SlideShare a Scribd company logo
R Language (basics, vectors,
arrays, matrices, factors
By K K Singh
RGUKT Nuzvid
19-08-2017KK Singh, RGUKT Nuzvid
1
Introduction
 R is a programming language and software environment for statistical analysis, graphics
representation and reporting. R was created by Ross Ihaka and Robert Gentleman at the
University of Auckland, New Zealand, and is currently developed by the R Development
Core Team.
 R is freely available under the GNU General Public License, and pre-compiled binary
versions are provided for various operating systems like Linux, Windows and Mac.
 This programming language was named R, based on the first letter of first name of the
two R authors (Robert Gentleman and Ross Ihaka), and partly a play on the name of the
Bell Labs Language S.
19-08-2017KK Singh, RGUKT Nuzvid
2
R environment setting
 Windows Installation
 You can download the Windows installer version of R from R-3.2.2 for
Windows (32/64 bit) and save it in a local directory.
 As it is a Windows installer (.exe) with a name "R-version-win.exe". You can
just double click and run the installer accepting the default settings.
Linux Installation
R is available as a binary for Linux at the location R Binaries.
you may use yum command to install R as follows −
$ yum install R
then you can launch R prompt as follows −
$ R
Now you can use install command at R prompt to install the required package.
For example, the following command will install plotrix package.
> install.packages("plotrix" )
19-08-2017KK Singh, RGUKT Nuzvid
3
Basic Sentence
Start your R command prompt by typing the following command (in Linux) −
$ R
OR double click on installed .exe file ( in windows)
This will launch R interpreter and you will get a prompt >
where you can start typing your program as follows −
 myString <- "Hello, World!"
 > print ( myString)
[1] "Hello, World!"
R Script File
Usually, you will do your programming by writing your programs in script files
and execute those scripts with the help of R interpreter called Rscript. Ex:
# My first program in R Programming
myString <- "Hello, World!“
print ( myString)
Save it as test.R and execute it at R command prompt.
> source(“test.R”)
[1] "Hello, World!"
19-08-2017KK Singh, RGUKT Nuzvid
4
Some basic useful command
 >help(word) # get the description of the word
 >?word # get the description
 >getwd() # get the working directory
 >setwd(“C:/kk”) # set the working directory
 >q() # quit
 >source(“filename.R”) #execute Rscript
 ……………………………………………………………..
 >sink(“filename.txt”) # direct output into filenale.txt
 >source(“file.R”)
 >sink() #exit from sink mode
19-08-2017KK Singh, RGUKT Nuzvid
5
R –Data Types
 In contrast to other programming languages like C and java in R, the
variables are not declared as some data type.
 The variables are assigned with R-Objects and the data type of the R-
object becomes the data type of the variable.
 Vectors
 Arrays
 Matrices
 Lists
 Factors
 Data Frames
19-08-2017KK Singh, RGUKT Nuzvid
6
Vector-Data Types
Data Type Example Verify
Logical TRUE, FALSE
v <- TRUE
print(class(v))
[1] "logical"
Numeric 12.3, 5, 999
v <- 23.5
print(class(v))
[1] "numeric"
Integer 2L, 34L, 0L
v <- 2L
print(class(v))
[1] "integer"
Complex 3 + 2i
v <- 2+5i
print(class(v))
[1] "complex"
Character
'a' , '"good",
"TRUE", '23.4'
v <- "TRUE"
print(class(v))
[1] "character" 19-08-2017KK Singh, RGUKT Nuzvid
7
Vector (Cont..)
To create vector with more than one element,
use c() function which combines elements into a vector.
# Create a vector.
apple <- c('red','green',"yellow")
print(apple) # Get the class of the vector.
print(class(apple))
………………………………………………………………………..
The non-character values are coerced to character type
if one of the elements is a character.
s <- c('apple','red',5,TRUE)
print(s)
it produces the following result −
[1] "apple" "red" "5" "TRUE"
19-08-2017KK Singh, RGUKT Nuzvid
8
Vector (Cont..)
Multiple Elements Vector
Using colon operator with numeric data
# Creating a sequence from 5 to 13.
v <- 5:13
print(v)
……………………………………………………………………………………………
v <- 6.6:12.6 # Creating a sequence from 6.6 to 12.6
print(v)
………………………………………………………………………………………………
# If the final element not belong to the sequence, it is discarded.
v <- 3.8:11.4
print(v)
………………………………………………………………………
Using sequence (Seq.) operator
# Create vector with elements from 5 to 9 incrementing by 0.4.
print(seq(5, 9, by = 0.4))
……………………………………………………………………….
# empty vector
>x<-numeric()
>x[3]<-5
>x
19-08-2017KK Singh, RGUKT Nuzvid
9
Accessing vector elements
Accessing Vector Elements
Elements of a Vector are accessed using indexing.
The [ ] brackets are used for indexing. Indexing starts
with position 1.
Giving a negative value in the index drops that element
from result.
TRUE, FALSE or 0 and 1 can also be used for indexing.
# Accessing vector elements using position.
t <- c("Sun","Mon","Tue","Wed","Thurs","Fri","Sat")
u <- t[c(2,3,6)]
print(u)
…………………………………………………………………………………………………….
v <- t[c(TRUE,FALSE,FALSE,FALSE,FALSE,TRUE,FALSE)]
print(v)
……………………………………………………………………………………………………………
……
x <- t[c(-2,-5)] # print t excluding 2nd & 5th index value
print(x)
19-08-2017KK Singh, RGUKT Nuzvid
10
Vector Manipulation
Two vectors of same length can be added, subtracted, multiplied or divided
giving the result as a vector output.
# Create two vectors.
v1 <- c(3,8,4,5,0,11)
v2 <- c(4,11,0,8,1,2)
add.result <- v1+v2
print(add.result)
……………………………………………………………………………
sub.result <- v1-v2
print(sub.result)
…………………………………………………………………………………………………
