SlideShare a Scribd company logo
1 of 293
Download to read offline
Lectures on Electrical
and Instrument
Engineering
Lecture-2
Basics of Electric Machines
Stator
Stator Lamination
Stator Windings Partially Completed
Stator Windings Completed
Rotor
Rotor Lamination
~ti!~
~.%......._ .. __.,.
·- -- -% ~
~!It~
EodRi09
cutawa'f View ot Rotor
Partially Assembled Motor
Air Gap
Stator
Cutaway View of Motor
End Bracket
(Bearing Housing)
Frame (Yoke)
Bearing
End Bracket
(Bearing Housing)
Magnetic Lines of Flux
Magnet
Iron Filings on Paper
Electron Flow TowardsYou
Causes Clockwise Magnetic Flux
(8)Electron Flow Away From You
Causes CounterclockwiseMagnetic Flux
(G)
Air Core
j;..
. .
Yy
<l.
• :J
.. •:. .:. . . . ~ ... '•
....
. .. .
DC Voltage
10 Tums5Tums
...~~.: --:::.. /:·:·.:~~---.
. : .
DC Voltage .f~ ~ Y Yy
 4. ·. ·._·_._. ·:_.:::.J:./. . . . ....
Time 3
·• ':..1 -;i' .:
-~- :.:7·
···>···
s
Ammeter
Time 2
''..l .••• ' ·>.... -:i·
.... ·1>- ...
;7' ·"'Ghlrl"*>r..µ- :.I
... -:f •:.l
N
o~

Ammeter
Time 1
Ammeter
To Phase A
To Phase A
Phase A Phase B Phase C
2-Pole Stator Winding
A
I I I
1+--60°~ I
I I I
I I I
B
I I I
1' ~ '1
1E
I
360°~:
Start 2 3 4 5 6
c
Al Al Al A1
::9:: :8): ::9: ::9::A2 B2~AIC2 ~ 828!;'.1cz i'Ble") S" A2
C1 Bl C1 S .. ·:: 81 I C1 //:: 81
I
A2 A2 I A2
I____ ,
2 3600
4 1800
6 1200
8 900
10 720
No. of Poles Synchronous Speed
Synchronous speed decreases as the number of poles
increases. The following table shows the synchronous speed at
60 Hz for several different pole numbers.
Ns = 120F c::;> Ns = 120 x 60 c::;> Ns = 3600 RPM
p 2
Rotor
% Slip= 1.4%
% Slip= 1800- 1775 x 100
1800
For example, a four-pole motor operated at 60 Hz has a
synchronous speed (Ns) of 1800 RPM. If its rotor speed (NR)
at full load is 1775 RPM, then its full load slip is 1.4°/o.
/
SIEMENS '
0 0
NEMA PREMIUM EFFICIENT
ORD.NO. 1 LE2321-2CB21-2AA3 ~o.l
TYPE 80100 FRAME 286T
H.P. 30.00 ~f~¥1§',1' 1.15 I 3 PH
AMPS 35.0 VOLTS 460
R.P.M. 1775 HERTZ 60
"'DUTY CONT 400CAMB. I cc;~ I
.,
CLASS
F I "'"" I B I K.V.A. G I~'.~;. I 93.6
~
INSl.ll oi::SIGN OOOE ....
SH. END
50BC03JPP3 OPP (NO I 50VC03JPP3
r;-
BAG.
~..... LO
0 Made in Mexico by SIEMENS @ c'il~s ( E @ 0
1S0°= 1S0°= 1so0- 1so0-
=}15°
1S0°- 160°- 160°=
==}10°
160°=
140•= 140•= 140•= 140•=
120°= 120°= ~}10° 120•= 120•=
100°- =}s• 100°- 100°- 105° 100°- 125°
so·= so· so·= so- so·= so·=
so·= so·= so·- 60°-
40°= 40°= 40•= 40•=
20°- 20°- 20·= 20·=
o•= o·= o•= o•=
Class A Class B Class F Class H
60° CRise so- c Rise 105° C Rise 125° CRise
5° CHot Spot 10° C Hot Spot 1o- c Hot Spot 15° CHot Spot
% Synchronous Speed
0
0 10 20 30 40 50 60 70 80 90 100
/
......-
-,
/ '

225
., 200
::>
e- 175~
-0
"' 1500_,
..L
:; 125u,
'if.
100
75
50
25
% Synchronous Speed
0
0 10 20 30 40 50 60 70 80 90 100
Constant Torque Load 2 / r: r'.
v 'I

, Constant Torque Load 1
/ <>'),. vZI
/
/ fk <foo'/ '.rYo.-S ~010."9IC
).0 . !()9 v.,.,.,_ ?i-.;p, la1'a
~ZI J .+ .~
250
225
"'
200
;:>
ET
175{<
"P
"' 1500_,
':; 125u.
~0
100
75
50
25
2;g = 3.8 V/Hz ~g = 3.8 V/Hz
30 60060
460 230
6Q = 7.67 V/Hz
30
= 7.67V/Hz
30
Frequency
0
ss 230
g
460
60

5040

30
Frequency- Hz
o~~~~~~~~~~~~~~~
0 10 20 30 40 50 60 70 80 90 100
% Synchronous Speed

202 10
225
200 ·.,•.
175 '
"'=>
150
.';.
B" .-... . ' .,i!2
125"O
"'0
,CJ
100..!.
:;
LL
75
~0
50
25
L1 L2 L3
I I s I
T
1 3
Tm;:u
01
r
Resistivetorque
1 3 5 • N
a a N1Nn
KM1 ·-·-· .....
2 4 6
..,.,
1 3 5
F2
lf(Tr)
2 4 6
,,
u v. w  N
N1 Nn
M
3-
Star-deltastarting
2 4 6
KM1
2
S
4
1 3 5
KM3 S
2 4
1 3 5
u
TST2 T7
Part winding starting
T1
L1 L2 L3
J J J
KM 1 _ _ _ _ _ _ ___
Breaking
Principleofcountercurrsntbtaldng
M
wv
M
w
L3L2
u
l1L3
Operation
L2
vu
l1
PtJnclpleofcountercvrr61UbtaJdngIn art
asynch/Onousslip rlng machine
Breaking
0
wvu
L3L2L1
Opefation
''•'''
wv
wv
L3L2
u
u
L1
I lft&M Principleof direct currMt btal<JngIn an
asyrtehmnous machine
M
30
wvu
L3 ILI
Prlnclp/o ofasynchrt:>tlOUsmolot
"'"""'Ing
M
3121
wv
L3L2
u
L1
1•;111.1
....
' ' "
Current step 1
with resistance
Nn
N
Current step 2
-- ............ .... ....
--
Direct current
0
1
4
Id/In
6
Resistance stator starting
Nn
N
Tr
Torque step 2
Torque step 1
__......
-- '// '/
Direct torque/ /
/
0.5
1
1.5
T
Torque
Nn
N
' '
Autotransformer starting
1
----
,.,,,,,
Direct torque , »" Step 2
,. ------,.1.5
~
------Step 1
T
10050
N0
......
......
--------------------~
--
......
' Current step 2
' ''
Torque
step 1
---- -
---- - .._
I direct
4
Id/In
6
Slip ring motor starting
KM1
F.2
L1 L2 l3
R3 AIB/C
1 3 5
:~ - ., 3
J ~2 4 6
KM13 I
R2 AIB/C 2 4 6
1 3 5 -
J
2 4 6
- .~J 3 J ~I 3 5
KM12 II I I
R1NB/C 2 4 6
2 4 6
-
u I<
-v
{(3~
L
J ~
- - - 1 3
- - Km11  I
w M
2 4 6
-
QI
Multiple motor starting with a soft
M2
3 ""'
- " "'
0
- " "'
N ~ ..
t 17i . ;
Mall!tlr 1
M1
3 "'
5 ; i
• K.M2t '>---,,..-'- KM22 '>--""'<--'
N ~ ..
-03
(1)
-0
I><ALrr
~
-1 Ml "'l
~A' ~All
KAT If KAl.lT.,
1
 
N • e
~~ z
"' e, I
';' ~ - g
!
:; ~ .. I0 Q
- M
"' (2)
-Tl .. 
' ~ 2 I 2
N
• .. ,
( ) -1 2
~
'" I
''
'--- " -··......-...
--
~~ ~
M I
M ~
I ~ ~ g
..........
' ·:::~
- M
"' - " "' -J "J "' - " "' - M
"'' ' ' '
Working diagram of a frequency
converter
u
v
w
Filter
t .Fig. 8
()I
Rectifier
Single-phasemotor with auxiliary
phase
L1 L2
u vK
Main winding
L
Quadratic
winding
t Fi~. 10
optional
centrifugal
clutch
Single-phase motor with starting
capacitor
L1 L2
v
Main winding
f rsr:': • •
.rig. '1 J
L u
Starting
capacitor
K
optional
centrifugal
clutch
Quadratic
winding
Rings
magnetic field
Winding
magnetic field
Stator
Shaded pole winding motort F. i»1.f[. .J -
L2L1
vu
Principle of countercurrent braking
Breaking
M
wv
I I
llI
L3L2
I II I
lI
u
L1
Operation
w
L3
M
v
L2
u
L1
Breaking
v
Principle of countercurrent braking in an
asynchronous slip ring machine
w
v
uw
w
L3L2L1
uw
L3
Operation
v
v
L2L1
'''''d
u
u
Principle of directcurrent brakingin an
asynchronous machine
M
30
v w
L3L2
u
L1
M
30
Principleof asynchronous motor
reversing
wv
L3L2
u
L1
2-wire
control
-51
:;
-QF1
-v230V
3-wire
control
-QF1
<
-$2
-S1
"'230V
Equivalent diagram of an asynchronous
motor
•••QI
Magnetic Iron Active
flux losses, power
inductance I
I
lof
I
I
I
I
Energy
losses
Leakage
inductance
Stator Rotor
......
Losses in a AC motor
Rotor
Stator
iron
losses
rso-c125°KCategoryH
iss-c1os°KCategoryF
izs-cao°KCategory B
Windings are the motor parts most
vulnerable to electrical faults and
operating incidents
t Fi'g.37
Stator
win
Lifetime of motor depending on
operating
t Pig. 39
1, 15xln Current
T+30° Temperature
0%+-~~~~~~~~~~~~~~---i
In
T
1, txtn
T+20°
1,05xln
T+10°
~75%··t-~-"<::--~~~~~~~~~~~--;
E
~50%t-~~~--'""'"~~~~~~~~~---J
_J
Example of a voltage surget Fig. 40
T
v
3 phase unbalanced voltagest Fig. 42
v
Motor derating according to unbalanced
voltage in its power supply
5%4%2% 3%1 %
0,7 +---~---~--~---~----+--
0 %
' Voltage
; unbalance
1 r·.::..:.:·. ·:..:.:.·..:.:.:·.·.:.:.·.·::..:·........ .......... . ............... . ·.
''
'
'
''
Derating
factor
0,8
0,9
Example of a voltage drop and a short voltage
break
1.Fig. 45
------..__ ----
~ _,_,_
-,
t
- --~-·--- - ------ -·-
v
Starting time based on the ratio of starting
current to rated current
15 s107543
1
1
t
5
0
9
<,
Q
....r-,
7
......
-,
6
<,
5 I'-.....
..... ....
4
r.... ~
....
',
'3
Id/In
20
Summary of possible faults in a motor with their causes and effects
•u•ac•
Faults Causes Effects
Effects on
the motor
Short circuit • Phase-to-phase, • Current surge • Windings destroyed
phase-to-ground . • Electrodynamic
winding to winding stress on conductors
Voltage surge ·Lightning - Dielectric breakdown • Windings destroyed by
• Electrostatic in windings loss of insulation
discharge
• Disconnection of a load
Unbalanced voltage • Phase opening • Decrease of the ·Overheating(•)
• Single·phase load available torque
unstream of motor ·Increased losses
Voltage drop • Instability in mains • Decrease of • Overheating(•)
and dip voltage the available torque
• Connection of ·Increased losses
high loads
Harmonics • Mains supply pollution • Decrease ot • Overheating(•)
by non linear loads the available torque
• lncreased losses
Starting too long • Too high a resistant • Increase in • Overheating(•)
torque starting time
• vcrtaoe drop
Lockina • Mechanical oroblem • Overcurrent • Overheatina(•l
Overload • Increase in resistant • Higher current ·Overheating (•)
torque consumption
• vouace drap
("') And in the short or long run, depending on the seriousness and/or frequency of the fault,
the windings short-circuit and are destroyed.
Overload relay tripping curves
7.2 Ir
I/Ir
1.051r 1.51r
1.2 Ir
Class 30
11@}1
10
20
30
t (s)
Thermalmagnetic circuit breaker operating
zones
lcs lcuIm linstIr!
1.ocl 1ri 1.2 Ir
t(s)
t Flg. 6.
Wound
Rotor
Squirrel
Cage
ShuntSeries Compound
Stepper Reluctance Induction
AsynchronousSynchronousBrushed Brushless
DC motors AC motors
Motors
R.otating
Fan
Shell
'=--""'Commutator
=MDtor Brush
Terminals
Stator tease)
'"mdmg1'
Rotor
TypicaJ Brushed Motor in Cross-section
ss
LOADvT ,_
--
a) Separately Excited DCmotor:
ARMATURE
INPUT
VOLTAGE
SERIES
FIELD'
DC Series Illotor
ARMATURE
SHUNT
FIELD
INPUT
VOLTAGE
DC Shunt 01otor
A Rl'Vll£T URE
SHUNT
FIE• o
LONG
SERIES
FIELDJNPIJ"T
VOLTAO#
Colllpound Motor
CUMULATIVE
t
-
'SUPPLY
VOLTAGE
J
DIFFERENTIAL
-
SUPPLY
VOLTAGE
l
+
T...ICompound Connect.ed DC Mot.or
ShunL
Field
Series
It Field
r.
+
1--11...~
v- Constant
T
1.-- ... -
It - Constant
...
Series Connect.ed DC Motor
T
+
!t
V =Constant.
T
It ...
!t co
V- Constant
T ...
Tt
Shunt Connected DC Motor
+
vf
+
Tlmiri Ring
Brus he
0
0
Stack
IArmature
de motors
Feed uack sye""t:em
arid gearl:;Jox
Pot
Control ci rcultry
RC servos
position
sensor
/command
error/
servo motor loadstepper motor lo ad
command
3-point motor starter
LG ...____.¢>-+--t-r....-.0-----~--t-_._YJ--1~~
l..2.--t,J;ap--..~.!,h~~~~----Jl.-.---6.~
1L1 _,
U3
W3
I
2
r-1 .
.. -·.
.: -,.
:n1
.:1 - n
""f" ~
n_t
,-
~~
I I v
..; .
#6. ,. '.
·~ -, ...
.. - .f - ..,.... - - '
,,
'
...,
~ .. - -
L3 ---i
L2 ---!
l1 --ii
LU-:
CONTACTOA
.
-~~--c:o-~~-1o~
: l._oiikJ-~
••.
-~~~~:--~~__. ......
: L--.k:l--~
lrivru510A
STACK
Motor
+
Inverter
Circuit
Fixed
DC
Voltage
Rectifier
Circuit
Input
Power
LI~ o---------__i
ex I l::H NAL
RESISTORS
Lll'E
HP = RPM x TORQUE I 5252
• Input Power
• Single Phase
- Watts= Volts X Amps X p.f.
• Three Phase
- Watts= Avg Volts X Avg Amps X p.f. X 1.74
Watt's Law
• Is a 1 Hp l-phase motor driving a fan overloaded?
- Voltage = 123 volts
- Current = 9 amps
- p.f. = 78%
• Watts= Volts X Amps X p.f.
Watts= 123 volts X 9 amps X 0.78 = 863.5 Watts
864 Watts I 746 Watts/Hp= 1.16 Hp
• Is the motor overloaded?
Example
• We measured Input
• Motors are rated as Output
• Difference?
- Efficiency
• If the motor is 75%
efficient, is it overloaded?
• Eff = Output I Input
• Output = Eff X Input
0.75 X 1.16 Hp= 0.87 Hp
• The motor is NOT
overloaded
Electrical = Input
• Is this 10 Hp, 3-phase motor overloaded?
- Voltages= 455, 458, and 461 volts
- Currents= 14.1, 14.0 and 13.9 amps
- P.f. = 82%
• Watts= Voltsavg X Ampsavg X p.f. X 1.74
Watts= 458v X 14a X 0.82 X 1.74 = 9148.6 Watts
9148.6 Watts I 746 Watts/Hp= 12.26Hp
• Is the motor overloaded?
Example #2
Hp
Output?
• We measured Input
• Motor is rated as Output
• Difference?
- Efficiency
• If the motor is 90%
efficient, is it overloaded?
• Eff = Output I Input
• Output = Eff X Input
0.90 X 12.26 Hp= 11.0 Hp
• The motor IS overloaded!
• How bad is the overload?
Example #2
SPEED (% OF SYNCHRONOUS SPEED)
1000
rDESIGN LETIER
'/
D
--- r---... -.... /I ~
.
<, I
<, / /(" ......
~ , / .....:'.'. ......~
- ,,,.
fr--..... A ,,..- /
~
I I 
I 

