빅데이터 분석:
유전체 정보와 개인라이프로그 정보 활용
서울대 최형진1
Contents
1. Introduction
2. Human Genome Project and Beyond
3. Genome Data
① Cancer Targeted Therapy
② Disease Risk (Common, Rare)
③ Pharmacogenomics
④ Others (Fetal DNA, Microbiome)
4. Sensor/Mobile Data
5. Electrical Health Records
6. National Healthcare Data
7. Medical Images
8. Biomedical Big Data + Artificial Intelligence
Contents
1. Introduction
2. Human Genome Project and Beyond
3. Genome Data
① Cancer Targeted Therapy
② Disease Risk (Common, Rare)
③ Pharmacogenomics
④ Others (Fetal DNA, Microbiome)
4. Sensor/Mobile Data
5. Electrical Health Records
6. National Healthcare Data
7. Medical Images
8. Biomedical Big Data + Artificial Intelligence
$215MPrecision Medicine Initiative
2015/1/30
Integration of Multi-Big-Data
8
2013.4.25. KBS 9시 뉴스
며칠 전 유전자 검사를 받은 40대 남성입니다.
혈액세포의 DNA 상태를 분석해 앞으로 암에 걸릴 위험이 있는지 여부를 판단할 수 있다
고 합니다.
2013.4.25. KBS 9시 뉴스
2013.4.25. KBS 9시 뉴스
60년전 DNA의 구조가 밝혀진 이래 2003년 인간 유전자 지도가 완성됐고, 현재는 어떤 유
전자가 어떤 질병을 일으키는지 분석도 80% 정도 끝난 상태입니다.
예를들어 13번 염색체의 BRCA2 유전자에 이상이 생기면 유방암에 걸릴 확률이 높습니
다. 또 17번 염색체 유전자는 난소암, 7번 염색체 유전자는 비만을 일으킵니다.
1997
13
Heart Disorder 99% Probability
Life Expectancy 30.2 Years
14
Contents
1. Introduction
2. Human Genome Project and Beyond
3. Genome Data
① Cancer Targeted Therapy
② Disease Risk (Common, Rare)
③ Pharmacogenomics
④ Others (Fetal DNA, Microbiome)
4. Sensor/Mobile Data
5. Electrical Health Records
6. National Healthcare Data
7. Medical Images
8. Biomedical Big Data + Artificial Intelligence
Promise of Human Genome Project
Tissue Specific Expression
Comprehensive Catalogues of Genomic Data
Variation in the human genome
Mendelian (monogenic) diseases
(N=22,432)
Whole genome sequencing (N=1,000)
Four ethnic groups
(CEU, YRI, JPT, CHB, N=270)
GWAS catalog
Complex (multigenic) traits
(1926 publications and 13410 SNPs)
Disease-related variations
Functional elements
2014-06-29
17
All Major Tissues/Organs
All Proteins + All RNAs
2015 Science Tissue-based map of the human proteome
1. Immunohistochemistry (IHC)
24,028 antibodies
(16,975 proteins)
 >13 million IHC images
2. RNA-sequencing
(N=44)
18
111 Reference Human Epigenomes
2015.2.19. Nature. Integrative analysis of 111 reference human epigenomes19
20
Data Dimensions
2015.2.19. Nature. Integrative analysis of 111 reference human epigenomes21
Network-based Model of
Disease-disease Relationship
2015 Science Uncovering disease-disease relationships through the incomplete interactome22
Hypothesis Driven Science Data Driven Science
Hypothesis
Collect
Data
Data
Generate
Hypothesis
Analyze
Analyze
Candidate Gene
Approach
Genome-wide
Approach
Choose a Gene
from Prior Knowledge
Analyze the Gene
Analyze ALL Genes
Discover Novel Findings
GWAS
(Genome wide association study)
SNP chip
Whole Genome
SNP Profiling (500K~1M SNPs)
Common Variant
Choi HJ, Doctoral Thesis
Estrada et al., Nature Genetics, 2012
+ novel targets
for bone biology
Recent largest GWAS
GEFOS consortium
2010 An Environment-Wide
Association Study (EWAS) on Type
2 Diabetes Mellitus
Environment-Wide Association Study (EWAS)
 다양한 환경인자들 
GWAS  PheWAS
Phenotype-wide Association Study
1000 개의 질병들
Bioinformatics. 2010 PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations.
Phenotype-wide Association Study
Genome-Envirome-Phenome-wide
Association Study
Phenome-wide
(Lab,Diagnosis)
Proposal
(Choi)
Genome-wide
Environment-wide
(Life style, diet, exercise, pollution)
Anatome-Phenome-wide
Association Study
2015.2.19. Nature. Genetic and epigenetic fine mapping of causal autoimmune disease variants
Phenome
Anatome
Contents
1. Introduction
2. Human Genome Project and Beyond
3. Genome Data
① Cancer Targeted Therapy
② Disease Risk (Common, Rare)
③ Pharmacogenomics
④ Others (Fetal DNA, Microbiome)
4. Sensor/Mobile Data
5. Electrical Health Records
6. National Healthcare Data
7. Medical Images
8. Biomedical Big Data + Artificial Intelligence
저의 유전자
분석 결과를
반영하여 진료
해주세요!! 헠?
33
What is Genomic Medicine?
Disease genetic susceptibility
Cancer driver
somatic mutation
Pharmacogenomics
Targeted
Cancer Treatment
(EGFR)
Causal
Variant
Targeted Drug
(MODY-SU)
Drug Efficacy/Side Effect
Related Genotype
(CYP, HLA)
Genetic Diagnosis
(Mendelian,
Cystic fibrosis)
Molecular
Classification
- Prognosis
(Leukemia)
Hereditary
Cancer
(BRCA)
Microbiome
(Bacteria,
Virus)
Genomic Medicine
Risk prediction
(Complex disease,
Diabetes)
Germline Variants
Fetal DNA
Contents
1. Introduction
2. Human Genome Project and Beyond
3. Genome Data
① Cancer Targeted Therapy
② Disease Risk (Common, Rare)
③ Pharmacogenomics
④ Others (Fetal DNA, Microbiome)
4. Sensor/Mobile Data
5. Electrical Health Records
6. National Healthcare Data
7. Medical Images
8. Biomedical Big Data + Artificial Intelligence
Cancer Targeted Therapy
37
Targeted TherapyGenetic TestCancer
38
Cancer Rebiopsy
2013 JCO Genomics-Driven Oncology- Framework for an Emerging Paradigm
Liquid Biopsy
40
Contents
1. Introduction
2. Human Genome Project and Beyond
3. Genome Data
① Cancer Targeted Therapy
② Disease Risk (Common, Rare)
③ Pharmacogenomics
④ Others (Fetal DNA, Microbiome)
4. Sensor/Mobile Data
5. Electrical Health Records
6. National Healthcare Data
7. Medical Images
8. Biomedical Big Data + Artificial Intelligence
(출처: 금창원 대표님 블로그)
$99
TV CF
42
43
30만원-200만원
44
GWAS
N=339,224 individuals
97 BMI-associated loci
Tissue Specific Gene Expression
2015 Nature Genetic studies of body mass index yield new insights for obesity biology
- Hypothalamus, Pituitary gland
(appetite regulation)
- Hippocampus, Limbic system
(learning, cognition, emotion,
memory)
Gene Set Enrichment Analysis
2015 Nature Genetic studies of body mass index yield new insights for obesity biology
Per-allele effect of BMI-associated
loci on body weight
2012 Genetic determinants of common obesity and their value in prediction
2011 Hum Genet. Type 2 diabetes and obesity- genomics and the clinic
2015 Nature Genetic studies of
body mass index yield new
insights for obesity biology
Blue: Previous
Red: Novel
2011 Hum Genet. Type 2 diabetes and obesity- genomics and the clinic
TCF7L2
◇◆ ‘parental obesity’
as a test to predict obesity
in adult life
•Dark blue 1–2 yrs
•Green 3–5 yrs
•Red 6–9 yrs
•Light blue 10–14 yrs
•Grey , 15–17 yrs
Genetic Prediction of Obesity Risk
The predictive ability of
the currently
established BMI-
associated loci is poor
2012 Genetic determinants of common obesity and their value in prediction
Influence of Genetics on Human Disease
For any condition the overall balance of g
enetic and environmental determinants ca
n be represented by a point somewhere w
ithin the triangle.