multi.result <- v1*v2
print(multi.result)
………………………………………………………………………………………….
divi.result <- v1/v2
print(divi.result)
………………………………………………………………………………………………………….19-08-2017KK Singh, RGUKT Nuzvid
11
What is
output
Vector Element Sorting
Elements in a vector can be sorted using
the sort() function.
v <- c(3,8,4,5,0,11, -9, 304) # Sort the elements of the vector.
sort.result <- sort(v)
print(sort.result) # Sort the elements in the reverse order.
revsort.result <- sort(v, decreasing = TRUE)
print(revsort.result)
19-08-2017KK Singh, RGUKT Nuzvid
13
Arrays
 Arrays are the R data objects which can store data in more than two
dimensions.
 For example − If we create an array of dimension (2, 3, 4) then it
creates 4 rectangular matrices each with 2 rows and 3 columns.
 Arrays can store only one data type.
 An array is created using the array() function.
 Example creates an array of two 3x3 matrices each with 3 rows and
3 columns.
vector1 <- c(5,9,3)
vector2 <- c(10,11,12,13,14,15) # Take these vectors as input to the array.
result <- array(c(vector1,vector2),dim = c(3,3,1))
print(result)
19-08-2017KK Singh, RGUKT Nuzvid
14
Naming Columns and Rows
We can give names to the rows, columns and matrices in the array by using
the dimnames parameter.
# Create two vectors of different lengths.
vector1 <- c(5,9,3)
vector2 <- c(10,11,12,13,14,15)
column.names <- c("COL1","COL2","COL3")
row.names <- c("ROW1","ROW2","ROW3")
matrix.names <- c("Matrix1","Matrix2") # Take these vectors as input to the array.
result <- array(c(vector1,vector2),dim = c(3,3,2),dimnames = list(row.names,column.names, m
print(result)
19-08-2017KK Singh, RGUKT Nuzvid
16
Accessing Array Elements# see previous example
print(result[3,,2]) # Print the third row of the second matrix of the array.
print(result[1,3,1]) # Print the element in the 1st row and 3rd column of the 1st matrix.
print(result[,,2]) # Print the 2nd Matrix.
It produces the following result −
COL1 COL2 COL3
3 12 15
[1] 13
COL1 COL2 COL3
ROW1 5 10 13
ROW2 9 11 14
ROW3 3 12 15
Q. Access 2nd & 4th column of the result.
19-08-2017KK Singh, RGUKT Nuzvid
18
Manipulating Array Elements
As array is made up matrices in multiple dimensions, the operations
on elements of array are carried out by accessing elements of the matrices.
# Create two vectors of different lengths.
vector1 <- c(5,9,3)
vector2 <- c(10,11,12,13,14,15)
array1 <- array(c(vector1,vector2),dim = c(3,3,2))
vector3 <- c(9,1,0)
vector4 <- c(6,0,11,3,14,1,2,6,9)
array2 <- array(c(vector1,vector2),dim = c(3,3,2))
matrix1 <- array1[,,2]
matrix2 <- array2[,,2]
result <- matrix1+matrix2
print(result)
19-08-2017KK Singh, RGUKT Nuzvid
19
R-Matrix
> Matrices are the R objects, which is two dimensional array.
> They contain elements of the same atomic types
> Matrix is created using the matrix() function.
Syntax
matrix(data, nrow, ncol, byrow, dimnames)
Example
M <- matrix(c(3:14), nrow = 4, byrow = TRUE)
print(M)
N <- matrix(c(3:14), nrow = 4, byrow = FALSE) # Elements are arranged
sequentially by column.
print(N) # Define the column and row names.
rownames = c("row1", "row2", "row3", "row4")
colnames = c("col1", "col2", "col3")
P <- matrix(c(3:14), nrow = 4, byrow = TRUE, dimnames = list(rownames,
colnames))
print(P)
19-08-2017KK Singh, RGUKT Nuzvid
21
Accessing Elements of a Matrix
Elements of a matrix can be accessed by using the column and row index of the element.
rownames = c("row1", "row2", "row3", "row4")
colnames = c("col1", "col2", "col3")
P <- matrix(c(3:14), nrow = 4, byrow = TRUE, dimnames = list(rownames, colnames)) # Create the matrix
print(P[1,3]) # Access the element at 3rd column and 1st row.
print(P[4,2]) # Access the element at 2nd column and 4th row.
print(P[2,]) # Access only the 2nd row.
print(P[,3]) # Access only the 3rd column.
It produces the following result −
[1] 5
[1] 13
col1 col2 col3
6 7 8
row1 row2 row3 row4
5 8 11 14
Q. A matrix has 100 columns, access all even index column.
19-08-2017KK Singh, RGUKT Nuzvid
23
19-08-2017KK Singh, RGUKT Nuzvid
24
Factorsare the data objects which are used to categorize the data and store it as levels.
They can store both strings and integers.
They are useful in the columns which have a limited number of unique values.
Like "Male, "Female" and True, False etc. They are useful in data analysis for statistical modeling.
Factors are created using the factor () function by taking a vector as input.
Example
# Create a vector as input.
data <- c("East","West","East","North","North","East","West","West","West","East","North")
print(data)
print(is.factor(data)) # Apply the factor function.
factor_data <- as.factor(data)
print(factor_data)
print(is.factor(factor_data))
It produces the following result −
[1] "East" "West" "East" "North" "North" "East" "West" "West" "West" "East" "North"
[1] FALSE
[1] East West East North North East West West West East North Levels: East North West
[1] TRUE
19-08-2017KK Singh, RGUKT Nuzvid
25
Factors in Data Frame
On creating any data frame with a column of text data,
R treats the text column as categorical data and creates factors on it.
# Create the vectors for data frame.
height <- c(132,151,162,139,166,147,122)
weight <- c(48,49,66,53,67,52,40)
gender <- c("male","male","female","female","male","female","male")
input_data <- data.frame(height,weight,gender)
print(input_data) # Test if the gender column is a factor.
print(as.factor(input_data$gender)) # Print the gender column so see the levels.
print(input_data$gender)
19-08-2017KK Singh, RGUKT Nuzvid
27

