Wind Energy I




                power losses at the
                   rotor blade


Michael Hölling, WS 2010/2011   slide 1
Wind Energy I                              Class content
                                                            5 Wind turbines in
                                                                                        6 Wind - blades
                                                              general
                                2 Wind measurements                                       interaction

                                                                                 8 Power losses at
                                                                                 the rotor blade

                                                                        9 Π-theorem and Wind
                                  3 Wind field                          turbine characterization
                                    characterization
    4 Wind power                                                     10 Generator

                                                                     11 Electrics / grid




Michael Hölling, WS 2010/2011                     slide 2
Wind Energy I                       Power coefficient

   Optimized design of blades - why is the power coefficient not
           cp = 16/27 for the whole wind speed range ?


                                                               cp = Betz limit
                 0.6


                 0.4
         cp(!)




                 0.2


                 0.0
                    0           5     10             15   20
                                      !

Michael Hölling, WS 2010/2011              slide 3
Wind Energy I                   Power coefficient

                Real cp values change over the tip speed ratio !




Michael Hölling, WS 2010/2011         slide 4
Wind Energy I                               Power losses

       Losses at the rotor will lead to rotor power coefficient cpr
                                                                          u2
     losses at the profile due to drag forces
                                                               urot
                                       plane of rotation
                                                                      β   ures
                                       Fl
                                             β
                                Fres                              α
                                                           .
                                                    Fd
                                                                          ω
                                                      β




Michael Hölling, WS 2010/2011                    slide 5
Wind Energy I                      Power losses

       Losses at the rotor will lead to rotor power coefficient cpr
    losses at the tip of the blades creates by tip vortices




Michael Hölling, WS 2010/2011           slide 6
Wind Energy I                             Power losses

 Determine rotor power coefficient cpr by including losses in
 addition to Betz limit - cprdrag and cprtip additional factors:

                                             dProt
                                cprdrag   =
                                            dProtideal

 Calculations lead to:

                                               1  3 λ·r
                                cprdrag   =1−    · ·
                                              (α) 2 R




Michael Hölling, WS 2010/2011                 slide 7
Wind Energy I                                   Power losses

   Possible behavior of cprdrag over blade radius r for different ε
   and λ:

       70                                                                 1.0
                                                 !(r)                                                   !=4
                                                                                                        !=7
       60                                                                                               ! = 10
                                                                          0.9




                                                             cprdrag(r)
!(r)




       50


       40                                                                 0.8

       30                                                                   0   10   20           30   40    50
         0      10        20           30   40      50
                               r [m]                                                      r [m]




  Michael Hölling, WS 2010/2011                         slide 8
Wind Energy I                   Power losses
                                For a ring-segment:
                                          16 1
                                dPBetz =     · · ρ · u1 · (2 · π · r · dr)
                                                      3
                                          27 2
                                                                  dA


                       r
                                For just the circumference of a circle:
                                           16 1
                                dPBetz =      · · ρ · u1 · (2 · π · r · dr)
                                                       3
                                           27 2
                                                                  dA




Michael Hölling, WS 2010/2011       slide 10
Wind Energy I                            Power losses

 For a constant ε over the whole blade cprdrag is given by:
                                                        λ
                                     cprdrag = 1 −

                              1.0
                                                             "(#)=20
                              0.8                            "(#)=40
                                                             "(#)=60
                 cprdrag(!)




                              0.6

                              0.4

                              0.2

                              0.0
                                 0   5       10             15         20
                                              !

Michael Hölling, WS 2010/2011                slide 11
Wind Energy I                            Power losses

 Power coefficient cprtip due to tip losses are caused by
 balancing pressure differences at tip of the blade.



                                cl (r)

                 ures




Michael Hölling, WS 2010/2011                slide 12
Wind Energy I                                Power losses

 Estimating tip losses cprtip by means of reduced diameter D’:

                                     D = D − 0.44 · b
 Projection of distance “a” between rotor blades into a plane
 perpendicular to the resulting velocity ures gives “b”.
                                      u2
                          urot

                                 β    ures                                           
                                                                          0.92
                                                        D = D 1 −                    
                        a
                  .                                                  z·    λ2 +   4
                                                                                  9
                  b


Michael Hölling, WS 2010/2011                    slide 13
Wind Energy I                             Power losses
                                                                       2
                                                      0.92
                               cprtip = 1 −                            
                                               z·         λ2   +    4
                                                                    9

                             1.0

                             0.8
                 cprtip(!)




