SlideShare a Scribd company logo
1 of 76
Download to read offline
Harmonic Elimination in a Solar
Powered Multilevel Inverter
Dr. Shimi S.L
Assistant Professor, EE
NITTTR, Chandigarh
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
1
Global Solar Potential
12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 2
η(maximum efficiency)=
P(maximum power output)/(E(S,γ)(incident radiation flux)*A(c)(Area of collector))
12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 3
Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh12/4/2017 4
MAXIMUM POWER POINT TRACKING
(MPPT)
There are two basic approaches in
maximizing the power extraction:
(a) Using automatic sun tracker
(b) Searching for the MPP conditions
 Perturb and Observe method
 Incremental Conductance method
 Artificial intelligence (AI) methods
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
5
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
6
• The height of a projectile that is fired
straight up is given by the motion equations
12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 7
12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 8
12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 9
Partial Shading of Solar Panels
12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 10
12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 11
12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 12
Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh12/4/2017 13
MPPT of a PV System
12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 14
Switching Mode Regulator
(Buck Converter)
12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 15
Equivalent Circuit (a) Switch ON (b) Switch OFF
𝐿 𝐶 = 𝐿 =
𝑅(1 –𝐷)
2𝑓
𝐶 𝐶 = 𝐶 =
1 – 𝐷
16𝐿𝑓2
For a switching frequency of 80 KHz and inductance current ripple (∆𝐼) of 10%
the 𝐿 𝑐 and 𝐶𝑐 are approximated as 1mH and 100µF respectively
∆𝐼 =
𝑉𝑠 𝐷(1 –𝐷)
𝑓𝐿
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
16
Parameters of Buck Converter
Sr. No. Parameter Value
1 Inductor (L) 1mH
2 Inductor series resistance (RL) 80 mΩ
3 Output capacitor (Co) 100 µF
4 Output capacitor ESR (Rco) 30 mΩ
5 Input capacitor (Ci) 100 µF
6 Input capacitor ESR (Rci) 30 mΩ
7 Switching frequency (fs), 80 KHz
8 Input voltage 20 V
9 Duty-ratio (D) Variable
10 Load resistance 9 Ohm
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
17
MATLAB/SIMULINK Model of Buck Converter
Components of PWM Block Subsystem
12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
18
PWM with 0.5 Value of Duty-cycle
Input and Output Voltages Waveforms of Buck Converter
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
19
PERFORMANCE EVALUATION OF
VIKRAM SOLAR MODULE
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
20
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
21
Performance Characteristics
Outdoor Efficiency 9.95%
12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 22
Performance of 37W PV Module at
Laboratory and Outdoor Conditions
Condition
Angle of PV
Panel Tilt
Irradiation
W/m2
Temperature
oC
Voc
(V)
Isc
(mA)
Vm
(V)
Im
(mA)
Pm
(W)
𝜂
(%)
Lab
00 450 30 18.71 129 17.93 126 2.254 1.446
450 450 30 18.99 255 17.96 183 3.291 2.111
Outdoor
00 923 32 18.20 1071 14.33 1043 14.94 7.640
450 923 32 19.07 1904 14.77 1777 26.26 11.25
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
23
12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 24
PCI Port
12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 25
Specification of DS1104 R&D Controller Board
Parameter Characteristics
Processor MPC8240 processor with PPC603e core and on-chip
peripherals
• 64-bit floating-point processor
• 250 MHz CPU
• 2 x 16 KB cache; on-chip
• On-chip PCI bridge (33 MHz)
Memory Global memory: 32 MB SDRAM
• Flash memory: 8 MB
ADC
1 x 16-bit ADC with mux
4 x 12-bit ADC
5 ADC channels (1 x 16-bit + 4 x 12-bit) can be
sampled simultaneous
• 16-bit resolution
• ±10 V input voltage range
• 2μs conversion time, 12-bit resolution
• ±10 V input voltage range
• 800 ns conversion time
Slave DSP subsystem • Texas Instruments TMS320F240 DSP
• 16-bit fixed-point processor
• 20 MHz clock frequency
• 64 K x 16 external program memory
• 28 K x 16 external data memory
• 4 K x 16 dual-port memory for communication
• 16 K x 16 flash memory
• 1 x 3-phase PWM output, 4 x 1-phase PWM output
• ±13 mA maximum output current
Host interface • 32-bit PCI host interface
• 5VPCI slot
• 33MHz±5 %
Power supply • +5 V ±5 %, 2.5 A
• +12 V ±5 %, 0.3 A
Power consumption 18.5 W
12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 26
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
27
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
28
(a)
(b)
(c)
Parameter Settings for (a) ADC, (b) ADC Multiplexed and (c) PWM Blocks
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
29
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
30
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
31
Efficiency of MPPT Algorithm
(a) Short-circuit Current Isc
(b) Open-circuit Voltage Voc
(c ) Fill Factor FF
ηMPPT =
‫׬‬0
t
PMPPT t dt
‫׬‬0
t
Pmax t dt
(2)
Maximum Power (Pmax ) Prediction Model
Isc = Isco
G
G0
α
(3)
𝑉𝑜𝑐=
𝑉𝑜𝑐0
1+𝛽
𝐺0
𝐺
𝑇0
𝑇
𝛾
(4)
𝐹𝐹 = 𝐹𝐹0 1 −
𝑅 𝑠
𝑉 𝑜𝑐
𝐼 𝑠𝑐
(5)
𝐹𝐹0 =
𝑣 𝑜𝑐−ln(𝑣 𝑜𝑐+0.72)
1+𝑣 𝑜𝑐
(6)
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
32
(d) Maximum Power Output (Pmax)
voc =
Voc
ൗnKT
q
(7)
Pmax = FF ∗ Voc ∗ Isc (8)
Pmax =
𝑣 𝑜𝑐−ln(𝑣 𝑜𝑐+0.72)
1+𝑣 𝑜𝑐
∗ 1 −
𝑅 𝑠
𝑉 𝑜𝑐
𝐼 𝑠𝑐
∗
𝑉𝑜𝑐0
1+𝛽
𝐺0
𝐺
𝑇0
𝑇
𝛾
∗ 𝐼𝑠𝑐𝑜
𝐺
𝐺0
𝛼
(9)
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
33
MATLABTM / SIMULINKTM Model of
Maximum Power Output (Pmax)
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
34
Sub-System for Fill Factor
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
35
Sub-system for Short Circuit Current
Sub-system for Open Circuit Voltage
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
36
Response of Pmax, Voc , Isc , FF & Irradiance
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
37
Fig. Experimental Result of PO with Delta D=0.01
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
38
MPPT ALGORITHM COMPARISION
Maximum Power Point
Techniques Method
ᶯ
( %)
Peak
Overshoot
( %)
Settling
time
( sec)
Dynamic
Response
Delay
( sec)
Steady
State Error
( %)
Sensors
Voltage -V
Current -I
Perturb & Observe (ΔD=0.1)
77.60 - 79.39 No 0.48 0.06 15.14 V, I
Perturb & Observe (ΔD=0.01) 81.00 - 81.60 No 0.41 0.039 12.77 V, I
Perturb & Observe (ΔD=0.001) 81.23 - 84.37 No 0.40 0.04 12.03 V, I
Incremental Conductance 86.32 - 87.25 3.35 1.78 0.001 7.35 V, I
Neural Network 87.35 - 90.10 2.185 0.6439 0.038 3.88 V, I
Adaptive Neuro Fuzzy Inference
System (ANFIS)
87.15 - 93.31 6.56 5.35 0 3.55 V, I
ANFIS &
CVT
≥12V NA 7.28 0.18 0.1 9 V
12V 87.15 - 93.31 6.56 5.35 0 3.55 V, I
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh
39
Selective Harmonic Elimination in
a Solar Powered Multilevel
Inverter
Dr. Shimi S.L
Assistant Professor, EE
NITTTR, Chandigarh
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
40
Weight, Cost, Power Loss and Harmonics
Comparison for Different Inverter TopologiesTypeof
inverter
No.of
switches
No.of
capacitors
No.of
diodes
Weight
Cost
PowerLoss
(W)
Harmonics
2-level
12 0 0
Light
Weight
Cheap Very low THD > 40%
5-level diode
Clamped
24 12 36
Medium Weight Costly Low 5th harmonics Eliminated
THD >15%