More Related Content

What's hot

Introduction to R
Introduction to RIntroduction to R
Introduction to R
Kazuki Yoshida
 
Introduction to R and R Studio
Introduction to R and R StudioIntroduction to R and R Studio
Introduction to R and R Studio
Rupak Roy
 
R data types
R   data typesR   data types
R data types
Learnbay Datascience
 
Data analysis with R
Data analysis with RData analysis with R
Data analysis with R
ShareThis
 
Decision tree
Decision treeDecision tree
Decision tree
R A Akerkar
 
Data Structures in Python
Data Structures in PythonData Structures in Python
Data Structures in Python
Devashish Kumar
 
Python strings
Python stringsPython strings
Python strings
Mohammed Sikander
 
R programming
R programmingR programming
R programming
Shantanu Patil
 
R studio
R studio R studio
R studio
Kinza Irshad
 
Data Visualization With R
Data Visualization With RData Visualization With R
Data Visualization With R
Rsquared Academy
 
Linear Regression With R
Linear Regression With RLinear Regression With R
Linear Regression With R
Edureka!
 
Data Manipulation Using R (& dplyr)
Data Manipulation Using R (& dplyr)Data Manipulation Using R (& dplyr)
Data Manipulation Using R (& dplyr)
Ram Narasimhan
 
Python Scipy Numpy
Python Scipy NumpyPython Scipy Numpy
Python Scipy Numpy
Girish Khanzode
 
Machine Learning with Decision trees
Machine Learning with Decision treesMachine Learning with Decision trees
Machine Learning with Decision trees
Knoldus Inc.
 
Step By Step Guide to Learn R
Step By Step Guide to Learn RStep By Step Guide to Learn R
Step By Step Guide to Learn R
Venkata Reddy Konasani
 
R Programming Language
R Programming LanguageR Programming Language
R Programming Language
NareshKarela1
 
Python Seaborn Data Visualization
Python Seaborn Data Visualization Python Seaborn Data Visualization
Python Seaborn Data Visualization
Sourabh Sahu
 
Data visualization using R
Data visualization using RData visualization using R
Data visualization using R
Ummiya Mohammedi
 
Pca ppt
Pca pptPca ppt
Data types in python
Data types in pythonData types in python
Data types in python
RaginiJain21
 

What's hot (20)

Introduction to R
Introduction to RIntroduction to R
Introduction to R
 
Introduction to R and R Studio
Introduction to R and R StudioIntroduction to R and R Studio
Introduction to R and R Studio
 
R data types
R   data typesR   data types
R data types
 
Data analysis with R
Data analysis with RData analysis with R
Data analysis with R
 
Decision tree
Decision treeDecision tree
Decision tree
 
Data Structures in Python
Data Structures in PythonData Structures in Python
Data Structures in Python
 
Python strings
Python stringsPython strings
Python strings
 
R programming
R programmingR programming
R programming
 
R studio
R studio R studio
R studio
 
Data Visualization With R
Data Visualization With RData Visualization With R
Data Visualization With R
 
Linear Regression With R
Linear Regression With RLinear Regression With R
Linear Regression With R
 
Data Manipulation Using R (& dplyr)
Data Manipulation Using R (& dplyr)Data Manipulation Using R (& dplyr)
Data Manipulation Using R (& dplyr)
 
Python Scipy Numpy
Python Scipy NumpyPython Scipy Numpy
Python Scipy Numpy
 
Machine Learning with Decision trees
Machine Learning with Decision treesMachine Learning with Decision trees
Machine Learning with Decision trees
 
Step By Step Guide to Learn R
Step By Step Guide to Learn RStep By Step Guide to Learn R
Step By Step Guide to Learn R
 
R Programming Language
R Programming LanguageR Programming Language
R Programming Language
 
Python Seaborn Data Visualization
Python Seaborn Data Visualization Python Seaborn Data Visualization
Python Seaborn Data Visualization
 
Data visualization using R
Data visualization using RData visualization using R
Data visualization using R
 
Pca ppt
Pca pptPca ppt
Pca ppt
 
Data types in python
Data types in pythonData types in python
Data types in python
 

Similar to 2. R-basics, Vectors, Arrays, Matrices, Factors

NCCU: Statistics in the Criminal Justice System, R basics and Simulation - Pr...
NCCU: Statistics in the Criminal Justice System, R basics and Simulation - Pr...NCCU: Statistics in the Criminal Justice System, R basics and Simulation - Pr...
NCCU: Statistics in the Criminal Justice System, R basics and Simulation - Pr...
The Statistical and Applied Mathematical Sciences Institute
 
R basics
R basicsR basics
R basics
Sagun Baijal
 
QMC: Undergraduate Workshop, Tutorial on 'R' Software - Yawen Guan, Feb 26, 2...
QMC: Undergraduate Workshop, Tutorial on 'R' Software - Yawen Guan, Feb 26, 2...QMC: Undergraduate Workshop, Tutorial on 'R' Software - Yawen Guan, Feb 26, 2...
QMC: Undergraduate Workshop, Tutorial on 'R' Software - Yawen Guan, Feb 26, 2...
The Statistical and Applied Mathematical Sciences Institute
 
R Programming: Importing Data In R
R Programming: Importing Data In RR Programming: Importing Data In R
R Programming: Importing Data In R
Rsquared Academy
 