                             0.6

                             0.4                                        z=1
                                                                        z=2
                             0.2                                        z=3

                             0.0
                                0     5        10              15             20

                                               !
Michael Hölling, WS 2010/2011                  slide 14
Wind Energy I                       Rotor power coefficient

 The total rotor power coefficient is a result from the Betz limit,
 losses due to drag and tip losses:
                   cpr = cpBetz · cprdrag · cprtip

    Betz limit 0.6                                                 z=1,"(#)=40
                                                                   z=2,"(#)=40
                                                                   z=3,"(#)=40
                     0.4
            cpr(!)




                     0.2


                     0.0
                        0       5        10              15   20

                                          !

Michael Hölling, WS 2010/2011                 slide 15
Wind Energy I                       Rotor power coefficient

 The total rotor power coefficient is a result from the Betz limit,
 losses due to drag and tip losses:
                   cpr = cpBetz · cprdrag · cprtip

    Betz limit 0.6                                                 z=1,"(#)=40
                                                                   z=2,"(#)=40
                                                                   z=3,"(#)=40
                     0.4
                                                                   z=1,"(#)=60
                                                                   z=2,"(#)=60
            cpr(!)




                                                                   z=3,"(#)=60
                     0.2


                     0.0
                        0       5        10              15   20

                                          !

Michael Hölling, WS 2010/2011                 slide 15
Wind Energy I                        Rotor power coefficient
 Maximum convertible power from wind based on Schmitz (and
 Gaulert) including conservation angular momentum:
 “Based on the conservation of angular momentum, if the rotor gains angular momentum from the linear wind
 stream, then there must be some compensation, which is in the form of an opposite rotating wake, so that the
 overall angular momentum does not change.  ”




Michael Hölling, WS 2010/2011                       slide 16
Wind Energy I                              Rotor power coefficient

 Just to be complete, the maximum convertible power from
 wind based on Schmitz including angular momentum is given
 by:
                1                                1
                                                          r        2       sin3    2
                                                                                       · arctan      R
                                                                                                             r
 PSchmitz      = · ρ · π · R 2 · u3                  4·λ·              ·           3                λ·r
                                                                                                          ·d
                2                 1
                                             0            R                     sin2 arctan        R
                                                                                                  λ·r
                                                                                                             R
                                                                                cpSchmitz

                                    0.6

                                                                           cpSchmitz
                                    0.4
                        cpSchmitz




                                    0.2


                                    0.0
                                       0      5         10                 15          20
                                                         !

Michael Hölling, WS 2010/2011                           slide 17
Wind Energy I                   Rotor power coefficient
 The total rotor power coefficient is a result from the Schmitz
 limit (losses due to conservation of angular momentum), losses
 due to drag and tip losses: cpr = cpSchmitz · cprdrag · cprtip


       0.6                                               cpSchmitz
                                                         cpSchmitz, z=1,"(#)=60
                                                         cpSchmitz, z=2,"(#)=60
       0.4
                                                         cpSchmitz, z=3,"(#)=60
cpr




       0.2


       0.0
          0               5     10      15          20
                                !

Michael Hölling, WS 2010/2011            slide 18
Wind Energy I                   Rotor power coefficient
 The total rotor power coefficient is a result from the Schmitz
 limit (losses due to conservation of angular momentum), losses
 due to drag and tip losses: cpr = cpSchmitz · cprdrag · cprtip


       0.6                                               cpSchmitz
                                                         cpSchmitz, z=1,"(#)=60
                                                         cpSchmitz, z=2,"(#)=60
       0.4
                                                         cpSchmitz, z=3,"(#)=60
cpr




                                                         cpBetz, z=1,"(#)=60
       0.2
                                                         cpBetz, z=2,"(#)=60
                                                         cpBetz, z=3,"(#)=60
       0.0
          0               5     10      15          20
                                !