5-level capacitor
clamped
24 30 0
Heavy Very Costly Low 5th harmonics Eliminated
THD >15%
5-level cascaded
24 0 0
Light
Weight
Cheap Low 5th harmonics Eliminated
THD >15%
9-level diode clamped
48 24 42
Medium Weight Costly medium 5th , 7th & 11th harmonics Eliminated
THD >7%
9-level capacitor
clamped
48 60 0
Heavy Very Costly medium 5th , 7th & 11th harmonics Eliminated
THD >7%
9-level cascaded
48 0 0
Light
Weight
Cheap medium 5th , 7th & 11th harmonics Eliminated
THD >7%
11-level diode
clamped 60 30 90
Medium Weight Costly High 5th , 7th , 11th &13th harmonics
Eliminated
THD <5%
11-level capacitor
clamped 60 75 0
Heavy Very Costly High 5th , 7th , 11th &13th harmonics
Eliminated
THD <5%
11-level cascaded
60 0 0
Light
Weight
Cheap high 5th , 7th , 11th &13th harmonics
Eliminated
THD <5%
41
Cascaded H-bridge Inverter
Va
(b)
Va[(m-1)/2]
(a)
(a) Single Phase Cascaded H-bridge Inverter Topology with m Levels
(b) Output Phase Voltage with Non Equal dc Source
n
Vdc1
S1
S2
S3 S4
Va
Vdcm
S1
S2
S3 S4
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
42
Block Diagram of the Harmonic Elimination
System
GRID
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
43
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
44
Selective Harmonic Elimination
Technique
(10)
(11)
(12)
(13)
(14)
(16)
(17)
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
45
f 1 = cos α1 + cos α2 + cos α3 + cos α4 + cos α5 = mi
f 2 = cos 5α1 + cos 5α2 + cos 5α3 + cos 5α4 + cos 5α5 = 0
f 3 = cos 7α1 + cos 7α2 + cos 7α3 + cos 7α4 + cos 7α5 = 0
f 4 = cos 11α1 + cos 11α2 + cos 11α3 + cos 11α4 + cos 11α5 = 0
f 5 = cos 13α1 + cos 13α2 + cos 13α3 + cos 13α4 + cos 13α5 = 0
f 1 = [Vdc1cos α1 + Vdc2cos α2 + Vdc3cos α3 + Vdc4cos α4 + Vdc5cos α5 ]=mi
f 2 = [Vdc1cos 5α1 + Vdc2cos 5α2 + Vdc3cos 5α3 + Vdc4cos 5α4 +
Vdc5cos 5α5 ] = 0
f 3 = [Vdc1cos 7α1 + Vdc2cos 7α2 + Vdc3cos 7α3 + Vdc4cos 7α4 +
Vdc5cos 7α5 ] = 0
f 4 = [Vdc1cos 11α1 + Vdc2cos 11α2 + Vdc3cos 11α3 + Vdc4cos 11α4 +
Vdc5cos 11α5 ]=0
f 5 = [Vdc1cos 13α1 + Vdc2cos 13α2 + Vdc3cos 13α3 + Vdc4cos 13α4 +
Vdc5cos 13α5 ] = 0
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
46
The cost function for SHE problem is given by,
𝑓 𝑋𝑖 = 100 ∗
( 𝑓 2 + 𝑓 3 + 𝑓 4 + 𝑓 5 )
𝑓 1
Newton Raphson - SHE
• The algorithm for the Newton-Raphson method is as follows:
Step 1 Assume any random initial guess for switching angles (say 𝛼0 )
The switching angle matrix is :
𝛼 𝑗 = [𝛼1
𝑗 + 𝛼2
𝑗 + 𝛼3
𝑗 + 𝛼4
𝑗 + 𝛼5
𝑗 ] 𝑇
Step 2 Set modulation index to zero.
Step 3 Evaluate the non-linear system matrix 𝐹 𝑗 , the Jacobian matrix
𝜕𝑓
𝜕𝛼
𝑗
and
the harmonics amplitude matrix 𝑇 represented below:
The non-linear system matrix,
𝐹 𝑗 = cos 𝛼1
𝑗 + cos 𝛼2
𝑗 + cos 𝛼3
𝑗 + cos 𝛼4
𝑗 + cos 𝛼5
𝑗
cos 5𝛼1
𝑗
+ cos 5𝛼2
𝑗
+ cos 5𝛼3
𝑗
+ cos 5𝛼4
𝑗
+ cos 5𝛼5
𝑗
cos 7𝛼1
𝑗
+ cos 7𝛼2
𝑗
+ cos 7𝛼3
𝑗
+ cos 7𝛼4
𝑗
+ cos 7𝛼5
𝑗
cos 9𝛼1
𝑗
+ cos 9𝛼2
𝑗
+ cos 9𝛼3
𝑗
+ cos 9𝛼4
𝑗
+ cos 9𝛼5
𝑗
cos 11𝛼1
𝑗
+ cos 11𝛼2
𝑗
+ cos 11𝛼3
𝑗
+ cos 11𝛼4
𝑗
+ cos 11𝛼5
𝑗
(18)
(19)
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
47
the Jacobian matrix,
𝜕𝑓
𝜕𝛼
𝑗
=
− sin 𝛼1
𝑗 − sin 𝛼2
𝑗 − sin 𝛼3
𝑗 − sin 𝛼4
𝑗 − sin 𝛼5
𝑗
− 5sin 5𝛼1
𝑗
− 5 sin 5𝛼2
𝑗
− 5 sin 5𝛼3
𝑗
− 5sin 5𝛼4
𝑗
− 5 sin 5𝛼5
𝑗
− 7sin 7𝛼1
𝑗
− 7sin 7𝛼2
𝑗
− 7 sin 7𝛼3
𝑗
− 7sin 7𝛼4
𝑗
− 7 sin 7𝛼5
𝑗
− 9sin 9𝛼1
𝑗
− 9sin 9𝛼2
𝑗
− 9sin 9𝛼3
𝑗
− 9sin 9𝛼4
𝑗
− 9sin 9𝛼5
𝑗
− 11sin 11𝛼1
𝑗
− 11sin 11𝛼2
𝑗
− 11 sin 11𝛼3
𝑗
− 11sin 11𝛼4
𝑗
− 11 sin 11𝛼5
𝑗
and the corresponding harmonic amplitude matrix,
𝑇 = [𝑚𝑖
3𝜋
4
0 0 0 0] 𝑇
The solutions must satisfy the following condition:
0 ≤ 𝛼1 ≤ 𝛼2 ≤ 𝛼3≤ 𝛼4 ≤ 𝛼5≤
𝜋
2
Step 4 Compute correction Δα during the iteration using relation,
∆𝛼 =
𝜕𝑓
𝜕𝛼
𝑗
𝛼𝑗 (𝑇-𝐹 𝑗
)
Step 5 Update the new switching angles as,
𝛼 𝑘 + 1 = 𝛼 𝑘 + ∆𝛼(𝑘)
Step 6 To obtain a feasible solution of switching angles by executing the following
transformation:
𝛼 𝑘 + 1 = cos−1
(abs(cos(𝛼 𝑘 + 1 )))
(20)
(21)
(22)
(23)
(24)
(25)
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
48
Step 7 Repeat steps (3) to (6) for sufficient number of iterations to attain error
goal.
Step 8 Increment modulation index by a fixed step.
Step 9 Repeat steps (2) to (8) for whole range of modulation index .
This algorithm can be implemented using MATLABTM programming. After
successfully executing and running the program the optimal firing angles
α1, α2, α3 , α4 and α5 can be obtained.
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
49
{
initialize population;
evaluate population;
while Termination Criteria Not Satisfied
{
select parents for reproduction;
perform crossover and mutation;
evaluate population;
}
}
Genetic Algorithm (GA)
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
50
The GA Cycle of
Reproduction
reproduction
population evaluation
modification
discard
deleted
members
parents
children
modified
children
evaluated children
Consider the problem of maximizing the
function,
f(x) = x2
Where x is permitted to vary between 0 to 31.
(i) 0(00000) and 31(11111) code x into finite
length string
(ii) Select initial population at random (size 4)
(iii) Calculate fitness value for all strings
(iv) probability of selection by:
𝑃𝑟𝑜𝑏𝑖=
𝑓(𝑥) 𝑖
σ 𝑖=1
𝑛
𝑓(𝑥) 𝑖
,
Table 1. Selection
String
No.
Initial
population
X
Value
Fitness
value
Prob. %age
Prob.
Expected
Count
Actual
Count
1. 01100 12 144 0.1247 12.47% 0.4987 1
2. 11001 25 625 0.5411 54.11% 2.1645 2
3. 00101 5 25 0.0216 2.16% 0.0866 0
4. 10011 19 361 0.3126 31.26% 1.2502 1
Sum
Avg.
Max.
1155
288.75
625
1.0000
0.2500
0.5411
100%
25%
54.11%
4.0000
1.0000
2.1645
Table 2. Crossover
String
No.
Mating
Pool
Crossover
point
Offspring
after
crossover
X value Fitness
value
1. 01100 4 01101 13 169
2. 11001 4 11000 24 576
3. 11001 3 11011 27 729
4. 10011 3 10001 17 289
Sum
Avg.
Max.
1763
440.75
729
Table 3. Mutation
String
No.
Offspring
After
crossover
Mutation
chromosomes
Offspring
after
mutation
X value Fitness
value
1. 01101 10000 11101 29 841
2. 11000 00000 11000 24 576
3. 11011 00000 11011 27 729
4. 10001 00100 10101 20 400
Sum
Avg.
Max.
2546
636.5
841
Minimize the following fitness
function including 2 variables:
𝒎𝒊𝒏 𝒙 𝒇 𝒙
= 𝟏𝟎𝟎(𝒙 𝟏
𝟐
− 𝒙 𝟐) 𝟐
+ (𝟏 − 𝒙 𝟏) 𝟐
Subject to the following linear
constraints and bounds:
𝑥1 𝑥2 + 𝑥1 − 𝑥2 + 1.5 ≤ 0
10 − 𝑥1 𝑥2 ≤ 0
0 ≤ 𝑥1 ≤ 1 and 0 ≤ 𝑥2 ≤ 13
The function has one output ‘y’ and
two input variables ‘x1’ and ‘x2’.
We use the vector ‘x’ to include both
‘x1’ and ‘x2’.
𝑇𝐻𝐷 =
𝑉𝑠 ∗
2 ∗ 8𝜋 − 40𝜋 − 22𝛽
𝜋
4 𝑉𝑠
𝜋 ∗ √2
𝑐𝑜𝑠 𝛼 + 𝑐𝑜𝑠 𝛼 + 𝛽 + 𝑐𝑜𝑠 3 ∗ 𝛼 + 𝛽 + 𝑐𝑜𝑠 3 ∗ 𝛼 + 2 ∗ 𝛽
2
− 1
24 ∗ 𝛼 + 12 ∗ 𝛽 = 360
2 ∗ 𝛼 + 𝛽 = 30
THD Equation
Constraint
Multilevel inverter with reduced ie. 15
number of switches and 4 sources
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
60
Step 1 Initialize the system parameters for MATLABTM / GA toolbox such as
CrossoverFcn as @crossoverscattered, CrossoverFraction as 0.8, SelectionFcn as
@selectionstochunif , 'CreationFcn' as @gacreationlinearfeasible and 'MutationFcn'
as @mutationadaptfeasible. Assign the values of Generations as 100, Population
Size as 40 and PopInitRange as [0;1].
Step 2 Now evaluate the particles using the Fitness Function
𝑓 𝑋𝑖 = 100 ∗
( 𝑓 2 + 𝑓 3 + 𝑓 4 + 𝑓 5 )
𝑓 1
for harmonic elimination.
Here the switching angles 𝛼1, 𝛼2, 𝛼3, 𝛼4and 𝛼5 are chosen in such a way that the
selective 5th, 7th, 11th and 13th harmonics can be eliminated.
Step 3 Check the constraints 0 ≤ 𝛼1 ≤ 𝛼2 ≤ 𝛼3 ≤ 𝛼4 ≤ 𝛼5 ≤ 𝜋/2.
Step 4 Select the parent chromosomes.
