Integration ppt.pptJaysonFabela1
 
Composition and inverse of functions
Composition  and inverse of functionsComposition  and inverse of functions
Composition and inverse of functionsCharliez Jane Soriano
 
Application of definite integrals
Application of definite integralsApplication of definite integrals
Application of definite integralsVaibhav Tandel
 

What's hot (20)

22 infinite series send-x
22 infinite series send-x22 infinite series send-x
22 infinite series send-x
 
10 fluid pressures x
10 fluid pressures x10 fluid pressures x
10 fluid pressures x
 
3 areas, riemann sums, and the fundamental theorem of calculus x
3 areas, riemann sums, and the fundamental theorem of calculus x3 areas, riemann sums, and the fundamental theorem of calculus x
3 areas, riemann sums, and the fundamental theorem of calculus x
 
9 work x
9 work x9 work x
9 work x
 
5 volumes and solids of revolution i x
5 volumes and solids of revolution i x5 volumes and solids of revolution i x
5 volumes and solids of revolution i x
 
8 arc length and area of surfaces x
8 arc length and area of surfaces x8 arc length and area of surfaces x
8 arc length and area of surfaces x
 
4.2 more derivatives as rates
4.2 more derivatives as rates4.2 more derivatives as rates
4.2 more derivatives as rates
 
26 alternating series and conditional convergence x
26 alternating series and conditional convergence x26 alternating series and conditional convergence x
26 alternating series and conditional convergence x
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite Integral
 
1.1 review on algebra 1
1.1 review on algebra 11.1 review on algebra 1
1.1 review on algebra 1
 
11 the inverse trigonometric functions x
11 the inverse trigonometric functions x11 the inverse trigonometric functions x
11 the inverse trigonometric functions x
 
30 green's theorem
30 green's theorem30 green's theorem
30 green's theorem
 
3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation
 
12 derivatives and integrals of inverse trigonometric functions x
12 derivatives and integrals of inverse trigonometric functions x12 derivatives and integrals of inverse trigonometric functions x
12 derivatives and integrals of inverse trigonometric functions x
 
25 the ratio, root, and ratio comparison test x
25 the ratio, root, and ratio  comparison test x25 the ratio, root, and ratio  comparison test x
25 the ratio, root, and ratio comparison test x
 
4.3 related rates
4.3 related rates4.3 related rates
4.3 related rates
 
3.3 graphs of factorable polynomials and rational functions
3.3 graphs of factorable polynomials and rational functions3.3 graphs of factorable polynomials and rational functions
3.3 graphs of factorable polynomials and rational functions
 
Techniques of Integration ppt.ppt
Techniques of Integration ppt.pptTechniques of Integration ppt.ppt
Techniques of Integration ppt.ppt
 
Composition and inverse of functions
Composition  and inverse of functionsComposition  and inverse of functions
Composition and inverse of functions
 
Application of definite integrals
Application of definite integralsApplication of definite integrals
Application of definite integrals
 

Similar to 17 integrals of rational functions x

Sbma 4603 numerical methods Assignment
Sbma 4603 numerical methods AssignmentSbma 4603 numerical methods Assignment
Sbma 4603 numerical methods AssignmentSaidatina Khadijah
 
Calculus 08 techniques_of_integration
Calculus 08 techniques_of_integrationCalculus 08 techniques_of_integration
Calculus 08 techniques_of_integrationtutulk
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniquesKrishna Gali
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuityPume Ananda
 
Quadraticfunctionpresentation 100127142417-phpapp02
Quadraticfunctionpresentation 100127142417-phpapp02Quadraticfunctionpresentation 100127142417-phpapp02
Quadraticfunctionpresentation 100127142417-phpapp02Vine Gonzales
 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functionsdionesioable
 
Quadratic Function Presentation
Quadratic Function PresentationQuadratic Function Presentation
Quadratic Function PresentationRyanWatt
 
Solved exercises simple integration
Solved exercises simple integrationSolved exercises simple integration
Solved exercises simple integrationKamel Attar
 