- 
NEMA CLASSIFICATION
300
• 3 Phase Induction ~
w
Motors
:::>
0
a:
0
200
• NEMA Torque- I-
0
<(
Speed Design 0
...J
•...J
Types
...J
ir
LL 100
- A,B,C,D,E 0
cw
:::>
0
a:
0
r-
NEMA 3 Phase Motors
• Today's "Standard" 3-
Phase Motor
• Good Starting Torque
- In-rush amps 4-6 times
full load amps
- Good breakdown-
torque
- Medium Slip
Design Type B
• Higher in-rush current
(5-8 times full load
amps)
• Good breakdown
torque
• The "old" Standard
• Higher starting torque
than "B".
Design Type A
• CommonOEM
equipment on
reciprocating pumps,
compressors and other
"hard starting" loads.
• High starting torque
• Moderate starting
current (5-8 times
FLA)
• Moderate breakdown
torque
Design Type C
Design Type D
• Common on O/o
applications with RATED
significant loading TORQUE
D
changes as a machine 300
operates.
200
• Impact Loads
- Punch Presses, Metal 100
Shears, etc.
- Pump Jacks 0
0 20 40 60 80 10
0/oRATED SPEED
0 20 40 60 80 100
% RATED SPEED
0
100
"lo
RATED 200
TORQUE
JOO
I I Switching
- Stan Ing PJ'nl -
and Running --Windin~-j ... / I=-..
Runn'"2.,f
Windio
LINE
•••••• •• •• • •• •• ••••••  CENTRIFUGAL
SWITCH
STARTING WINDING
RUNNING WINDING
• Starting winding in
parallel with Running
winding
• Switch operates at
70-80% of full speed.
• Centrifugal Switch
- Sticks Open
- Sticks Shut
Split Phase Motor
%RATED
TORQUE 100
200
LINE
......
/
v 
_,... ...,,..,