Step 5 Create the new offspring using crossover and mutation.
Step 6 Check if termination criteria ( the maximum number of iterations) is reached. If
not goto Step 2.
Step 7 If optimized switching angles are obtained, terminate the problem.
PSO
vt
gbestt
pbestt
xt
xt+1
Ruben E. Perez
0 < C1 + C2 < 4
C1+C2
2
< C0 < 1
𝑣𝑖𝑛 𝑡 + 1 = 𝐶0 𝑣𝑖𝑛 𝑡 + 𝐶1 𝑟1 𝑃𝑖𝑛 − 𝑥𝑖𝑛 𝑡 + 𝐶2 𝑟2 𝑃𝑔𝑛 − 𝑥𝑖𝑛 𝑡
𝑥𝑖𝑛 𝑡 + 1 = 𝑥𝑖𝑛(𝑡) + 𝑣𝑖𝑑 𝑡 + 1
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
61
Step 1: Initialize the system parameters such as Position Vector Xi, Velocity Vector Vi,
Personal Best Particle Vector Pi, Global Best Vector Pg and Particle Inertia Weight
C0 . Assign the values of Generations as 100, Population Size as 40, Cognitive
Parameter C1 as 0.5 and Social Parameter C2 as 1.25.
Step 2: Check for the conditions 0<(C1+C2)<4 and (C1+C2)/2<C0<1, If the two
conditions are satisfied then the system will be guaranteed to converge to a stable
equilibrium point. If false goto Step 1.
Step 3 Update the Velocity , Vi(t+1).
Step 4 Update the Position, Xi(t+1).
Step 5 Now evaluate the particles using the Fitness Function,
f(Xi) = 100*(|f(2)|+|(f(3)|+|f(4)|+|f(5)|) / (|f(1)|) for harmonic elimination. Here the
switching angles are chosen in such a way that the selective 5th , 7th , 11th and
13th harmonics can be elimination.
f(1)=(cos( )+cos( )+cos( )+cos( )+cos( ))- ma;
f(2)=(cos(5* )+cos(5* )+cos(5* )+cos(5* )+cos(5* ));
f(3)=(cos(7* )+cos(7* )+cos(7* )+cos(7* )+cos(7* ));
f(4)=(cos(11* )+cos(11* )+cos(11* )+cos(11* )+cos(11* ));
f(5)=(cos(13* )+cos(13* )+cos(13* )+cos(13* )+cos(13* ));
Step 6 Check the constraints.
Step 7 Check for the condition f(xi) < f(Pi) , if not satisfied then i=i+1goto Step 3 .
Step 8 Update the local best position of the particle if it is better than the previous local
best position . Thus the local best position is replaced as Pi=Xi.
Step 9 Update the global best position as Pg=min(P neighbor).
Step 10 Optimized switching angles are obtained .Terminate the problem.12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
62
NR Algorithms
GA Algorithms
PSO Algorithms
Optimized Switching Angles using NR, GA and PSO Algorithms for 11 Level Inverter
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
63
THD Versus Modulation Index of 7, 9 and 11 Level Cascaded H-bridge
Inverters for NR, GA and PSO Algorithms
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
64
11 Level Cascaded H-bridge Inverter Applied with NR-SHE Algorithm for 0.8 Value of MI
Line Voltage Waveform
Phase Voltage Waveform
Current Waveform
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
65
Harmonic Spectrum at 0.8 MI for NR-SHE Algorithm for a 11 level Cascaded H-bridge Inverter
Phase Voltage Spectrum
Line Voltage Spectrum
Current Spectrum
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
66
TechniqueUsed
11 Level Cascaded H-bridge Inverter
Magnitude of Harmonic Contents (%) up to 19th Order
Line Voltage
(THD 5.55%)
105.8 peak (74.83 rms)
Phase Voltage
(THD 7.93%)
61.14 peak (43.23 rms)
Current (THD 5%)
0.6063 peak (0.4287 rms)
Harmo
nic
Order
Even
Harmo
nic
Harmo
nic
Order
Odd
Harmo
nic
Harmo
nic
Order
Even
Harmo
nic
Harmo
nic
Order
Odd
Harmo
nic
Harmo
nic
Order
Even
Harmo
nic
Harmo
nic
Order
Odd
Harmo
nic
NR
0th 0.00 1th 100 0th 0.00 1th 100 0th 0.01 1th 100
2nd 0.00 3rd 0.02 2nd 0.00 3rd 0.60 2nd 0.00 3rd 0.02
4th 0.00 5th 0.09 4th 0.00 5th 0.04 4th 0.00 5th 0.07
6th 0.00 7th 0.08 6th 0.00 7th 0.06 6th 0.00 7th 0.09
8th 0.00 9th 0.06 8th 0.00 9th 3.26 8th 0.00 9th 0.06
10th 0.00 11th 0.10 10th 0.00 11th 0.10 10th 0.00 11th 0.11
12th 0.00 13th 0.02 12th 0.00 13th 0.02 12th 0.00 13th 0.03
14th 0.00 15th 0.09 14th 0.00 15th 1.04 14th 0.00 15th 0.08
16th 0.00 17th 2.65 16th 0.00 17th 2.58 16th 0.00 17th 2.62
Magnitude of Harmonic Contents (%) up to 19th Order for 11 Level
Cascaded H-bridge Inverter Applied with NR-SHE Technique
12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 67
1. Intelligent Power Module (Power Circuit)
2. Firing Pulse for H-bridge Inverter
(a) Optocoupler (b) Gate Driver
(c ) AND Gate (d) Schmitt Trigger
(e) FPGA Based Spartan 3A DSP Board
3. Protection Circuit
4. Regulated Power Supply
5. Signal Conditioning Circuit
6. Constant and Isolated dc Supply for MLI
7. 3 Φ Induction Motor Load
8. Power Quality Analyzer
9. PC with MATLAB/SIMULINK and Xilinx
Software Packages
Block Diagram of the Hardware
Implementation of 3 Φ MLI
12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 68
Complete Laboratory setup of 3 Φ 11
Level Cascaded H-bridge Inverter
3Φ Induction Motor
Power Quality Analyzer
CHMLISpartan®-3A
DSP FPGA
CHMLI
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
69
Experimental Results for 11 Level
Inverter (a) Output Line Voltage (b)
Phase Voltage and (c) Current at
M=0.8 (NR-SHE)
(a)
(b)
(c)12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 70
(a)
(b)
Experimental Results for 11 Level
Inverter (a) Line Voltage FFT
Analysis (b) Phase Voltage FFT
Analysis and (c) Current FFT
Analysis at M=0.8 (NR-SHE)
(b)
(c)
12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh
71
Optimum Switching Angles and Minimum THD using NR-SHE, GA-SHE
and PSO-SHE
Technique Method Mi Alpha 1 Alpha 2 Alpha 3 Alpha 4 Alpha 5
Line
Voltage
THD
(%)
Phase
Voltage
THD
(%)
Current
THD
(%)
NR
Simulation
0.8 0.1147 0.3306 0.4744 0.7878 1.0864 5.55 7.93 5
Hardware 0.8 0.1147 0.3306 0.4744 0.7878 1.0864 4.8 6.7 3.3
PSO
Simulation
0.9 0.0709 0.1466 0.3481 0.4505 0.7265 4.79 16.02 4.00
Hardware 0.9 0.0709 0.1466 0.3481 0.4505 0.7265 3.7 15 3
GA
Simulation
0.91 0.0676 0.1637 0.3509 0.4871 0.7473 4.3 14.77 3.73
Hardware 0.91 0.0676 0.1637 0.3509 0.4871 0.7473 3.4 13.4 2.7
12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 72
Comparison of Harmonic (%) for 11 Level Inverter with NR, GA and PSO
Technique Harmonics
Line Voltage (%) Phase Voltage (%) Current (%)
Practical Simulation Practical Simulation Practical Simulation
NR
THD 4.8 5.55 6.7 7.93 3.3 5.00
3rd 1.7 0.02 1.8 0.60 0.8 0.02
5th 0.6 0.09 0.5 0.04 0.3 0.07
7th 0.9 0.08 0.6 0.06 0.2 0.09
9th 0.2 0.06 3.0 3.26 0.2 0.06
11th 0.4 0.10 0.3 0.10 0.1 0.11
13th 0.3 0.02 0.3 0.02 0.1 0.03
15th 0.1 0.09 1.4 1.04 0.1 0.08
PSO
THD 3.7 4.79 15 16.02 3.0 4.00
3rd 0.7 0.03 14.1 14.81 0. 6 0.01
5th 0.8 0.05 1.2 0.02 0.2 0.06
7th 0.3 0.01 0.5 0.06 0.1 0.01
9th 0.0 0.09 1.1 0.93 0.0 0.11
11th 0.2 0.09 0.3 0.05 0.1 0.02
13th 0.2 0.05 0.2 0.04 0.0 0.05
15th 0.1 0.05 1.8 1. 68 0.1 0.05
GA
THD 3.4 4.30 13.4 14.77 2.7 3.73
3rd 1.0 0.06 13.1 13.6 1.0 0.06
5th 0.7 0.67 1.7 0.66 0.4 0.68
7th 0.4 0.17 0.3 0.12 0.2 0.18
9th 0.1 0.02 1.3 1.20 0.2 0.00
11th 0.4 0.02 0.4 0.02 0.1 0.01
13th 0.2 0.09 0.2 0.09 0.1 0.10
15th 0.1 0.06 1.5 1.38 0.1 0.07
12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 73
Comparison of Harmonics Content (%) up to 15th Order of Line Voltage
for 11 Level Cascaded H-bridge Inverter Applied with Different Techniques
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
74
Comparison of Magnitude of Line Voltage THD and Harmonics Content for
CHMLI Applied with NR-SHE, PSO-SHE and GA-SHE Algorithms
THD
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
75
Questions, Comments?
Shimi.reji@gmail.com
www.slideshare.net/shimireji
9417588987
Thanks
12/4/2017
Dr. Shimi S.L, Assistant Professor, NITTTR,
Chandigarh
76