3. DERIVATIVE BY INCREMENT IN CALULUS 01
3. DERIVATIVE BY INCREMENT IN CALULUS 013. DERIVATIVE BY INCREMENT IN CALULUS 01
3. DERIVATIVE BY INCREMENT IN CALULUS 01oliverosmarcial24
 
Interpolation functions
Interpolation functionsInterpolation functions
Interpolation functionsTarun Gehlot
 
QUADRATIC EQUATIONS WITH MATHS PROPER VERIFY
QUADRATIC EQUATIONS WITH MATHS PROPER VERIFYQUADRATIC EQUATIONS WITH MATHS PROPER VERIFY
QUADRATIC EQUATIONS WITH MATHS PROPER VERIFYssuser2e348b
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integralesjoseluisroyo
 

Similar to 17 integrals of rational functions x (20)

Sbma 4603 numerical methods Assignment
Sbma 4603 numerical methods AssignmentSbma 4603 numerical methods Assignment
Sbma 4603 numerical methods Assignment
 
Grph quad fncts
Grph quad fnctsGrph quad fncts
Grph quad fncts
 
Calculus 08 techniques_of_integration
Calculus 08 techniques_of_integrationCalculus 08 techniques_of_integration
Calculus 08 techniques_of_integration
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 
Derivatives
DerivativesDerivatives
Derivatives
 
Functions limits and continuity
Functions limits and continuityFunctions limits and continuity
Functions limits and continuity
 
Quadraticfunctionpresentation 100127142417-phpapp02
Quadraticfunctionpresentation 100127142417-phpapp02Quadraticfunctionpresentation 100127142417-phpapp02
Quadraticfunctionpresentation 100127142417-phpapp02
 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functions
 
Quadratic Function Presentation
Quadratic Function PresentationQuadratic Function Presentation
Quadratic Function Presentation
 
Class XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solutionClass XII CBSE Mathematics Sample question paper with solution
Class XII CBSE Mathematics Sample question paper with solution
 
Solved exercises simple integration
Solved exercises simple integrationSolved exercises simple integration
Solved exercises simple integration
 
Quadratic equations
Quadratic equationsQuadratic equations
Quadratic equations
 
3. DERIVATIVE BY INCREMENT IN CALULUS 01
3. DERIVATIVE BY INCREMENT IN CALULUS 013. DERIVATIVE BY INCREMENT IN CALULUS 01
3. DERIVATIVE BY INCREMENT IN CALULUS 01
 
Polynomial math
Polynomial mathPolynomial math
Polynomial math
 
Interpolation functions
Interpolation functionsInterpolation functions
Interpolation functions
 
QUADRATIC EQUATIONS WITH MATHS PROPER VERIFY
QUADRATIC EQUATIONS WITH MATHS PROPER VERIFYQUADRATIC EQUATIONS WITH MATHS PROPER VERIFY
QUADRATIC EQUATIONS WITH MATHS PROPER VERIFY
 
EPCA_MODULE-2.pptx
EPCA_MODULE-2.pptxEPCA_MODULE-2.pptx
EPCA_MODULE-2.pptx
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
 
Integration
IntegrationIntegration
Integration
 

More from math266

10 b review-cross-sectional formula
10 b review-cross-sectional formula10 b review-cross-sectional formula
10 b review-cross-sectional formulamath266
 
3 algebraic expressions y
3 algebraic expressions y3 algebraic expressions y
3 algebraic expressions ymath266
 
267 1 3 d coordinate system-n
267 1 3 d coordinate system-n267 1 3 d coordinate system-n
267 1 3 d coordinate system-nmath266
 
X2.8 l'hopital rule ii
X2.8 l'hopital rule iiX2.8 l'hopital rule ii
X2.8 l'hopital rule iimath266
 
X2.7 l'hopital rule i
X2.7 l'hopital rule iX2.7 l'hopital rule i
X2.7 l'hopital rule imath266
 
33 parametric equations x
33 parametric equations x33 parametric equations x
33 parametric equations xmath266
 