R Programming Intro
R Programming IntroR Programming Intro
R Programming Intro
062MayankSinghal
 
RDataMining slides-r-programming
RDataMining slides-r-programmingRDataMining slides-r-programming
RDataMining slides-r-programming
Yanchang Zhao
 
R Basics
R BasicsR Basics
Introduction to r
Introduction to rIntroduction to r
Introduction to r
Golden Julie Jesus
 
INFORMATIVE ESSAYThe purpose of the Informative Essay assignme.docx
INFORMATIVE ESSAYThe purpose of the Informative Essay assignme.docxINFORMATIVE ESSAYThe purpose of the Informative Essay assignme.docx
INFORMATIVE ESSAYThe purpose of the Informative Essay assignme.docx
carliotwaycave
 
Lecture1_R.pdf
Lecture1_R.pdfLecture1_R.pdf
Lecture1_R.pdf
BusyBird2
 
STAT-522 (Data Analysis Using R) by SOUMIQUE AHAMED.pdf
STAT-522 (Data Analysis Using R) by SOUMIQUE AHAMED.pdfSTAT-522 (Data Analysis Using R) by SOUMIQUE AHAMED.pdf
STAT-522 (Data Analysis Using R) by SOUMIQUE AHAMED.pdf
SOUMIQUE AHAMED
 
R Programming.pptx
R Programming.pptxR Programming.pptx
R Programming.pptx
kalai75
 
Lecture1_R.ppt
Lecture1_R.pptLecture1_R.ppt
Lecture1_R.ppt
ArchishaKhandareSS20
 
Lecture1_R.ppt
Lecture1_R.pptLecture1_R.ppt
Lecture1_R.ppt
vikassingh569137
 
Lecture1 r
Lecture1 rLecture1 r
Lecture1 r
Sandeep242951
 
Modeling in R Programming Language for Beginers.ppt
Modeling in R Programming Language for Beginers.pptModeling in R Programming Language for Beginers.ppt
Modeling in R Programming Language for Beginers.ppt
anshikagoel52
 
R for Pythonistas (PyData NYC 2017)
R for Pythonistas (PyData NYC 2017)R for Pythonistas (PyData NYC 2017)
R for Pythonistas (PyData NYC 2017)
Christopher Roach
 
R tutorial for a windows environment
R tutorial for a windows environmentR tutorial for a windows environment
R tutorial for a windows environment
Yogendra Chaubey
 
R-Language-Lab-Manual-lab-1.pdf
R-Language-Lab-Manual-lab-1.pdfR-Language-Lab-Manual-lab-1.pdf
R-Language-Lab-Manual-lab-1.pdf
KabilaArun
 
R-Language-Lab-Manual-lab-1.pdf
R-Language-Lab-Manual-lab-1.pdfR-Language-Lab-Manual-lab-1.pdf
R-Language-Lab-Manual-lab-1.pdf
DrGSakthiGovindaraju
 

Similar to 2. R-basics, Vectors, Arrays, Matrices, Factors (20)

NCCU: Statistics in the Criminal Justice System, R basics and Simulation - Pr...
NCCU: Statistics in the Criminal Justice System, R basics and Simulation - Pr...NCCU: Statistics in the Criminal Justice System, R basics and Simulation - Pr...
NCCU: Statistics in the Criminal Justice System, R basics and Simulation - Pr...
 
R basics
R basicsR basics
R basics
 
QMC: Undergraduate Workshop, Tutorial on 'R' Software - Yawen Guan, Feb 26, 2...
QMC: Undergraduate Workshop, Tutorial on 'R' Software - Yawen Guan, Feb 26, 2...QMC: Undergraduate Workshop, Tutorial on 'R' Software - Yawen Guan, Feb 26, 2...
QMC: Undergraduate Workshop, Tutorial on 'R' Software - Yawen Guan, Feb 26, 2...
 
R Programming: Importing Data In R
R Programming: Importing Data In RR Programming: Importing Data In R
R Programming: Importing Data In R
 
R Programming Intro
R Programming IntroR Programming Intro
R Programming Intro
 
RDataMining slides-r-programming
RDataMining slides-r-programmingRDataMining slides-r-programming
RDataMining slides-r-programming
 
R Basics
R BasicsR Basics
R Basics
 
Introduction to r
Introduction to rIntroduction to r
Introduction to r
 
INFORMATIVE ESSAYThe purpose of the Informative Essay assignme.docx
INFORMATIVE ESSAYThe purpose of the Informative Essay assignme.docxINFORMATIVE ESSAYThe purpose of the Informative Essay assignme.docx
INFORMATIVE ESSAYThe purpose of the Informative Essay assignme.docx
 
Lecture1_R.pdf
Lecture1_R.pdfLecture1_R.pdf
Lecture1_R.pdf
 
STAT-522 (Data Analysis Using R) by SOUMIQUE AHAMED.pdf
STAT-522 (Data Analysis Using R) by SOUMIQUE AHAMED.pdfSTAT-522 (Data Analysis Using R) by SOUMIQUE AHAMED.pdf
STAT-522 (Data Analysis Using R) by SOUMIQUE AHAMED.pdf
 
R Programming.pptx
R Programming.pptxR Programming.pptx
R Programming.pptx
 
Lecture1_R.ppt
Lecture1_R.pptLecture1_R.ppt
Lecture1_R.ppt
 
Lecture1_R.ppt
Lecture1_R.pptLecture1_R.ppt
Lecture1_R.ppt
 
Lecture1 r
Lecture1 rLecture1 r
Lecture1 r
 
Modeling in R Programming Language for Beginers.ppt
Modeling in R Programming Language for Beginers.pptModeling in R Programming Language for Beginers.ppt
Modeling in R Programming Language for Beginers.ppt
 