More Related Content

What's hot

Solar Charging Stations
Solar Charging StationsSolar Charging Stations
Solar Charging StationsKabeeranban
 
Power flow solution
Power flow solutionPower flow solution
Power flow solutionBalaram Das
 
BLDC control using PID & FUZZY logic controller-CSD PPT
BLDC control using PID & FUZZY logic controller-CSD PPTBLDC control using PID & FUZZY logic controller-CSD PPT
BLDC control using PID & FUZZY logic controller-CSD PPTAmiya Ranjan Behera
 
Reference frame theory
Reference frame theoryReference frame theory
Reference frame theoryRamesh Babu
 
Battery and Super Capacitor based Hybrid Energy Storage System (BSHESS)
Battery and Super Capacitor based Hybrid Energy Storage System (BSHESS)Battery and Super Capacitor based Hybrid Energy Storage System (BSHESS)
Battery and Super Capacitor based Hybrid Energy Storage System (BSHESS)Er. Raju Bhardwaj
 
improvement of electrical power quality using series active and shunt passive...
improvement of electrical power quality using series active and shunt passive...improvement of electrical power quality using series active and shunt passive...
improvement of electrical power quality using series active and shunt passive...Vikram Rawani
 
dc to dc-converter
dc to dc-converterdc to dc-converter
dc to dc-converterStudent
 
Pulse width modulated inverter
Pulse width modulated inverterPulse width modulated inverter
Pulse width modulated inverterVSRAGHU
 
Three phase-controlled-rectifiers
Three phase-controlled-rectifiersThree phase-controlled-rectifiers
Three phase-controlled-rectifiersTejas Deshpande
 
three phase induction motor drive
three phase induction motor drivethree phase induction motor drive
three phase induction motor driveGuru Moorthi
 
VOC and DPC Control Schemes for Three-Phase Boost Type Pulse Width Modulated ...
VOC and DPC Control Schemes for Three-Phase Boost Type Pulse Width Modulated ...VOC and DPC Control Schemes for Three-Phase Boost Type Pulse Width Modulated ...
VOC and DPC Control Schemes for Three-Phase Boost Type Pulse Width Modulated ...Nereus Fernandes
 
Three phase ac voltage controllers
Three phase ac voltage controllersThree phase ac voltage controllers
Three phase ac voltage controllersJosin Hippolitus
 

What's hot (20)

Load flow studies 19
Load flow studies 19Load flow studies 19
Load flow studies 19
 
Smart grid presentation
Smart grid  presentationSmart grid  presentation
Smart grid presentation
 
Structure of power system
Structure of power systemStructure of power system
Structure of power system
 
Solar Charging Stations
Solar Charging StationsSolar Charging Stations
Solar Charging Stations
 
Power flow solution
Power flow solutionPower flow solution
Power flow solution
 
BLDC control using PID & FUZZY logic controller-CSD PPT
BLDC control using PID & FUZZY logic controller-CSD PPTBLDC control using PID & FUZZY logic controller-CSD PPT
BLDC control using PID & FUZZY logic controller-CSD PPT
 
Load flow study
Load flow studyLoad flow study
Load flow study
 
Reference frame theory
Reference frame theoryReference frame theory
Reference frame theory
 
Two Quadrant chopper
Two Quadrant chopperTwo Quadrant chopper
Two Quadrant chopper
 
EXCITATION SYSTEMS
EXCITATION SYSTEMSEXCITATION SYSTEMS
EXCITATION SYSTEMS
 
Battery and Super Capacitor based Hybrid Energy Storage System (BSHESS)
Battery and Super Capacitor based Hybrid Energy Storage System (BSHESS)Battery and Super Capacitor based Hybrid Energy Storage System (BSHESS)
Battery and Super Capacitor based Hybrid Energy Storage System (BSHESS)
 
improvement of electrical power quality using series active and shunt passive...
improvement of electrical power quality using series active and shunt passive...improvement of electrical power quality using series active and shunt passive...
improvement of electrical power quality using series active and shunt passive...
 
dc to dc-converter
dc to dc-converterdc to dc-converter
dc to dc-converter
 
MPPT
MPPTMPPT
MPPT
 
Pulse width modulated inverter
Pulse width modulated inverterPulse width modulated inverter
Pulse width modulated inverter
 
Three phase-controlled-rectifiers
Three phase-controlled-rectifiersThree phase-controlled-rectifiers
Three phase-controlled-rectifiers
 
MODELLING OF PMSM
MODELLING OF PMSMMODELLING OF PMSM
MODELLING OF PMSM
 
three phase induction motor drive
three phase induction motor drivethree phase induction motor drive
three phase induction motor drive
 
VOC and DPC Control Schemes for Three-Phase Boost Type Pulse Width Modulated ...
VOC and DPC Control Schemes for Three-Phase Boost Type Pulse Width Modulated ...VOC and DPC Control Schemes for Three-Phase Boost Type Pulse Width Modulated ...
VOC and DPC Control Schemes for Three-Phase Boost Type Pulse Width Modulated ...
 
Three phase ac voltage controllers
Three phase ac voltage controllersThree phase ac voltage controllers
Three phase ac voltage controllers
 

Similar to Selective harmonic elimination in a solar powered multilevel inverter

MPPT of a solar system
MPPT of a solar systemMPPT of a solar system
MPPT of a solar systemSHIMI S L
 
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...Arkansas State University
 
Getting started with chemometric classification
Getting started with chemometric classificationGetting started with chemometric classification
Getting started with chemometric classificationAlex Henderson
 
Nano_PI_rvw
Nano_PI_rvwNano_PI_rvw
Nano_PI_rvwRaj Nair
 
Design and Development of Treadmill to Generate Electricity by Using Mechanic...
Design and Development of Treadmill to Generate Electricity by Using Mechanic...Design and Development of Treadmill to Generate Electricity by Using Mechanic...
Design and Development of Treadmill to Generate Electricity by Using Mechanic...IRJET Journal
 
prescalers and dual modulus prescalers
 prescalers and dual modulus prescalers prescalers and dual modulus prescalers
prescalers and dual modulus prescalersSakshi Bhargava
 
ILP Based Approach for Input Vector Controlled (IVC) Toggle Maximization in C...
ILP Based Approach for Input Vector Controlled (IVC) Toggle Maximization in C...ILP Based Approach for Input Vector Controlled (IVC) Toggle Maximization in C...
ILP Based Approach for Input Vector Controlled (IVC) Toggle Maximization in C...Deepak Malani
 
Optical fiber communication prof harsha sanap (1)
Optical fiber communication  prof harsha sanap (1)Optical fiber communication  prof harsha sanap (1)
Optical fiber communication prof harsha sanap (1)xavier engg college mahim
 
An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...
An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...
An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...João Baltazar
 
IEEE International Conference Presentation
IEEE International Conference PresentationIEEE International Conference Presentation
IEEE International Conference PresentationAnmol Dwivedi
 
Klessydra t - designing vector coprocessors for multi-threaded edge-computing...
Klessydra t - designing vector coprocessors for multi-threaded edge-computing...Klessydra t - designing vector coprocessors for multi-threaded edge-computing...
Klessydra t - designing vector coprocessors for multi-threaded edge-computing...RISC-V International
 
DESIGN OF QUATERNARY LOGICAL CIRCUIT USING VOLTAGE AND CURRENT MODE LOGIC
DESIGN OF QUATERNARY LOGICAL CIRCUIT USING VOLTAGE AND CURRENT MODE LOGICDESIGN OF QUATERNARY LOGICAL CIRCUIT USING VOLTAGE AND CURRENT MODE LOGIC
DESIGN OF QUATERNARY LOGICAL CIRCUIT USING VOLTAGE AND CURRENT MODE LOGICVLSICS Design
 
BPSO&1-NN algorithm-based variable selection for power system stability ident...
BPSO&1-NN algorithm-based variable selection for power system stability ident...BPSO&1-NN algorithm-based variable selection for power system stability ident...
BPSO&1-NN algorithm-based variable selection for power system stability ident...IJAEMSJORNAL
 
An FPGA-based acceleration methodology and performance model for iterative st...
An FPGA-based acceleration methodology and performance model for iterative st...An FPGA-based acceleration methodology and performance model for iterative st...
An FPGA-based acceleration methodology and performance model for iterative st...NECST Lab @ Politecnico di Milano
 
Glitch Analysis and Reduction in Digital Circuits
Glitch Analysis and Reduction in Digital CircuitsGlitch Analysis and Reduction in Digital Circuits
Glitch Analysis and Reduction in Digital CircuitsVLSICS Design
 

Similar to Selective harmonic elimination in a solar powered multilevel inverter (20)

MPPT of a solar system
MPPT of a solar systemMPPT of a solar system
MPPT of a solar system
 
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
 
Getting started with chemometric classification
Getting started with chemometric classificationGetting started with chemometric classification
Getting started with chemometric classification
 
2014 PV Performance Modeling Workshop: Outdoor Module Characterization Method...
2014 PV Performance Modeling Workshop: Outdoor Module Characterization Method...2014 PV Performance Modeling Workshop: Outdoor Module Characterization Method...
2014 PV Performance Modeling Workshop: Outdoor Module Characterization Method...
 