Michael Hölling, WS 2010/2011            slide 18
Wind Energy I                   Rotor power coefficient
 Even with all used approximations the calculated curves show
 the characteristics of real cpr curves:
 - number of blades effects maximum
 - number of blades effect λopt for maximum cpr

                                                0.6


                                                0.4
                                                             cpSchmitz
                                         cpr                 cpSchmitz, z=1,"(#)=60
                                                0.2
                                                             cpSchmitz, z=2,"(#)=60
                                                             cpSchmitz, z=3,"(#)=60
                                                0.0
                                                   0     5      10       15       20
                                                                !

Michael Hölling, WS 2010/2011            slide 19
Wind Energy I                   Blade optimization - Schmitz
 Chord length optimization based on Schmitz limit in
 comparison to Betz limit:




Michael Hölling, WS 2010/2011               slide 20
Wind Energy I                   Blade optimization - Schmitz
 blade twist optimization based on Schmitz limit in comparison
 to Betz limit::




Michael Hölling, WS 2010/2011               slide 21

Wind energy I. Lesson 8. Power losses at rotor blade

  • 1.
    Wind Energy I power losses at the rotor blade Michael Hölling, WS 2010/2011 slide 1
  • 2.
    Wind Energy I Class content 5 Wind turbines in 6 Wind - blades general 2 Wind measurements interaction 8 Power losses at the rotor blade 9 Π-theorem and Wind 3 Wind field turbine characterization characterization 4 Wind power 10 Generator 11 Electrics / grid Michael Hölling, WS 2010/2011 slide 2
  • 3.
    Wind Energy I Power coefficient Optimized design of blades - why is the power coefficient not cp = 16/27 for the whole wind speed range ? cp = Betz limit 0.6 0.4 cp(!) 0.2 0.0 0 5 10 15 20 ! Michael Hölling, WS 2010/2011 slide 3
  • 4.
    Wind Energy I Power coefficient Real cp values change over the tip speed ratio ! Michael Hölling, WS 2010/2011 slide 4
  • 5.
    Wind Energy I Power losses Losses at the rotor will lead to rotor power coefficient cpr u2 losses at the profile due to drag forces urot plane of rotation β ures Fl β Fres α . Fd ω β Michael Hölling, WS 2010/2011 slide 5
  • 6.
    Wind Energy I Power losses Losses at the rotor will lead to rotor power coefficient cpr losses at the tip of the blades creates by tip vortices Michael Hölling, WS 2010/2011 slide 6
  • 7.
    Wind Energy I Power losses Determine rotor power coefficient cpr by including losses in addition to Betz limit - cprdrag and cprtip additional factors: dProt cprdrag = dProtideal Calculations lead to: 1 3 λ·r cprdrag =1− · · (α) 2 R Michael Hölling, WS 2010/2011 slide 7
  • 8.
    Wind Energy I Power losses Possible behavior of cprdrag over blade radius r for different ε and λ: 70 1.0 !(r) !=4 !=7 60 ! = 10 0.9 cprdrag(r) !(r) 50 40 0.8 30 0 10 20 30 40 50 0 10 20 30 40 50 r [m] r [m] Michael Hölling, WS 2010/2011 slide 8
  • 9.
    Wind Energy I Power losses For a ring-segment: 16 1 dPBetz = · · ρ · u1 · (2 · π · r · dr) 3 27 2 dA r For just the circumference of a circle: 16 1 dPBetz = · · ρ · u1 · (2 · π · r · dr) 3 27 2 dA Michael Hölling, WS 2010/2011 slide 10
  • 10.
    Wind Energy I Power losses For a constant ε over the whole blade cprdrag is given by: λ cprdrag = 1 − 1.0 "(#)=20 0.8 "(#)=40 "(#)=60 cprdrag(!) 0.6 0.4 0.2 0.0 0 5 10 15 20 ! Michael Hölling, WS 2010/2011 slide 11
  • 11.