R for Pythonistas (PyData NYC 2017)
R for Pythonistas (PyData NYC 2017)R for Pythonistas (PyData NYC 2017)
R for Pythonistas (PyData NYC 2017)
 
R tutorial for a windows environment
R tutorial for a windows environmentR tutorial for a windows environment
R tutorial for a windows environment
 
R-Language-Lab-Manual-lab-1.pdf
R-Language-Lab-Manual-lab-1.pdfR-Language-Lab-Manual-lab-1.pdf
R-Language-Lab-Manual-lab-1.pdf
 
R-Language-Lab-Manual-lab-1.pdf
R-Language-Lab-Manual-lab-1.pdfR-Language-Lab-Manual-lab-1.pdf
R-Language-Lab-Manual-lab-1.pdf
 

Recently uploaded

Namma-Kalvi-11th-Physics-Study-Material-Unit-1-EM-221086.pdf
Namma-Kalvi-11th-Physics-Study-Material-Unit-1-EM-221086.pdfNamma-Kalvi-11th-Physics-Study-Material-Unit-1-EM-221086.pdf
Namma-Kalvi-11th-Physics-Study-Material-Unit-1-EM-221086.pdf
22ad0301
 
[VCOSA] Monthly Report - Cotton & Yarn Statistics May 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics May 2024[VCOSA] Monthly Report - Cotton & Yarn Statistics May 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics May 2024
Vietnam Cotton & Spinning Association
 
一比一原版兰加拉学院毕业证(Langara毕业证书)学历如何办理
一比一原版兰加拉学院毕业证(Langara毕业证书)学历如何办理一比一原版兰加拉学院毕业证(Langara毕业证书)学历如何办理
一比一原版兰加拉学院毕业证(Langara毕业证书)学历如何办理
hyfjgavov
 
Build applications with generative AI on Google Cloud
Build applications with generative AI on Google CloudBuild applications with generative AI on Google Cloud
Build applications with generative AI on Google Cloud
Márton Kodok
 
Data Scientist Machine Learning Profiles .pdf
Data Scientist Machine Learning  Profiles .pdfData Scientist Machine Learning  Profiles .pdf
Data Scientist Machine Learning Profiles .pdf
Vineet
 
A gentle exploration of Retrieval Augmented Generation
A gentle exploration of Retrieval Augmented GenerationA gentle exploration of Retrieval Augmented Generation
A gentle exploration of Retrieval Augmented Generation
dataschool1
 
一比一原版(uob毕业证书)伯明翰大学毕业证如何办理
一比一原版(uob毕业证书)伯明翰大学毕业证如何办理一比一原版(uob毕业证书)伯明翰大学毕业证如何办理
一比一原版(uob毕业证书)伯明翰大学毕业证如何办理
9gr6pty
 
SAP BW4HANA Implementagtion Content Document
SAP BW4HANA Implementagtion Content DocumentSAP BW4HANA Implementagtion Content Document
SAP BW4HANA Implementagtion Content Document
newdirectionconsulta
 
Digital Marketing Performance Marketing Sample .pdf
Digital Marketing Performance Marketing  Sample .pdfDigital Marketing Performance Marketing  Sample .pdf
Digital Marketing Performance Marketing Sample .pdf
Vineet
 
Discovering Digital Process Twins for What-if Analysis: a Process Mining Appr...
Discovering Digital Process Twins for What-if Analysis: a Process Mining Appr...Discovering Digital Process Twins for What-if Analysis: a Process Mining Appr...
Discovering Digital Process Twins for What-if Analysis: a Process Mining Appr...
Marlon Dumas
 
一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理
一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理
一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理
eoxhsaa
 
一比一原版(曼大毕业证书)曼尼托巴大学毕业证如何办理
一比一原版(曼大毕业证书)曼尼托巴大学毕业证如何办理一比一原版(曼大毕业证书)曼尼托巴大学毕业证如何办理
一比一原版(曼大毕业证书)曼尼托巴大学毕业证如何办理
ytypuem
 
06-18-2024-Princeton Meetup-Introduction to Milvus
06-18-2024-Princeton Meetup-Introduction to Milvus06-18-2024-Princeton Meetup-Introduction to Milvus
06-18-2024-Princeton Meetup-Introduction to Milvus
Timothy Spann
 
一比一原版澳洲西澳大学毕业证(uwa毕业证书)如何办理
一比一原版澳洲西澳大学毕业证(uwa毕业证书)如何办理一比一原版澳洲西澳大学毕业证(uwa毕业证书)如何办理
一比一原版澳洲西澳大学毕业证(uwa毕业证书)如何办理
aguty
 
一比一原版斯威本理工大学毕业证(swinburne毕业证)如何办理
一比一原版斯威本理工大学毕业证(swinburne毕业证)如何办理一比一原版斯威本理工大学毕业证(swinburne毕业证)如何办理
一比一原版斯威本理工大学毕业证(swinburne毕业证)如何办理
actyx
 
How To Control IO Usage using Resource Manager
How To Control IO Usage using Resource ManagerHow To Control IO Usage using Resource Manager
How To Control IO Usage using Resource Manager
Alireza Kamrani
 
一比一原版马来西亚博特拉大学毕业证(upm毕业证)如何办理
一比一原版马来西亚博特拉大学毕业证(upm毕业证)如何办理一比一原版马来西亚博特拉大学毕业证(upm毕业证)如何办理
一比一原版马来西亚博特拉大学毕业证(upm毕业证)如何办理
eudsoh
 
一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理
一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理
一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理
uevausa
 
Template xxxxxxxx ssssssssssss Sertifikat.pptx
Template xxxxxxxx ssssssssssss Sertifikat.pptxTemplate xxxxxxxx ssssssssssss Sertifikat.pptx
Template xxxxxxxx ssssssssssss Sertifikat.pptx
TeukuEriSyahputra
 