53
Single
Locus /
Mendelian
Multiple
Loci or multi-
chromosomal
Environmental
Cystic Fibrosis
Hemophilia A
Examples:
Alzheimer’s Disease
Type II Diabetes
Cardiovascular Disease
Diet
Carcinogens
Infections
Stress
Radiation
Lifestyle
Gene = F8
Gene= CFTR
F8 = Coagulation Factor VIII
CFTR = Cystic Fibrosis Conductance Transmembrane Regulator
Lung Cancer
2008 HMG Genome-based prediction of common diseases- advances and prospects54
2008 HMG Genome-based prediction of common diseases- advances and prospects55
Diabetes ≠ Genetic Disease?
• Familial aggregation
– Genetic influences?
– Epigenetic influences
• Intrauterine environment
– Shared family environment?
• Socioeconomic status
• Dietary preferences
• Food availability
• Gut microbiome content
• Overestimated heritability
– Phantom heritability
2012. Drong AW, Lindgren CM, McCarthy MI. Clin Pharmacol Ther. The genetic and epigenetic basis of type 2 diabetes and obesity.
2012. PNAS The mystery of missing heritability- Genetic interactions create phantom heritability57
Rare Variant in a Specific Population
• 3756 Latino: whole exome sequencing
 A rare functional variant in candidate gene
 14276: replication  Not found in other ethnic group
2014 JAMA Association of a Low-Frequency Variant in HNF1A With Type 2 Diabetes in a Latino Population
2014 NEJM Null Mutation in Hormone-Sensitive Lipase Gene and Risk of Type 2 Diabetes
Rare Functional Variant
= Monogenic Heritable Disease
All Amish
Variants and Disease Susceptibility
2008 NRG Genome-wide association studies for complex traits- consensus, uncertainty and challenges
Genotype Based Diabetes Therapy
Diabetes due to KATP channel mutations  sulphonylurea
2007 American Journal of Physiology - Endocrinology and Metabolism. ATP-sensitive K+ channels and disease- from molecule to malady
Mendelian (single-gene) genetic
disorder
Known single-gene
candidates testing
Whole Genome or Whole
Exome Sequencing
64
Laboratory Director
강현석
65
66
Contents
1. Introduction
2. Human Genome Project and Beyond
3. Genome Data
① Cancer Targeted Therapy
② Disease Risk (Common, Rare)
③ Pharmacogenomics
④ Others (Fetal DNA, Microbiome)
4. Sensor/Mobile Data
5. Electrical Health Records
6. National Healthcare Data
7. Medical Images
8. Biomedical Big Data + Artificial Intelligence
2012 European Heart Journal. Personalized medicine: hope or hype?
Herceptin
Glivec
68
69
Pharmacogenomic Biomarkers
in Drug Labeling (N=166)
2015.9.14.
Atorvastatin, Azathioprine,
Carbamazepine, Carvediolol,
Clopidogrel, Codein,
Diazepam…..
Large Effect Size Variant?
Disease susceptibility variant Pharmacogenetic variant
Environmental
Exposure
Drug
Exposure
November 19, 2013
November 19, 2013
2013 NEJM A Randomized Trial of
Genotype-Guided Dosing of Warfarin
2013 NEJM A
Randomized Trial of
Genotype-Guided Dosing
of Warfarin
Median
21 days
Median
29 days
Median
44 days
Median
59 days
P<0.001
P=0.003
Expected Metformin response
Other drug Metformin usual dose Metformin low dose (S/E)
0% -1% -2%-1.5% -2.5% -3%+0.5%
HbA1c change
Good Response
Genotype
Poor Response
Genotype
77
78
79
80
81
Genetics of eating behavior
2011 Genetics of eating behavior
Personalized Medicine
Pharmacogenomics
Nutrigenomics
IRS1 SNP GA/AA
High fat/
Low carb
IRS1 SNP GG
Standard
Higher
effect
Similar
effect
2013 Diabetes Care. IRS1 Genotype Modulates Metabolic Syndrome Reversion in Response to 2-Year Weight-Loss Diet Intervention - The POUNDS LOST trial
Gene-Environment Interaction
Gene Environment
Disease
Genetic Predisposition Score Sugar-Sweetened Beverages
Soda School
No-Soda School
Obese Family Lean Family
Genotype Guided Personalized Treatment
Baseline
Genotyping
- Drug metabolism
- DM etiology
- DM complication
1 week 3 month Long term
Genotype based treatment strategy
- Drug choice
- Drug dose
- Lifestyle modification
- Complication evaluation
New
T2DM
Pharmacogenetic Tests: 최형진
No
Drug
(N= 10)
Gene
(6 genes=8 bioma
rkers)
Target SNPs
(N=12)
#5
(HJC)
Genotype Interpretation Clinical Interpretation
1 Clopidogrel CYP2C19
rs4244285 (G>A) GG
*1/*1
(EM)
Use standard dosers4986893 (G>A) GG
rs12248560 (C>T) CC
2 Warfarin
VKORC1 rs9923231 (C>T) TT
Low dose
(higher risk of bleeding)
Warfarin dose=0.5~2 mg/day
CYP2C9
rs1799853 (C>T) CC
rs1057910 (A>C) AC
3 Simvastatin SLCO1B1 rs4149056 (T>C) TT Normal
4
Azathioprine (AP),
MP, or TG
TPMT rs1142345 (A>G) AA Normal
5
Carbamazepine
or Phenytoin
HLA-B*1502
rs2844682 (C>T) CT
Normal
rs3909184 (C>G) CC
6 Abacavir HLA-B*5701 rs2395029 (T>G) TT Normal
7 Allopurinol HLA-B*5801 rs9263726 (G>A) GG Normal
Clopidogrel1)
: UM/EM=standard dose, IM/PM= consider alternative antiplatelet agent (eg. prasugrel/ticagrelor)
Warfarin2)
: high dose=5~7 mg/day, medium dose=3~4 mg/day, low dose=0.5~2 mg/day
=0
최형진
+1,000,000
?