35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinatesmath266
 
36 area in polar coordinate
36 area in polar coordinate36 area in polar coordinate
36 area in polar coordinatemath266
 
34 polar coordinate and equations
34 polar coordinate and equations34 polar coordinate and equations
34 polar coordinate and equationsmath266
 
32 approximation, differentiation and integration of power series x
32 approximation, differentiation and integration of power series x32 approximation, differentiation and integration of power series x
32 approximation, differentiation and integration of power series xmath266
 
31 mac taylor remainder theorem-x
31 mac taylor remainder theorem-x31 mac taylor remainder theorem-x
31 mac taylor remainder theorem-xmath266
 
30 computation techniques for mac laurin expansions x
30 computation techniques for  mac laurin expansions x30 computation techniques for  mac laurin expansions x
30 computation techniques for mac laurin expansions xmath266
 
L'hopital rule ii
L'hopital rule iiL'hopital rule ii
L'hopital rule iimath266
 
L'Hopital's rule i
L'Hopital's rule iL'Hopital's rule i
L'Hopital's rule imath266
 
29 taylor expansions x
29 taylor expansions x29 taylor expansions x
29 taylor expansions xmath266
 
28 mac laurin expansions x
28 mac laurin expansions x28 mac laurin expansions x
28 mac laurin expansions xmath266
 
24 the harmonic series and the integral test x
24 the harmonic series and the integral test x24 the harmonic series and the integral test x
24 the harmonic series and the integral test xmath266
 
21 monotone sequences x
21 monotone sequences x21 monotone sequences x
21 monotone sequences xmath266
 
20 sequences x
20 sequences x20 sequences x
20 sequences xmath266
 
30 computation techniques for maclaurin expansions x
30 computation techniques for  maclaurin expansions x30 computation techniques for  maclaurin expansions x
30 computation techniques for maclaurin expansions xmath266
 

More from math266 (20)

10 b review-cross-sectional formula
10 b review-cross-sectional formula10 b review-cross-sectional formula
10 b review-cross-sectional formula
 
3 algebraic expressions y
3 algebraic expressions y3 algebraic expressions y
3 algebraic expressions y
 
267 1 3 d coordinate system-n
267 1 3 d coordinate system-n267 1 3 d coordinate system-n
267 1 3 d coordinate system-n
 
X2.8 l'hopital rule ii
X2.8 l'hopital rule iiX2.8 l'hopital rule ii
X2.8 l'hopital rule ii
 
X2.7 l'hopital rule i
X2.7 l'hopital rule iX2.7 l'hopital rule i
X2.7 l'hopital rule i
 
33 parametric equations x
33 parametric equations x33 parametric equations x
33 parametric equations x
 
35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates
 
36 area in polar coordinate
36 area in polar coordinate36 area in polar coordinate
36 area in polar coordinate
 
34 polar coordinate and equations
34 polar coordinate and equations34 polar coordinate and equations
34 polar coordinate and equations
 
32 approximation, differentiation and integration of power series x
32 approximation, differentiation and integration of power series x32 approximation, differentiation and integration of power series x
32 approximation, differentiation and integration of power series x
 
31 mac taylor remainder theorem-x
31 mac taylor remainder theorem-x31 mac taylor remainder theorem-x
31 mac taylor remainder theorem-x
 
30 computation techniques for mac laurin expansions x
30 computation techniques for  mac laurin expansions x30 computation techniques for  mac laurin expansions x
30 computation techniques for mac laurin expansions x
 
L'hopital rule ii
L'hopital rule iiL'hopital rule ii
L'hopital rule ii
 
L'Hopital's rule i
L'Hopital's rule iL'Hopital's rule i
L'Hopital's rule i
 
29 taylor expansions x
29 taylor expansions x29 taylor expansions x
29 taylor expansions x
 
28 mac laurin expansions x
28 mac laurin expansions x28 mac laurin expansions x
28 mac laurin expansions x
 
24 the harmonic series and the integral test x
24 the harmonic series and the integral test x24 the harmonic series and the integral test x
24 the harmonic series and the integral test x
 