Nano_PI_rvw
Nano_PI_rvwNano_PI_rvw
Nano_PI_rvw
 
Design and Development of Treadmill to Generate Electricity by Using Mechanic...
Design and Development of Treadmill to Generate Electricity by Using Mechanic...Design and Development of Treadmill to Generate Electricity by Using Mechanic...
Design and Development of Treadmill to Generate Electricity by Using Mechanic...
 
prescalers and dual modulus prescalers
 prescalers and dual modulus prescalers prescalers and dual modulus prescalers
prescalers and dual modulus prescalers
 
Search for Diboson Resonances in CMS
Search for Diboson Resonances in CMSSearch for Diboson Resonances in CMS
Search for Diboson Resonances in CMS
 
IDEAS IC
IDEAS ICIDEAS IC
IDEAS IC
 
ILP Based Approach for Input Vector Controlled (IVC) Toggle Maximization in C...
ILP Based Approach for Input Vector Controlled (IVC) Toggle Maximization in C...ILP Based Approach for Input Vector Controlled (IVC) Toggle Maximization in C...
ILP Based Approach for Input Vector Controlled (IVC) Toggle Maximization in C...
 
Optical fiber communication prof harsha sanap (1)
Optical fiber communication  prof harsha sanap (1)Optical fiber communication  prof harsha sanap (1)
Optical fiber communication prof harsha sanap (1)
 
23AFMC_Beamer.pdf
23AFMC_Beamer.pdf23AFMC_Beamer.pdf
23AFMC_Beamer.pdf
 
An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...
An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...
An Iteratively Coupled Solution Method for Partial and Super-Cavitation Predi...
 
Fullprof Refinement
Fullprof RefinementFullprof Refinement
Fullprof Refinement
 
IEEE International Conference Presentation
IEEE International Conference PresentationIEEE International Conference Presentation
IEEE International Conference Presentation
 
Klessydra t - designing vector coprocessors for multi-threaded edge-computing...
Klessydra t - designing vector coprocessors for multi-threaded edge-computing...Klessydra t - designing vector coprocessors for multi-threaded edge-computing...
Klessydra t - designing vector coprocessors for multi-threaded edge-computing...
 
DESIGN OF QUATERNARY LOGICAL CIRCUIT USING VOLTAGE AND CURRENT MODE LOGIC
DESIGN OF QUATERNARY LOGICAL CIRCUIT USING VOLTAGE AND CURRENT MODE LOGICDESIGN OF QUATERNARY LOGICAL CIRCUIT USING VOLTAGE AND CURRENT MODE LOGIC
DESIGN OF QUATERNARY LOGICAL CIRCUIT USING VOLTAGE AND CURRENT MODE LOGIC
 
BPSO&1-NN algorithm-based variable selection for power system stability ident...
BPSO&1-NN algorithm-based variable selection for power system stability ident...BPSO&1-NN algorithm-based variable selection for power system stability ident...
BPSO&1-NN algorithm-based variable selection for power system stability ident...
 
An FPGA-based acceleration methodology and performance model for iterative st...
An FPGA-based acceleration methodology and performance model for iterative st...An FPGA-based acceleration methodology and performance model for iterative st...
An FPGA-based acceleration methodology and performance model for iterative st...
 
Glitch Analysis and Reduction in Digital Circuits
Glitch Analysis and Reduction in Digital CircuitsGlitch Analysis and Reduction in Digital Circuits
Glitch Analysis and Reduction in Digital Circuits
 

More from SHIMI S L

Real Time System Validation using Hardware in Loop (HIL) Digital Platform
Real Time System Validation using Hardware in Loop (HIL) Digital PlatformReal Time System Validation using Hardware in Loop (HIL) Digital Platform
Real Time System Validation using Hardware in Loop (HIL) Digital PlatformSHIMI S L
 
Preparation for NBA
Preparation for  NBAPreparation for  NBA
Preparation for NBASHIMI S L
 
NBA - laboratories
NBA -  laboratoriesNBA -  laboratories
NBA - laboratoriesSHIMI S L
 
Nba co attainment
Nba co attainmentNba co attainment
Nba co attainmentSHIMI S L
 
Fuzzy Logic and Neural Network
Fuzzy Logic and Neural NetworkFuzzy Logic and Neural Network
Fuzzy Logic and Neural NetworkSHIMI S L
 
Genetic Algorithm
Genetic AlgorithmGenetic Algorithm
Genetic AlgorithmSHIMI S L
 
Advance control theory
Advance control theoryAdvance control theory
Advance control theorySHIMI S L
 
Solar energy application for electric power generation
Solar energy application for electric power generationSolar energy application for electric power generation
Solar energy application for electric power generationSHIMI S L
 
Solid State Control of Electric Drive
Solid State Control of Electric DriveSolid State Control of Electric Drive
Solid State Control of Electric DriveSHIMI S L
 
Choppers and cycloconverters
Choppers and cycloconvertersChoppers and cycloconverters
Choppers and cycloconvertersSHIMI S L
 
Thyristor technology
Thyristor technologyThyristor technology
Thyristor technologySHIMI S L
 

More from SHIMI S L (13)

Real Time System Validation using Hardware in Loop (HIL) Digital Platform
Real Time System Validation using Hardware in Loop (HIL) Digital PlatformReal Time System Validation using Hardware in Loop (HIL) Digital Platform
Real Time System Validation using Hardware in Loop (HIL) Digital Platform
 
Preparation for NBA
Preparation for  NBAPreparation for  NBA
Preparation for NBA
 
NBA - laboratories
NBA -  laboratoriesNBA -  laboratories
NBA - laboratories
 
NBA
NBANBA
NBA
 
Nba co attainment
Nba co attainmentNba co attainment
Nba co attainment
 
Fuzzy Logic and Neural Network
Fuzzy Logic and Neural NetworkFuzzy Logic and Neural Network
Fuzzy Logic and Neural Network
 
Genetic Algorithm
Genetic AlgorithmGenetic Algorithm
Genetic Algorithm
 
Advance control theory
Advance control theoryAdvance control theory
Advance control theory
 
Solar energy application for electric power generation
Solar energy application for electric power generationSolar energy application for electric power generation
Solar energy application for electric power generation
 
Solid State Control of Electric Drive
Solid State Control of Electric DriveSolid State Control of Electric Drive
Solid State Control of Electric Drive
 
Arduino
ArduinoArduino
Arduino
 
Choppers and cycloconverters
Choppers and cycloconvertersChoppers and cycloconverters
Choppers and cycloconverters
 
Thyristor technology
Thyristor technologyThyristor technology
Thyristor technology
 

Recently uploaded

Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayEpec Engineered Technologies
 
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptxrouholahahmadi9876
 
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...jabtakhaidam7
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdfKamal Acharya
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaOmar Fathy
 
fitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .pptfitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .pptAfnanAhmad53
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfsumitt6_25730773
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxSCMS School of Architecture
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdfAldoGarca30
 
Ground Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth ReinforcementGround Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth ReinforcementDr. Deepak Mudgal
 
💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...
💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...
💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...vershagrag
 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxNANDHAKUMARA10
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationBhangaleSonal
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdfKamal Acharya
 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxkalpana413121
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
 

Recently uploaded (20)

Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
 
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
Jaipur ❤CALL GIRL 0000000000❤CALL GIRLS IN Jaipur ESCORT SERVICE❤CALL GIRL IN...
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
fitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .pptfitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .ppt
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdf
 
Signal Processing and Linear System Analysis
Signal Processing and Linear System AnalysisSignal Processing and Linear System Analysis
Signal Processing and Linear System Analysis
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
Call Girls in South Ex (delhi) call me [🔝9953056974🔝] escort service 24X7
 
Ground Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth ReinforcementGround Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth Reinforcement
 
💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...
💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...
💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...
 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptx
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptx
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 