Contents
1. Introduction
2. Human Genome Project and Beyond
3. Genome Data
① Cancer Targeted Therapy
② Disease Risk (Common, Rare)
③ Pharmacogenomics
④ Others (Fetal DNA, Microbiome)
4. Sensor/Mobile Data
5. Electrical Health Records
6. National Healthcare Data
7. Medical Images
8. Biomedical Big Data + Artificial Intelligence
89
2014 NEJM Genotype–Phenotype Correlation — Promiscuity in the Era of Next-Generation Sequencing
A Genotype-First Approach to Defining
the Subtypes of a Complex Disease
2014.2.27.
Point-of-care
Genotyping
HyBeacon Probes
Genome Surgery
Future of Genomic Medicine?
Test when neededWithout information Know your type
Blood
type
Geno
type
Here is my
sequence
Contents
1. Introduction
2. Human Genome Project and Beyond
3. Genome Data
① Cancer Targeted Therapy
② Disease Risk (Common, Rare)
③ Pharmacogenomics
④ Others (Fetal DNA, Microbiome)
4. Sensor/Mobile Data
5. Electrical Health Records
6. National Healthcare Data
7. Medical Images
8. Biomedical Big Data + Artificial Intelligence
98
2015 Sci Transl Med. The emerging field of mobile health
100
NFC 혈당측정기
101
데이터베이스 기반 혈당관리
102
103
혈당 변화 실시간 모니터링
저녁 식사전 고혈당
104
구글 헬스 앱 분야 매출 1위 ‘눔(noom)’
105
106
107
Date Time name foodType calories unit amount
2014-08-09 0 미역국 0 23 1국그릇 (300ml) 105 g
2014-08-09 0 잡곡밥 0 80 1/4공기 (52.5g) 52 g
2014-08-09 0 열무김치 0 3 1/4소접시 (8.75g) 9 g
2014-08-09 0 파프리카 0 6 1/2개 (33.25g) 35 g
2014-08-09 0 토란대무침 0 28 1/2소접시(46.5g) 46 g
2014-08-09 1 복숭아 0 91 1개 (269g) 268 g
2014-08-09 2 마른오징어 2 88 1/4마리 (25g) 25 g
2014-08-09 2 파프리카 0 6 1/2개 (33.25g) 35 g
2014-08-09 2 저지방우유 1 72 1컵 (200ml) 180 g
2014-08-09 2 복숭아 0 183 2개 (538g) 538 g
2014-08-09 3 복숭아 0 91 1개 (269g) 268 g
2014-08-09 3 파프리카 0 6 1/2개 (33.25g) 35 g
2014-08-09 4 파프리카 0 6 1/2개 (33.25g) 35 g
2014-08-09 4 식빵 1 92 1장 (33g) 33 g
2014-08-09 4 삶은옥수수 1 197 1개 반 (150g) 150 g
2014-08-09 4 복숭아 0 91 1개 (269g) 268 g
2014-08-09 4 저지방우유 1 72 1컵 (200ml) 180 g
2014-08-10 0 복숭아 0 91 1개 (269g) 268 g
2014-08-10 0 저지방우유 1 36 1/2컵 (100ml) 90 g
2014-08-10 0 두부 0 20 1/4인분 (25g) 25 g
2014-08-10 0 견과류 2 190 1/4 컵 (50g) 31 g
2014-08-10 0 파프리카 0 11 1개 (66.5g) 65 g
108
식사량 실시간 모니터링
0
100
200
300
400
500
600
아침
아침간식
점심
점심간식
저녁
저녁간식
아침
아침간식
점심
점심간식
저녁
저녁간식
아침
아침간식
점심
점심간식
저녁
저녁간식
아침
아침간식
점심
점심간식
저녁
저녁간식
아침
아침간식
점심
점심간식
저녁
저녁간식
아침
아침간식
점심
점심간식
저녁
저녁간식
아침
아침간식
점심
점심간식
저녁
저녁간식
2014-08-09 2014-08-10 2014-08-11 2014-08-12 2014-08-13 2014-08-14 2014-08-15
점심 과식
저녁 금식
109
운동량 실시간 모니터링
0
5000
10000
15000
20000
25000
걸음 수
운동X
110
111
운동
식사
112
스마트폰 활용 당뇨병 통합관리
의사
상담 교육
조회/
분석
교육간호사
매주/필요시
진료 처방
2-3달 간격
평가 회의
매주/필요시
식사/
운동
스마트폰
데이터베이스 서버
자가관리
전송
분석
혈당
측정
혈당측정기
113
114
115
피부 사진 원격 진단/처방
116
117
심전도 원격 진단/처방
118
119
120http://startupbank.co.kr/board/board_view.html?ps_boid=75&ps_db=report_s
121 2015 Cell Metabolism. A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans that Can Be Modulated for Health Benefits
November 3, 2015
122 2015 Cell Metabolism. A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans that Can Be Modulated for Health Benefits
Personalized Nutrition by
Prediction of Glycemic Responses
123
2015 Cell. Personalized Nutrition by Prediction of Glycemic Responses
Received: October 5, 2015;
Received in revised form:
October 29, 2015;
Accepted: October 30, 2015;
124
2015 Cell. Personalized Nutrition by Prediction of Glycemic Responses
125
2015 Cell. Personalized Nutrition by Prediction of Glycemic Responses
126
2015 Cell. Personalized Nutrition by Prediction of Glycemic Responses
Contents
1. Introduction
2. Human Genome Project and Beyond
3. Genome Data
① Cancer Targeted Therapy
② Disease Risk (Common, Rare)
③ Pharmacogenomics
④ Others (Fetal DNA, Microbiome)
4. Sensor/Mobile Data
5. Electrical Health Records
6. National Healthcare Data
7. Medical Images
8. Biomedical Big Data + Artificial Intelligence
Electronic Health Records
2012 NRG Mining electronic health records- towards better research applications and clinical care
128
PCA Analysis혈당
신장기능
129
Machine Learning
2014 Big data bioinformatics130
Clinical Notes
131
밤동안 저혈당수면 Lt.foot rolling Keep떨림,
식은땀, 현기증, 공복감, 두통, 피로감등의 저혈
당 에 저혈당 이 있을 즉알려주도록 밤사이 특
이호소 수면유지상처와 통증 상처부위 출혈
oozing, severe pain 알리도록 고혈당 처방된 당
뇨식이의 중요성과 간식을 자제하도록 .고혈
당 ,,관리 방법 .당뇨약 이해 잘 하고 수술부위
oozing Rt.foot rolling keep드레싱 상태를 고혈
당 고혈당 의식변화 BST 387 checked.고혈당
으로 인한 구강 내 감염 위해 식후 양치, gargle
등 구강 위생 격려.당뇨환자의 발관리 방법에 .