21 monotone sequences x
21 monotone sequences x21 monotone sequences x
21 monotone sequences x
 
20 sequences x
20 sequences x20 sequences x
20 sequences x
 
30 computation techniques for maclaurin expansions x
30 computation techniques for  maclaurin expansions x30 computation techniques for  maclaurin expansions x
30 computation techniques for maclaurin expansions x
 

Recently uploaded

Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 

Recently uploaded (20)

Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 

17 integrals of rational functions x

  • 1. In this section we will show how to integrate rational functions, that is, functions of the form P(x) Q(x) where P and Q are polynomials. Integrals of Rational Functions
  • 2. In this section we will show how to integrate rational functions, that is, functions of the form P(x) Q(x) where P and Q are polynomials. Rational Decomposition Theorem Given reduced P/Q where deg P < deg Q, then P/Q = F1 + F2 + .. + Fn where Fi = orA (ax + b)k Ax + B (ax2 + bx + c)k and that (ax + b)k or (ax2 + bx + c)k are factors of Q(x). Integrals of Rational Functions
  • 3. Therefore finding the integrals of rational functions is reduced to finding integrals of orA (ax + b)k Ax + B (ax2 + bx + c)k Integrals of Rational Functions
  • 4. Therefore finding the integrals of rational functions is reduced to finding integrals of orA (ax + b)k Ax + B (ax2 + bx + c)k Integrals of Rational Functions The integrals ∫ are straight forward with the substitution method by setting u = ax + b. dx (ax + b)k
  • 5. Therefore finding the integrals of rational functions is reduced to finding integrals of orA (ax + b)k Ax + B (ax2 + bx + c)k Integrals of Rational Functions The integrals ∫ are straight forward with the substitution method by setting u = ax + b. dx (ax + b)k To integrate ∫ dx, we need to complete the square of the denominator. Ax + B (ax2 + bx + c)k
  • 6. Integrals of Rational Functions x x2 + 6x + 10Example A. Find ∫ dx
  • 7. Complete the square of x2 + 6x + 10 – it’s irreducible. Integrals of Rational Functions x x2 + 6x + 10Example A. Find ∫ dx
  • 8. x2 + 6x + 10 = (x2 + 6x ) + 10 Integrals of Rational Functions Complete the square of x2 + 6x + 10 – it’s irreducible. x x2 + 6x + 10Example A. Find ∫ dx
  • 9. x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9 Integrals of Rational Functions Complete the square of x2 + 6x + 10 – it’s irreducible. x x2 + 6x + 10Example A. Find ∫ dx
  • 10. x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9 = (x + 3)2 + 1 Integrals of Rational Functions Complete the square of x2 + 6x + 10 – it’s irreducible. x x2 + 6x + 10Example A. Find ∫ dx
  • 11. x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9 = (x + 3)2 + 1 x x2 + 6x + 10∫ dx = ∫ x (x + 3)2 + 1 dx Hence Integrals of Rational Functions Complete the square of x2 + 6x + 10 – it’s irreducible. x x2 + 6x + 10Example A. Find ∫ dx
  • 12. x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9 = (x + 3)2 + 1 x x2 + 6x + 10∫ dx Set u = x + 3 = ∫ x (x + 3)2 + 1 dx substitution Hence Integrals of Rational Functions Complete the square of x2 + 6x + 10 – it’s irreducible. x x2 + 6x + 10Example A. Find ∫ dx