一比一原版(uom毕业证书)曼彻斯特大学毕业证如何办理
一比一原版(uom毕业证书)曼彻斯特大学毕业证如何办理一比一原版(uom毕业证书)曼彻斯特大学毕业证如何办理
一比一原版(uom毕业证书)曼彻斯特大学毕业证如何办理
osoyvvf
 

Recently uploaded (20)

Namma-Kalvi-11th-Physics-Study-Material-Unit-1-EM-221086.pdf
Namma-Kalvi-11th-Physics-Study-Material-Unit-1-EM-221086.pdfNamma-Kalvi-11th-Physics-Study-Material-Unit-1-EM-221086.pdf
Namma-Kalvi-11th-Physics-Study-Material-Unit-1-EM-221086.pdf
 
[VCOSA] Monthly Report - Cotton & Yarn Statistics May 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics May 2024[VCOSA] Monthly Report - Cotton & Yarn Statistics May 2024
[VCOSA] Monthly Report - Cotton & Yarn Statistics May 2024
 
一比一原版兰加拉学院毕业证(Langara毕业证书)学历如何办理
一比一原版兰加拉学院毕业证(Langara毕业证书)学历如何办理一比一原版兰加拉学院毕业证(Langara毕业证书)学历如何办理
一比一原版兰加拉学院毕业证(Langara毕业证书)学历如何办理
 
Build applications with generative AI on Google Cloud
Build applications with generative AI on Google CloudBuild applications with generative AI on Google Cloud
Build applications with generative AI on Google Cloud
 
Data Scientist Machine Learning Profiles .pdf
Data Scientist Machine Learning  Profiles .pdfData Scientist Machine Learning  Profiles .pdf
Data Scientist Machine Learning Profiles .pdf
 
A gentle exploration of Retrieval Augmented Generation
A gentle exploration of Retrieval Augmented GenerationA gentle exploration of Retrieval Augmented Generation
A gentle exploration of Retrieval Augmented Generation
 
一比一原版(uob毕业证书)伯明翰大学毕业证如何办理
一比一原版(uob毕业证书)伯明翰大学毕业证如何办理一比一原版(uob毕业证书)伯明翰大学毕业证如何办理
一比一原版(uob毕业证书)伯明翰大学毕业证如何办理
 
SAP BW4HANA Implementagtion Content Document
SAP BW4HANA Implementagtion Content DocumentSAP BW4HANA Implementagtion Content Document
SAP BW4HANA Implementagtion Content Document
 
Digital Marketing Performance Marketing Sample .pdf
Digital Marketing Performance Marketing  Sample .pdfDigital Marketing Performance Marketing  Sample .pdf
Digital Marketing Performance Marketing Sample .pdf
 
Discovering Digital Process Twins for What-if Analysis: a Process Mining Appr...
Discovering Digital Process Twins for What-if Analysis: a Process Mining Appr...Discovering Digital Process Twins for What-if Analysis: a Process Mining Appr...
Discovering Digital Process Twins for What-if Analysis: a Process Mining Appr...
 
一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理
一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理
一比一原版多伦多大学毕业证(UofT毕业证书)学历如何办理
 
一比一原版(曼大毕业证书)曼尼托巴大学毕业证如何办理
一比一原版(曼大毕业证书)曼尼托巴大学毕业证如何办理一比一原版(曼大毕业证书)曼尼托巴大学毕业证如何办理
一比一原版(曼大毕业证书)曼尼托巴大学毕业证如何办理
 
06-18-2024-Princeton Meetup-Introduction to Milvus
06-18-2024-Princeton Meetup-Introduction to Milvus06-18-2024-Princeton Meetup-Introduction to Milvus
06-18-2024-Princeton Meetup-Introduction to Milvus
 
一比一原版澳洲西澳大学毕业证(uwa毕业证书)如何办理
一比一原版澳洲西澳大学毕业证(uwa毕业证书)如何办理一比一原版澳洲西澳大学毕业证(uwa毕业证书)如何办理
一比一原版澳洲西澳大学毕业证(uwa毕业证书)如何办理
 
一比一原版斯威本理工大学毕业证(swinburne毕业证)如何办理
一比一原版斯威本理工大学毕业证(swinburne毕业证)如何办理一比一原版斯威本理工大学毕业证(swinburne毕业证)如何办理
一比一原版斯威本理工大学毕业证(swinburne毕业证)如何办理
 
How To Control IO Usage using Resource Manager
How To Control IO Usage using Resource ManagerHow To Control IO Usage using Resource Manager
How To Control IO Usage using Resource Manager
 
一比一原版马来西亚博特拉大学毕业证(upm毕业证)如何办理
一比一原版马来西亚博特拉大学毕业证(upm毕业证)如何办理一比一原版马来西亚博特拉大学毕业证(upm毕业证)如何办理
一比一原版马来西亚博特拉大学毕业证(upm毕业证)如何办理
 
一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理
一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理
一比一原版加拿大渥太华大学毕业证(uottawa毕业证书)如何办理
 
Template xxxxxxxx ssssssssssss Sertifikat.pptx
Template xxxxxxxx ssssssssssss Sertifikat.pptxTemplate xxxxxxxx ssssssssssss Sertifikat.pptx
Template xxxxxxxx ssssssssssss Sertifikat.pptx
 
一比一原版(uom毕业证书)曼彻斯特大学毕业证如何办理
一比一原版(uom毕业证书)曼彻斯特大学毕业证如何办理一比一原版(uom毕业证书)曼彻斯特大学毕业证如何办理
一比一原版(uom毕业证书)曼彻斯特大学毕业证如何办理
 