---~
CAPACITOR WINDING
•••••• •• •• • •• •• ••••••
10020 40 60 80
O/o RATED SPEED
0
0
CAPACITOR
IWINDING
·.----·-· ···-·-·-·
• Capacitor in
"Capacitor Winding"
- Provides a "phase
shift" for starting.
- Optimizes running
characteristics.
• No centrifugal switch
PermanentSplit Capacitor(PSC)
10020 40 60 60
% RATED SPEED
0
0
100
%
RATED
TOROUE200
300
400
' I ,..,.,. Switching
Maln and
auxlUary/ ' ~Olnt -
wiidings
I
'Main ,/I .
Winding 
,
RUNNING WINDING STARTING WINDING
c·ENTRIFUGA
SWITCH
I
LINE
• • •• •• ••••••
STARTING
CAPACITO~
• Very high starting
torque.
• Very high starting
current.
• Common on
compressors and other
hard starting
equipment.
CapacitorStartMotor
10020 40 60 80
'l'o_RATED_SPEED
STARTING WINDING
0
0
100
% 200
RATED
TORQUE
300
Stanlng and I
-Running W1n~in1g
-"Switching'
Point 
Running ...
Winding ,. .
RUNNIN!3 WINDING
•••••• •• •
• • •• •• ••••••
LINE
RUNNING
~CAPACITOR
STARTING
CAPACITOR"
CENTRIFUGAL
SWITCH
• Larger single phase
motors up to 10 Hp.
• Good starting torque
(less than cap start)
with lower starting
current.
• Higher cost than cap
start.
CapacitorStart-RunMotor
0
0 20 40 60 90 100
~~~~~~~~~~~~~~~~~~~·%RATEDSPEEO.~~~· ,
%
RATED ISO
TORQUE
I I / '
_............... I
.._ =·' -
SM1chir19
I,.' Point 
• " lJ'/ ' ,
Running..
W1nd~g
'100
ROTOR SHAPE
• Special design for
"constant speed" at
rated horsepower and
below.
• Used where
maintaining speed is
critical when the load
changes.
Synchronous Motor
0
0 20 40 60 80 100
% RATED SPEED
100
%
RATED 200
TORQUE
JOO
400
' .
r-, ' I
-, ,.,. DC -<,
" ~ -,
60 Hz AC r-, -,
-.......... <,
~
LINE
• Very high starting
torque.
• Higher torque on DC
than AC (battery
operated tools)
• The higher the rpm,
the lower the torque.
STATOR POLE r==~=t::
Universal Motor
Nn·~-----------
Currentstep 2
Cl~fllfl&p I
wtttt"''151J:nc•
M
3-
ldllk1 Dint~ curte1l1
6 -- --
--u
2 4 6
F2
5
6
KM11
4
35
2 4
KM1
1 3
01
L1 L2 L3
1 3 I s
M
3-
u
w
V3
U3
KM3
KM2 u~·-iii··w
F2
L1 L2 L3
Insulation resistance temperaturet Fig. 38
Temperature
so •c60 -c40 •c20 -c
0,1+-.._..._..._..._-+-_.__.__.__.._-t-_..__.__.__._-+-_.__.__._~-1
o•c
Armature
1-phase
supply
Main field
winding Compensating
winding
Fig. 2. Series motor with inductively compensated winding
Armature
Compensation
winding
I-phase
supply
Main field
winding
Fig. (3-a). Schematic diagram of conductively coupled ac series motor.
Annaturei.z,
ac supply Compensation
winding
1-<I>
I,zse
I. z, Interpole
Series field
<I>
Fig.(3-b). Phasor diagram
uz;
i»,
uz; laRa
laXc
laZt laRe
laX1
laR1
Fig.(l)four phase 4/2 VR stepper motor
N5 =stator poles (teeth)Where
a = step angle
ni, = number of stator phases or stacks
N; = number of rotor teeth (or rotor poles)
The step angle is also expressed as
Where
360
The magnitude of step angle for any YR and PM stepper motor
is given by
Fig. (2): four- phase, 8/6 VR stepper motor.
(0)
."'-
~
I
I
(a)
Fig .5 2-phase 4/2-pole PM stepper motor
(d)
. ' s
•a
.,.
la) •,,
(b)Phaa« dJ~ram
...
Sqwret
cege rotor
(a) SchemaUe repre.MntatJon
I
v
(b) ~allent pole wtth ahldlng band
,____ Salient
pole
--Shading
bn
Squirrel
cageroa
(1)4 ·pole ah~ pole constNctlon
--
Stator
wind'"Q. __
~~--- .......- Shad.n;
bet.t
:: X1M=•
==80%
i----&ns---1
HIGH
--t Sai:a1.i--
llGH o:; Xt••ll
Time Slgnal
Duty _ In High State X
1
OO
Cycle - Period of Cycle
~o.s.-i
• Pulse Width Modulation
H-BRIDGE DC
PROCESSOR
CIRCUIT MOTOR
i
ENCODER
OUTPUT= INPUT X GAIN
GAIN PLANTINPUT .. .
Open loop control system
OUTPUT = (INPUT - OUTPUT) X GAIN
1----------+t PLANTGAIN
Closed loop control system
PROCESSOR
H-BRIDGE DC
CIRCUIT MOTOR
!
ENCODER
Motor control diagram
OUTPUT = (INPUT - OUTPUT) X (P GAIN + I GAIN + D GAIN)
SUM~ PLANT
'------FEEDBACK------'
D GAIN
I GAIN
P GAIN
SUM~
PID control system diagram
1 43
TIme
20 6
0.4 ··-·······-····-···------·-·--· -· ·---11t
- Command
0.2 • • • pGlln:: 2. IG.aln = 0.1
••• pGaln = 2. IG.aln = O.OS
- pGlln = 2, IG.aln = 0.02
o -···-·-···.:·---·------- ... • pG.in = 1, tGaln = 0.02
,
•
, i i
I 4 -- ··-----·-- ...., - r·-
1 ' •
I t i i
1 .--"""""i'!!'~-~ .-..~-~--.,--"'!lIt A • • '
• ,- I
0.8 - . , # -r-········--~----··->-·--·1 ···-··-+ ..
, i .,
•
1.2
• Set point
• Rise time
• Overshoot
• Settling time
• Peak time
• Overdamped
• Underdamped
Sample PID output chart
FIGURE 1.3. A linear DC motor.
R
fr
I
l ® ® ® ® e e ®
® ® ® ® ® -. F
vs + l magnetic
e e ® ® ® e
'e ® ® ® e
l
e @......__
A
y~-®
e ® e ® e e B=-Bi
xA x
z
(out of page)
FIGlJRE 1.2. Only the component B.l. of the magnetic field which is perpendic-
ular to the wire produces a force on the current.
(b)(a)
N
-f_
8
~..__-
~-----s ~
~--
~--
.l

~ ~
BJ.~ ~--
_e e :<J--
B ~ ~,_____-
~..__- ~>----
-....J .....____ - ---- .___
B
FIGURE 1.2. Only the component BJ. of the magnetic field which is perpendic-
ular to the wire produces a force on the current.
(b)(a)
B
-e
l

<I <I
<I
<I
s N
<I
<I
<I
or, in scalar terms, Fmaguetic = iPBsin(O) = i£BJ_. Again, BJ.. 6
Bsin(O) is
...
the component of B perpendicular to the wire.1
__, - __,
Fmagnetic = if. X B
FIGURE 1.4. Soft iron cylindrical core placed inside a hollowed out permanent
magnet to produce a radial magnetic field in the air gap.
air gap
s
B=-Br B=Br
N
FIGURE 1.27. A multiloop armature for a DC rnotor.
A VOLTAGE IS INDUCED IN THE STATIONARYCONDUCTOR
WHEN THE MAGNETIC FIELD MOVES ACROSS IT. REVERSING
THE DIRECTIONOF MOVEMENT OF THE MAGNETIC FIELD
WILL CAUSETHE DIRECTION OF THE INDUCED VOLTAGEAND
RESULTING CURRENT FLOWTO REVERSE.
FlXED--
COHDUCTOR
DIRECTIOll
OF
MOTION
s
THE PHYSICS OF GENERATOR ACTION
AC output
11
excitction
Ffeld
Stator field
THE BASIC GENERATOR
Slotor
lie1d (slotk>nory)
Brush
. ' .
' '
' ''' ..' ''' .'..'
'.'' '.'.'''.'.';',''
Exciter
Oe!d
rhcoslal
• •
.'''.'I,
'''
Field
excHolion
Jn,
Direction
of
Rotation
Phase 1
Q)
g' +
.....
0
> 0 l-'---t---t-+---'t--1-1-'r---+-.....,_i-+-_-+-+
-:J
c,
~
::i
0 -
Phase 2
0 VOLTS
DEGREES Of
ROTATIOH
MAXIMUM
VOLTS0 VOLJS
+
MAXIMUM
/OLIS
D'
0 e CY(:One Cycle
I
N
4
~ ' 6
-5 • . ~
6/ /'z £ T / 3
5~
,, J 1:1 1
"
7~ I/ ~ . ""j "' I ll
1t
I1 2:
- t-
~I'
1
'I I/
,~ I v1: 2•
a'.../ / 8 Q I! I/ 21 I 21 11. I/
9
_,. - 1;:..
t
<; 10 _/ 10
s .
- len
-1.0 .__ _,
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
KILOWATTS PER UNIT
1 ~E~~-:.._____ ARMATU~E CORE
-0.8 111 END IRON
HEATING llMfTATION
-
:--------·c
THRESHOLD
LIMIT
ARMATURE
VlNOING
HEATING
LIMITATION
+0.4
oi------
+0.2 ,__ _
o
z +0.6
0
C)
~
FIELD 'lllNOING I
l---H_EA_,r.,.u~•A_IT_A_r1_o_N__ RATEO PF
+0.8 LAGGING ---i
/
+1.0 --------------
a:
LU
~t:
a.z
LU :::>
>a:
i= IJJ
oa.
<LU
a::
2) eo 7!!1 100 ·~ 1~0 ·~ zoo 22' aso m
'IELO AMnAES
0
0.
0
Q.2
0..
0
6t00w1.
·"'
I
I
/
VNOLOAD SATURATION
2 ()
) /
(('-~
•I
~"I
0 '
. "'1
UN¥/ o/ I/
Got.S GAP i: I
j
' ,,~/ ~1 IJI
I ti. I
I,
• !4
.1
IM"WANC / O ) p;
J ~ , IO>• ~~/jo
.!> I C)
I / :/It 0
I
O.!I PV ~
ht in~92.u.tl"tltES Vl!;ltO ,., ILAGl. ' TUltATlONA~-
I ,I
I I I RATE:O AAM.
AAT(.() fTf ti.A. CURR""" 0
I I' v SATUMTIOHA~
AAT£0.t.RMATUft
I/ curitur I I J
1.3
(o) BRUSf-. ...ESS 1Nl '-'O'J1 PLOT EXCITER
VT,..,..,,....
Power and
Ve toge
Sensln~
Main Ce"erotor
. - ·=
, '.. - . .
' -· ...
e,c.
-
Exelli:• }11.<Je
Pfole
•
(b) 8RUSHLESS I.' TH p· _QT EXCITER
Power
Voltage ~~v
Sensing
Only
Moln GE:neroto.
!>iooe
~lote
,..::::J::==JI~ 11----1
Stvtsh g
Only
(o) . CONVENllONAl
..
... ~~-;:~:..~·-.....A , "I !
. . .
d.c.
Exe tor
EXCITERS
St 1!lny
«1d Powcir
(b) STATIC
~ k:J~--------'L J
I
I
,------,I AV~
I
Cen£rctor
s,e,!O.,. g
one Po·•er
{c) l:lRUSHLESS
+
kVAr
kW
Cos Phi Power Factor
kVA
Both equations are multiplied by .../3 (1.732) for a 3 phase
machine.
Volts x AmpereskVA = _..;....__
1000
kVA (kilo Volt Amperes), are calculated by the formula:-
Volts x Amperes x Power Factor
kW=
1000
Kilowatts are calculated by the formula: -
The formula for calculating the Power Factor is:-
kilowatts
pf=
kVA
The Power Factor (pf), is a measure of wasted current, which is a
product of inductive loads such as motors, transformers,
(magnetic circuits), and some forms of lighting.
Power Factor
Main Rotor Windings
(disconnected from
rectifier Assembly)
Multimeter
measuring
DC Volts--
Multimeter on
10 Amp DC scale
6V
DC
Multimeter
Set to Ohms
(analogue)
or semiconductor
(digital)
+
Fig B
Fig A 1 _
Multimeter ~
-
Set to Ohms
:;-
Diode
(analogue)
under
•or semiconductor
test
(digital)
.. + [:@ +
Diode
under
test ~
20 -40 Watt/-
1 (Automobile)
Light bulb
~
+ Diode
-- 12VDC under l'.
- Battery test •
- § +
-
Insulation Tester
i- Earth (Ground)
v
Stationary I
Phase/Neutral
Output Terminals
A= Earth (ground) or chassis of Generator
B = Insulation between conductors & earth
C = Copper conductors, (windings)
P = Path of Leakage current through Insulation
1 Minute reading
P.I. = 10 Minute reading
The P.I. index is obtained by the formulae:-
Readings are taken (in Megohms) following a 1 minute and 10
minute time interval: -
A special motorised insulation tester is required, which can
maintain a test voltage of 1 - 2.5kV, (medium voltages), or 5kV,
(high voltage), for a period of 10 minutes.
The P.I. test is used as a guide to the dryness, cleanliness and
safety of the winding insulation system.
Polarisation Index Test (P.I.)
The resultant ratio is called the P.I. index, and should be a
minimum of 2 at 20°C.
A P.I. index below 1.5 suggests the windings are wet, dirty or
faulty, and should be cleaned, dried, and refurbished as
necessary.
1 Minute reading
P.I. =
10 Minute reading
The P.I. index is obtained by the formulae:-
Readings are taken (in Megohms) following a 1 minute and 10
minute time interval: -
A special motorised insulation tester is required, which can
maintain a test voltage of 1 - 2.5kV, (medium voltages), or 5kV,
(high voltage), for a period of 10 minutes.
The P.I. test is used as a guide to the dryness, cleanliness and
safety of the winding insulation system.
Polarisation Index Test (P.I.)
XX-
(F2)2VDC
ATTERY
+
Exciter
Stator
Windings
X+
(F1)
TO AVR Exciter
Stator
xx -
(F2)2VDC
ATTERY
+
Exciter
Stator
Windings
X+
(F1)
xx -
(F2)
X+
(F1)
Exciter
Stator
Winding
s
24 Volt
ATTERY
•
+
80ohm1A
Potentiometer
Rectifier
Diodes
Main Rotor
(4 Pole)
l
Exciter
Rotor
l
PMG PMG
Stator Rotor
Generator
Shaft
N.D.E
Cover Stator Rotor
Housing Dowel
Stator Bolt pin
U~,.._~ .....--•---....,_~~~~
v~+-+-+-___..---.........~-..~~
w~+-+-+-----·---....1---.-4-.....~
LAMPS ROTATE BRIGHT/DIM
U~~------..~~-
v--~------.~_..-
w....+-----·---..~-+-~
U~~------..~~-
v--~------.~--~w~..........---..~......i~
LAMPS BRIGHTLAMPS DIM
P1
P1
........___.......,._ - .. -·· ... - -·-·-·-·-·-·- -·- -·
0
'C' Core
Laminated core
P2
Primary
co7uctor
P2
- - .... -·-·-·-·- ,.--'--- ......
Secondary Wincf.Jgs
s
1
52
TYPICAL DROOP
Quadrature droop equipment
Main Terminals
ws
TYPICAL DROOP C/T ON A 12 WIRE MACHINE
p
Secondary Substation
...
24/12kV
~~~~~~~~--'
CDable grid - Compact Substation -
Overhead line Polemount Transformer
Distribution Transformers
Power Plant
Typically 24 kV
Step-down
Power Transformer
420 kV
Power Transformers
' I
~~
Step-up Q :,..I-...:CJ~~
Recommended tiahtenina toraue/Nm
Bolt size Property Class
Bolt 8.8 Nut 8
MS 3,0
M6 5,5
M8 15,0
M10 30,0
M12 60,0
M16 120,0
Tightening torque
z
I I -
I I ' ' ~
I I 'It 12
I ~~
I
Zo I u,. u, ZL
i
I
I
I
'~ ,- -
. ! -
A simple equivalent diagram for the transformer can be drawn based on two measurements on the
transformer, one in no load and one in short-circuited condition.
EQUIVALENT DIAGRAM
H ..
Alm
b
c
3
f
d
T=Vslm' iB
2
1,5
1
,;
ii 0,5
M
0
-0,5
-1
t(ms)
Figure 6-13
10010
X/R
1
---i..-~
v
~
~
,,
,.,,...,
3,0
2,8
2,6
2,4
~ 2,2
.¥
2,0
1,8
1,6
1,4
Figure 10·1
2U
0
2N
0
2V
0
IUJV
00
2W
0
JW
0
Three phase transformer
1 U, 1 V, 1W, 1 N for the high voltage side and 2U, 2V, 2W, 2N for the low voltage side.
Example of a Dyn connected lransformer:
9952IAADEbyABB
Serial number Prod. year
- Phase Distribution Transformer
Rated Power kVA Cooling
Conn. Temp. Class
Frequency
Hz
lnsul Level % Total Mass kg
Impedance l'tpe of Oil 17
Pos. HV HV LV
v A v A v A
All
Av
Kva Cooling
Hz Environment Cl.
Climate Cl.
Kv Are Cl.
% lnsul. Sys. Temp "C
Kg Max. Wind. Temp •c
HV LV
v A v
Rated power (Onan)
Frequency
Connection Symbol
Insulation levels
Impedance
Total Mass
- phase
Prod. year
- Dry - Type Transformer I
Serial numb.
lndu=z.
All
Figure 6 - Separating wallsbetween transformers
Minimum fire resistance 60 min for the separating wall (El 60)
!EC 2267102
H ~ Ht (with H1 > H2)
L z 82 (with 82 > 81)
0
O row 1hrough b ush1119 (Oil flood I ype)
Conditions Protection Philosophy
Internal
Winding Phase-Phase, Differential 187T), overcurrent 151. 51N)
Phase-Ground faults Restricted ground fault protection
{87RGF)
Winding inter-turn Differential {87T), Buchholz relay,
faults
Core insulation failure. Differential {87T), Buchholz relay.
shorted laminations suddenpressure relay
Tank faults Differential {87T), Buchholz relay and
tank-ground protection
Overfluxing Volts/Hz 124)
External
Overloads Thermal {49)
Overvoltage Overvoltage 159)
Overfluxing Volts/Hz 124}
Externo I system short Time overcurrent 151, 51G).
circuits Instantaneous overcurrent 150. 50Gl
o 10 ~ ~ ~ m w ~moo m
Distance of fault from neutral
!percentage of winding)
Ground faultcurrent forimpedoncegrounded neutral transformer forfaults ot different
% of the winding.
IF
IOC
90
E-
sc" e
E e- ~
" " 700 v
E::
"' "?~ 6C
ti..,
"'c0. " SC"'0
.. ~
~ "'- .. 4()0"'
"'0
"'..c0 a.
3C~
'c ....-
" "'~ c 20"'·-
ml-a.. "'
-
Functions Typicol Product Order Code
Typical Functions 745-W2-P5-G5-Hl-T
T35-NOO-HCH-F8N-H6P-MXX-PXX-UXX-WXX
T60-NOO-HCH-F8N-H6P-MXX-PXX-UXX-WXX
+ Harsh Environment Option 745-W2-P5-G5-Hl-T-H
T35-NOO-ACH-F8N-H6P-MXX-PXX-UXX-WXX
T60-NOO-ACH-F8N-H6P-MXX-PXX-UXX-WXX
+ Voltage and Power metering 745-W2-P5-G5-Hl-T
T35-NOO-HCH-F8L-H6P-M8N-PXX-UXX-WXX
T60-NOO-HCH-F8l-H6P-M8N-PXX-UXX-WXX
+Directional overcurrent T60-NOO-HCH-F8L-H6P-M8N-PXX-UXX-WXX
lockout
Stondalone HEA61-A-RU-220-X2
Integrated T35-NOO-HPH-F8N-H6P-MXX-P4l-UXX-WXX
T60-NOO-HPH-F8N-H6P-MXX-P4l-UXX-WXX
Directional overcurrent
Voltageand Power metering
67
v.s
87T Differential
86 Lockout ouxiliory
50/51 OVercurrentand short circuit
SOG Ground fault
Additional FunctionsTypical Functions
T
3Y
52
1
-•
MV.
M,V,
52
~
' '
'
JV
Transformers 750kVA and above, MV Windings