Selective harmonic elimination in a solar powered multilevel inverter

  • 1. Harmonic Elimination in a Solar Powered Multilevel Inverter Dr. Shimi S.L Assistant Professor, EE NITTTR, Chandigarh 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 1
  • 2. Global Solar Potential 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 2
  • 3. η(maximum efficiency)= P(maximum power output)/(E(S,γ)(incident radiation flux)*A(c)(Area of collector)) 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 3
  • 4. Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh12/4/2017 4
  • 5. MAXIMUM POWER POINT TRACKING (MPPT) There are two basic approaches in maximizing the power extraction: (a) Using automatic sun tracker (b) Searching for the MPP conditions  Perturb and Observe method  Incremental Conductance method  Artificial intelligence (AI) methods 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 5
  • 6. 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 6
  • 7. • The height of a projectile that is fired straight up is given by the motion equations 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 7
  • 8. 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 8
  • 9. 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 9
  • 10. Partial Shading of Solar Panels 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 10
  • 11. 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 11
  • 12. 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 12
  • 13. Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh12/4/2017 13
  • 14. MPPT of a PV System 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 14
  • 15. Switching Mode Regulator (Buck Converter) 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 15
  • 16. Equivalent Circuit (a) Switch ON (b) Switch OFF 𝐿 𝐶 = 𝐿 = 𝑅(1 –𝐷) 2𝑓 𝐶 𝐶 = 𝐶 = 1 – 𝐷 16𝐿𝑓2 For a switching frequency of 80 KHz and inductance current ripple (∆𝐼) of 10% the 𝐿 𝑐 and 𝐶𝑐 are approximated as 1mH and 100µF respectively ∆𝐼 = 𝑉𝑠 𝐷(1 –𝐷) 𝑓𝐿 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 16
  • 17. Parameters of Buck Converter Sr. No. Parameter Value 1 Inductor (L) 1mH 2 Inductor series resistance (RL) 80 mΩ 3 Output capacitor (Co) 100 µF 4 Output capacitor ESR (Rco) 30 mΩ 5 Input capacitor (Ci) 100 µF 6 Input capacitor ESR (Rci) 30 mΩ 7 Switching frequency (fs), 80 KHz 8 Input voltage 20 V 9 Duty-ratio (D) Variable 10 Load resistance 9 Ohm 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 17
  • 18. MATLAB/SIMULINK Model of Buck Converter Components of PWM Block Subsystem 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 18
  • 19. PWM with 0.5 Value of Duty-cycle Input and Output Voltages Waveforms of Buck Converter 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 19
  • 20. PERFORMANCE EVALUATION OF VIKRAM SOLAR MODULE 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 20
  • 21. 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 21
  • 22. Performance Characteristics Outdoor Efficiency 9.95% 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 22
  • 23. Performance of 37W PV Module at Laboratory and Outdoor Conditions Condition Angle of PV Panel Tilt Irradiation W/m2 Temperature oC Voc (V) Isc (mA) Vm (V) Im (mA) Pm (W) 𝜂 (%) Lab 00 450 30 18.71 129 17.93 126 2.254 1.446 450 450 30 18.99 255 17.96 183 3.291 2.111 Outdoor 00 923 32 18.20 1071 14.33 1043 14.94 7.640 450 923 32 19.07 1904 14.77 1777 26.26 11.25 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 23
  • 24. 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 24
  • 25. PCI Port 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 25
  • 26. Specification of DS1104 R&D Controller Board Parameter Characteristics Processor MPC8240 processor with PPC603e core and on-chip peripherals • 64-bit floating-point processor • 250 MHz CPU • 2 x 16 KB cache; on-chip • On-chip PCI bridge (33 MHz) Memory Global memory: 32 MB SDRAM • Flash memory: 8 MB ADC 1 x 16-bit ADC with mux 4 x 12-bit ADC 5 ADC channels (1 x 16-bit + 4 x 12-bit) can be sampled simultaneous • 16-bit resolution • ±10 V input voltage range • 2μs conversion time, 12-bit resolution • ±10 V input voltage range • 800 ns conversion time Slave DSP subsystem • Texas Instruments TMS320F240 DSP • 16-bit fixed-point processor • 20 MHz clock frequency • 64 K x 16 external program memory • 28 K x 16 external data memory • 4 K x 16 dual-port memory for communication • 16 K x 16 flash memory • 1 x 3-phase PWM output, 4 x 1-phase PWM output • ±13 mA maximum output current Host interface • 32-bit PCI host interface • 5VPCI slot • 33MHz±5 % Power supply • +5 V ±5 %, 2.5 A • +12 V ±5 %, 0.3 A Power consumption 18.5 W 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 26
  • 27. 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 27
  • 28. 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 28
  • 29. (a) (b) (c) Parameter Settings for (a) ADC, (b) ADC Multiplexed and (c) PWM Blocks 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 29
  • 30. 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 30
  • 31. 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 31
  • 32. Efficiency of MPPT Algorithm (a) Short-circuit Current Isc (b) Open-circuit Voltage Voc (c ) Fill Factor FF ηMPPT = ‫׬‬0 t PMPPT t dt ‫׬‬0 t Pmax t dt (2) Maximum Power (Pmax ) Prediction Model Isc = Isco G G0 α (3) 𝑉𝑜𝑐= 𝑉𝑜𝑐0 1+𝛽 𝐺0 𝐺 𝑇0 𝑇 𝛾 (4) 𝐹𝐹 = 𝐹𝐹0 1 − 𝑅 𝑠 𝑉 𝑜𝑐 𝐼 𝑠𝑐 (5) 𝐹𝐹0 = 𝑣 𝑜𝑐−ln(𝑣 𝑜𝑐+0.72) 1+𝑣 𝑜𝑐 (6) 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 32
  • 33. (d) Maximum Power Output (Pmax) voc = Voc ൗnKT q (7) Pmax = FF ∗ Voc ∗ Isc (8) Pmax = 𝑣 𝑜𝑐−ln(𝑣 𝑜𝑐+0.72) 1+𝑣 𝑜𝑐 ∗ 1 − 𝑅 𝑠 𝑉 𝑜𝑐 𝐼 𝑠𝑐 ∗ 𝑉𝑜𝑐0 1+𝛽 𝐺0 𝐺 𝑇0 𝑇 𝛾 ∗ 𝐼𝑠𝑐𝑜 𝐺 𝐺0 𝛼 (9) 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 33
  • 34. MATLABTM / SIMULINKTM Model of Maximum Power Output (Pmax) 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 34
  • 35. Sub-System for Fill Factor 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 35
  • 36. Sub-system for Short Circuit Current Sub-system for Open Circuit Voltage 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 36
  • 37. Response of Pmax, Voc , Isc , FF & Irradiance 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 37
  • 38. Fig. Experimental Result of PO with Delta D=0.01 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 38
  • 39. MPPT ALGORITHM COMPARISION Maximum Power Point Techniques Method ᶯ ( %) Peak Overshoot ( %) Settling time ( sec) Dynamic Response Delay ( sec) Steady State Error ( %) Sensors Voltage -V Current -I Perturb & Observe (ΔD=0.1) 77.60 - 79.39 No 0.48 0.06 15.14 V, I Perturb & Observe (ΔD=0.01) 81.00 - 81.60 No 0.41 0.039 12.77 V, I Perturb & Observe (ΔD=0.001) 81.23 - 84.37 No 0.40 0.04 12.03 V, I Incremental Conductance 86.32 - 87.25 3.35 1.78 0.001 7.35 V, I Neural Network 87.35 - 90.10 2.185 0.6439 0.038 3.88 V, I Adaptive Neuro Fuzzy Inference System (ANFIS) 87.15 - 93.31 6.56 5.35 0 3.55 V, I ANFIS & CVT ≥12V NA 7.28 0.18 0.1 9 V 12V 87.15 - 93.31 6.56 5.35 0 3.55 V, I 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 39
  • 40. Selective Harmonic Elimination in a Solar Powered Multilevel Inverter Dr. Shimi S.L Assistant Professor, EE NITTTR, Chandigarh 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 40