  • 13. x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9 = (x + 3)2 + 1 x x2 + 6x + 10∫ dx Set u = x + 3 x = u – 3 dx = du= ∫ x (x + 3)2 + 1 dx substitution Hence Integrals of Rational Functions Complete the square of x2 + 6x + 10 – it’s irreducible. x x2 + 6x + 10Example A. Find ∫ dx
  • 14. x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9 = (x + 3)2 + 1 x x2 + 6x + 10∫ dx Set u = x + 3 x = u – 3 dx = du= ∫ x (x + 3)2 + 1 dx substitution = ∫ u – 3 u2 + 1 du Hence Integrals of Rational Functions Complete the square of x2 + 6x + 10 – it’s irreducible. x x2 + 6x + 10Example A. Find ∫ dx
  • 15. x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9 = (x + 3)2 + 1 x x2 + 6x + 10∫ dx Set u = x + 3 x = u – 3 dx = du= ∫ x (x + 3)2 + 1 dx substitution = ∫ u – 3 u2 + 1 du = ∫ u u2 + 1 du – 3 ∫ 1 u2 + 1 du Hence Integrals of Rational Functions Complete the square of x2 + 6x + 10 – it’s irreducible. x x2 + 6x + 10Example A. Find ∫ dx
  • 16. x2 + 6x + 10 = (x2 + 6x + 9) + 10 – 9 = (x + 3)2 + 1 x x2 + 6x + 10∫ dx Set u = x + 3 x = u – 3 dx = du= ∫ x (x + 3)2 + 1 dx substitution = ∫ u – 3 u2 + 1 du = ∫ u u2 + 1 du – 3 ∫ 1 u2 + 1 du Hence Integrals of Rational Functions Set w = u2 + 1 substitution Complete the square of x2 + 6x + 10 – it’s irreducible. x x2 + 6x + 10Example A. Find ∫ dx
  • 17. Set w = u2 + 1 = 2u substitution dw du Integrals of Rational Functions = ∫ u u2 + 1 du – 3 ∫ 1 u2 + 1 du Set w = u2 + 1
  • 18. Set w = u2 + 1 = 2u substitution dw du du = dw 2u Integrals of Rational Functions = ∫ u u2 + 1 du – 3 ∫ 1 u2 + 1 du Set w = u2 + 1
  • 19. Set w = u2 + 1 = 2u substitution dw du du = dw 2u = ∫ u w – 3 ∫ 1 u2 + 1 du dw 2u Integrals of Rational Functions = ∫ u u2 + 1 du – 3 ∫ 1 u2 + 1 du Set w = u2 + 1
  • 20. Set w = u2 + 1 = 2u substitution dw du du = dw 2u = ∫ u w – 3 ∫ 1 u2 + 1 du dw 2u = ½ ∫ 1 w – 3 tan-1(u) + cdw Integrals of Rational Functions
  • 21. Set w = u2 + 1 = 2u substitution dw du du = dw 2u = ∫ u w – 3 ∫ 1 u2 + 1 du dw 2u = ½ ∫ 1 w – 3 tan-1(u) + cdw = ½ Ln(w) – 3 tan-1(x + 3) + c Integrals of Rational Functions
  • 22. Set w = u2 + 1 = 2u substitution dw du du = dw 2u = ∫ u w – 3 ∫ 1 u2 + 1 du dw 2u = ½ ∫ 1 w – 3 tan-1(u) + cdw = ½ Ln(lwl) – 3 tan-1(x + 3) + c = ½ Ln((x + 3)2 + 1) – 3 tan-1(x + 3) + c Integrals of Rational Functions
  • 23. Set w = u2 + 1 = 2u substitution dw du du = dw 2u = ∫ u w – 3 ∫ 1 u2 + 1 du dw 2u = ½ ∫ 1 w – 3 tan-1(u) + cdw = ½ Ln(lwl) – 3 tan-1(x + 3) + c = ½ Ln((x + 3)2 + 1) – 3 tan-1(x + 3) + c Integrals of Rational Functions 3x x2 + 7x + 10Example: Find ∫ dx
  • 24. Set w = u2 + 1 = 2u substitution dw du du = dw 2u = ∫ u w – 3 ∫ 1 u2 + 1 du dw 2u = ½ ∫ 1 w – 3 tan-1(u) + cdw = ½ Ln(lwl) – 3 tan-1(x + 3) + c = ½ Ln((x + 3)2 + 1) – 3 tan-1(x + 3) + c Integrals of Rational Functions Since x2 + 7x + 10 = (x + 2)(x + 5), we can decompose the rational expression. 3x x2 + 7x + 10Example: Find ∫ dx