목표 혈당, 목표 당화혈색소에 .식사를 거르거
나 지연하지 않도록 .식사요법, 운동요법, 약물
요법을 정확히 지키는 것이 중요을 .처방된 당
뇨식이의 중요성과 간식을 자제하도록 .고혈
당 ,,관리 방법 .혈당 정상 범위임rt foot rolling
중으로 pain호소 밤사이 수면양호걱정신경 예
민감정변화 중임감정을 표현하도록 지지하고
경청기분상태 condition 조금 나은 듯 하다고 혈
당 조절과 관련하여 신경쓰는 모습 보이며 혈당
self로 측정하는 모습 보임혈당 조절에 안내하
고 불편감 지속알리도록고혈당 고혈당 의식변
화 고혈당 허약감 지남력 혈당조절 안됨고혈당
으로 인한 구강 내 감염 위해 식후 양치, gargle
등 구강 위생 격려.당뇨환자의 정기점검 내용과
빈도에 .BST 140 으로 저혈당 호소 밤동안 저
혈당수면 Lt.foot rolling Keep떨림, 식은땀, 현
기증, 공복감, 두통, 피로감등의 저혈당 에 저
혈당 이 있을 즉알려주도록 pain 및 불편감 호
소 WA 잘고혈당 고혈당 의식변화 고혈당 허
약감 지남력 혈당조절 안됨식사요법, 운동요법,
약물요법을 정확히 지키는 것이 중요을 .저혈당
/고혈당 과 대처법에 .혈당정상화, 표준체중의
유지, 정상 혈중지질의 유지에 .고혈당 ,,관리
방법 .혈당측정법,인슐린 자가 투여법, 경구투
약,수분 섭취량,대체 탄수화물,의료진의 도움이
필요한 사항에 교혈당 정상 범위임수술부위
oozing Rt.foot rolling keep수술 부위 (출혈, 통
증, 부종)수술부위 출혈 상처부위 oozing
Wound 당겨지지 않도록 적절한 체위 취하기
설명감염 발생 위험 요인 수술부위 출혈 밤동안
간호기록지 Word Cloud
Natural Language Processing (NLP)132
Contents
1. Introduction
2. Human Genome Project and Beyond
3. Genome Data
① Cancer Targeted Therapy
② Disease Risk (Common, Rare)
③ Pharmacogenomics
④ Others (Fetal DNA, Microbiome)
4. Sensor/Mobile Data
5. Electrical Health Records
6. National Healthcare Data
7. Medical Images
8. Biomedical Big Data + Artificial Intelligence
134
135
136
137
Korean Society for
Bone and Mineral
Research
Anti-hypertensive
prescriptions
(2008-2011)
N = 8,315,709
New users
N = 2,357,908
Age ≥ 50 yrs
Monotherapy
Compliant user (MPR≥80%)
No previous fracture
N = 528,522
Prevalent users
N = 5,957,801
Excluded
Age <50
Combination therapy
Inadequate compliance
Previous fracture
N = 1,829,386
Final study population
심평원 빅데이터 연구
고혈압약과 골절
Choi et al., 2015 International Journal of Cardiology138
Compare Fracture Risk
Comparator?Hypertension
CCB
High
Blood Pressure
Fracture
Risk
BB
Non-
user
Healthy
Non-
user
Cohort study (Health Insurance Review & Assessment Service)
New-user design (drug-related toxicity)
Non-user comparator (hypertension without medication)
2007 20112008
Choi et al., 2015 International Journal of Cardiology139
140
Contents
1. Introduction
2. Human Genome Project and Beyond
3. Genome Data
① Cancer Targeted Therapy
② Disease Risk (Common, Rare)
③ Pharmacogenomics
④ Others (Fetal DNA, Microbiome)
4. Sensor/Mobile Data
5. Electrical Health Records
6. National Healthcare Data
7. Medical Images
8. Biomedical Big Data + Artificial Intelligence
2013 Science Structural and Functional Brain Networks- From Connections to Cognition
Green Lines: orexigenic pathways
Red lines: dopaminergic pathways
2013 The contribution of brain reward circuits to the obesity epidemic
2014 Obesity – A neuropsychological disease- Systematic review and neuropsychological mode
A, amygdala;
H, hypothalamus;
NA, nucleus accumbens,
PFC, prefrontal cortex;
VTA, ventral tegmental area
143
tDCS Neuromodulation Controls
Feeding Behavior via
Food Reward Activity and Connectivity
Neuromodulation Brain Activity Feeding Behavior
Brain Connectivity
fMRI analysis
2013 Science Functional interactions as big data in the human brain
2013 Science Functional interactions as big data in the human brain
147
2013 Science Functional interactions as big data in the human brain
2012 Decoding subject-driven cognitive states with whole-brain connectivity patterns
2014
Radiomics
2014 Nature Communications. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
Quantitative nuclear morphometry
2015 Laboratory Investigation. Novel genotype-phenotype associations in human cancers enabled by advanced molecular platforms and computational analysis
of whole slide images
Contents
1. Introduction
2. Human Genome Project and Beyond
3. Genome Data
① Cancer Targeted Therapy
② Disease Risk (Common, Rare)
③ Pharmacogenomics
④ Others (Fetal DNA, Microbiome)
4. Sensor/Mobile Data
5. Electrical Health Records
6. National Healthcare Data
7. Medical Images
8. Biomedical Big Data + Artificial Intelligence
151
152
Multidimensional Architecture
153
Gene
Hormone
Psychology
Behavior
Phenotype
Outcome
Metabolic
Disease
Vascular
Disease
Environment
Healthcare Big Data
+ Artificial Intelligence
154
Healthcare Big Data Machine Learning
Novel Insights and Applications
155
157
In a scan of 3,000 images, IBM
technology was able to spot
melanoma with an accuracy
of about 95 percent, much
better than the 75 percent to
84 percent average of today's
largely manual methods.
IBM Research will continue to
work with Sloan Kettering to
develop additional
measurements and
approaches to further refine
diagnosis, as well as refine
their approach through larger
sets of data.
Dec 17, 2014
158
Aug. 11, 2015
IBM is betting that the same technology that
recognizes cats can identify tumors and other signs of
diseases.
In the long run, IBM and others in the field hope such
systems can become reliable advisers to
radiologists, dermatologists and other practitioners
who analyze images—especially in parts of the world
where health-care providers are scarce.
While IBM hopes Watson will learn to interpret
Merge’s images, it also expects the combination of
imagery, medical records and other data to reveal
patterns relevant to diagnosis and treatment that a
human physician may miss, ushering in an era of
computer-assisted care. Two other recent IBM
acquisitions, Phytel Inc. and Explorys Inc., yielded 50
million electronic medical records.
159
160
Environment
Gene
Eat
Exercise
Metabolism
Brain
Glucose
DM
Blood Pressure
HTN
Cardiovascular
Disease
Cognitive
Hormone
Behavior
Psychotherapy
Behavior Therapy
Policy Making
Genetic Testing
Neuroimaging
Neuromodulation
Drug
Drug
Lab
Survey
Survey
Sensor
DrugDiagnosis
EMR
Government
Data
Mining
Environment Survey
NeuroimagingGenetics Lab/Hormone Hospital
Cognitive
Personalize
Psychotherapy
Dietary
Intervention
Exercise
Intervention
Food
Exercise
Glucose
Mobile
Drug
Neuromodulation
Monitoring

(서울의대 공유용) 빅데이터 분석 유전체 정보와 개인라이프로그 정보 활용-2015_11_24

  • 1.
    빅데이터 분석: 유전체 정보와개인라이프로그 정보 활용 서울대 최형진1
  • 2.
    Contents 1. Introduction 2. HumanGenome Project and Beyond 3. Genome Data ① Cancer Targeted Therapy ② Disease Risk (Common, Rare) ③ Pharmacogenomics ④ Others (Fetal DNA, Microbiome) 4. Sensor/Mobile Data 5. Electrical Health Records 6. National Healthcare Data 7. Medical Images 8. Biomedical Big Data + Artificial Intelligence
  • 3.