  • 41. Weight, Cost, Power Loss and Harmonics Comparison for Different Inverter TopologiesTypeof inverter No.of switches No.of capacitors No.of diodes Weight Cost PowerLoss (W) Harmonics 2-level 12 0 0 Light Weight Cheap Very low THD > 40% 5-level diode Clamped 24 12 36 Medium Weight Costly Low 5th harmonics Eliminated THD >15% 5-level capacitor clamped 24 30 0 Heavy Very Costly Low 5th harmonics Eliminated THD >15% 5-level cascaded 24 0 0 Light Weight Cheap Low 5th harmonics Eliminated THD >15% 9-level diode clamped 48 24 42 Medium Weight Costly medium 5th , 7th & 11th harmonics Eliminated THD >7% 9-level capacitor clamped 48 60 0 Heavy Very Costly medium 5th , 7th & 11th harmonics Eliminated THD >7% 9-level cascaded 48 0 0 Light Weight Cheap medium 5th , 7th & 11th harmonics Eliminated THD >7% 11-level diode clamped 60 30 90 Medium Weight Costly High 5th , 7th , 11th &13th harmonics Eliminated THD <5% 11-level capacitor clamped 60 75 0 Heavy Very Costly High 5th , 7th , 11th &13th harmonics Eliminated THD <5% 11-level cascaded 60 0 0 Light Weight Cheap high 5th , 7th , 11th &13th harmonics Eliminated THD <5% 41
  • 42. Cascaded H-bridge Inverter Va (b) Va[(m-1)/2] (a) (a) Single Phase Cascaded H-bridge Inverter Topology with m Levels (b) Output Phase Voltage with Non Equal dc Source n Vdc1 S1 S2 S3 S4 Va Vdcm S1 S2 S3 S4 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 42
  • 43. Block Diagram of the Harmonic Elimination System GRID 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 43
  • 44. 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 44
  • 45. Selective Harmonic Elimination Technique (10) (11) (12) (13) (14) (16) (17) 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 45 f 1 = cos α1 + cos α2 + cos α3 + cos α4 + cos α5 = mi f 2 = cos 5α1 + cos 5α2 + cos 5α3 + cos 5α4 + cos 5α5 = 0 f 3 = cos 7α1 + cos 7α2 + cos 7α3 + cos 7α4 + cos 7α5 = 0 f 4 = cos 11α1 + cos 11α2 + cos 11α3 + cos 11α4 + cos 11α5 = 0 f 5 = cos 13α1 + cos 13α2 + cos 13α3 + cos 13α4 + cos 13α5 = 0
  • 46. f 1 = [Vdc1cos α1 + Vdc2cos α2 + Vdc3cos α3 + Vdc4cos α4 + Vdc5cos α5 ]=mi f 2 = [Vdc1cos 5α1 + Vdc2cos 5α2 + Vdc3cos 5α3 + Vdc4cos 5α4 + Vdc5cos 5α5 ] = 0 f 3 = [Vdc1cos 7α1 + Vdc2cos 7α2 + Vdc3cos 7α3 + Vdc4cos 7α4 + Vdc5cos 7α5 ] = 0 f 4 = [Vdc1cos 11α1 + Vdc2cos 11α2 + Vdc3cos 11α3 + Vdc4cos 11α4 + Vdc5cos 11α5 ]=0 f 5 = [Vdc1cos 13α1 + Vdc2cos 13α2 + Vdc3cos 13α3 + Vdc4cos 13α4 + Vdc5cos 13α5 ] = 0 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 46 The cost function for SHE problem is given by, 𝑓 𝑋𝑖 = 100 ∗ ( 𝑓 2 + 𝑓 3 + 𝑓 4 + 𝑓 5 ) 𝑓 1
  • 47. Newton Raphson - SHE • The algorithm for the Newton-Raphson method is as follows: Step 1 Assume any random initial guess for switching angles (say 𝛼0 ) The switching angle matrix is : 𝛼 𝑗 = [𝛼1 𝑗 + 𝛼2 𝑗 + 𝛼3 𝑗 + 𝛼4 𝑗 + 𝛼5 𝑗 ] 𝑇 Step 2 Set modulation index to zero. Step 3 Evaluate the non-linear system matrix 𝐹 𝑗 , the Jacobian matrix 𝜕𝑓 𝜕𝛼 𝑗 and the harmonics amplitude matrix 𝑇 represented below: The non-linear system matrix, 𝐹 𝑗 = cos 𝛼1 𝑗 + cos 𝛼2 𝑗 + cos 𝛼3 𝑗 + cos 𝛼4 𝑗 + cos 𝛼5 𝑗 cos 5𝛼1 𝑗 + cos 5𝛼2 𝑗 + cos 5𝛼3 𝑗 + cos 5𝛼4 𝑗 + cos 5𝛼5 𝑗 cos 7𝛼1 𝑗 + cos 7𝛼2 𝑗 + cos 7𝛼3 𝑗 + cos 7𝛼4 𝑗 + cos 7𝛼5 𝑗 cos 9𝛼1 𝑗 + cos 9𝛼2 𝑗 + cos 9𝛼3 𝑗 + cos 9𝛼4 𝑗 + cos 9𝛼5 𝑗 cos 11𝛼1 𝑗 + cos 11𝛼2 𝑗 + cos 11𝛼3 𝑗 + cos 11𝛼4 𝑗 + cos 11𝛼5 𝑗 (18) (19) 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 47
  • 48. the Jacobian matrix, 𝜕𝑓 𝜕𝛼 𝑗 = − sin 𝛼1 𝑗 − sin 𝛼2 𝑗 − sin 𝛼3 𝑗 − sin 𝛼4 𝑗 − sin 𝛼5 𝑗 − 5sin 5𝛼1 𝑗 − 5 sin 5𝛼2 𝑗 − 5 sin 5𝛼3 𝑗 − 5sin 5𝛼4 𝑗 − 5 sin 5𝛼5 𝑗 − 7sin 7𝛼1 𝑗 − 7sin 7𝛼2 𝑗 − 7 sin 7𝛼3 𝑗 − 7sin 7𝛼4 𝑗 − 7 sin 7𝛼5 𝑗 − 9sin 9𝛼1 𝑗 − 9sin 9𝛼2 𝑗 − 9sin 9𝛼3 𝑗 − 9sin 9𝛼4 𝑗 − 9sin 9𝛼5 𝑗 − 11sin 11𝛼1 𝑗 − 11sin 11𝛼2 𝑗 − 11 sin 11𝛼3 𝑗 − 11sin 11𝛼4 𝑗 − 11 sin 11𝛼5 𝑗 and the corresponding harmonic amplitude matrix, 𝑇 = [𝑚𝑖 3𝜋 4 0 0 0 0] 𝑇 The solutions must satisfy the following condition: 0 ≤ 𝛼1 ≤ 𝛼2 ≤ 𝛼3≤ 𝛼4 ≤ 𝛼5≤ 𝜋 2 Step 4 Compute correction Δα during the iteration using relation, ∆𝛼 = 𝜕𝑓 𝜕𝛼 𝑗 𝛼𝑗 (𝑇-𝐹 𝑗 ) Step 5 Update the new switching angles as, 𝛼 𝑘 + 1 = 𝛼 𝑘 + ∆𝛼(𝑘) Step 6 To obtain a feasible solution of switching angles by executing the following transformation: 𝛼 𝑘 + 1 = cos−1 (abs(cos(𝛼 𝑘 + 1 ))) (20) (21) (22) (23) (24) (25) 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 48
  • 49. Step 7 Repeat steps (3) to (6) for sufficient number of iterations to attain error goal. Step 8 Increment modulation index by a fixed step. Step 9 Repeat steps (2) to (8) for whole range of modulation index . This algorithm can be implemented using MATLABTM programming. After successfully executing and running the program the optimal firing angles α1, α2, α3 , α4 and α5 can be obtained. 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 49
  • 50. { initialize population; evaluate population; while Termination Criteria Not Satisfied { select parents for reproduction; perform crossover and mutation; evaluate population; } } Genetic Algorithm (GA) 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 50
  • 51. The GA Cycle of Reproduction reproduction population evaluation modification discard deleted members parents children modified children evaluated children
  • 52. Consider the problem of maximizing the function, f(x) = x2 Where x is permitted to vary between 0 to 31. (i) 0(00000) and 31(11111) code x into finite length string (ii) Select initial population at random (size 4) (iii) Calculate fitness value for all strings (iv) probability of selection by: 𝑃𝑟𝑜𝑏𝑖= 𝑓(𝑥) 𝑖 σ 𝑖=1 𝑛 𝑓(𝑥) 𝑖 ,
  • 53. Table 1. Selection String No. Initial population X Value Fitness value Prob. %age Prob. Expected Count Actual Count 1. 01100 12 144 0.1247 12.47% 0.4987 1 2. 11001 25 625 0.5411 54.11% 2.1645 2 3. 00101 5 25 0.0216 2.16% 0.0866 0 4. 10011 19 361 0.3126 31.26% 1.2502 1 Sum Avg. Max. 1155 288.75 625 1.0000 0.2500 0.5411 100% 25% 54.11% 4.0000 1.0000 2.1645
  • 54. Table 2. Crossover String No. Mating Pool Crossover point Offspring after crossover X value Fitness value 1. 01100 4 01101 13 169 2. 11001 4 11000 24 576 3. 11001 3 11011 27 729 4. 10011 3 10001 17 289 Sum Avg. Max. 1763 440.75 729
  • 55. Table 3. Mutation String No. Offspring After crossover Mutation chromosomes Offspring after mutation X value Fitness value 1. 01101 10000 11101 29 841 2. 11000 00000 11000 24 576 3. 11011 00000 11011 27 729 4. 10001 00100 10101 20 400 Sum Avg. Max. 2546 636.5 841
  • 56. Minimize the following fitness function including 2 variables: 𝒎𝒊𝒏 𝒙 𝒇 𝒙 = 𝟏𝟎𝟎(𝒙 𝟏 𝟐 − 𝒙 𝟐) 𝟐 + (𝟏 − 𝒙 𝟏) 𝟐 Subject to the following linear constraints and bounds: 𝑥1 𝑥2 + 𝑥1 − 𝑥2 + 1.5 ≤ 0 10 − 𝑥1 𝑥2 ≤ 0 0 ≤ 𝑥1 ≤ 1 and 0 ≤ 𝑥2 ≤ 13
  • 57. The function has one output ‘y’ and two input variables ‘x1’ and ‘x2’. We use the vector ‘x’ to include both ‘x1’ and ‘x2’.
  • 58.
  • 59. 𝑇𝐻𝐷 = 𝑉𝑠 ∗ 2 ∗ 8𝜋 − 40𝜋 − 22𝛽 𝜋 4 𝑉𝑠 𝜋 ∗ √2 𝑐𝑜𝑠 𝛼 + 𝑐𝑜𝑠 𝛼 + 𝛽 + 𝑐𝑜𝑠 3 ∗ 𝛼 + 𝛽 + 𝑐𝑜𝑠 3 ∗ 𝛼 + 2 ∗ 𝛽 2 − 1 24 ∗ 𝛼 + 12 ∗ 𝛽 = 360 2 ∗ 𝛼 + 𝛽 = 30 THD Equation Constraint Multilevel inverter with reduced ie. 15 number of switches and 4 sources
  • 60. 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 60 Step 1 Initialize the system parameters for MATLABTM / GA toolbox such as CrossoverFcn as @crossoverscattered, CrossoverFraction as 0.8, SelectionFcn as @selectionstochunif , 'CreationFcn' as @gacreationlinearfeasible and 'MutationFcn' as @mutationadaptfeasible. Assign the values of Generations as 100, Population Size as 40 and PopInitRange as [0;1]. Step 2 Now evaluate the particles using the Fitness Function 𝑓 𝑋𝑖 = 100 ∗ ( 𝑓 2 + 𝑓 3 + 𝑓 4 + 𝑓 5 ) 𝑓 1 for harmonic elimination. Here the switching angles 𝛼1, 𝛼2, 𝛼3, 𝛼4and 𝛼5 are chosen in such a way that the selective 5th, 7th, 11th and 13th harmonics can be eliminated. Step 3 Check the constraints 0 ≤ 𝛼1 ≤ 𝛼2 ≤ 𝛼3 ≤ 𝛼4 ≤ 𝛼5 ≤ 𝜋/2. Step 4 Select the parent chromosomes. Step 5 Create the new offspring using crossover and mutation. Step 6 Check if termination criteria ( the maximum number of iterations) is reached. If not goto Step 2. Step 7 If optimized switching angles are obtained, terminate the problem.