2. R-basics, Vectors, Arrays, Matrices, Factors

  • 1. R Language (basics, vectors, arrays, matrices, factors By K K Singh RGUKT Nuzvid 19-08-2017KK Singh, RGUKT Nuzvid 1
  • 2. Introduction  R is a programming language and software environment for statistical analysis, graphics representation and reporting. R was created by Ross Ihaka and Robert Gentleman at the University of Auckland, New Zealand, and is currently developed by the R Development Core Team.  R is freely available under the GNU General Public License, and pre-compiled binary versions are provided for various operating systems like Linux, Windows and Mac.  This programming language was named R, based on the first letter of first name of the two R authors (Robert Gentleman and Ross Ihaka), and partly a play on the name of the Bell Labs Language S. 19-08-2017KK Singh, RGUKT Nuzvid 2
  • 3. R environment setting  Windows Installation  You can download the Windows installer version of R from R-3.2.2 for Windows (32/64 bit) and save it in a local directory.  As it is a Windows installer (.exe) with a name "R-version-win.exe". You can just double click and run the installer accepting the default settings. Linux Installation R is available as a binary for Linux at the location R Binaries. you may use yum command to install R as follows − $ yum install R then you can launch R prompt as follows − $ R Now you can use install command at R prompt to install the required package. For example, the following command will install plotrix package. > install.packages("plotrix" ) 19-08-2017KK Singh, RGUKT Nuzvid 3
  • 4. Basic Sentence Start your R command prompt by typing the following command (in Linux) − $ R OR double click on installed .exe file ( in windows) This will launch R interpreter and you will get a prompt > where you can start typing your program as follows −  myString <- "Hello, World!"  > print ( myString) [1] "Hello, World!" R Script File Usually, you will do your programming by writing your programs in script files and execute those scripts with the help of R interpreter called Rscript. Ex: # My first program in R Programming myString <- "Hello, World!“ print ( myString) Save it as test.R and execute it at R command prompt. > source(“test.R”) [1] "Hello, World!" 19-08-2017KK Singh, RGUKT Nuzvid 4
  • 5. Some basic useful command  >help(word) # get the description of the word  >?word # get the description  >getwd() # get the working directory  >setwd(“C:/kk”) # set the working directory  >q() # quit  >source(“filename.R”) #execute Rscript  ……………………………………………………………..  >sink(“filename.txt”) # direct output into filenale.txt  >source(“file.R”)  >sink() #exit from sink mode 19-08-2017KK Singh, RGUKT Nuzvid 5
  • 6. R –Data Types  In contrast to other programming languages like C and java in R, the variables are not declared as some data type.  The variables are assigned with R-Objects and the data type of the R- object becomes the data type of the variable.  Vectors  Arrays  Matrices  Lists  Factors  Data Frames 19-08-2017KK Singh, RGUKT Nuzvid 6
  • 7. Vector-Data Types Data Type Example Verify Logical TRUE, FALSE v <- TRUE print(class(v)) [1] "logical" Numeric 12.3, 5, 999 v <- 23.5 print(class(v)) [1] "numeric" Integer 2L, 34L, 0L v <- 2L print(class(v)) [1] "integer" Complex 3 + 2i v <- 2+5i print(class(v)) [1] "complex" Character 'a' , '"good", "TRUE", '23.4' v <- "TRUE" print(class(v)) [1] "character" 19-08-2017KK Singh, RGUKT Nuzvid 7
  • 8. Vector (Cont..) To create vector with more than one element, use c() function which combines elements into a vector. # Create a vector. apple <- c('red','green',"yellow") print(apple) # Get the class of the vector. print(class(apple)) ……………………………………………………………………….. The non-character values are coerced to character type if one of the elements is a character. s <- c('apple','red',5,TRUE) print(s) it produces the following result − [1] "apple" "red" "5" "TRUE" 19-08-2017KK Singh, RGUKT Nuzvid 8
  • 9. Vector (Cont..) Multiple Elements Vector Using colon operator with numeric data # Creating a sequence from 5 to 13. v <- 5:13 print(v) …………………………………………………………………………………………… v <- 6.6:12.6 # Creating a sequence from 6.6 to 12.6 print(v) ……………………………………………………………………………………………… # If the final element not belong to the sequence, it is discarded. v <- 3.8:11.4 print(v) ……………………………………………………………………… Using sequence (Seq.) operator # Create vector with elements from 5 to 9 incrementing by 0.4. print(seq(5, 9, by = 0.4)) ………………………………………………………………………. # empty vector >x<-numeric() >x[3]<-5 >x 19-08-2017KK Singh, RGUKT Nuzvid 9
  • 10. Accessing vector elements Accessing Vector Elements Elements of a Vector are accessed using indexing. The [ ] brackets are used for indexing. Indexing starts with position 1. Giving a negative value in the index drops that element from result. TRUE, FALSE or 0 and 1 can also be used for indexing. # Accessing vector elements using position. t <- c("Sun","Mon","Tue","Wed","Thurs","Fri","Sat") u <- t[c(2,3,6)] print(u) ……………………………………………………………………………………………………. v <- t[c(TRUE,FALSE,FALSE,FALSE,FALSE,TRUE,FALSE)] print(v) …………………………………………………………………………………………………………… …… x <- t[c(-2,-5)] # print t excluding 2nd & 5th index value print(x) 19-08-2017KK Singh, RGUKT Nuzvid 10
  • 11. Vector Manipulation Two vectors of same length can be added, subtracted, multiplied or divided giving the result as a vector output. # Create two vectors. v1 <- c(3,8,4,5,0,11) v2 <- c(4,11,0,8,1,2) add.result <- v1+v2 print(add.result) …………………………………………………………………………… sub.result <- v1-v2 print(sub.result) ………………………………………………………………………………………………… multi.result <- v1*v2 print(multi.result) …………………………………………………………………………………………. divi.result <- v1/v2 print(divi.result) ………………………………………………………………………………………………………….19-08-2017KK Singh, RGUKT Nuzvid 11 What is output