    Contents 1. Introduction 2. HumanGenome Project and Beyond 3. Genome Data ① Cancer Targeted Therapy ② Disease Risk (Common, Rare) ③ Pharmacogenomics ④ Others (Fetal DNA, Microbiome) 4. Sensor/Mobile Data 5. Electrical Health Records 6. National Healthcare Data 7. Medical Images 8. Biomedical Big Data + Artificial Intelligence
  • 4.
  • 6.
  • 8.
  • 9.
  • 10.
    며칠 전 유전자검사를 받은 40대 남성입니다. 혈액세포의 DNA 상태를 분석해 앞으로 암에 걸릴 위험이 있는지 여부를 판단할 수 있다 고 합니다. 2013.4.25. KBS 9시 뉴스
  • 11.
    2013.4.25. KBS 9시뉴스 60년전 DNA의 구조가 밝혀진 이래 2003년 인간 유전자 지도가 완성됐고, 현재는 어떤 유 전자가 어떤 질병을 일으키는지 분석도 80% 정도 끝난 상태입니다. 예를들어 13번 염색체의 BRCA2 유전자에 이상이 생기면 유방암에 걸릴 확률이 높습니 다. 또 17번 염색체 유전자는 난소암, 7번 염색체 유전자는 비만을 일으킵니다.
  • 12.
  • 13.
    13 Heart Disorder 99%Probability Life Expectancy 30.2 Years
  • 14.
  • 15.
    Contents 1. Introduction 2. HumanGenome Project and Beyond 3. Genome Data ① Cancer Targeted Therapy ② Disease Risk (Common, Rare) ③ Pharmacogenomics ④ Others (Fetal DNA, Microbiome) 4. Sensor/Mobile Data 5. Electrical Health Records 6. National Healthcare Data 7. Medical Images 8. Biomedical Big Data + Artificial Intelligence
  • 16.
    Promise of HumanGenome Project
  • 17.
    Tissue Specific Expression ComprehensiveCatalogues of Genomic Data Variation in the human genome Mendelian (monogenic) diseases (N=22,432) Whole genome sequencing (N=1,000) Four ethnic groups (CEU, YRI, JPT, CHB, N=270) GWAS catalog Complex (multigenic) traits (1926 publications and 13410 SNPs) Disease-related variations Functional elements 2014-06-29 17
  • 18.
    All Major Tissues/Organs AllProteins + All RNAs 2015 Science Tissue-based map of the human proteome 1. Immunohistochemistry (IHC) 24,028 antibodies (16,975 proteins)  >13 million IHC images 2. RNA-sequencing (N=44) 18
  • 19.
    111 Reference HumanEpigenomes 2015.2.19. Nature. Integrative analysis of 111 reference human epigenomes19
  • 20.
  • 21.
    Data Dimensions 2015.2.19. Nature.Integrative analysis of 111 reference human epigenomes21
  • 22.
    Network-based Model of Disease-diseaseRelationship 2015 Science Uncovering disease-disease relationships through the incomplete interactome22
  • 23.
    Hypothesis Driven ScienceData Driven Science Hypothesis Collect Data Data Generate Hypothesis Analyze Analyze
  • 24.
    Candidate Gene Approach Genome-wide Approach Choose aGene from Prior Knowledge Analyze the Gene Analyze ALL Genes Discover Novel Findings
  • 25.
    GWAS (Genome wide associationstudy) SNP chip Whole Genome SNP Profiling (500K~1M SNPs) Common Variant Choi HJ, Doctoral Thesis
  • 26.
    Estrada et al.,Nature Genetics, 2012 + novel targets for bone biology Recent largest GWAS GEFOS consortium
  • 27.
    2010 An Environment-Wide AssociationStudy (EWAS) on Type 2 Diabetes Mellitus Environment-Wide Association Study (EWAS)  다양한 환경인자들 
  • 28.
  • 29.
    1000 개의 질병들 Bioinformatics.2010 PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Phenotype-wide Association Study
  • 30.
  • 31.
    Anatome-Phenome-wide Association Study 2015.2.19. Nature.Genetic and epigenetic fine mapping of causal autoimmune disease variants Phenome Anatome
  • 32.
    Contents 1. Introduction 2. HumanGenome Project and Beyond 3. Genome Data ① Cancer Targeted Therapy ② Disease Risk (Common, Rare) ③ Pharmacogenomics ④ Others (Fetal DNA, Microbiome) 4. Sensor/Mobile Data 5. Electrical Health Records 6. National Healthcare Data 7. Medical Images 8. Biomedical Big Data + Artificial Intelligence
  • 33.
  • 34.
    What is GenomicMedicine?
  • 35.
    Disease genetic susceptibility Cancerdriver somatic mutation Pharmacogenomics Targeted Cancer Treatment (EGFR) Causal Variant Targeted Drug (MODY-SU) Drug Efficacy/Side Effect Related Genotype (CYP, HLA) Genetic Diagnosis (Mendelian, Cystic fibrosis) Molecular Classification - Prognosis (Leukemia) Hereditary Cancer (BRCA) Microbiome (Bacteria, Virus) Genomic Medicine Risk prediction (Complex disease, Diabetes) Germline Variants Fetal DNA
  • 36.
    Contents 1. Introduction 2. HumanGenome Project and Beyond 3. Genome Data ① Cancer Targeted Therapy ② Disease Risk (Common, Rare) ③ Pharmacogenomics ④ Others (Fetal DNA, Microbiome) 4. Sensor/Mobile Data 5. Electrical Health Records 6. National Healthcare Data 7. Medical Images 8. Biomedical Big Data + Artificial Intelligence
  • 37.
    Cancer Targeted Therapy 37 TargetedTherapyGenetic TestCancer
  • 38.
  • 39.
    Cancer Rebiopsy 2013 JCOGenomics-Driven Oncology- Framework for an Emerging Paradigm
  • 40.
  • 41.
    Contents 1. Introduction 2. HumanGenome Project and Beyond 3. Genome Data ① Cancer Targeted Therapy ② Disease Risk (Common, Rare) ③ Pharmacogenomics ④ Others (Fetal DNA, Microbiome) 4. Sensor/Mobile Data 5. Electrical Health Records 6. National Healthcare Data 7. Medical Images 8. Biomedical Big Data + Artificial Intelligence
  • 42.
    (출처: 금창원 대표님블로그) $99 TV CF 42
  • 43.
  • 44.
  • 45.
  • 46.
    Tissue Specific GeneExpression 2015 Nature Genetic studies of body mass index yield new insights for obesity biology - Hypothalamus, Pituitary gland (appetite regulation) - Hippocampus, Limbic system (learning, cognition, emotion, memory)
  • 47.
    Gene Set EnrichmentAnalysis 2015 Nature Genetic studies of body mass index yield new insights for obesity biology
  • 48.
    Per-allele effect ofBMI-associated loci on body weight 2012 Genetic determinants of common obesity and their value in prediction
  • 49.
    2011 Hum Genet.Type 2 diabetes and obesity- genomics and the clinic
  • 50.