  • 25. Set w = u2 + 1 = 2u substitution dw du du = dw 2u = ∫ u w – 3 ∫ 1 u2 + 1 du dw 2u = ½ ∫ 1 w – 3 tan-1(u) + cdw = ½ Ln(lwl) – 3 tan-1(x + 3) + c = ½ Ln((x + 3)2 + 1) – 3 tan-1(x + 3) + c Integrals of Rational Functions 3x x2 + 7x + 10Example: Find ∫ dx Since x2 + 7x + 10 = (x + 2)(x + 5), we can decompose the rational expression. Specifically 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)
  • 26. Integrals of Rational Functions Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)
  • 27. Integrals of Rational Functions 3x = A(x + 5) + B(x + 2) Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)
  • 28. Integrals of Rational Functions 3x = A(x + 5) + B(x + 2) Evaluate at x = -5, we get -15 = -3B Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)
  • 29. Integrals of Rational Functions 3x = A(x + 5) + B(x + 2) Evaluate at x = -5, we get -15 = -3B so B = 5 Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)
  • 30. Integrals of Rational Functions 3x = A(x + 5) + B(x + 2) Evaluate at x = -5, we get -15 = -3B so B = 5 Evaluate at x = -2, we get -6 = 3A Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)
  • 31. Integrals of Rational Functions 3x = A(x + 5) + B(x + 2) Evaluate at x = -5, we get -15 = -3B so B = 5 Evaluate at x = -2, we get -6 = 3A so A = -2 Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)
  • 32. Integrals of Rational Functions Hence 3x (x + 2)(x + 5) = -2 (x + 2) + 5 (x + 5) 3x = A(x + 5) + B(x + 2) Evaluate at x = -5, we get -15 = -3B so B = 5 Evaluate at x = -2, we get -6 = 3A so A = -2 Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)
  • 33. Integrals of Rational Functions Hence x (x + 2)(x + 5) = -2 (x + 2) + 5 (x + 5) 3x = A(x + 5) + B(x + 2) Evaluate at x = -5, we get -15 = -3B so B = 5 Evaluate at x = -2, we get -6 = 3A so A = -2 3x x2 + 7x + 10So ∫ dx Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)
  • 34. Integrals of Rational Functions Hence x (x + 2)(x + 5) = -2 (x + 2) + 5 (x + 5) 3x = A(x + 5) + B(x + 2) Evaluate at x = -5, we get -15 = -3B so B = 5 Evaluate at x = -2, we get -6 = 3A so A = -2 3x x2 + 7x + 10So ∫ dx = ∫ dx -2 (x + 2) + 5 (x + 5) Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)
  • 35. Integrals of Rational Functions Hence x (x + 2)(x + 5) = -2 (x + 2) + 5 (x + 5) 3x = A(x + 5) + B(x + 2) Evaluate at x = -5, we get -15 = -3B so B = 5 Evaluate at x = -2, we get -6 = 3A so A = -2 3x x2 + 7x + 10So ∫ dx = -2Ln(lx + 2l) + 5Ln(lx + 5l) + c = ∫ dx -2 (x + 2) + 5 (x + 5) Clear denominators: 3x (x + 2)(x + 5) = A (x + 2) + B (x + 5)
  • 36. Integrals of Rational Functions 1 (x2 + 1)2xExample: Find ∫ dx
  • 37. Integrals of Rational Functions 1 (x2 + 1)2x = Ax + B (x2 + 1) + Cx + D (x2 + 1)2 + E x 1 (x2 + 1)2xExample: Find ∫ dx
  • 38. Integrals of Rational Functions 1 (x2 + 1)2xExample: Find ∫ dx 1 (x2 + 1)2x = Ax + B (x2 + 1) + Cx + D (x2 + 1)2 + E x Clear denominators
  • 39. Integrals of Rational Functions 1 (x2 + 1)2x = Ax + B (x2 + 1) + Cx + D (x2 + 1)2 + E x Clear denominators 1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2 1 (x2 + 1)2xExample: Find ∫ dx