  • 12. Vector Element Sorting Elements in a vector can be sorted using the sort() function. v <- c(3,8,4,5,0,11, -9, 304) # Sort the elements of the vector. sort.result <- sort(v) print(sort.result) # Sort the elements in the reverse order. revsort.result <- sort(v, decreasing = TRUE) print(revsort.result) 19-08-2017KK Singh, RGUKT Nuzvid 13
  • 13. Arrays  Arrays are the R data objects which can store data in more than two dimensions.  For example − If we create an array of dimension (2, 3, 4) then it creates 4 rectangular matrices each with 2 rows and 3 columns.  Arrays can store only one data type.  An array is created using the array() function.  Example creates an array of two 3x3 matrices each with 3 rows and 3 columns. vector1 <- c(5,9,3) vector2 <- c(10,11,12,13,14,15) # Take these vectors as input to the array. result <- array(c(vector1,vector2),dim = c(3,3,1)) print(result) 19-08-2017KK Singh, RGUKT Nuzvid 14
  • 14. Naming Columns and Rows We can give names to the rows, columns and matrices in the array by using the dimnames parameter. # Create two vectors of different lengths. vector1 <- c(5,9,3) vector2 <- c(10,11,12,13,14,15) column.names <- c("COL1","COL2","COL3") row.names <- c("ROW1","ROW2","ROW3") matrix.names <- c("Matrix1","Matrix2") # Take these vectors as input to the array. result <- array(c(vector1,vector2),dim = c(3,3,2),dimnames = list(row.names,column.names, m print(result) 19-08-2017KK Singh, RGUKT Nuzvid 16
  • 15. Accessing Array Elements# see previous example print(result[3,,2]) # Print the third row of the second matrix of the array. print(result[1,3,1]) # Print the element in the 1st row and 3rd column of the 1st matrix. print(result[,,2]) # Print the 2nd Matrix. It produces the following result − COL1 COL2 COL3 3 12 15 [1] 13 COL1 COL2 COL3 ROW1 5 10 13 ROW2 9 11 14 ROW3 3 12 15 Q. Access 2nd & 4th column of the result. 19-08-2017KK Singh, RGUKT Nuzvid 18
  • 16. Manipulating Array Elements As array is made up matrices in multiple dimensions, the operations on elements of array are carried out by accessing elements of the matrices. # Create two vectors of different lengths. vector1 <- c(5,9,3) vector2 <- c(10,11,12,13,14,15) array1 <- array(c(vector1,vector2),dim = c(3,3,2)) vector3 <- c(9,1,0) vector4 <- c(6,0,11,3,14,1,2,6,9) array2 <- array(c(vector1,vector2),dim = c(3,3,2)) matrix1 <- array1[,,2] matrix2 <- array2[,,2] result <- matrix1+matrix2 print(result) 19-08-2017KK Singh, RGUKT Nuzvid 19
  • 17. R-Matrix > Matrices are the R objects, which is two dimensional array. > They contain elements of the same atomic types > Matrix is created using the matrix() function. Syntax matrix(data, nrow, ncol, byrow, dimnames) Example M <- matrix(c(3:14), nrow = 4, byrow = TRUE) print(M) N <- matrix(c(3:14), nrow = 4, byrow = FALSE) # Elements are arranged sequentially by column. print(N) # Define the column and row names. rownames = c("row1", "row2", "row3", "row4") colnames = c("col1", "col2", "col3") P <- matrix(c(3:14), nrow = 4, byrow = TRUE, dimnames = list(rownames, colnames)) print(P) 19-08-2017KK Singh, RGUKT Nuzvid 21
  • 18. Accessing Elements of a Matrix Elements of a matrix can be accessed by using the column and row index of the element. rownames = c("row1", "row2", "row3", "row4") colnames = c("col1", "col2", "col3") P <- matrix(c(3:14), nrow = 4, byrow = TRUE, dimnames = list(rownames, colnames)) # Create the matrix print(P[1,3]) # Access the element at 3rd column and 1st row. print(P[4,2]) # Access the element at 2nd column and 4th row. print(P[2,]) # Access only the 2nd row. print(P[,3]) # Access only the 3rd column. It produces the following result − [1] 5 [1] 13 col1 col2 col3 6 7 8 row1 row2 row3 row4 5 8 11 14 Q. A matrix has 100 columns, access all even index column. 19-08-2017KK Singh, RGUKT Nuzvid 23
  • 19. 19-08-2017KK Singh, RGUKT Nuzvid 24 Factorsare the data objects which are used to categorize the data and store it as levels. They can store both strings and integers. They are useful in the columns which have a limited number of unique values. Like "Male, "Female" and True, False etc. They are useful in data analysis for statistical modeling. Factors are created using the factor () function by taking a vector as input. Example # Create a vector as input. data <- c("East","West","East","North","North","East","West","West","West","East","North") print(data) print(is.factor(data)) # Apply the factor function. factor_data <- as.factor(data) print(factor_data) print(is.factor(factor_data)) It produces the following result − [1] "East" "West" "East" "North" "North" "East" "West" "West" "West" "East" "North" [1] FALSE [1] East West East North North East West West West East North Levels: East North West [1] TRUE
  • 20. 19-08-2017KK Singh, RGUKT Nuzvid 25 Factors in Data Frame On creating any data frame with a column of text data, R treats the text column as categorical data and creates factors on it. # Create the vectors for data frame. height <- c(132,151,162,139,166,147,122) weight <- c(48,49,66,53,67,52,40) gender <- c("male","male","female","female","male","female","male") input_data <- data.frame(height,weight,gender) print(input_data) # Test if the gender column is a factor. print(as.factor(input_data$gender)) # Print the gender column so see the levels. print(input_data$gender)