Functions Typical Product Order Code
Typical Functions 745-W3-PS-GS-Hl-T
T35-NOO-HCH-F8L-H6P-M8N-PXX-UXX-WXX
T60-NOO-HCH-F8L-H6P-M8N-PXX-UXX-WXX
+ Harsh Environment Option 745-W3-PS-GS-Hl-T-H
T35-NOO-ACH-F8L-H6P-MBN-PXX-UXX-WXX
T60-NOO-ACH-F8L-H6P-M8N-PXX-UXX-WXX
+Voltage and Power metering 745-W3-PS-GS-Hl-T
T35-NOO-HCH-F8L-H6P-M8N-PXX-UXX-WXX
T60-NOO-HCH-F8L-H6P-M8N-PXX-UXX-WXX
+Directional avercurrent T60-NOO-HCH-F8L-H6P-M8N-PXX-UXX-WXX
Lockout
Standalone HEA61-A-RU-220-X2
Integrated T35-NOO-HPH-FBL-H6P-MBN -P4l-UXX-WXX
T60-NOO-HPH-F8L-H6P-MBN-P4L-UXX-WXX
Directional avercurrent
Voltage and Power metering
67
V.S
Additional Functions
Differential
Lockout auxiliary
Overcurrent and short circuit
(three windingsl
Neutral9round fault
(three windings!
87T
86
50/51
SON
3Y
52
3Y
52
r-1.v. 1
H.V.
or
M.V•.""--------
52
3Y
Typical FunctionsPower Transformers, Dual MV Secondary Windings
Functions Typical Product Order Code
Typical Functions T60-NOO-HCH-F8N-H6P-MXX-PXX-UXX-WXX
TI5-NOO-HCH-F8N-H6P-MXX-PXX-UXX-WXX
745-WZ-PS-GS-Hl-T
+ Voltage and Power metering T60-NOO-HCH-F8L-H6P-M8N-PXX-UXX-WXX
TI5-NOO-HCH-F8L-H6P-M8N-PXX-UXX-WXX
745-WZ-P5-G5-Hl-T
+ Additional Functions T60-NOO-HCH-F8L-H6P-M8N-PXX-UXX-WXX
(87G, 67. 24. 59)
745-WZ-PS-GS-Hl-R-T
lockout
Standalone HEA61-A-RU-220-XZ
Integrated T35-NOO-HPH-F8N-H6P-MXX-P4L-UXX-WXX
T60-NOO-HPH-F8N-H6P-MXX-P4L-UXX-WXX
50G
Restricted Ground Fault
Directional overcurrent
Volts per Hertz
Overvoltoge
Voltage and Power metering
87RGF
67
24
59
V.S
Differential
lockout auxiliary
Overcurrent and short circuit
(both windings!
Ground fault
87T
86
50/51
Additional FunctionsTypical Functions
52 -•
H,V,,.., _
or
M.11.
H.V.
52
lY
.t----------, T
Power Transformers, HV Windings
Functions Typical Product Order Code
Typical Functions T60-NOO-HCH-F8l-H6P-M8N-PXX-UXX-WXX
T35-NOO-HCH-F8l-H6P-M8N-PXX-UXX-WXX
+Voltage and Power metering T60-NOO-HCH-F8l-H6P-M8N-PXX-UXX-WXX
T35-NOO-HCH-F8l-H6P-M8N-PXX-UXX-WXX
+Additional Functions T60-NOO-HCH-F8l-H6P-M8N-PXX-UXX-WXX
Lockout
Standalone HEA61-A-RU-220-X2
Integrated T35-NOO-HPH-F8l-H6P-M8N-P4l-UXX-WXX
T60-NOO-HPH-F8l-H6P-M8N-P4l-UXX-WXX
Directional overcurrent
Volts per Hertz
OVervoltoge
Voltage and Power metering
67
24
59
v.s
87RGF Restricted Ground Fault
Additional Functions
.2Y_
52 52
_l.Y_
I I I I
~f---------.,I
I
I
H.V l a
• J
~,,,,,,
'87 ' I
2 ..'!_~..~~/-
H.V r • ,,-, ,,-, ,--,,,-, ,,-,
• ( v l s  67  86 l 59 )or I I
1/1.V.
,_,,,_,,,_,,, __,,__,
1
52 ·..:-•
-:!YI
-I
87T Differential
86 Lockout ouxirlory
50/51 Overcurrenlond short circuit
(two windings)
50G Gr-0und fault
Typical FunctionsPower Transformers, HV Windings, Dual-Breaker
Source
Functions Typical Product Order Code
Typical Functions T60-NOO-HCH-F8N-H6P-MXX-PXX-UXX-WXX
T35-NOO-HCH-F8N-H6P-MXX-PXX-UXX-WXX
+Voltage and Power metering T60-NOO-HCH-F8l-H6P-M8N-PXX-UXX-WXX
T35-NOO-HCH-F8L-H6P-M8N-PXX-UXX-WXX
+Additional Functions T60-NOO-HCH-F8l-H6P-M8N-PXX-UXX-WXX
lockout
Standalone HEA61-A-RU-220-X2
Integrated T35-NOO-HPH-F8N-H6P-MXX-P4l-UXX-WXX
T60-NOO-HPH-F8N-H6P-MXX-P4l-UXX-WXX
Restricted Ground Fault
Directional overcurrent
Volts per Hertz
OVervoltoge
Voltage and Power metering
87RGF
67
24
59
V,S
Additional Functions
Differential
Lockout auxiliary
Overcurrent and short circuit
(both sources)
Ground faultSOG
87T
86
50/51
>f3Y1
I
... II
I
- I
I
I
52
§.. II
' @xID9'- ,_, 'ai'' '
H,V.
',, 87T 51 250G
~~,:~)
r- ,-, ,-, ,-, ,-, ,-,, , , , ,
... ... ...... ( v l s  67 l 86 l 59 :
- - ' ,, ,, ,, ,, ,
-- -~ -- -- --,
H,V __...
•
52
>-
3Y >-
Typical FunctionsAuto-Transformer
Functions Typical Product Order Code
Typical Functions T60-NOO-HCH-F8l-H6P-M8N-PXX-UXX-WXX
T3S-NOO-HCH-F8l-H6P-M8N-PXX-UXX-WXX
+Voltage and Power metering T60-NOO-HCH-F8l-H6P-M8N-PXX-UXX-WXX
T3S-NOO-HCH-F8l-H6P-M8N-PXX-UXX-WXX
+Additional Functions T60-NOO-HCH-F8l-H6P-M8N-PXX-UXX-WXX
lockout
Standalone HEA61-A-RU-220-X2
Integrated T3S-NOO-HPH-F8l-H6P-M8N-P4l-UXX-WXX
T60-NOO-HPH-F8l-H6P-M8N-P4l-UXX-WXX
Restricted Ground Fault
Directional overcurrent
Volts per Hertz
Overvoltoge
Voltage and Power metering
87RGF
67
24
59
V,S
Additional Functions
87T Differential
86 Lockout auxiliary
50/51 Dvercurrent and short circuit
ltwo windings)
SOG Ground fault
3Y _3Y_
I '
52 52 I I
-3~--------------.., I
&' I
~,- ,_...... '87'' '
H,V
....... 2 '~~,l,~~,:
I ,,-, ,,-, ,,-, ,,-, ,,-,
• • • • l v  s  67  86 l 59 ~
-- ,__,,__,,__,,_,,, __,
1
H.V.
·-·52 •
...
3Y ...
'
Typical FunctionsAuto-Transformer, Dual-Breaker Terminals
Functions Typical Product Order Code
Typical Functions T35-NOO-HCH-F8l-H6P-M8N-PXX-U8N-W6P
+ Voltage and Power metering T35-NOO-HCH-F8l-H6P-M8N-PXX-UXX-W6P
lockout
Standalone HEA61-A-RU-220-X2
Integrated T35-NOO-HPH-F8l-H6P-M8N-P4l-U8N-W6P
50/51 Overcurrent and short circuit
(three wir;idings)
SOG Ground fault
Voltage and Power meteringV.SDifferential
Lockout oUXiliory
87T
86
Additional FunctionsTypical Functions
3Y ~r_
I I 52 52 I I
~
-3E-----------------1
@...,, :
HV
',,~
• • • •
I I r ,.,.-,,....-,3 ,,-,
- - l V  S : I 86:
-- ,, ' ...,' ,__, '--"w •
HV
52
....-•
..
---
M.V
-3,Y I
52 52 I
31
-- --
Auto with Dual-Breaker on both sides and loaded
tertiary
Functions Typical Product Order Code
Typical Functions T60-NOO-HCH-F8L-H6P-M8N-PXX-UXX-WXX
Lockout
Standalone HEA61-A-RU-220-X2
Integrated T60-NOO-HPH-F8L-H6P-M8N-P4L-UXX-WXX
Ground Faull
Volts per Hertz
Overvoltoqe
Voltage and Power metering
51G
24
59
V.5
Differential
Lockout auxiliary
OVercurrentand shortcircuit
(three windings)
87T
86
51
Additional FunctionsTypical Functions
Oonorator
3'(
52
•
-52
3Y
Sy~tem
Generator Step Up Transformer
Ground fault
Top Oil Temperature, RTD or
Transducer
Winding hot-spot
temperature. loss-of-life
Thermal overload protection
Voltage and Power meteringV.S
49
SOG
rr/ro
Functions Typical Product Order Code
Typical Functions T60-NOO-HCH-F8N-H6P-MXX-PXX-UXX-WSE
745-W2-PS-GS-Hl-L-T
+Voltage and Power metering T60-NOO-HCH-F8L-H6P-M8N-PXX-UXX-WSE
745-W2-PS-GS-Hl-L-T
+ Additional Functions T60-NOO-HCH-F8N-H6P-MXX-PXX-UXX-WSE
745-W2-PS-GS-Hl-L-R-T
lockout
Standalone HEA61-A-RU-220-X2
lntegroted T60-NOO-HPH-F8N-H6P-MXX-P4l-UXX-WSE
-•
3Y
52
H.V.~---or
M.V.
86 lockout auxiliary
SO/SI Overcurrent and short circuit
(two windings}
.t--------. T
3Y
Oifferentiol
Additional Functions
87RGF Restricted Ground Fault
Typical Functions
87T
Thermal Overload Protection
Functions Typical Product Order Code
Typical Functions T35-NOO-HCH-F8N-H6P-M8N-PXX-U8N-WXX
Lockout
Standalone HEA61-A-RU-220-X2
Integrated T35-NOO-HPH-F8N-H6P-M8N-P4L-U8N-WXX
Ground faultSOG
87T Differential
86 Lockout auxiliary
51 Overcurrent and short circuit
!two windings)
Typical Functions
1l
5252
'
)V )V
525252
"'
52 ~
6
Distribution Transformer with no load-side Circuit
Breaker
30 Motor
C1
-Transistor
L1
SCR-
L1--.
L2--1--
L3---t--11--
InverterDC LinkConverter
Current
VoltageD D D C
D D D
30 Motor
L1-----e
L2--i--
L3--<--1--
L1
InverterDC LinkConverter
Current
Voltage
~_!
I
L1
L2 C1 .!:?
0)
0
_J
gL3
s 30 Motor
u
L1
InverterDC LinkConverter
C1 650VDC
L1 -'--+--1-~-r--i
30, 480 VAC L2 -l,---,~1--f--tf--~
Supply
DC LinkConverter
30 Motor
u
·0i
.3
0
lo;
c
0
u
IGBT
<,
650VDC
Inverter
-f (+)
Emitter
Collector
(+) 0
i i i
i A+ B+ C+
DC Voltage
MotorFrom
Converter
l J A- JB- Jc-
(-)0
. '
---:::-=--..., ·:· .. - .- --·· - -·:- - - r--~-::::'.""""-..., .+
+ :··· ....
1
....... 1· ~ :1 ·. ······:········:· .. ······1 .
0 . . . . . .
• ' • ' ' + •
. . . . . . '
: : •······~·······'.········ : : :
+ :-60°-: 1·······:········:·······1 : ~ :0 : : : : : : : :
. . . . . . .• ' ' ' • + •
. ' . ' . . ... .. . . . . ... . .. .. . ·, . . . . . . . ' . . · :
74 986532
Steps
1
A-B
Output
B
A
On
IGBTTurned '<, :/ IGBTTurned Off
~D DD I 11 I DOD~[Off
IGBTOn IGBTOn
Progressively Longer Progressively Shorter
Sine Wave Reference
Current Decreases
Current Increases
Current
Voltage
l650VDC
l
l650VDC
l
Longer "On" Duration. Higher Voltage
Shorter "On" Duration, LowerVoltage
- ...........................
~
<,
v
v r-,
/ -,
- - - - - -<,
/0-
'~ t>~
- .....
With Smoothing
Decel
T2
RunAceel
T1
. . . . . . . . . . .. ,.--1 r--...:· '
Decel
T2
Without Smoothing
14 •1:1414--H•l;l,.4-----•I;
Fmax · · · · · · · · · · · • ., __ "" 1-- ..- · · · · · · · · · · · ··
Accel Run
T1
~ Commutator
~Carbon Brush
Field Winding
Commutator
-,
/Armature Conductors
::<;:::~)
Commutator
Armature Conductor
-""'Magnetic Field
Stator
...__...__
--...-............... _ ......__..._
- .......-........_ -........................ .............. ---
-- -- ..
------------------- ~
/Magnetic Field
Electromagnet or Permanent Magnet
' .
--------~
t··---- .
--- ------
-...._.._.. -...
..-------..--...
...._......
sN
/
Resultant Armature Field
StatorN
Static
Magnetic Field
Position 1
Position 2
Position 3
Permanent
DMogoot
DC Line
Voltage
A
DC Line
Voltage
Series Field
S2 S1u-~ ~~
Common SourceSeparately Excited
Fl Fl
"O "O
Ql
DC Line
.!!!
DC Line u::: u,
Voltage A +-'
Voltage A +-'
c c
:J :J
s: .s:
(/) (/)
F2 F2
F1
-c.::)
s:
(/)
F2
A
DC Line
Voltage
Series Field
~-=-S=-i2 L.:S::...:1'--~
%Torque
Compound
~
] ~~~~.~..~..~.~..=..~..~.~~':"~~~~Shunt
~ Point of/
~ Equilibrium
@
SIEMENS
@
HP 10 I RPM 1180 I VOLTS 500
ARM AMPS 17.0 WOUND SHUNT
FLO AMPS 1.4/2.8 FLO OHMS 25C 156
INSUL CLASS FI DUTY CONT I MAX AMBIENT 40° c
PWRSUP
c FLO VOLTS 300/150CODE
TYPE E I ENCL DP I INSTR
MOD SER
NP36A424835AP DIRECT CURRENT
@ MOTOR
@MADE IN U.S.A
Speed (RPM)
1200900600300
o"'-~~~~~~~~~~~~
0
375 Va - (laRa)
Speed(n)=
Kt<I>(/)
...
g
250 oru , .................. ·····
0
CEMF
Speed (n)""
(I)
125
500 ....
Compound
F1
A
F2
ShuntSeries
A
S2
Permanent
Magnet
F4
F3
F2
F1
150VDC
2.8A
F4
F1
300VDC F2
1.4 A F3
180°-
1600-
140°=
120°=
100°=
80°=
60°=
40° =~-Ambient Temperature
20°=
oo=
Class H
125° C Rise
15° C Hot Spot
Class F
105°C Rise
10°C Hot Spot
Class B
80° C Rise
10° C Hot Spot
Class A
60°C Rise
5°C Hot Spot
180°- 180°- 180°- 180°-
=}15°
160°- 160°- 160°= 160°=
140°= 140°= 140°=
=:}10°
140°=
120°= 120°= ==}10° 120°= 120°=
100°= =}50 100·= 100°=
105°
100°= 125°
80°= 80°= 80° 80°= 80°=
60°= 60° 60°= 60°= 60°=
40°= 40°= 40°= 40°=
20°= 20·= 20°= 20°=
o·= oo= o·= oo=
Va
(
Ir
i32
<I)
Eaj
Li:- Vr
A -ec:: ~
l
:J
s:
VJ
0
Armature Circuit Field Circuit
>la
Where:
Va = Applied Armature Voltage
Kt = Motor Design Constants
<I> = Shunt Field Flux
n = Armature Speed
la= Armature Current
Ra = Armature Resistance
Va = (Kt<I>n) + (laRa)
Speed (RPM)
10007505002500
0
375 Va- (laRa)
Speed (n) =
~ Kt<!)
g
250u or
0
Speed (n) "'
CEMF
(()
125
500
CEMF
<l>
Ktct>
M "' la<D
Speed (n) "'
or
Va - (la Ra)
Speed(n)=
I.- Constant Torque.-1- Constant Horsepower -1
tBase Speed
500 750 1000
Speed (RPM)
2500
0
500
375
Speed (n) =
Va - (la Ra)
Kt<PIf)
-g
250
or
u
0 CEMF
Speed (n) "'
<I>
125
M,. la<P
Field Current (If)
-,
Knee of Curve
...c.A...::n.:..:o:...:d:...:e_---'+-1[:>k+ Cathode
Gate
Gate
Zero Crossing
Gate Applied Here
~
_ ___.n~--
[C
Jl~-
Rectified DC
at Cathode
Gate Current
Applied
AC Sinewave
Applied to Anode
L1
3121, 460 VAC
Variable
Supply
DC Voltage
L2 L2
L1
L3
I  I
L3
I
v I
Volts RMS a Cosine Formula voe
460 VAe 0 1.00 voe = 460 x 1.35 x 1 621
460 VAC 30 0.87 voe = 460 x 1.35 x o.87 538
460 VAe 60 0.50 voe= 460 x 1.35 x o.so 310.5
460 VAe 90 0.00 voe = 460 x 1.35 x o 0
460 VAC 120 -0.50 voe= 460 x 1.35 x <-0.50) -310.5
460 VAC 150 -0.87 voe = 460 x 1.35 x <-0.87) -538
460 VAC 180 -1.00 VDC= 460 x 1 .35 x (- 1 ) -621
Voe = 1.35 x VRMS x coso
Average DC Voltage
as a Function of a
OVDC
-a= so-
-£21 VDC
a= 180°
OVDC
a = go•
'''.. J /<I, I /' /• /• / I I I J  1
' v v ~ ~ ., ~ ~ x ~ ~ ~...._, .._ _ .; ~ _ ..
...,.,,. .....,., ...,,........f..... '<".."<." -;<."_";'..,_'X" ..~ ~ ..:'...- ..~~
,' ,' / / / / 1 1 I I I I )
'
'
621 VDC
a = 0°
iQ)
~
::i
-0 0
Q) (/)
u: u
+-' 0
c: Q)
::i +-'
.1= <ti
(/) ~
<ti
0.
Q)
(/)
l
A
1
·,)~:;;-,>::·;:,.:-,.,: :..;>(:•::(;;-.~:(;
' )
I I I I I I
' ' '
' 't' t I J r I
 /' ' /I  J I  /  I  t I  I , I
.> ';.., _>..,..> v.. - > <.. )' ..
................................................ ,.
I I
I  I L3~~1~~~~-'------,+----t~-.
Ra
OLT
@
MOD
PWRSlJP C
INSUL CLASS F DUTY
FLDAMPS 1.4
ARM AMPS 17.0
HP 10 RPM
SIEME
@
c
ENCL DPTYPE E
+
L1
-
...,
c
Q)
(..)
lat
....460VAC
A
....0 :::iL2
> (.)
-0
Q)
u:
L3
COSa~
Ra
=
+
Va = laRa + CEMF
Va= 0 + 450
Va= 450VDC
OVDC
Va= 1.35 x VRMS x COSa
Va= 1.35 x 460VAC x 0.7246
Va= 450VDC
450VDC
460VAC
RaGating Angle 43.56°
COSa = 0.7246
-,
+
Va = laRa + CEMF
Va= 50 + 450
Va= 500VDC
Ala
Va= 1.35 x VRMS x COSa
Va = 1.35 x 460 VAC x 0.8052
Va= 500VDC
500VDC
460VAC
50VDC
RaGating Angle 36.37°
COSa = 0.8052 ""-
4 Quadrant- 12 SCRs1 Quadrant - 6 SCRs
(Car Moving Forward (Car Moving Forward
Brake Applied) N Accelerator Applied)
CW Rotation
()
M
Braking II M =Torque
-M M
Driving Ill IV Braking
N =Speed
l) (O)MM
CCW Rotation CCW Rotation
-N
(Car Moving in Reverse (Car Moving in Reverse
Accelerator Applied) Brake Applied)
Reverse Armature Polarity or Reverse Shunt Field Polarity
+ + c =c F1
= Fl + Fl
-0 -0 -0 -0
Qi Qi Qi <!)
u: u: u::: u:::
- - - A -c c c c
::J ::J ::J ::J
s: s: s: J:.
l/) l/) l/) l/)
=
F2
c F2 F2 F2
= c
n n n
Reverse Direction
(Quadrant Ill)
Forward Direction
(Quadrant I)
F F
+ +
F
F2
F
F2
R R
li 11R
l
R
MOV MOV
R
i
R
F Fl F Fl
Motoring Ra
50VDC
+
M
ll
-
=A(.)
c
<l)M 0
~
(!)~> :J
L2 0
(.)L!)
-0
<:!"
QiM
u::L3
Braking Ra
50VDC
+
M
~
-L1
ir~
u
M 0
>L2 0
Ros0
co
Cl)
u:::
M
L3
M =Torque
N =Speed
M
-N
CW Rotation CW Rotation
() ()
M M
Braking II Driving
Driving Ill IV Braking
{:) 0 M
M
CCW Rotation CCW Rotation
N
A
Ra............................................................
Regen
Bridge
Motoring
Bridge
Va = laRa + CEMF
Va= 50 + 450
Va= 500VDC
50VDC
Ra
Va= 1.35 xVRMS x COSet
Va= 1.35 x 460VAC x 0.8052
Va= 500VDC
Regen
Bridge
Driving
BridgeGating Angle 36.37°
COSet = 0.8052
"-l
L1 450VDC
CEMF ~
~
u
...,
c
460VAC 0 Q)
> ~
L2 A
~
0 la
:J
0 u
U') -0
Qi
u:
L3
Va = laRa + CEMF
Va= -50 + 450
Va= 400VOC
450VOC
CEMF
- A
u ....c
0 Q)
>
~
A
~
0 la
::>
0 u
~ -0
.<:!!
l.L
-50VOC
Ra
Va= 1.35 xVRMS x COSa
Va = 1.35 x 460 VAC x 0.643
Va= 400VOC
460VAC
L2~~~~~..;.-1-----<1~--l----t-~--..
Gating Angle 130°
COSo. = 0.643 ---t-+--+--1--?'
L1~~~~~-'-<.----1~--l---;---9
Regen
Bridge
Motoring
Bridge
Time~