    2015 Nature Geneticstudies of body mass index yield new insights for obesity biology Blue: Previous Red: Novel
  • 51.
    2011 Hum Genet.Type 2 diabetes and obesity- genomics and the clinic TCF7L2
  • 52.
    ◇◆ ‘parental obesity’ asa test to predict obesity in adult life •Dark blue 1–2 yrs •Green 3–5 yrs •Red 6–9 yrs •Light blue 10–14 yrs •Grey , 15–17 yrs Genetic Prediction of Obesity Risk The predictive ability of the currently established BMI- associated loci is poor 2012 Genetic determinants of common obesity and their value in prediction
  • 53.
    Influence of Geneticson Human Disease For any condition the overall balance of g enetic and environmental determinants ca n be represented by a point somewhere w ithin the triangle. 53 Single Locus / Mendelian Multiple Loci or multi- chromosomal Environmental Cystic Fibrosis Hemophilia A Examples: Alzheimer’s Disease Type II Diabetes Cardiovascular Disease Diet Carcinogens Infections Stress Radiation Lifestyle Gene = F8 Gene= CFTR F8 = Coagulation Factor VIII CFTR = Cystic Fibrosis Conductance Transmembrane Regulator Lung Cancer
  • 54.
    2008 HMG Genome-basedprediction of common diseases- advances and prospects54
  • 55.
    2008 HMG Genome-basedprediction of common diseases- advances and prospects55
  • 57.
    Diabetes ≠ GeneticDisease? • Familial aggregation – Genetic influences? – Epigenetic influences • Intrauterine environment – Shared family environment? • Socioeconomic status • Dietary preferences • Food availability • Gut microbiome content • Overestimated heritability – Phantom heritability 2012. Drong AW, Lindgren CM, McCarthy MI. Clin Pharmacol Ther. The genetic and epigenetic basis of type 2 diabetes and obesity. 2012. PNAS The mystery of missing heritability- Genetic interactions create phantom heritability57
  • 58.
    Rare Variant ina Specific Population • 3756 Latino: whole exome sequencing  A rare functional variant in candidate gene  14276: replication  Not found in other ethnic group 2014 JAMA Association of a Low-Frequency Variant in HNF1A With Type 2 Diabetes in a Latino Population
  • 59.
    2014 NEJM NullMutation in Hormone-Sensitive Lipase Gene and Risk of Type 2 Diabetes Rare Functional Variant = Monogenic Heritable Disease All Amish
  • 60.
    Variants and DiseaseSusceptibility 2008 NRG Genome-wide association studies for complex traits- consensus, uncertainty and challenges
  • 62.
    Genotype Based DiabetesTherapy Diabetes due to KATP channel mutations  sulphonylurea 2007 American Journal of Physiology - Endocrinology and Metabolism. ATP-sensitive K+ channels and disease- from molecule to malady
  • 64.
    Mendelian (single-gene) genetic disorder Knownsingle-gene candidates testing Whole Genome or Whole Exome Sequencing 64
  • 65.
  • 66.
  • 67.
    Contents 1. Introduction 2. HumanGenome Project and Beyond 3. Genome Data ① Cancer Targeted Therapy ② Disease Risk (Common, Rare) ③ Pharmacogenomics ④ Others (Fetal DNA, Microbiome) 4. Sensor/Mobile Data 5. Electrical Health Records 6. National Healthcare Data 7. Medical Images 8. Biomedical Big Data + Artificial Intelligence
  • 68.
    2012 European HeartJournal. Personalized medicine: hope or hype? Herceptin Glivec 68
  • 69.
    69 Pharmacogenomic Biomarkers in DrugLabeling (N=166) 2015.9.14. Atorvastatin, Azathioprine, Carbamazepine, Carvediolol, Clopidogrel, Codein, Diazepam…..
  • 70.
    Large Effect SizeVariant? Disease susceptibility variant Pharmacogenetic variant Environmental Exposure Drug Exposure
  • 72.
  • 73.
  • 74.
    2013 NEJM ARandomized Trial of Genotype-Guided Dosing of Warfarin
  • 75.
    2013 NEJM A RandomizedTrial of Genotype-Guided Dosing of Warfarin Median 21 days Median 29 days Median 44 days Median 59 days P<0.001 P=0.003
  • 76.
    Expected Metformin response Otherdrug Metformin usual dose Metformin low dose (S/E) 0% -1% -2%-1.5% -2.5% -3%+0.5% HbA1c change Good Response Genotype Poor Response Genotype
  • 77.
  • 78.
  • 79.
  • 80.
  • 81.
  • 82.
    Genetics of eatingbehavior 2011 Genetics of eating behavior
  • 83.
    Personalized Medicine Pharmacogenomics Nutrigenomics IRS1 SNPGA/AA High fat/ Low carb IRS1 SNP GG Standard Higher effect Similar effect 2013 Diabetes Care. IRS1 Genotype Modulates Metabolic Syndrome Reversion in Response to 2-Year Weight-Loss Diet Intervention - The POUNDS LOST trial
  • 84.
    Gene-Environment Interaction Gene Environment Disease GeneticPredisposition Score Sugar-Sweetened Beverages
  • 85.
  • 86.
    Genotype Guided PersonalizedTreatment Baseline Genotyping - Drug metabolism - DM etiology - DM complication 1 week 3 month Long term Genotype based treatment strategy - Drug choice - Drug dose - Lifestyle modification - Complication evaluation New T2DM
  • 87.
    Pharmacogenetic Tests: 최형진 No Drug (N=10) Gene (6 genes=8 bioma rkers) Target SNPs (N=12) #5 (HJC) Genotype Interpretation Clinical Interpretation 1 Clopidogrel CYP2C19 rs4244285 (G>A) GG *1/*1 (EM) Use standard dosers4986893 (G>A) GG rs12248560 (C>T) CC 2 Warfarin VKORC1 rs9923231 (C>T) TT Low dose (higher risk of bleeding) Warfarin dose=0.5~2 mg/day CYP2C9 rs1799853 (C>T) CC rs1057910 (A>C) AC 3 Simvastatin SLCO1B1 rs4149056 (T>C) TT Normal 4 Azathioprine (AP), MP, or TG TPMT rs1142345 (A>G) AA Normal 5 Carbamazepine or Phenytoin HLA-B*1502 rs2844682 (C>T) CT Normal rs3909184 (C>G) CC 6 Abacavir HLA-B*5701 rs2395029 (T>G) TT Normal 7 Allopurinol HLA-B*5801 rs9263726 (G>A) GG Normal Clopidogrel1) : UM/EM=standard dose, IM/PM= consider alternative antiplatelet agent (eg. prasugrel/ticagrelor) Warfarin2) : high dose=5~7 mg/day, medium dose=3~4 mg/day, low dose=0.5~2 mg/day =0 최형진 +1,000,000 ?
  • 88.
    Contents 1. Introduction 2. HumanGenome Project and Beyond 3. Genome Data ① Cancer Targeted Therapy ② Disease Risk (Common, Rare) ③ Pharmacogenomics ④ Others (Fetal DNA, Microbiome) 4. Sensor/Mobile Data 5. Electrical Health Records 6. National Healthcare Data 7. Medical Images 8. Biomedical Big Data + Artificial Intelligence
  • 89.
  • 91.