  • 40. Integrals of Rational Functions 1 (x2 + 1)2x = Ax + B (x2 + 1) + Cx + D (x2 + 1)2 + E x Clear denominators 1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2 Evaluate this at x = 0, we get 1 = E 1 (x2 + 1)2xExample: Find ∫ dx
  • 41. Integrals of Rational Functions 1 (x2 + 1)2x = Ax + B (x2 + 1) + Cx + D (x2 + 1)2 + E x Clear denominators 1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2 Evaluate this at x = 0, we get 1 = E Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 1 (x2 + 1)2xExample: Find ∫ dx
  • 42. Integrals of Rational Functions 1 (x2 + 1)2x = Ax + B (x2 + 1) + Cx + D (x2 + 1)2 + E x Clear denominators 1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2 Evaluate this at x = 0, we get 1 = E Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 There is no x4-term, 1 (x2 + 1)2xExample: Find ∫ dx
  • 43. Integrals of Rational Functions 1 (x2 + 1)2x = Ax + B (x2 + 1) + Cx + D (x2 + 1)2 + E x Clear denominators 1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2 Evaluate this at x = 0, we get 1 = E Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 There is no x4-term, hence Ax4 + x4 = 0, 1 (x2 + 1)2xExample: Find ∫ dx
  • 44. Integrals of Rational Functions 1 (x2 + 1)2x = Ax + B (x2 + 1) + Cx + D (x2 + 1)2 + E x Clear denominators 1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2 Evaluate this at x = 0, we get 1 = E Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 There is no x4-term, hence Ax4 + x4 = 0, so A = -1 1 (x2 + 1)2xExample: Find ∫ dx
  • 45. Integrals of Rational Functions 1 (x2 + 1)2x = Ax + B (x2 + 1) + Cx + D (x2 + 1)2 + E x Clear denominators 1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2 Evaluate this at x = 0, we get 1 = E Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 There is no x4-term, hence Ax4 + x4 = 0, so A = -1 There is no x3-term, 1 (x2 + 1)2xExample: Find ∫ dx
  • 46. Integrals of Rational Functions 1 (x2 + 1)2x = Ax + B (x2 + 1) + Cx + D (x2 + 1)2 + E x Clear denominators 1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2 Evaluate this at x = 0, we get 1 = E Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 There is no x4-term, hence Ax4 + x4 = 0, so A = -1 There is no x3-term, hence Bx3 = 0, 1 (x2 + 1)2xExample: Find ∫ dx
  • 47. Integrals of Rational Functions 1 (x2 + 1)2x = Ax + B (x2 + 1) + Cx + D (x2 + 1)2 + E x Clear denominators 1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2 Evaluate this at x = 0, we get 1 = E Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 There is no x4-term, hence Ax4 + x4 = 0, so A = -1 There is no x3-term, hence Bx3 = 0, so B = 0 1 (x2 + 1)2xExample: Find ∫ dx
  • 48. Integrals of Rational Functions 1 (x2 + 1)2x = Ax + B (x2 + 1) + Cx + D (x2 + 1)2 + E x Clear denominators 1 = (Ax + B)(x2 + 1)x +(Cx + D) x +E(x2 + 1)2 Evaluate this at x = 0, we get 1 = E Hence 1 = (Ax + B)(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 There is no x4-term, hence Ax4 + x4 = 0, so A = -1 There is no x3-term, hence Bx3 = 0, so B = 0 So we've1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 1 (x2 + 1)2xExample: Find ∫ dx
  • 49. Integrals of Rational Functions There is no x-term in 1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2