',
-.-,
',___ Dynamic Braking
---- --------- ----------·
Base Speed
Regen or Dynamic Braking at 150% Current
Maximum Speed
i
A
Ra
............................... · : :
.............................................................. ,. .
Motoring
Bridge
Regen
Bridge
-1-Phase AC Input
Calculated CEMF (Ea) Feedback
Ea =Va - (laRa)
Firing
Circuit
Current
Controller
3-Phase AC Input
Current Feedback
Speed
Controller
Ramp
Function
Generator
Speed
Ref.
-1-Phase AC Input
Firing
Circuit
.__ Sp_e_e_d_F_e_e_d_ba_c_k@-·---
Current
Controller
3-Phase AC Input
Current Feedback
Speed
Controller
Ramp
Function
Generator
Speed
Ref.
._,...,
1-Phase AC Input
Firing
Circuit
Speed
Controller
,_ Sp_e_e_d_F_e_e_d_ba_c_k©-- ---
Current Feedback
3-Phase AC Input
Ramp
Function
Generator
Speed
Ref.
-1-Phase AC Input
Firing
Circuit
Current
Controller
3-Phase AC Input
Current FeedbackUpper
' Limit /
Torque Torque
Ref. Calculation
I Lower '
Limit
INew Speed
/Initial Overshoot
/ Oscillations
Initial Speed
-.
/Initial Overshoot
Initial Speed
New Speed
I
-.
10 20
._ __ ___. ___. _.._-i> Time in Seconds
50% . - . - .... . .. . .. . . . . . .· : - .. ·.
100% ·····-··-··-·-······---41--- ...······-··-··········
P303 Run P304
M------~: ,. ., : M------~
Speed
10 20
"""'-----'------------'----3'..~ Time in Seconds
50°/o · ·· · ·· · · ·' · · · · · · · · :- · · · · · · · · ·· ; · · · ·· · · · ·· · · · ·· · - · '
. /' R di .; oun 1ng :
100% -_;;.·' ""'! !-" .;..:' ' .......•. '
P303 Run P304
H114------•I:14 •I: !+-------fol
Speed
1
T =ConstantT""N T~N T"" N2
HP = Constant HP"' N HP"' N2 HP::. N3
HP T ,
------ I/
/ /,
HP/
/ T I
T I
/ I
/ / HP T 7
/ / ,.,,.,HP/ /, ,,.. /
N N N N
Winders Hoisting gear Calenders with Pumps
Facing lathes Belt conveyors viscous friction Fans
Rotary cutting Process machines Eddy-current Centrifuges
machines involving forming brakes
Rolling mills
Planers
Cateaorv Descriotion
The load is essentially the same throughout the
Constant Torque speed range. Hoisting gear and belt conveyors
are examples.
Variable Torque
The load increases as speed increases. Pumps
and fans are examples.
Constant The load decreases as speed increases. Winders
Horsepower and rotary cutting machines are examples.
Loads generally fall into one of three categories:
Photo 3, Arcing Caused by Loose Input Contacts
Photo 4, Arcing Caused by Loose Output Contacts
Photo 2, Corrosion on Board Traces Caused by Moisture
Photo 6, Capacitor Failure
Photo 5, Foreign Object in Fan
(a)
acb phase sequenceabc phase. sequence
(b)
Switch S1
Load
.-,
Generator 2
Generator I
P = output power
fu1 =no-load frequency of the generator
(,ys= operating frequency of system
Sp = slo e of curve in kW/Hz or MW/Hz
Where
Since mechanical speed is related to the electrical frequency and electrical frequency is related with the
out ut ower, hence we will obtain the following uation:
P=s J, " )11/ - J j s._,,.....
Typical values of SD are 2% - 4%. Most governors have some type of set oint adjustment to allow the
no-load speed of the turbine to be varied. A typical speed vs. power plot is as shown below.
Where n01 is the no-load prime mover speed and ne is the full-load prime mover speed.
n -nSD= .,,, fl x'TOO%
nil
Whatever governor mechanism is present on a prime mover, it will always be adjusted to provide a slight
droo ing characteristic with increasing load. The s eed droo SD) of a rime mover is defined as:
Power.
kV(b)
0
~·--------------I
I
I
I
I
j
I
I
I
~~I.........=-~-~-~-~-~-=---=-::_:-:_-::_:-:_::-_:::-,,_,_,__
I
I
I
I
I
I
I
I
0 Pn Power.
(a) kW
,,,,
(b)(a)
Q.
kVAI<
supplied
-Q 0
Consumed
P.
kW
supplied
-P 0
Consumed
f,
ous generator operating
with an infinite bus
Infinite bus
)
Loads
) )
'