    2014 NEJM Genotype–PhenotypeCorrelation — Promiscuity in the Era of Next-Generation Sequencing
  • 92.
    A Genotype-First Approachto Defining the Subtypes of a Complex Disease 2014.2.27.
  • 93.
  • 94.
  • 96.
    Future of GenomicMedicine? Test when neededWithout information Know your type Blood type Geno type Here is my sequence
  • 97.
    Contents 1. Introduction 2. HumanGenome Project and Beyond 3. Genome Data ① Cancer Targeted Therapy ② Disease Risk (Common, Rare) ③ Pharmacogenomics ④ Others (Fetal DNA, Microbiome) 4. Sensor/Mobile Data 5. Electrical Health Records 6. National Healthcare Data 7. Medical Images 8. Biomedical Big Data + Artificial Intelligence
  • 98.
    98 2015 Sci TranslMed. The emerging field of mobile health
  • 100.
  • 101.
  • 102.
  • 103.
  • 104.
    혈당 변화 실시간모니터링 저녁 식사전 고혈당 104
  • 105.
    구글 헬스 앱분야 매출 1위 ‘눔(noom)’ 105
  • 106.
  • 107.
  • 108.
    Date Time namefoodType calories unit amount 2014-08-09 0 미역국 0 23 1국그릇 (300ml) 105 g 2014-08-09 0 잡곡밥 0 80 1/4공기 (52.5g) 52 g 2014-08-09 0 열무김치 0 3 1/4소접시 (8.75g) 9 g 2014-08-09 0 파프리카 0 6 1/2개 (33.25g) 35 g 2014-08-09 0 토란대무침 0 28 1/2소접시(46.5g) 46 g 2014-08-09 1 복숭아 0 91 1개 (269g) 268 g 2014-08-09 2 마른오징어 2 88 1/4마리 (25g) 25 g 2014-08-09 2 파프리카 0 6 1/2개 (33.25g) 35 g 2014-08-09 2 저지방우유 1 72 1컵 (200ml) 180 g 2014-08-09 2 복숭아 0 183 2개 (538g) 538 g 2014-08-09 3 복숭아 0 91 1개 (269g) 268 g 2014-08-09 3 파프리카 0 6 1/2개 (33.25g) 35 g 2014-08-09 4 파프리카 0 6 1/2개 (33.25g) 35 g 2014-08-09 4 식빵 1 92 1장 (33g) 33 g 2014-08-09 4 삶은옥수수 1 197 1개 반 (150g) 150 g 2014-08-09 4 복숭아 0 91 1개 (269g) 268 g 2014-08-09 4 저지방우유 1 72 1컵 (200ml) 180 g 2014-08-10 0 복숭아 0 91 1개 (269g) 268 g 2014-08-10 0 저지방우유 1 36 1/2컵 (100ml) 90 g 2014-08-10 0 두부 0 20 1/4인분 (25g) 25 g 2014-08-10 0 견과류 2 190 1/4 컵 (50g) 31 g 2014-08-10 0 파프리카 0 11 1개 (66.5g) 65 g 108
  • 109.
  • 110.
  • 111.
  • 112.
  • 113.
    스마트폰 활용 당뇨병통합관리 의사 상담 교육 조회/ 분석 교육간호사 매주/필요시 진료 처방 2-3달 간격 평가 회의 매주/필요시 식사/ 운동 스마트폰 데이터베이스 서버 자가관리 전송 분석 혈당 측정 혈당측정기 113
  • 114.
  • 115.
  • 116.
    피부 사진 원격진단/처방 116
  • 117.
  • 118.
  • 119.
  • 120.
  • 121.
    121 2015 CellMetabolism. A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans that Can Be Modulated for Health Benefits November 3, 2015
  • 122.
    122 2015 CellMetabolism. A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans that Can Be Modulated for Health Benefits
  • 123.
    Personalized Nutrition by Predictionof Glycemic Responses 123 2015 Cell. Personalized Nutrition by Prediction of Glycemic Responses Received: October 5, 2015; Received in revised form: October 29, 2015; Accepted: October 30, 2015;
  • 124.
    124 2015 Cell. PersonalizedNutrition by Prediction of Glycemic Responses
  • 125.
    125 2015 Cell. PersonalizedNutrition by Prediction of Glycemic Responses
  • 126.
    126 2015 Cell. PersonalizedNutrition by Prediction of Glycemic Responses
  • 127.
    Contents 1. Introduction 2. HumanGenome Project and Beyond 3. Genome Data ① Cancer Targeted Therapy ② Disease Risk (Common, Rare) ③ Pharmacogenomics ④ Others (Fetal DNA, Microbiome) 4. Sensor/Mobile Data 5. Electrical Health Records 6. National Healthcare Data 7. Medical Images 8. Biomedical Big Data + Artificial Intelligence
  • 128.
    Electronic Health Records 2012NRG Mining electronic health records- towards better research applications and clinical care 128
  • 129.
  • 130.
    Machine Learning 2014 Bigdata bioinformatics130
  • 131.
  • 132.
    밤동안 저혈당수면 Lt.footrolling Keep떨림, 식은땀, 현기증, 공복감, 두통, 피로감등의 저혈 당 에 저혈당 이 있을 즉알려주도록 밤사이 특 이호소 수면유지상처와 통증 상처부위 출혈 oozing, severe pain 알리도록 고혈당 처방된 당 뇨식이의 중요성과 간식을 자제하도록 .고혈 당 ,,관리 방법 .당뇨약 이해 잘 하고 수술부위 oozing Rt.foot rolling keep드레싱 상태를 고혈 당 고혈당 의식변화 BST 387 checked.고혈당 으로 인한 구강 내 감염 위해 식후 양치, gargle 등 구강 위생 격려.당뇨환자의 발관리 방법에 . 목표 혈당, 목표 당화혈색소에 .식사를 거르거 나 지연하지 않도록 .식사요법, 운동요법, 약물 요법을 정확히 지키는 것이 중요을 .처방된 당 뇨식이의 중요성과 간식을 자제하도록 .고혈 당 ,,관리 방법 .혈당 정상 범위임rt foot rolling 중으로 pain호소 밤사이 수면양호걱정신경 예 민감정변화 중임감정을 표현하도록 지지하고 경청기분상태 condition 조금 나은 듯 하다고 혈 당 조절과 관련하여 신경쓰는 모습 보이며 혈당 self로 측정하는 모습 보임혈당 조절에 안내하 고 불편감 지속알리도록고혈당 고혈당 의식변 화 고혈당 허약감 지남력 혈당조절 안됨고혈당 으로 인한 구강 내 감염 위해 식후 양치, gargle 등 구강 위생 격려.당뇨환자의 정기점검 내용과 빈도에 .BST 140 으로 저혈당 호소 밤동안 저 혈당수면 Lt.foot rolling Keep떨림, 식은땀, 현 기증, 공복감, 두통, 피로감등의 저혈당 에 저 혈당 이 있을 즉알려주도록 pain 및 불편감 호 소 WA 잘고혈당 고혈당 의식변화 고혈당 허 약감 지남력 혈당조절 안됨식사요법, 운동요법, 약물요법을 정확히 지키는 것이 중요을 .저혈당 /고혈당 과 대처법에 .혈당정상화, 표준체중의 유지, 정상 혈중지질의 유지에 .고혈당 ,,관리 방법 .혈당측정법,인슐린 자가 투여법, 경구투 약,수분 섭취량,대체 탄수화물,의료진의 도움이 필요한 사항에 교혈당 정상 범위임수술부위 oozing Rt.foot rolling keep수술 부위 (출혈, 통 증, 부종)수술부위 출혈 상처부위 oozing Wound 당겨지지 않도록 적절한 체위 취하기 설명감염 발생 위험 요인 수술부위 출혈 밤동안 간호기록지 Word Cloud Natural Language Processing (NLP)132
  • 133.