    Wind Energy I Power losses Power coefficient cprtip due to tip losses are caused by balancing pressure differences at tip of the blade. cl (r) ures Michael Hölling, WS 2010/2011 slide 12
  • 12.
    Wind Energy I Power losses Estimating tip losses cprtip by means of reduced diameter D’: D = D − 0.44 · b Projection of distance “a” between rotor blades into a plane perpendicular to the resulting velocity ures gives “b”. u2 urot β ures   0.92 D = D 1 −  a . z· λ2 + 4 9 b Michael Hölling, WS 2010/2011 slide 13
  • 13.
    Wind Energy I Power losses  2 0.92 cprtip = 1 −  z· λ2 + 4 9 1.0 0.8 cprtip(!) 0.6 0.4 z=1 z=2 0.2 z=3 0.0 0 5 10 15 20 ! Michael Hölling, WS 2010/2011 slide 14
  • 14.
    Wind Energy I Rotor power coefficient The total rotor power coefficient is a result from the Betz limit, losses due to drag and tip losses: cpr = cpBetz · cprdrag · cprtip Betz limit 0.6 z=1,"(#)=40 z=2,"(#)=40 z=3,"(#)=40 0.4 cpr(!) 0.2 0.0 0 5 10 15 20 ! Michael Hölling, WS 2010/2011 slide 15
  • 15.
    Wind Energy I Rotor power coefficient The total rotor power coefficient is a result from the Betz limit, losses due to drag and tip losses: cpr = cpBetz · cprdrag · cprtip Betz limit 0.6 z=1,"(#)=40 z=2,"(#)=40 z=3,"(#)=40 0.4 z=1,"(#)=60 z=2,"(#)=60 cpr(!) z=3,"(#)=60 0.2 0.0 0 5 10 15 20 ! Michael Hölling, WS 2010/2011 slide 15
  • 16.
    Wind Energy I Rotor power coefficient Maximum convertible power from wind based on Schmitz (and Gaulert) including conservation angular momentum: “Based on the conservation of angular momentum, if the rotor gains angular momentum from the linear wind stream, then there must be some compensation, which is in the form of an opposite rotating wake, so that the overall angular momentum does not change. ” Michael Hölling, WS 2010/2011 slide 16
  • 17.
    Wind Energy I Rotor power coefficient Just to be complete, the maximum convertible power from wind based on Schmitz including angular momentum is given by: 1 1 r 2 sin3 2 · arctan R r PSchmitz = · ρ · π · R 2 · u3 4·λ· · 3 λ·r ·d 2 1 0 R sin2 arctan R λ·r R cpSchmitz 0.6 cpSchmitz 0.4 cpSchmitz 0.2 0.0 0 5 10 15 20 ! Michael Hölling, WS 2010/2011 slide 17
  • 18.
    Wind Energy I Rotor power coefficient The total rotor power coefficient is a result from the Schmitz limit (losses due to conservation of angular momentum), losses due to drag and tip losses: cpr = cpSchmitz · cprdrag · cprtip 0.6 cpSchmitz cpSchmitz, z=1,"(#)=60 cpSchmitz, z=2,"(#)=60 0.4 cpSchmitz, z=3,"(#)=60 cpr 0.2 0.0 0 5 10 15 20 ! Michael Hölling, WS 2010/2011 slide 18
  • 19.
    Wind Energy I Rotor power coefficient The total rotor power coefficient is a result from the Schmitz limit (losses due to conservation of angular momentum), losses due to drag and tip losses: cpr = cpSchmitz · cprdrag · cprtip 0.6 cpSchmitz cpSchmitz, z=1,"(#)=60 cpSchmitz, z=2,"(#)=60 0.4 cpSchmitz, z=3,"(#)=60 cpr cpBetz, z=1,"(#)=60 0.2 cpBetz, z=2,"(#)=60 cpBetz, z=3,"(#)=60 0.0 0 5 10 15 20 ! Michael Hölling, WS 2010/2011 slide 18
  • 20.
    Wind Energy I Rotor power coefficient Even with all used approximations the calculated curves show the characteristics of real cpr curves: - number of blades effects maximum - number of blades effect λopt for maximum cpr 0.6 0.4 cpSchmitz cpr cpSchmitz, z=1,"(#)=60 0.2 cpSchmitz, z=2,"(#)=60 cpSchmitz, z=3,"(#)=60 0.0 0 5 10 15 20 ! Michael Hölling, WS 2010/2011 slide 19
  • 21.
    Wind Energy I Blade optimization - Schmitz Chord length optimization based on Schmitz limit in comparison to Betz limit: Michael Hölling, WS 2010/2011 slide 20
  • 22.
    Wind Energy I Blade optimization - Schmitz blade twist optimization based on Schmitz limit in comparison to Betz limit:: Michael Hölling, WS 2010/2011 slide 21