  • 50. Integrals of Rational Functions There is no x-term in 1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 Hence Dx = 0, or D = 0.
  • 51. Integrals of Rational Functions There is no x-term in 1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 Hence Dx = 0, or D = 0. So the expression is 1 = -x2 (x2 + 1)+Cx2 +1(x2 + 1)2
  • 52. Integrals of Rational Functions There is no x-term in 1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 Hence Dx = 0, or D = 0. So the expression is 1 = -x2 (x2 + 1)+Cx2 +1(x2 + 1)2 Expand this
  • 53. Integrals of Rational Functions There is no x-term in 1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 Hence Dx = 0, or D = 0. So the expression is 1 = -x2 (x2 + 1)+Cx2 +1(x2 + 1)2 Expand this 1 = -x4 – x2 Cx2 + x4 + 2x2 + 1+
  • 54. Integrals of Rational Functions There is no x-term in 1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 Hence Dx = 0, or D = 0. So the expression is 1 = -x2 (x2 + 1)+Cx2 +1(x2 + 1)2 Expand this 1 = -x4 – x2 Cx2 + x4 + 2x2 + 1+ Hence Cx2 + x2 = 0 or C = -1
  • 55. Integrals of Rational Functions There is no x-term in 1 = -x(x2 + 1)x +(Cx + D)x +1(x2 + 1)2 Hence Dx = 0, or D = 0. So the expression is 1 = -x2 (x2 + 1)+Cx2 +1(x2 + 1)2 Expand this 1 = -x4 – x2 Cx2 + x4 + 2x2 + 1+ Hence Cx2 + x2 = 0 or C = -1 Put it all together 1 (x2 + 1)2x = -x (x2 + 1) + -x (x2 + 1)2 + 1 x
  • 56. Integrals of Rational Functions 1 (x2 + 1)2xTherefore ∫ dx = ∫ -x dx (x2 + 1) + -x dx (x2 + 1)2 + dx x∫ ∫
  • 57. Integrals of Rational Functions 1 (x2 + 1)2xTherefore ∫ dx = ∫ -x dx (x2 + 1) + -x dx (x2 + 1)2 + dx x∫ ∫ substitution set u = x2 + 1
  • 58. Integrals of Rational Functions 1 (x2 + 1)2xTherefore ∫ dx = ∫ -x dx (x2 + 1) + -x dx (x2 + 1)2 + dx x∫ ∫ substitution set u = x2 + 1 du dx = 2x
  • 59. Integrals of Rational Functions 1 (x2 + 1)2xTherefore ∫ dx = ∫ -x dx (x2 + 1) + -x dx (x2 + 1)2 + dx x∫ ∫ substitution set u = x2 + 1 du dx = 2x du 2xdx =
  • 60. Integrals of Rational Functions absolute value arguments for Ln: P - 22,36,61-64
  • 61. Integrals of Rational Functions 1 (x2 + 1)2xTherefore ∫ dx = ∫ -x dx (x2 + 1) + -x dx (x2 + 1)2 + dx x∫ ∫ substitution set u = x2 + 1 du dx = 2x du 2xdx == ∫ -x u du 2x + ∫ -x u2 du 2x + Ln(lxl)
  • 62. Integrals of Rational Functions 1 (x2 + 1)2xTherefore ∫ dx = ∫ -x dx (x2 + 1) + -x dx (x2 + 1)2 + dx x∫ ∫ substitution set u = x2 + 1 du dx = 2x du 2xdx == ∫ -x u du 2x + ∫ -x u2 du 2x + Ln(lxl) = - ½ ∫ du u + Ln(lxl)½ ∫ du u2–
  • 63. Integrals of Rational Functions 1 (x2 + 1)2xTherefore ∫ dx = ∫ -x dx (x2 + 1) + -x dx (x2 + 1)2 + dx x∫ ∫ substitution set u = x2 + 1 du dx = 2x du 2xdx == ∫ -x u du 2x + ∫ -x u2 du 2x + Ln(x) = - ½ ∫ du u + Ln(x)½ ∫ du u2– = - ½ Ln(u) + ½ u-1 + Ln(x) + c
  • 64. Integrals of Rational Functions 1 (x2 + 1)2xTherefore ∫ dx = ∫ -x dx (x2 + 1) + -x dx (x2 + 1)2 + dx x∫ ∫ substitution set u = x2 + 1 du dx = 2x du 2xdx == ∫ -x u du 2x + ∫ -x u2 du 2x + Ln(x) = - ½ ∫ du u + Ln(x)½ ∫ du u2– = - ½ Ln(u) + ½ u-1 + Ln(x) + c = - ½ Ln(x2 + 1) + + Ln(x) + c1 2(x2 + 1)