  • 61. PSO vt gbestt pbestt xt xt+1 Ruben E. Perez 0 < C1 + C2 < 4 C1+C2 2 < C0 < 1 𝑣𝑖𝑛 𝑡 + 1 = 𝐶0 𝑣𝑖𝑛 𝑡 + 𝐶1 𝑟1 𝑃𝑖𝑛 − 𝑥𝑖𝑛 𝑡 + 𝐶2 𝑟2 𝑃𝑔𝑛 − 𝑥𝑖𝑛 𝑡 𝑥𝑖𝑛 𝑡 + 1 = 𝑥𝑖𝑛(𝑡) + 𝑣𝑖𝑑 𝑡 + 1 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 61
  • 62. Step 1: Initialize the system parameters such as Position Vector Xi, Velocity Vector Vi, Personal Best Particle Vector Pi, Global Best Vector Pg and Particle Inertia Weight C0 . Assign the values of Generations as 100, Population Size as 40, Cognitive Parameter C1 as 0.5 and Social Parameter C2 as 1.25. Step 2: Check for the conditions 0<(C1+C2)<4 and (C1+C2)/2<C0<1, If the two conditions are satisfied then the system will be guaranteed to converge to a stable equilibrium point. If false goto Step 1. Step 3 Update the Velocity , Vi(t+1). Step 4 Update the Position, Xi(t+1). Step 5 Now evaluate the particles using the Fitness Function, f(Xi) = 100*(|f(2)|+|(f(3)|+|f(4)|+|f(5)|) / (|f(1)|) for harmonic elimination. Here the switching angles are chosen in such a way that the selective 5th , 7th , 11th and 13th harmonics can be elimination. f(1)=(cos( )+cos( )+cos( )+cos( )+cos( ))- ma; f(2)=(cos(5* )+cos(5* )+cos(5* )+cos(5* )+cos(5* )); f(3)=(cos(7* )+cos(7* )+cos(7* )+cos(7* )+cos(7* )); f(4)=(cos(11* )+cos(11* )+cos(11* )+cos(11* )+cos(11* )); f(5)=(cos(13* )+cos(13* )+cos(13* )+cos(13* )+cos(13* )); Step 6 Check the constraints. Step 7 Check for the condition f(xi) < f(Pi) , if not satisfied then i=i+1goto Step 3 . Step 8 Update the local best position of the particle if it is better than the previous local best position . Thus the local best position is replaced as Pi=Xi. Step 9 Update the global best position as Pg=min(P neighbor). Step 10 Optimized switching angles are obtained .Terminate the problem.12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 62
  • 63. NR Algorithms GA Algorithms PSO Algorithms Optimized Switching Angles using NR, GA and PSO Algorithms for 11 Level Inverter 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 63
  • 64. THD Versus Modulation Index of 7, 9 and 11 Level Cascaded H-bridge Inverters for NR, GA and PSO Algorithms 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 64
  • 65. 11 Level Cascaded H-bridge Inverter Applied with NR-SHE Algorithm for 0.8 Value of MI Line Voltage Waveform Phase Voltage Waveform Current Waveform 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 65
  • 66. Harmonic Spectrum at 0.8 MI for NR-SHE Algorithm for a 11 level Cascaded H-bridge Inverter Phase Voltage Spectrum Line Voltage Spectrum Current Spectrum 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 66
  • 67. TechniqueUsed 11 Level Cascaded H-bridge Inverter Magnitude of Harmonic Contents (%) up to 19th Order Line Voltage (THD 5.55%) 105.8 peak (74.83 rms) Phase Voltage (THD 7.93%) 61.14 peak (43.23 rms) Current (THD 5%) 0.6063 peak (0.4287 rms) Harmo nic Order Even Harmo nic Harmo nic Order Odd Harmo nic Harmo nic Order Even Harmo nic Harmo nic Order Odd Harmo nic Harmo nic Order Even Harmo nic Harmo nic Order Odd Harmo nic NR 0th 0.00 1th 100 0th 0.00 1th 100 0th 0.01 1th 100 2nd 0.00 3rd 0.02 2nd 0.00 3rd 0.60 2nd 0.00 3rd 0.02 4th 0.00 5th 0.09 4th 0.00 5th 0.04 4th 0.00 5th 0.07 6th 0.00 7th 0.08 6th 0.00 7th 0.06 6th 0.00 7th 0.09 8th 0.00 9th 0.06 8th 0.00 9th 3.26 8th 0.00 9th 0.06 10th 0.00 11th 0.10 10th 0.00 11th 0.10 10th 0.00 11th 0.11 12th 0.00 13th 0.02 12th 0.00 13th 0.02 12th 0.00 13th 0.03 14th 0.00 15th 0.09 14th 0.00 15th 1.04 14th 0.00 15th 0.08 16th 0.00 17th 2.65 16th 0.00 17th 2.58 16th 0.00 17th 2.62 Magnitude of Harmonic Contents (%) up to 19th Order for 11 Level Cascaded H-bridge Inverter Applied with NR-SHE Technique 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 67
  • 68. 1. Intelligent Power Module (Power Circuit) 2. Firing Pulse for H-bridge Inverter (a) Optocoupler (b) Gate Driver (c ) AND Gate (d) Schmitt Trigger (e) FPGA Based Spartan 3A DSP Board 3. Protection Circuit 4. Regulated Power Supply 5. Signal Conditioning Circuit 6. Constant and Isolated dc Supply for MLI 7. 3 Φ Induction Motor Load 8. Power Quality Analyzer 9. PC with MATLAB/SIMULINK and Xilinx Software Packages Block Diagram of the Hardware Implementation of 3 Φ MLI 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 68
  • 69. Complete Laboratory setup of 3 Φ 11 Level Cascaded H-bridge Inverter 3Φ Induction Motor Power Quality Analyzer CHMLISpartan®-3A DSP FPGA CHMLI 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 69
  • 70. Experimental Results for 11 Level Inverter (a) Output Line Voltage (b) Phase Voltage and (c) Current at M=0.8 (NR-SHE) (a) (b) (c)12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 70
  • 71. (a) (b) Experimental Results for 11 Level Inverter (a) Line Voltage FFT Analysis (b) Phase Voltage FFT Analysis and (c) Current FFT Analysis at M=0.8 (NR-SHE) (b) (c) 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 71
  • 72. Optimum Switching Angles and Minimum THD using NR-SHE, GA-SHE and PSO-SHE Technique Method Mi Alpha 1 Alpha 2 Alpha 3 Alpha 4 Alpha 5 Line Voltage THD (%) Phase Voltage THD (%) Current THD (%) NR Simulation 0.8 0.1147 0.3306 0.4744 0.7878 1.0864 5.55 7.93 5 Hardware 0.8 0.1147 0.3306 0.4744 0.7878 1.0864 4.8 6.7 3.3 PSO Simulation 0.9 0.0709 0.1466 0.3481 0.4505 0.7265 4.79 16.02 4.00 Hardware 0.9 0.0709 0.1466 0.3481 0.4505 0.7265 3.7 15 3 GA Simulation 0.91 0.0676 0.1637 0.3509 0.4871 0.7473 4.3 14.77 3.73 Hardware 0.91 0.0676 0.1637 0.3509 0.4871 0.7473 3.4 13.4 2.7 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 72
  • 73. Comparison of Harmonic (%) for 11 Level Inverter with NR, GA and PSO Technique Harmonics Line Voltage (%) Phase Voltage (%) Current (%) Practical Simulation Practical Simulation Practical Simulation NR THD 4.8 5.55 6.7 7.93 3.3 5.00 3rd 1.7 0.02 1.8 0.60 0.8 0.02 5th 0.6 0.09 0.5 0.04 0.3 0.07 7th 0.9 0.08 0.6 0.06 0.2 0.09 9th 0.2 0.06 3.0 3.26 0.2 0.06 11th 0.4 0.10 0.3 0.10 0.1 0.11 13th 0.3 0.02 0.3 0.02 0.1 0.03 15th 0.1 0.09 1.4 1.04 0.1 0.08 PSO THD 3.7 4.79 15 16.02 3.0 4.00 3rd 0.7 0.03 14.1 14.81 0. 6 0.01 5th 0.8 0.05 1.2 0.02 0.2 0.06 7th 0.3 0.01 0.5 0.06 0.1 0.01 9th 0.0 0.09 1.1 0.93 0.0 0.11 11th 0.2 0.09 0.3 0.05 0.1 0.02 13th 0.2 0.05 0.2 0.04 0.0 0.05 15th 0.1 0.05 1.8 1. 68 0.1 0.05 GA THD 3.4 4.30 13.4 14.77 2.7 3.73 3rd 1.0 0.06 13.1 13.6 1.0 0.06 5th 0.7 0.67 1.7 0.66 0.4 0.68 7th 0.4 0.17 0.3 0.12 0.2 0.18 9th 0.1 0.02 1.3 1.20 0.2 0.00 11th 0.4 0.02 0.4 0.02 0.1 0.01 13th 0.2 0.09 0.2 0.09 0.1 0.10 15th 0.1 0.06 1.5 1.38 0.1 0.07 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 73
  • 74. Comparison of Harmonics Content (%) up to 15th Order of Line Voltage for 11 Level Cascaded H-bridge Inverter Applied with Different Techniques 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 74
  • 75. Comparison of Magnitude of Line Voltage THD and Harmonics Content for CHMLI Applied with NR-SHE, PSO-SHE and GA-SHE Algorithms THD 12/4/2017 Dr. Shimi S.L, Assistant Professor, NITTTR, Chandigarh 75