    Contents 1. Introduction 2. HumanGenome Project and Beyond 3. Genome Data ① Cancer Targeted Therapy ② Disease Risk (Common, Rare) ③ Pharmacogenomics ④ Others (Fetal DNA, Microbiome) 4. Sensor/Mobile Data 5. Electrical Health Records 6. National Healthcare Data 7. Medical Images 8. Biomedical Big Data + Artificial Intelligence
  • 134.
  • 135.
  • 136.
  • 137.
  • 138.
    Korean Society for Boneand Mineral Research Anti-hypertensive prescriptions (2008-2011) N = 8,315,709 New users N = 2,357,908 Age ≥ 50 yrs Monotherapy Compliant user (MPR≥80%) No previous fracture N = 528,522 Prevalent users N = 5,957,801 Excluded Age <50 Combination therapy Inadequate compliance Previous fracture N = 1,829,386 Final study population 심평원 빅데이터 연구 고혈압약과 골절 Choi et al., 2015 International Journal of Cardiology138
  • 139.
    Compare Fracture Risk Comparator?Hypertension CCB High BloodPressure Fracture Risk BB Non- user Healthy Non- user Cohort study (Health Insurance Review & Assessment Service) New-user design (drug-related toxicity) Non-user comparator (hypertension without medication) 2007 20112008 Choi et al., 2015 International Journal of Cardiology139
  • 140.
  • 141.
    Contents 1. Introduction 2. HumanGenome Project and Beyond 3. Genome Data ① Cancer Targeted Therapy ② Disease Risk (Common, Rare) ③ Pharmacogenomics ④ Others (Fetal DNA, Microbiome) 4. Sensor/Mobile Data 5. Electrical Health Records 6. National Healthcare Data 7. Medical Images 8. Biomedical Big Data + Artificial Intelligence
  • 142.
    2013 Science Structuraland Functional Brain Networks- From Connections to Cognition
  • 143.
    Green Lines: orexigenicpathways Red lines: dopaminergic pathways 2013 The contribution of brain reward circuits to the obesity epidemic 2014 Obesity – A neuropsychological disease- Systematic review and neuropsychological mode A, amygdala; H, hypothalamus; NA, nucleus accumbens, PFC, prefrontal cortex; VTA, ventral tegmental area 143 tDCS Neuromodulation Controls Feeding Behavior via Food Reward Activity and Connectivity Neuromodulation Brain Activity Feeding Behavior Brain Connectivity
  • 145.
    fMRI analysis 2013 ScienceFunctional interactions as big data in the human brain
  • 146.
    2013 Science Functionalinteractions as big data in the human brain
  • 147.
    147 2013 Science Functionalinteractions as big data in the human brain 2012 Decoding subject-driven cognitive states with whole-brain connectivity patterns
  • 148.
    2014 Radiomics 2014 Nature Communications.Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  • 149.
    Quantitative nuclear morphometry 2015Laboratory Investigation. Novel genotype-phenotype associations in human cancers enabled by advanced molecular platforms and computational analysis of whole slide images
  • 150.
    Contents 1. Introduction 2. HumanGenome Project and Beyond 3. Genome Data ① Cancer Targeted Therapy ② Disease Risk (Common, Rare) ③ Pharmacogenomics ④ Others (Fetal DNA, Microbiome) 4. Sensor/Mobile Data 5. Electrical Health Records 6. National Healthcare Data 7. Medical Images 8. Biomedical Big Data + Artificial Intelligence
  • 151.
  • 152.
  • 153.
  • 154.
    Healthcare Big Data +Artificial Intelligence 154 Healthcare Big Data Machine Learning Novel Insights and Applications
  • 155.
  • 157.
    157 In a scanof 3,000 images, IBM technology was able to spot melanoma with an accuracy of about 95 percent, much better than the 75 percent to 84 percent average of today's largely manual methods. IBM Research will continue to work with Sloan Kettering to develop additional measurements and approaches to further refine diagnosis, as well as refine their approach through larger sets of data. Dec 17, 2014
  • 158.
    158 Aug. 11, 2015 IBMis betting that the same technology that recognizes cats can identify tumors and other signs of diseases. In the long run, IBM and others in the field hope such systems can become reliable advisers to radiologists, dermatologists and other practitioners who analyze images—especially in parts of the world where health-care providers are scarce. While IBM hopes Watson will learn to interpret Merge’s images, it also expects the combination of imagery, medical records and other data to reveal patterns relevant to diagnosis and treatment that a human physician may miss, ushering in an era of computer-assisted care. Two other recent IBM acquisitions, Phytel Inc. and Explorys Inc., yielded 50 million electronic medical records.
  • 159.
  • 160.
    160 Environment Gene Eat Exercise Metabolism Brain Glucose DM Blood Pressure HTN Cardiovascular Disease Cognitive Hormone Behavior Psychotherapy Behavior Therapy PolicyMaking Genetic Testing Neuroimaging Neuromodulation Drug Drug Lab Survey Survey Sensor DrugDiagnosis EMR Government Data Mining
  • 161.
    Environment Survey NeuroimagingGenetics Lab/HormoneHospital Cognitive Personalize Psychotherapy Dietary Intervention Exercise Intervention Food Exercise Glucose Mobile Drug Neuromodulation Monitoring

Editor's Notes

  • #47 Current results are not sufficient to isolate specific brain regions important in regulating BMI. However, we observe enrichment not only in the hypothalamus and pituitary gland—key sites of central appetite regulation—but even more strongly in the hippocampus and limbic system, tissues that have a role in learning, cognition, emotion and memory. The strongest enrichment was observed with promoter (histone 3 Lys 4 trimethylation (H3K4me3), histone 3 Lys 9 acetylation (H3K9ac)) and enhancer (H3K4me1, HeK27ac) marks detected in mid-frontal lobe, anterior caudate, astrocytes and substantia nigra, supporting neuronal tissues in BMI regulation.
  • #48 synaptic function, long-term potentiation and neurotransmitter signalling (glutamate signalling in particular, but also noradrenaline, dopamine and serotonin release cycles, and GABA (c-aminobutyric acid) receptor activity "mid-frontal lobe, anterior caudate, astrocytes and substantia nigra, supporting neuronal tissues in BMI regulation" "provides the strongest genetic evidence so far for a role of particular biological and CNS processes in the regulation of human body mass."
  • #60 Extreme Phenotype Group in Amish (high TG, N=24) Sequencing- Candidate Gene Approach (lipid pathway 24 genes) One subject – deletion detected Genotyping in 2738 Amish 140 heterozygoe, 1 homozygote 5.1% of Amish persons carry the D allele, as compared with 0.2% of non-Amish persons of European descent