A synchron
Generator in parallel
(a)
The frequency-power diagram
(house diagram) for a synchronous
generator in arallel with an
infinite bus.
(b)
fu1
P.kWP.kW
f,. Hz
P,kW
PG<O
(consuming)
t..Hz
P,kW
P,kW
The effect of increasing the
governor's set oint on the
house diagram
(al
Generator 2 1-----'
The house diagram at the moment G2 is
paralleled with the system
(b)
l'c1
~GI
kW
The effect of increasing G2 's governor
set points on the operation of the system.
-- -1- ----- --
1 j I
I I I
I I
I I
I I
I I
I I
I I
Generator 2.r,Generator I
As a result, the power-frequency curve of G2 shifts upward as shown here:
What happens ifthe governor set points of G1 are increased?
The total power P101 (which is equal to P1oad) and reactive power respectively are given by:
(d)
Qlot
kVARkYAR
The effectof increasing G2' s field
current on the operating of the
system.
Generator I Generatur2
---r------1 I
I V.,-1 I
I I I
I I I
I I I
I I I
I t I
I I I
P. real power
Prime mover lirnilField Current limit
Or
Maximum Ea limit
Q, Reactive power
Stator Current limit
Figure 13 A. Salient Pole
Figure 2-1: Relationship between current, magnetic field strength and flux
Magnetic
flux
out (8)
3
H co Current in
/1B
V,=-NsA-
1:!.t
•
Figure 2-2: Transformer schematic
*N.1
• Pe
• 'N,,•
I •• • • • • • • • • • • • •
• •'· .
Figure 2-4: 8-H Loop
I
Energy released by
collapsing field
Energy used to
esteblish field
•
Field strength, HField strength, H
co co
Ji. Ji.... ...c c'1) '1)
~ ~
x x
::i ::i
u.. u..
THANK YOU!
For Contact
Email: arslan_engineer61@yahoo.com
LinkedIn: https://pk.linkedin.com/pub/arslan-ahmed-amin-p-e-b-sc-ee-m-sc-ee-m-b-
a/24/853/68

More Related Content

What's hot

Types of starters of 3 phase induction motor
Types of starters of 3 phase induction motorTypes of starters of 3 phase induction motor
Types of starters of 3 phase induction motormpsrekha83
 
Electrical HT/LT Motor protection
Electrical HT/LT Motor protectionElectrical HT/LT Motor protection
Electrical HT/LT Motor protectionNischal Popat
 
Excitation system for alternator
Excitation system for alternatorExcitation system for alternator
Excitation system for alternatorsantu sutradhar
 
Protection Of Generator
Protection Of GeneratorProtection Of Generator
Protection Of GeneratorRahuldey1991
 
Alternator (AC Generator) Synchronizing Panel
Alternator (AC Generator) Synchronizing PanelAlternator (AC Generator) Synchronizing Panel
Alternator (AC Generator) Synchronizing PanelAswin KP
 
Transformer single phase and three phase
Transformer single phase and three phaseTransformer single phase and three phase
Transformer single phase and three phaseDr.Raja Masood Larik
 
Starter of an induction motor
Starter of an induction motor Starter of an induction motor
Starter of an induction motor sbpatel199688
 
Ac motors and their types
Ac motors and their typesAc motors and their types
Ac motors and their typesYasar Hayat
 
three phase induction machine starter
three phase induction machine starterthree phase induction machine starter
three phase induction machine starterAditya More
 
Types of single phase induction motor
Types of single phase induction motorTypes of single phase induction motor
Types of single phase induction motorjigar methaniya
 
Static Relay Presentation
Static Relay PresentationStatic Relay Presentation
Static Relay PresentationRohitkmt
 
3 phase of induction motor 2015 16
3 phase of induction motor 2015 163 phase of induction motor 2015 16
3 phase of induction motor 2015 16Rajputm123
 
Motor protection
Motor protectionMotor protection
Motor protectionH. Kheir
 
Single phase induction motor
Single phase induction motorSingle phase induction motor
Single phase induction motorSirat Mahmood
 
Ac motors
Ac motors Ac motors
Ac motors Amr Seif
 

What's hot (20)

testing of dc machine
testing of dc machinetesting of dc machine
testing of dc machine
 
EXCITATION SYSTEMS
EXCITATION SYSTEMSEXCITATION SYSTEMS
EXCITATION SYSTEMS
 
Types of starters of 3 phase induction motor
Types of starters of 3 phase induction motorTypes of starters of 3 phase induction motor
Types of starters of 3 phase induction motor
 
Electrical HT/LT Motor protection
Electrical HT/LT Motor protectionElectrical HT/LT Motor protection
Electrical HT/LT Motor protection
 
Induction Motor Protection System
Induction Motor Protection SystemInduction Motor Protection System
Induction Motor Protection System
 
Excitation system for alternator
Excitation system for alternatorExcitation system for alternator
Excitation system for alternator
 
Protection Of Generator
Protection Of GeneratorProtection Of Generator
Protection Of Generator
 
Alternator (AC Generator) Synchronizing Panel
Alternator (AC Generator) Synchronizing PanelAlternator (AC Generator) Synchronizing Panel
Alternator (AC Generator) Synchronizing Panel
 
Transformer single phase and three phase
Transformer single phase and three phaseTransformer single phase and three phase
Transformer single phase and three phase
 
Starter of an induction motor
Starter of an induction motor Starter of an induction motor
Starter of an induction motor
 
Ac motors and their types
Ac motors and their typesAc motors and their types
Ac motors and their types
 
three phase induction machine starter
three phase induction machine starterthree phase induction machine starter
three phase induction machine starter
 
induction generator
induction generatorinduction generator
induction generator
 
Types of single phase induction motor
Types of single phase induction motorTypes of single phase induction motor
Types of single phase induction motor
 
Static Relay Presentation
Static Relay PresentationStatic Relay Presentation
Static Relay Presentation
 
3 phase of induction motor 2015 16
3 phase of induction motor 2015 163 phase of induction motor 2015 16
3 phase of induction motor 2015 16
 
Motor protection
Motor protectionMotor protection
Motor protection
 
Single phase induction motor
Single phase induction motorSingle phase induction motor
Single phase induction motor
 
Induction motor 3ph
Induction motor 3phInduction motor 3ph
Induction motor 3ph
 
Ac motors
Ac motors Ac motors
Ac motors
 

Similar to Lecture 2 basics of electric machines

Sprinter Mercedes Electrical Manual red.pdf
Sprinter Mercedes Electrical Manual red.pdfSprinter Mercedes Electrical Manual red.pdf
Sprinter Mercedes Electrical Manual red.pdfssuser7bb5da
 
Ies electrical-engineering-paper-2-2003
Ies electrical-engineering-paper-2-2003Ies electrical-engineering-paper-2-2003
Ies electrical-engineering-paper-2-2003Venugopala Rao P
 
Equivalent circuit of Induction Motor
Equivalent circuit of Induction MotorEquivalent circuit of Induction Motor
Equivalent circuit of Induction MotorCitharthan Durairaj
 
FGW control wiring diagram.pdf
FGW control wiring diagram.pdfFGW control wiring diagram.pdf
FGW control wiring diagram.pdfTommyLi61
 
Induction Motor, three phase induction motor
Induction Motor, three phase induction motorInduction Motor, three phase induction motor
Induction Motor, three phase induction motorAniket Raj
 
Induction motors
Induction motorsInduction motors
Induction motorsUthsoNandy
 
synchronous machine construction
synchronous machine construction synchronous machine construction
synchronous machine construction manish9888
 
UNIT IV design of Electrical Apparatus
UNIT IV design of Electrical ApparatusUNIT IV design of Electrical Apparatus
UNIT IV design of Electrical Apparatusnganesh90
 
Induction machine courses and technology
Induction machine courses and technologyInduction machine courses and technology
Induction machine courses and technologyToufik Bettahar
 
Induction Machine electrical and electronics
Induction Machine electrical and electronicsInduction Machine electrical and electronics
Induction Machine electrical and electronicsprakashpacet
 
Determination of a Three - Phase Induction Machine Parameters
Determination of a Three  - Phase Induction Machine ParametersDetermination of a Three  - Phase Induction Machine Parameters
Determination of a Three - Phase Induction Machine ParametersAli Altahir
 
Induction Machines electrical machines electrical and electronics
Induction Machines electrical machines electrical and electronicsInduction Machines electrical machines electrical and electronics
Induction Machines electrical machines electrical and electronicsprakashpacet
 
196444650 ee-2257-control-system-lab-manual
196444650 ee-2257-control-system-lab-manual196444650 ee-2257-control-system-lab-manual
196444650 ee-2257-control-system-lab-manualhomeworkping3
 
Iskra Low Voltage Switchgear
Iskra Low Voltage SwitchgearIskra Low Voltage Switchgear
Iskra Low Voltage SwitchgearMinka Grdesic
 

Similar to Lecture 2 basics of electric machines (20)

Sprinter Mercedes Electrical Manual red.pdf
Sprinter Mercedes Electrical Manual red.pdfSprinter Mercedes Electrical Manual red.pdf
Sprinter Mercedes Electrical Manual red.pdf
 
Ies electrical-engineering-paper-2-2003
Ies electrical-engineering-paper-2-2003Ies electrical-engineering-paper-2-2003
Ies electrical-engineering-paper-2-2003
 
Unit 4
Unit 4Unit 4
Unit 4
 
EM_II_PPT.pdf
EM_II_PPT.pdfEM_II_PPT.pdf
EM_II_PPT.pdf
 
9134111.ppt
9134111.ppt9134111.ppt
9134111.ppt
 
Equivalent circuit of Induction Motor
Equivalent circuit of Induction MotorEquivalent circuit of Induction Motor
Equivalent circuit of Induction Motor
 
FGW control wiring diagram.pdf
FGW control wiring diagram.pdfFGW control wiring diagram.pdf
FGW control wiring diagram.pdf
 
Induction Motor, three phase induction motor
Induction Motor, three phase induction motorInduction Motor, three phase induction motor
Induction Motor, three phase induction motor
 
Induction motors
Induction motorsInduction motors
Induction motors
 
synchronous machine construction
synchronous machine construction synchronous machine construction
synchronous machine construction
 
UNIT IV design of Electrical Apparatus
UNIT IV design of Electrical ApparatusUNIT IV design of Electrical Apparatus
UNIT IV design of Electrical Apparatus
 
Induction machine courses and technology
Induction machine courses and technologyInduction machine courses and technology
Induction machine courses and technology
 
Induction Machine electrical and electronics
Induction Machine electrical and electronicsInduction Machine electrical and electronics
Induction Machine electrical and electronics
 
Induction motors
Induction motors Induction motors
Induction motors
 
Induction machines
Induction machinesInduction machines
Induction machines
 
Determination of a Three - Phase Induction Machine Parameters
Determination of a Three  - Phase Induction Machine ParametersDetermination of a Three  - Phase Induction Machine Parameters
Determination of a Three - Phase Induction Machine Parameters
 
Experiment 2 AC Machines
Experiment 2 AC MachinesExperiment 2 AC Machines
Experiment 2 AC Machines
 
Induction Machines electrical machines electrical and electronics
Induction Machines electrical machines electrical and electronicsInduction Machines electrical machines electrical and electronics
Induction Machines electrical machines electrical and electronics
 
196444650 ee-2257-control-system-lab-manual
196444650 ee-2257-control-system-lab-manual196444650 ee-2257-control-system-lab-manual
196444650 ee-2257-control-system-lab-manual
 
Iskra Low Voltage Switchgear
Iskra Low Voltage SwitchgearIskra Low Voltage Switchgear
Iskra Low Voltage Switchgear
 

More from Arslan Ahmed Amin

Advanced Anti surge Control System for Turbine Driven Centrifugal Compressors
Advanced Anti surge Control System for Turbine Driven Centrifugal CompressorsAdvanced Anti surge Control System for Turbine Driven Centrifugal Compressors
Advanced Anti surge Control System for Turbine Driven Centrifugal CompressorsArslan Ahmed Amin
 
Programmable Logic Controllers
Programmable Logic ControllersProgrammable Logic Controllers
Programmable Logic ControllersArslan Ahmed Amin
 
Non linear Dynamical Control Systems
Non linear Dynamical Control SystemsNon linear Dynamical Control Systems
Non linear Dynamical Control SystemsArslan Ahmed Amin
 
Lect 4 power system protection
Lect 4  power system protectionLect 4  power system protection
Lect 4 power system protectionArslan Ahmed Amin
 
Lect 3 electric power generation, transmission and distribution
Lect 3  electric power generation, transmission and distributionLect 3  electric power generation, transmission and distribution
Lect 3 electric power generation, transmission and distributionArslan Ahmed Amin
 
Presentation on Thermal Imaging
Presentation on Thermal ImagingPresentation on Thermal Imaging
Presentation on Thermal ImagingArslan Ahmed Amin
 
Lecture 1 Basics of Electric Circuits
Lecture 1 Basics of Electric CircuitsLecture 1 Basics of Electric Circuits
Lecture 1 Basics of Electric CircuitsArslan Ahmed Amin
 

More from Arslan Ahmed Amin (8)

Arslan Academy
Arslan AcademyArslan Academy
Arslan Academy
 
Advanced Anti surge Control System for Turbine Driven Centrifugal Compressors
Advanced Anti surge Control System for Turbine Driven Centrifugal CompressorsAdvanced Anti surge Control System for Turbine Driven Centrifugal Compressors
Advanced Anti surge Control System for Turbine Driven Centrifugal Compressors
 
Programmable Logic Controllers
Programmable Logic ControllersProgrammable Logic Controllers
Programmable Logic Controllers
 
Non linear Dynamical Control Systems
Non linear Dynamical Control SystemsNon linear Dynamical Control Systems
Non linear Dynamical Control Systems
 
Lect 4 power system protection
Lect 4  power system protectionLect 4  power system protection
Lect 4 power system protection
 
Lect 3 electric power generation, transmission and distribution
Lect 3  electric power generation, transmission and distributionLect 3  electric power generation, transmission and distribution
Lect 3 electric power generation, transmission and distribution
 
Presentation on Thermal Imaging
Presentation on Thermal ImagingPresentation on Thermal Imaging
Presentation on Thermal Imaging
 
Lecture 1 Basics of Electric Circuits
Lecture 1 Basics of Electric CircuitsLecture 1 Basics of Electric Circuits
Lecture 1 Basics of Electric Circuits
 

Recently uploaded

Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 

Recently uploaded (20)

Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 

Lecture 2 basics of electric machines

  • 1. Lectures on Electrical and Instrument Engineering Lecture-2 Basics of Electric Machines
  • 7. Rotor Lamination ~ti!~ ~.%......._ .. __.,. ·- -- -% ~ ~!It~
  • 10. Cutaway View of Motor End Bracket (Bearing Housing) Frame (Yoke) Bearing End Bracket (Bearing Housing)
  • 11. Magnetic Lines of Flux Magnet Iron Filings on Paper
  • 12.
  • 13. Electron Flow TowardsYou Causes Clockwise Magnetic Flux (8)Electron Flow Away From You Causes CounterclockwiseMagnetic Flux (G)
  • 14. Air Core j;.. . . Yy <l. • :J .. •:. .:. . . . ~ ... '• .... . .. . DC Voltage
  • 15. 10 Tums5Tums ...~~.: --:::.. /:·:·.:~~---. . : . DC Voltage .f~ ~ Y Yy 4. ·. ·._·_._. ·:_.:::.J:./. . . . ....
  • 16. Time 3 ·• ':..1 -;i' .: -~- :.:7· ···>··· s Ammeter Time 2 ''..l .••• ' ·>.... -:i· .... ·1>- ... ;7' ·"'Ghlrl"*>r..µ- :.I ... -:f •:.l N o~ Ammeter Time 1 Ammeter
  • 17.
  • 18. To Phase A To Phase A Phase A Phase B Phase C
  • 20. A I I I 1+--60°~ I I I I I I I B I I I 1' ~ '1 1E I 360°~: Start 2 3 4 5 6 c Al Al Al A1 ::9:: :8): ::9: ::9::A2 B2~AIC2 ~ 828!;'.1cz i'Ble") S" A2 C1 Bl C1 S .. ·:: 81 I C1 //:: 81 I A2 A2 I A2 I____ ,
  • 21. 2 3600 4 1800 6 1200 8 900 10 720 No. of Poles Synchronous Speed Synchronous speed decreases as the number of poles increases. The following table shows the synchronous speed at 60 Hz for several different pole numbers. Ns = 120F c::;> Ns = 120 x 60 c::;> Ns = 3600 RPM p 2
  • 22.
  • 23. Rotor
  • 24. % Slip= 1.4% % Slip= 1800- 1775 x 100 1800 For example, a four-pole motor operated at 60 Hz has a synchronous speed (Ns) of 1800 RPM. If its rotor speed (NR) at full load is 1775 RPM, then its full load slip is 1.4°/o.
  • 25. / SIEMENS ' 0 0 NEMA PREMIUM EFFICIENT ORD.NO. 1 LE2321-2CB21-2AA3 ~o.l TYPE 80100 FRAME 286T H.P. 30.00 ~f~¥1§',1' 1.15 I 3 PH AMPS 35.0 VOLTS 460 R.P.M. 1775 HERTZ 60 "'DUTY CONT 400CAMB. I cc;~ I ., CLASS F I "'"" I B I K.V.A. G I~'.~;. I 93.6 ~ INSl.ll oi::SIGN OOOE .... SH. END 50BC03JPP3 OPP (NO I 50VC03JPP3 r;- BAG. ~..... LO 0 Made in Mexico by SIEMENS @ c'il~s ( E @ 0
  • 26. 1S0°= 1S0°= 1so0- 1so0- =}15° 1S0°- 160°- 160°= ==}10° 160°= 140•= 140•= 140•= 140•= 120°= 120°= ~}10° 120•= 120•= 100°- =}s• 100°- 100°- 105° 100°- 125° so·= so· so·= so- so·= so·= so·= so·= so·- 60°- 40°= 40°= 40•= 40•= 20°- 20°- 20·= 20·= o•= o·= o•= o•= Class A Class B Class F Class H 60° CRise so- c Rise 105° C Rise 125° CRise 5° CHot Spot 10° C Hot Spot 1o- c Hot Spot 15° CHot Spot
  • 27. % Synchronous Speed 0 0 10 20 30 40 50 60 70 80 90 100 / ......- -, / ' 225 ., 200 ::> e- 175~ -0 "' 1500_, ..L :; 125u, 'if. 100 75 50 25
  • 28. % Synchronous Speed 0 0 10 20 30 40 50 60 70 80 90 100 Constant Torque Load 2 / r: r'. v 'I , Constant Torque Load 1 / <>'),. vZI / / fk <foo'/ '.rYo.-S ~010."9IC ).0 . !()9 v.,.,.,_ ?i-.;p, la1'a ~ZI J .+ .~ 250 225 "' 200 ;:> ET 175{< "P "' 1500_, ':; 125u. ~0 100 75 50 25
  • 29. 2;g = 3.8 V/Hz ~g = 3.8 V/Hz 30 60060 460 230 6Q = 7.67 V/Hz 30 = 7.67V/Hz 30 Frequency 0 ss 230 g 460
  • 30. 60 5040 30 Frequency- Hz o~~~~~~~~~~~~~~~ 0 10 20 30 40 50 60 70 80 90 100 % Synchronous Speed 202 10 225 200 ·.,•. 175 ' "'=> 150 .';. B" .-... . ' .,i!2 125"O "'0 ,CJ 100..!. :; LL 75 ~0 50 25
  • 31. L1 L2 L3 I I s I T 1 3 Tm;:u 01 r Resistivetorque 1 3 5 • N a a N1Nn KM1 ·-·-· ..... 2 4 6 ..,., 1 3 5 F2 lf(Tr) 2 4 6 ,, u v. w N N1 Nn M 3-
  • 32. Star-deltastarting 2 4 6 KM1 2 S 4 1 3 5 KM3 S 2 4 1 3 5 u
  • 33. TST2 T7 Part winding starting T1 L1 L2 L3 J J J KM 1 _ _ _ _ _ _ ___
  • 35. PtJnclpleofcountercvrr61UbtaJdngIn art asynch/Onousslip rlng machine Breaking 0 wvu L3L2L1 Opefation ''•''' wv wv L3L2 u u L1
  • 36. I lft&M Principleof direct currMt btal<JngIn an asyrtehmnous machine M 30 wvu L3 ILI
  • 38. .... ' ' " Current step 1 with resistance Nn N Current step 2 -- ............ .... .... -- Direct current 0 1 4 Id/In 6
  • 39. Resistance stator starting Nn N Tr Torque step 2 Torque step 1 __...... -- '// '/ Direct torque/ / / 0.5 1 1.5 T Torque
  • 40. Nn N ' ' Autotransformer starting 1 ---- ,.,,,,, Direct torque , »" Step 2 ,. ------,.1.5 ~ ------Step 1 T 10050 N0 ...... ...... --------------------~ -- ...... ' Current step 2 ' '' Torque step 1 ---- - ---- - .._ I direct 4 Id/In 6
  • 41. Slip ring motor starting KM1 F.2 L1 L2 l3 R3 AIB/C 1 3 5 :~ - ., 3 J ~2 4 6 KM13 I R2 AIB/C 2 4 6 1 3 5 - J 2 4 6 - .~J 3 J ~I 3 5 KM12 II I I R1NB/C 2 4 6 2 4 6 - u I< -v {(3~ L J ~ - - - 1 3 - - Km11 I w M 2 4 6 - QI
  • 42. Multiple motor starting with a soft M2 3 ""' - " "' 0 - " "' N ~ .. t 17i . ; Mall!tlr 1 M1 3 "' 5 ; i • K.M2t '>---,,..-'- KM22 '>--""'<--' N ~ .. -03 (1) -0 I><ALrr ~ -1 Ml "'l ~A' ~All KAT If KAl.lT., 1 N • e ~~ z "' e, I ';' ~ - g ! :; ~ .. I0 Q - M "' (2) -Tl .. ' ~ 2 I 2 N • .. , ( ) -1 2 ~ '" I '' '--- " -··......-... -- ~~ ~ M I M ~ I ~ ~ g .......... ' ·:::~ - M "' - " "' -J "J "' - " "' - M "'' ' ' '
  • 43. Working diagram of a frequency converter u v w Filter t .Fig. 8 ()I Rectifier
  • 44. Single-phasemotor with auxiliary phase L1 L2 u vK Main winding L Quadratic winding t Fi~. 10 optional centrifugal clutch
  • 45. Single-phase motor with starting capacitor L1 L2 v Main winding f rsr:': • • .rig. '1 J L u Starting capacitor K optional centrifugal clutch Quadratic winding
  • 46. Rings magnetic field Winding magnetic field Stator Shaded pole winding motort F. i»1.f[. .J - L2L1 vu
  • 47. Principle of countercurrent braking Breaking M wv I I llI L3L2 I II I lI u L1 Operation w L3 M v L2 u L1
  • 48. Breaking v Principle of countercurrent braking in an asynchronous slip ring machine w v uw w L3L2L1 uw L3 Operation v v L2L1 '''''d u u
  • 49. Principle of directcurrent brakingin an asynchronous machine M 30 v w L3L2 u L1
  • 52. Equivalent diagram of an asynchronous motor •••QI Magnetic Iron Active flux losses, power inductance I I lof I I I I Energy losses Leakage inductance Stator Rotor ......
  • 53. Losses in a AC motor Rotor Stator iron losses
  • 55. Windings are the motor parts most vulnerable to electrical faults and operating incidents t Fi'g.37 Stator win
  • 56. Lifetime of motor depending on operating t Pig. 39 1, 15xln Current T+30° Temperature 0%+-~~~~~~~~~~~~~~---i In T 1, txtn T+20° 1,05xln T+10° ~75%··t-~-"<::--~~~~~~~~~~~--; E ~50%t-~~~--'""'"~~~~~~~~~---J _J
  • 57. Example of a voltage surget Fig. 40 T v
  • 58. 3 phase unbalanced voltagest Fig. 42 v
  • 59. Motor derating according to unbalanced voltage in its power supply 5%4%2% 3%1 % 0,7 +---~---~--~---~----+-- 0 % ' Voltage ; unbalance 1 r·.::..:.:·. ·:..:.:.·..:.:.:·.·.:.:.·.·::..:·........ .......... . ............... . ·. '' ' ' '' Derating factor 0,8 0,9
  • 60. Example of a voltage drop and a short voltage break 1.Fig. 45 ------..__ ---- ~ _,_,_ -, t - --~-·--- - ------ -·- v
  • 61. Starting time based on the ratio of starting current to rated current 15 s107543 1 1 t 5 0 9 <, Q ....r-, 7 ...... -, 6 <, 5 I'-..... ..... .... 4 r.... ~ .... ', '3 Id/In 20
  • 62. Summary of possible faults in a motor with their causes and effects •u•ac• Faults Causes Effects Effects on the motor Short circuit • Phase-to-phase, • Current surge • Windings destroyed phase-to-ground . • Electrodynamic winding to winding stress on conductors Voltage surge ·Lightning - Dielectric breakdown • Windings destroyed by • Electrostatic in windings loss of insulation discharge • Disconnection of a load Unbalanced voltage • Phase opening • Decrease of the ·Overheating(•) • Single·phase load available torque unstream of motor ·Increased losses Voltage drop • Instability in mains • Decrease of • Overheating(•) and dip voltage the available torque • Connection of ·Increased losses high loads Harmonics • Mains supply pollution • Decrease ot • Overheating(•) by non linear loads the available torque • lncreased losses Starting too long • Too high a resistant • Increase in • Overheating(•) torque starting time • vcrtaoe drop Lockina • Mechanical oroblem • Overcurrent • Overheatina(•l Overload • Increase in resistant • Higher current ·Overheating (•) torque consumption • vouace drap ("') And in the short or long run, depending on the seriousness and/or frequency of the fault, the windings short-circuit and are destroyed.
  • 63. Overload relay tripping curves 7.2 Ir I/Ir 1.051r 1.51r 1.2 Ir Class 30 11@}1 10 20 30 t (s)
  • 64. Thermalmagnetic circuit breaker operating zones lcs lcuIm linstIr! 1.ocl 1ri 1.2 Ir t(s) t Flg. 6.
  • 65. Wound Rotor Squirrel Cage ShuntSeries Compound Stepper Reluctance Induction AsynchronousSynchronousBrushed Brushless DC motors AC motors Motors
  • 68. ss
  • 69. LOADvT ,_ -- a) Separately Excited DCmotor:
  • 72. A Rl'Vll£T URE SHUNT FIE• o LONG SERIES FIELDJNPIJ"T VOLTAO# Colllpound Motor
  • 75. T...ICompound Connect.ed DC Mot.or ShunL Field Series It Field r. + 1--11...~ v- Constant T 1.-- ... - It - Constant ... Series Connect.ed DC Motor T + !t V =Constant. T It ... !t co V- Constant T ... Tt Shunt Connected DC Motor + vf +
  • 77.
  • 78.
  • 79. de motors Feed uack sye""t:em arid gearl:;Jox Pot Control ci rcultry RC servos
  • 82.
  • 84. r-1 . .. -·. .: -,. :n1 .:1 - n ""f" ~ n_t ,- ~~ I I v ..; . #6. ,. '. ·~ -, ... .. - .f - ..,.... - - ' ,, ' ..., ~ .. - - L3 ---i L2 ---! l1 --ii
  • 87. LI~ o---------__i ex I l::H NAL RESISTORS Lll'E
  • 88.
  • 89. HP = RPM x TORQUE I 5252
  • 90. • Input Power • Single Phase - Watts= Volts X Amps X p.f. • Three Phase - Watts= Avg Volts X Avg Amps X p.f. X 1.74 Watt's Law
  • 91. • Is a 1 Hp l-phase motor driving a fan overloaded? - Voltage = 123 volts - Current = 9 amps - p.f. = 78% • Watts= Volts X Amps X p.f. Watts= 123 volts X 9 amps X 0.78 = 863.5 Watts 864 Watts I 746 Watts/Hp= 1.16 Hp • Is the motor overloaded? Example
  • 92. • We measured Input • Motors are rated as Output • Difference? - Efficiency • If the motor is 75% efficient, is it overloaded? • Eff = Output I Input • Output = Eff X Input 0.75 X 1.16 Hp= 0.87 Hp • The motor is NOT overloaded Electrical = Input
  • 93. • Is this 10 Hp, 3-phase motor overloaded? - Voltages= 455, 458, and 461 volts - Currents= 14.1, 14.0 and 13.9 amps - P.f. = 82% • Watts= Voltsavg X Ampsavg X p.f. X 1.74 Watts= 458v X 14a X 0.82 X 1.74 = 9148.6 Watts 9148.6 Watts I 746 Watts/Hp= 12.26Hp • Is the motor overloaded? Example #2
  • 94. Hp Output? • We measured Input • Motor is rated as Output • Difference? - Efficiency • If the motor is 90% efficient, is it overloaded? • Eff = Output I Input • Output = Eff X Input 0.90 X 12.26 Hp= 11.0 Hp • The motor IS overloaded! • How bad is the overload? Example #2
  • 95. SPEED (% OF SYNCHRONOUS SPEED) 1000 rDESIGN LETIER '/ D --- r---... -.... /I ~ . <, I <, / /(" ...... ~ , / .....:'.'. ......~ - ,,,. fr--..... A ,,..- / ~ I I I - NEMA CLASSIFICATION 300 • 3 Phase Induction ~ w Motors :::> 0 a: 0 200 • NEMA Torque- I- 0 <( Speed Design 0 ...J •...J Types ...J ir LL 100 - A,B,C,D,E 0 cw :::> 0 a: 0 r- NEMA 3 Phase Motors
  • 96. • Today's "Standard" 3- Phase Motor • Good Starting Torque - In-rush amps 4-6 times full load amps - Good breakdown- torque - Medium Slip Design Type B
  • 97. • Higher in-rush current (5-8 times full load amps) • Good breakdown torque • The "old" Standard • Higher starting torque than "B". Design Type A
  • 98. • CommonOEM equipment on reciprocating pumps, compressors and other "hard starting" loads. • High starting torque • Moderate starting current (5-8 times FLA) • Moderate breakdown torque Design Type C
  • 99. Design Type D • Common on O/o applications with RATED significant loading TORQUE D changes as a machine 300 operates. 200 • Impact Loads - Punch Presses, Metal 100 Shears, etc. - Pump Jacks 0 0 20 40 60 80 10 0/oRATED SPEED
  • 100. 0 20 40 60 80 100 % RATED SPEED 0 100 "lo RATED 200 TORQUE JOO I I Switching - Stan Ing PJ'nl - and Running --Windin~-j ... / I=-.. Runn'"2.,f Windio LINE •••••• •• •• • •• •• •••••• CENTRIFUGAL SWITCH STARTING WINDING RUNNING WINDING • Starting winding in parallel with Running winding • Switch operates at 70-80% of full speed. • Centrifugal Switch - Sticks Open - Sticks Shut Split Phase Motor
  • 101. %RATED TORQUE 100 200 LINE ...... / v _,... ...,,.., ---~ CAPACITOR WINDING •••••• •• •• • •• •• •••••• 10020 40 60 80 O/o RATED SPEED 0 0 CAPACITOR IWINDING ·.----·-· ···-·-·-· • Capacitor in "Capacitor Winding" - Provides a "phase shift" for starting. - Optimizes running characteristics. • No centrifugal switch PermanentSplit Capacitor(PSC)
  • 102. 10020 40 60 60 % RATED SPEED 0 0 100 % RATED TOROUE200 300 400 ' I ,..,.,. Switching Maln and auxlUary/ ' ~Olnt - wiidings I 'Main ,/I . Winding , RUNNING WINDING STARTING WINDING c·ENTRIFUGA SWITCH I LINE • • •• •• •••••• STARTING CAPACITO~ • Very high starting torque. • Very high starting current. • Common on compressors and other hard starting equipment. CapacitorStartMotor
  • 103. 10020 40 60 80 'l'o_RATED_SPEED STARTING WINDING 0 0 100 % 200 RATED TORQUE 300 Stanlng and I -Running W1n~in1g -"Switching' Point Running ... Winding ,. . RUNNIN!3 WINDING •••••• •• • • • •• •• •••••• LINE RUNNING ~CAPACITOR STARTING CAPACITOR" CENTRIFUGAL SWITCH • Larger single phase motors up to 10 Hp. • Good starting torque (less than cap start) with lower starting current. • Higher cost than cap start. CapacitorStart-RunMotor
  • 104. 0 0 20 40 60 90 100 ~~~~~~~~~~~~~~~~~~~·%RATEDSPEEO.~~~· , % RATED ISO TORQUE I I / ' _............... I .._ =·' - SM1chir19 I,.' Point • " lJ'/ ' , Running.. W1nd~g '100 ROTOR SHAPE • Special design for "constant speed" at rated horsepower and below. • Used where maintaining speed is critical when the load changes. Synchronous Motor
  • 105. 0 0 20 40 60 80 100 % RATED SPEED 100 % RATED 200 TORQUE JOO 400 ' . r-, ' I -, ,.,. DC -<, " ~ -, 60 Hz AC r-, -, -.......... <, ~ LINE • Very high starting torque. • Higher torque on DC than AC (battery operated tools) • The higher the rpm, the lower the torque. STATOR POLE r==~=t:: Universal Motor
  • 106. Nn·~----------- Currentstep 2 Cl~fllfl&p I wtttt"''151J:nc• M 3- ldllk1 Dint~ curte1l1 6 -- -- --u 2 4 6 F2 5 6 KM11 4 35 2 4 KM1 1 3 01 L1 L2 L3 1 3 I s
  • 108. Insulation resistance temperaturet Fig. 38 Temperature so •c60 -c40 •c20 -c 0,1+-.._..._..._..._-+-_.__.__.__.._-t-_..__.__.__._-+-_.__.__._~-1 o•c
  • 110. Fig. 2. Series motor with inductively compensated winding Armature Compensation winding I-phase supply Main field winding
  • 111. Fig. (3-a). Schematic diagram of conductively coupled ac series motor. Annaturei.z, ac supply Compensation winding 1-<I> I,zse I. z, Interpole Series field
  • 112. <I> Fig.(3-b). Phasor diagram uz; i», uz; laRa laXc laZt laRe laX1 laR1
  • 113. Fig.(l)four phase 4/2 VR stepper motor
  • 114. N5 =stator poles (teeth)Where a = step angle ni, = number of stator phases or stacks N; = number of rotor teeth (or rotor poles) The step angle is also expressed as Where 360 The magnitude of step angle for any YR and PM stepper motor is given by
  • 115. Fig. (2): four- phase, 8/6 VR stepper motor. (0) ."'- ~ I I (a)
  • 116. Fig .5 2-phase 4/2-pole PM stepper motor (d) . ' s •a .,. la) •,,
  • 117.
  • 118. (b)Phaa« dJ~ram ... Sqwret cege rotor (a) SchemaUe repre.MntatJon I v
  • 119. (b) ~allent pole wtth ahldlng band ,____ Salient pole --Shading bn Squirrel cageroa (1)4 ·pole ah~ pole constNctlon -- Stator wind'"Q. __ ~~--- .......- Shad.n; bet.t
  • 120. :: X1M=• ==80% i----&ns---1 HIGH --t Sai:a1.i-- llGH o:; Xt••ll Time Slgnal Duty _ In High State X 1 OO Cycle - Period of Cycle ~o.s.-i • Pulse Width Modulation
  • 122. OUTPUT= INPUT X GAIN GAIN PLANTINPUT .. . Open loop control system
  • 123. OUTPUT = (INPUT - OUTPUT) X GAIN 1----------+t PLANTGAIN Closed loop control system
  • 125. OUTPUT = (INPUT - OUTPUT) X (P GAIN + I GAIN + D GAIN) SUM~ PLANT '------FEEDBACK------' D GAIN I GAIN P GAIN SUM~ PID control system diagram
  • 126. 1 43 TIme 20 6 0.4 ··-·······-····-···------·-·--· -· ·---11t - Command 0.2 • • • pGlln:: 2. IG.aln = 0.1 ••• pGaln = 2. IG.aln = O.OS - pGlln = 2, IG.aln = 0.02 o -···-·-···.:·---·------- ... • pG.in = 1, tGaln = 0.02 , • , i i I 4 -- ··-----·-- ...., - r·- 1 ' • I t i i 1 .--"""""i'!!'~-~ .-..~-~--.,--"'!lIt A • • ' • ,- I 0.8 - . , # -r-········--~----··->-·--·1 ···-··-+ .. , i ., • 1.2 • Set point • Rise time • Overshoot • Settling time • Peak time • Overdamped • Underdamped Sample PID output chart
  • 127. FIGURE 1.3. A linear DC motor. R fr I l ® ® ® ® e e ® ® ® ® ® ® -. F vs + l magnetic e e ® ® ® e 'e ® ® ® e l e @......__ A y~-® e ® e ® e e B=-Bi xA x z (out of page)
  • 128. FIGlJRE 1.2. Only the component B.l. of the magnetic field which is perpendic- ular to the wire produces a force on the current. (b)(a) N -f_ 8 ~..__- ~-----s ~ ~-- ~-- .l ~ ~ BJ.~ ~-- _e e :<J-- B ~ ~,_____- ~..__- ~>---- -....J .....____ - ---- .___ B
  • 129. FIGURE 1.2. Only the component BJ. of the magnetic field which is perpendic- ular to the wire produces a force on the current. (b)(a) B -e l <I <I <I <I s N <I <I <I or, in scalar terms, Fmaguetic = iPBsin(O) = i£BJ_. Again, BJ.. 6 Bsin(O) is ... the component of B perpendicular to the wire.1 __, - __, Fmagnetic = if. X B
  • 130. FIGURE 1.4. Soft iron cylindrical core placed inside a hollowed out permanent magnet to produce a radial magnetic field in the air gap. air gap s B=-Br B=Br N
  • 131. FIGURE 1.27. A multiloop armature for a DC rnotor.
  • 132. A VOLTAGE IS INDUCED IN THE STATIONARYCONDUCTOR WHEN THE MAGNETIC FIELD MOVES ACROSS IT. REVERSING THE DIRECTIONOF MOVEMENT OF THE MAGNETIC FIELD WILL CAUSETHE DIRECTION OF THE INDUCED VOLTAGEAND RESULTING CURRENT FLOWTO REVERSE. FlXED-- COHDUCTOR DIRECTIOll OF MOTION s THE PHYSICS OF GENERATOR ACTION
  • 134. Slotor lie1d (slotk>nory) Brush . ' . ' ' ' ''' ..' ''' .'..' '.'' '.'.'''.'.';','' Exciter Oe!d rhcoslal • • .'''.'I, ''' Field excHolion Jn,
  • 136. Phase 1 Q) g' + ..... 0 > 0 l-'---t---t-+---'t--1-1-'r---+-.....,_i-+-_-+-+ -:J c, ~ ::i 0 - Phase 2
  • 137. 0 VOLTS DEGREES Of ROTATIOH MAXIMUM VOLTS0 VOLJS + MAXIMUM /OLIS D'
  • 138. 0 e CY(:One Cycle I N 4 ~ ' 6 -5 • . ~ 6/ /'z £ T / 3 5~ ,, J 1:1 1 " 7~ I/ ~ . ""j "' I ll 1t I1 2: - t- ~I' 1 'I I/ ,~ I v1: 2• a'.../ / 8 Q I! I/ 21 I 21 11. I/ 9 _,. - 1;:.. t <; 10 _/ 10 s . - len
  • 139. -1.0 .__ _, 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 KILOWATTS PER UNIT 1 ~E~~-:.._____ ARMATU~E CORE -0.8 111 END IRON HEATING llMfTATION - :--------·c THRESHOLD LIMIT ARMATURE VlNOING HEATING LIMITATION +0.4 oi------ +0.2 ,__ _ o z +0.6 0 C) ~ FIELD 'lllNOING I l---H_EA_,r.,.u~•A_IT_A_r1_o_N__ RATEO PF +0.8 LAGGING ---i / +1.0 -------------- a: LU ~t: a.z LU :::> >a: i= IJJ oa. <LU a::
  • 140. 2) eo 7!!1 100 ·~ 1~0 ·~ zoo 22' aso m 'IELO AMnAES 0 0. 0 Q.2 0.. 0 6t00w1. ·"' I I / VNOLOAD SATURATION 2 () ) / (('-~ •I ~"I 0 ' . "'1 UN¥/ o/ I/ Got.S GAP i: I j ' ,,~/ ~1 IJI I ti. I I, • !4 .1 IM"WANC / O ) p; J ~ , IO>• ~~/jo .!> I C) I / :/It 0 I O.!I PV ~ ht in~92.u.tl"tltES Vl!;ltO ,., ILAGl. ' TUltATlONA~- I ,I I I I RATE:O AAM. AAT(.() fTf ti.A. CURR""" 0 I I' v SATUMTIOHA~ AAT£0.t.RMATUft I/ curitur I I J 1.3
  • 141. (o) BRUSf-. ...ESS 1Nl '-'O'J1 PLOT EXCITER VT,..,..,,.... Power and Ve toge Sensln~ Main Ce"erotor . - ·= , '.. - . . ' -· ... e,c. - Exelli:• }11.<Je Pfole •
  • 142. (b) 8RUSHLESS I.' TH p· _QT EXCITER Power Voltage ~~v Sensing Only Moln GE:neroto. !>iooe ~lote ,..::::J::==JI~ 11----1
  • 143. Stvtsh g Only (o) . CONVENllONAl .. ... ~~-;:~:..~·-.....A , "I ! . . . d.c. Exe tor EXCITERS
  • 144. St 1!lny «1d Powcir (b) STATIC ~ k:J~--------'L J I I ,------,I AV~ I Cen£rctor
  • 146.
  • 147. +
  • 148. kVAr kW Cos Phi Power Factor kVA
  • 149. Both equations are multiplied by .../3 (1.732) for a 3 phase machine. Volts x AmpereskVA = _..;....__ 1000 kVA (kilo Volt Amperes), are calculated by the formula:- Volts x Amperes x Power Factor kW= 1000 Kilowatts are calculated by the formula: -
  • 150. The formula for calculating the Power Factor is:- kilowatts pf= kVA The Power Factor (pf), is a measure of wasted current, which is a product of inductive loads such as motors, transformers, (magnetic circuits), and some forms of lighting. Power Factor
  • 151. Main Rotor Windings (disconnected from rectifier Assembly) Multimeter measuring DC Volts-- Multimeter on 10 Amp DC scale 6V DC
  • 152. Multimeter Set to Ohms (analogue) or semiconductor (digital) + Fig B Fig A 1 _ Multimeter ~ - Set to Ohms :;- Diode (analogue) under •or semiconductor test (digital) .. + [:@ + Diode under test ~
  • 153. 20 -40 Watt/- 1 (Automobile) Light bulb ~ + Diode -- 12VDC under l'. - Battery test • - § + -
  • 154. Insulation Tester i- Earth (Ground) v Stationary I Phase/Neutral Output Terminals
  • 155. A= Earth (ground) or chassis of Generator B = Insulation between conductors & earth C = Copper conductors, (windings) P = Path of Leakage current through Insulation
  • 156. 1 Minute reading P.I. = 10 Minute reading The P.I. index is obtained by the formulae:- Readings are taken (in Megohms) following a 1 minute and 10 minute time interval: - A special motorised insulation tester is required, which can maintain a test voltage of 1 - 2.5kV, (medium voltages), or 5kV, (high voltage), for a period of 10 minutes. The P.I. test is used as a guide to the dryness, cleanliness and safety of the winding insulation system. Polarisation Index Test (P.I.)
  • 157. The resultant ratio is called the P.I. index, and should be a minimum of 2 at 20°C. A P.I. index below 1.5 suggests the windings are wet, dirty or faulty, and should be cleaned, dried, and refurbished as necessary. 1 Minute reading P.I. = 10 Minute reading The P.I. index is obtained by the formulae:- Readings are taken (in Megohms) following a 1 minute and 10 minute time interval: - A special motorised insulation tester is required, which can maintain a test voltage of 1 - 2.5kV, (medium voltages), or 5kV, (high voltage), for a period of 10 minutes. The P.I. test is used as a guide to the dryness, cleanliness and safety of the winding insulation system. Polarisation Index Test (P.I.)
  • 163.
  • 166. U~,.._~ .....--•---....,_~~~~ v~+-+-+-___..---.........~-..~~ w~+-+-+-----·---....1---.-4-.....~ LAMPS ROTATE BRIGHT/DIM U~~------..~~- v--~------.~_..- w....+-----·---..~-+-~ U~~------..~~- v--~------.~--~w~..........---..~......i~ LAMPS BRIGHTLAMPS DIM
  • 167. P1 P1 ........___.......,._ - .. -·· ... - -·-·-·-·-·-·- -·- -· 0 'C' Core Laminated core P2 Primary co7uctor P2 - - .... -·-·-·-·- ,.--'--- ...... Secondary Wincf.Jgs s 1 52 TYPICAL DROOP Quadrature droop equipment
  • 168. Main Terminals ws TYPICAL DROOP C/T ON A 12 WIRE MACHINE p
  • 169. Secondary Substation ... 24/12kV ~~~~~~~~--' CDable grid - Compact Substation - Overhead line Polemount Transformer Distribution Transformers Power Plant Typically 24 kV Step-down Power Transformer 420 kV Power Transformers ' I ~~ Step-up Q :,..I-...:CJ~~
  • 170. Recommended tiahtenina toraue/Nm Bolt size Property Class Bolt 8.8 Nut 8 MS 3,0 M6 5,5 M8 15,0 M10 30,0 M12 60,0 M16 120,0 Tightening torque
  • 171. z I I - I I ' ' ~ I I 'It 12 I ~~ I Zo I u,. u, ZL i I I I '~ ,- - . ! - A simple equivalent diagram for the transformer can be drawn based on two measurements on the transformer, one in no load and one in short-circuited condition. EQUIVALENT DIAGRAM
  • 175. Figure 10·1 2U 0 2N 0 2V 0 IUJV 00 2W 0 JW 0 Three phase transformer 1 U, 1 V, 1W, 1 N for the high voltage side and 2U, 2V, 2W, 2N for the low voltage side. Example of a Dyn connected lransformer:
  • 176. 9952IAADEbyABB Serial number Prod. year - Phase Distribution Transformer Rated Power kVA Cooling Conn. Temp. Class Frequency Hz lnsul Level % Total Mass kg Impedance l'tpe of Oil 17 Pos. HV HV LV v A v A v A All
  • 177. Av Kva Cooling Hz Environment Cl. Climate Cl. Kv Are Cl. % lnsul. Sys. Temp "C Kg Max. Wind. Temp •c HV LV v A v Rated power (Onan) Frequency Connection Symbol Insulation levels Impedance Total Mass - phase Prod. year - Dry - Type Transformer I Serial numb. lndu=z. All
  • 178. Figure 6 - Separating wallsbetween transformers Minimum fire resistance 60 min for the separating wall (El 60) !EC 2267102 H ~ Ht (with H1 > H2) L z 82 (with 82 > 81)
  • 179. 0 O row 1hrough b ush1119 (Oil flood I ype)
  • 180. Conditions Protection Philosophy Internal Winding Phase-Phase, Differential 187T), overcurrent 151. 51N) Phase-Ground faults Restricted ground fault protection {87RGF) Winding inter-turn Differential {87T), Buchholz relay, faults Core insulation failure. Differential {87T), Buchholz relay. shorted laminations suddenpressure relay Tank faults Differential {87T), Buchholz relay and tank-ground protection Overfluxing Volts/Hz 124) External Overloads Thermal {49) Overvoltage Overvoltage 159) Overfluxing Volts/Hz 124} Externo I system short Time overcurrent 151, 51G). circuits Instantaneous overcurrent 150. 50Gl
  • 181. o 10 ~ ~ ~ m w ~moo m Distance of fault from neutral !percentage of winding) Ground faultcurrent forimpedoncegrounded neutral transformer forfaults ot different % of the winding. IF IOC 90 E- sc" e E e- ~ " " 700 v E:: "' "?~ 6C ti.., "'c0. " SC"'0 .. ~ ~ "'- .. 4()0"' "'0 "'..c0 a. 3C~ 'c ....- " "'~ c 20"'·- ml-a.. "' -
  • 182. Functions Typicol Product Order Code Typical Functions 745-W2-P5-G5-Hl-T T35-NOO-HCH-F8N-H6P-MXX-PXX-UXX-WXX T60-NOO-HCH-F8N-H6P-MXX-PXX-UXX-WXX + Harsh Environment Option 745-W2-P5-G5-Hl-T-H T35-NOO-ACH-F8N-H6P-MXX-PXX-UXX-WXX T60-NOO-ACH-F8N-H6P-MXX-PXX-UXX-WXX + Voltage and Power metering 745-W2-P5-G5-Hl-T T35-NOO-HCH-F8L-H6P-M8N-PXX-UXX-WXX T60-NOO-HCH-F8l-H6P-M8N-PXX-UXX-WXX +Directional overcurrent T60-NOO-HCH-F8L-H6P-M8N-PXX-UXX-WXX lockout Stondalone HEA61-A-RU-220-X2 Integrated T35-NOO-HPH-F8N-H6P-MXX-P4l-UXX-WXX T60-NOO-HPH-F8N-H6P-MXX-P4l-UXX-WXX Directional overcurrent Voltageand Power metering 67 v.s 87T Differential 86 Lockout ouxiliory 50/51 OVercurrentand short circuit SOG Ground fault Additional FunctionsTypical Functions T 3Y 52 1 -• MV. M,V, 52 ~ ' ' ' JV Transformers 750kVA and above, MV Windings
  • 183. Functions Typical Product Order Code Typical Functions 745-W3-PS-GS-Hl-T T35-NOO-HCH-F8L-H6P-M8N-PXX-UXX-WXX T60-NOO-HCH-F8L-H6P-M8N-PXX-UXX-WXX + Harsh Environment Option 745-W3-PS-GS-Hl-T-H T35-NOO-ACH-F8L-H6P-MBN-PXX-UXX-WXX T60-NOO-ACH-F8L-H6P-M8N-PXX-UXX-WXX +Voltage and Power metering 745-W3-PS-GS-Hl-T T35-NOO-HCH-F8L-H6P-M8N-PXX-UXX-WXX T60-NOO-HCH-F8L-H6P-M8N-PXX-UXX-WXX +Directional avercurrent T60-NOO-HCH-F8L-H6P-M8N-PXX-UXX-WXX Lockout Standalone HEA61-A-RU-220-X2 Integrated T35-NOO-HPH-FBL-H6P-MBN -P4l-UXX-WXX T60-NOO-HPH-F8L-H6P-MBN-P4L-UXX-WXX Directional avercurrent Voltage and Power metering 67 V.S Additional Functions Differential Lockout auxiliary Overcurrent and short circuit (three windingsl Neutral9round fault (three windings! 87T 86 50/51 SON 3Y 52 3Y 52 r-1.v. 1 H.V. or M.V•.""-------- 52 3Y Typical FunctionsPower Transformers, Dual MV Secondary Windings
  • 184. Functions Typical Product Order Code Typical Functions T60-NOO-HCH-F8N-H6P-MXX-PXX-UXX-WXX TI5-NOO-HCH-F8N-H6P-MXX-PXX-UXX-WXX 745-WZ-PS-GS-Hl-T + Voltage and Power metering T60-NOO-HCH-F8L-H6P-M8N-PXX-UXX-WXX TI5-NOO-HCH-F8L-H6P-M8N-PXX-UXX-WXX 745-WZ-P5-G5-Hl-T + Additional Functions T60-NOO-HCH-F8L-H6P-M8N-PXX-UXX-WXX (87G, 67. 24. 59) 745-WZ-PS-GS-Hl-R-T lockout Standalone HEA61-A-RU-220-XZ Integrated T35-NOO-HPH-F8N-H6P-MXX-P4L-UXX-WXX T60-NOO-HPH-F8N-H6P-MXX-P4L-UXX-WXX 50G Restricted Ground Fault Directional overcurrent Volts per Hertz Overvoltoge Voltage and Power metering 87RGF 67 24 59 V.S Differential lockout auxiliary Overcurrent and short circuit (both windings! Ground fault 87T 86 50/51 Additional FunctionsTypical Functions 52 -• H,V,,.., _ or M.11. H.V. 52 lY .t----------, T Power Transformers, HV Windings
  • 185. Functions Typical Product Order Code Typical Functions T60-NOO-HCH-F8l-H6P-M8N-PXX-UXX-WXX T35-NOO-HCH-F8l-H6P-M8N-PXX-UXX-WXX +Voltage and Power metering T60-NOO-HCH-F8l-H6P-M8N-PXX-UXX-WXX T35-NOO-HCH-F8l-H6P-M8N-PXX-UXX-WXX +Additional Functions T60-NOO-HCH-F8l-H6P-M8N-PXX-UXX-WXX Lockout Standalone HEA61-A-RU-220-X2 Integrated T35-NOO-HPH-F8l-H6P-M8N-P4l-UXX-WXX T60-NOO-HPH-F8l-H6P-M8N-P4l-UXX-WXX Directional overcurrent Volts per Hertz OVervoltoge Voltage and Power metering 67 24 59 v.s 87RGF Restricted Ground Fault Additional Functions .2Y_ 52 52 _l.Y_ I I I I ~f---------.,I I I H.V l a • J ~,,,,,, '87 ' I 2 ..'!_~..~~/- H.V r • ,,-, ,,-, ,--,,,-, ,,-, • ( v l s 67 86 l 59 )or I I 1/1.V. ,_,,,_,,,_,,, __,,__, 1 52 ·..:-• -:!YI -I 87T Differential 86 Lockout ouxirlory 50/51 Overcurrenlond short circuit (two windings) 50G Gr-0und fault Typical FunctionsPower Transformers, HV Windings, Dual-Breaker Source
  • 186. Functions Typical Product Order Code Typical Functions T60-NOO-HCH-F8N-H6P-MXX-PXX-UXX-WXX T35-NOO-HCH-F8N-H6P-MXX-PXX-UXX-WXX +Voltage and Power metering T60-NOO-HCH-F8l-H6P-M8N-PXX-UXX-WXX T35-NOO-HCH-F8L-H6P-M8N-PXX-UXX-WXX +Additional Functions T60-NOO-HCH-F8l-H6P-M8N-PXX-UXX-WXX lockout Standalone HEA61-A-RU-220-X2 Integrated T35-NOO-HPH-F8N-H6P-MXX-P4l-UXX-WXX T60-NOO-HPH-F8N-H6P-MXX-P4l-UXX-WXX Restricted Ground Fault Directional overcurrent Volts per Hertz OVervoltoge Voltage and Power metering 87RGF 67 24 59 V,S Additional Functions Differential Lockout auxiliary Overcurrent and short circuit (both sources) Ground faultSOG 87T 86 50/51 >f3Y1 I ... II I - I I I 52 §.. II ' @xID9'- ,_, 'ai'' ' H,V. ',, 87T 51 250G ~~,:~) r- ,-, ,-, ,-, ,-, ,-,, , , , , ... ... ...... ( v l s 67 l 86 l 59 : - - ' ,, ,, ,, ,, , -- -~ -- -- --, H,V __... • 52 >- 3Y >- Typical FunctionsAuto-Transformer
  • 187. Functions Typical Product Order Code Typical Functions T60-NOO-HCH-F8l-H6P-M8N-PXX-UXX-WXX T3S-NOO-HCH-F8l-H6P-M8N-PXX-UXX-WXX +Voltage and Power metering T60-NOO-HCH-F8l-H6P-M8N-PXX-UXX-WXX T3S-NOO-HCH-F8l-H6P-M8N-PXX-UXX-WXX +Additional Functions T60-NOO-HCH-F8l-H6P-M8N-PXX-UXX-WXX lockout Standalone HEA61-A-RU-220-X2 Integrated T3S-NOO-HPH-F8l-H6P-M8N-P4l-UXX-WXX T60-NOO-HPH-F8l-H6P-M8N-P4l-UXX-WXX Restricted Ground Fault Directional overcurrent Volts per Hertz Overvoltoge Voltage and Power metering 87RGF 67 24 59 V,S Additional Functions 87T Differential 86 Lockout auxiliary 50/51 Dvercurrent and short circuit ltwo windings) SOG Ground fault 3Y _3Y_ I ' 52 52 I I -3~--------------.., I &' I ~,- ,_...... '87'' ' H,V ....... 2 '~~,l,~~,: I ,,-, ,,-, ,,-, ,,-, ,,-, • • • • l v s 67 86 l 59 ~ -- ,__,,__,,__,,_,,, __, 1 H.V. ·-·52 • ... 3Y ... ' Typical FunctionsAuto-Transformer, Dual-Breaker Terminals
  • 188. Functions Typical Product Order Code Typical Functions T35-NOO-HCH-F8l-H6P-M8N-PXX-U8N-W6P + Voltage and Power metering T35-NOO-HCH-F8l-H6P-M8N-PXX-UXX-W6P lockout Standalone HEA61-A-RU-220-X2 Integrated T35-NOO-HPH-F8l-H6P-M8N-P4l-U8N-W6P 50/51 Overcurrent and short circuit (three wir;idings) SOG Ground fault Voltage and Power meteringV.SDifferential Lockout oUXiliory 87T 86 Additional FunctionsTypical Functions 3Y ~r_ I I 52 52 I I ~ -3E-----------------1 @...,, : HV ',,~ • • • • I I r ,.,.-,,....-,3 ,,-, - - l V S : I 86: -- ,, ' ...,' ,__, '--"w • HV 52 ....-• .. --- M.V -3,Y I 52 52 I 31 -- -- Auto with Dual-Breaker on both sides and loaded tertiary
  • 189. Functions Typical Product Order Code Typical Functions T60-NOO-HCH-F8L-H6P-M8N-PXX-UXX-WXX Lockout Standalone HEA61-A-RU-220-X2 Integrated T60-NOO-HPH-F8L-H6P-M8N-P4L-UXX-WXX Ground Faull Volts per Hertz Overvoltoqe Voltage and Power metering 51G 24 59 V.5 Differential Lockout auxiliary OVercurrentand shortcircuit (three windings) 87T 86 51 Additional FunctionsTypical Functions Oonorator 3'( 52 • -52 3Y Sy~tem Generator Step Up Transformer
  • 190. Ground fault Top Oil Temperature, RTD or Transducer Winding hot-spot temperature. loss-of-life Thermal overload protection Voltage and Power meteringV.S 49 SOG rr/ro Functions Typical Product Order Code Typical Functions T60-NOO-HCH-F8N-H6P-MXX-PXX-UXX-WSE 745-W2-PS-GS-Hl-L-T +Voltage and Power metering T60-NOO-HCH-F8L-H6P-M8N-PXX-UXX-WSE 745-W2-PS-GS-Hl-L-T + Additional Functions T60-NOO-HCH-F8N-H6P-MXX-PXX-UXX-WSE 745-W2-PS-GS-Hl-L-R-T lockout Standalone HEA61-A-RU-220-X2 lntegroted T60-NOO-HPH-F8N-H6P-MXX-P4l-UXX-WSE -• 3Y 52 H.V.~---or M.V. 86 lockout auxiliary SO/SI Overcurrent and short circuit (two windings} .t--------. T 3Y Oifferentiol Additional Functions 87RGF Restricted Ground Fault Typical Functions 87T Thermal Overload Protection
  • 191. Functions Typical Product Order Code Typical Functions T35-NOO-HCH-F8N-H6P-M8N-PXX-U8N-WXX Lockout Standalone HEA61-A-RU-220-X2 Integrated T35-NOO-HPH-F8N-H6P-M8N-P4L-U8N-WXX Ground faultSOG 87T Differential 86 Lockout auxiliary 51 Overcurrent and short circuit !two windings) Typical Functions 1l 5252 ' )V )V 525252 "' 52 ~ 6 Distribution Transformer with no load-side Circuit Breaker
  • 196. L1 L2 C1 .!:? 0) 0 _J gL3 s 30 Motor u L1 InverterDC LinkConverter
  • 197. C1 650VDC L1 -'--+--1-~-r--i 30, 480 VAC L2 -l,---,~1--f--tf--~ Supply DC LinkConverter
  • 200. (+) 0 i i i i A+ B+ C+ DC Voltage MotorFrom Converter l J A- JB- Jc- (-)0
  • 201. . ' ---:::-=--..., ·:· .. - .- --·· - -·:- - - r--~-::::'.""""-..., .+ + :··· .... 1 ....... 1· ~ :1 ·. ······:········:· .. ······1 . 0 . . . . . . • ' • ' ' + • . . . . . . ' : : •······~·······'.········ : : : + :-60°-: 1·······:········:·······1 : ~ :0 : : : : : : : : . . . . . . .• ' ' ' • + • . ' . ' . . ... .. . . . . ... . .. .. . ·, . . . . . . . ' . . · : 74 986532 Steps 1 A-B Output B A
  • 202. On IGBTTurned '<, :/ IGBTTurned Off ~D DD I 11 I DOD~[Off IGBTOn IGBTOn Progressively Longer Progressively Shorter Sine Wave Reference Current Decreases Current Increases
  • 204. l650VDC l l650VDC l Longer "On" Duration. Higher Voltage Shorter "On" Duration, LowerVoltage - ........................... ~ <, v v r-, / -, - - - - - -<, /0- '~ t>~ - .....
  • 205. With Smoothing Decel T2 RunAceel T1 . . . . . . . . . . .. ,.--1 r--...:· ' Decel T2 Without Smoothing 14 •1:1414--H•l;l,.4-----•I; Fmax · · · · · · · · · · · • ., __ "" 1-- ..- · · · · · · · · · · · ·· Accel Run T1
  • 206.
  • 209.
  • 211. Armature Conductor -""'Magnetic Field Stator ...__...__ --...-............... _ ......__..._ - .......-........_ -........................ .............. --- -- -- .. ------------------- ~ /Magnetic Field Electromagnet or Permanent Magnet
  • 212. ' .
  • 213. --------~ t··---- . --- ------ -...._.._.. -... ..-------..--... ...._......
  • 220. Common SourceSeparately Excited Fl Fl "O "O Ql DC Line .!!! DC Line u::: u, Voltage A +-' Voltage A +-' c c :J :J s: .s: (/) (/) F2 F2
  • 223. @ SIEMENS @ HP 10 I RPM 1180 I VOLTS 500 ARM AMPS 17.0 WOUND SHUNT FLO AMPS 1.4/2.8 FLO OHMS 25C 156 INSUL CLASS FI DUTY CONT I MAX AMBIENT 40° c PWRSUP c FLO VOLTS 300/150CODE TYPE E I ENCL DP I INSTR MOD SER NP36A424835AP DIRECT CURRENT @ MOTOR @MADE IN U.S.A
  • 224. Speed (RPM) 1200900600300 o"'-~~~~~~~~~~~~ 0 375 Va - (laRa) Speed(n)= Kt<I>(/) ... g 250 oru , .................. ····· 0 CEMF Speed (n)"" (I) 125 500 ....
  • 228. Class H 125° C Rise 15° C Hot Spot Class F 105°C Rise 10°C Hot Spot Class B 80° C Rise 10° C Hot Spot Class A 60°C Rise 5°C Hot Spot 180°- 180°- 180°- 180°- =}15° 160°- 160°- 160°= 160°= 140°= 140°= 140°= =:}10° 140°= 120°= 120°= ==}10° 120°= 120°= 100°= =}50 100·= 100°= 105° 100°= 125° 80°= 80°= 80° 80°= 80°= 60°= 60° 60°= 60°= 60°= 40°= 40°= 40°= 40°= 20°= 20·= 20°= 20°= o·= oo= o·= oo=
  • 229. Va ( Ir i32 <I) Eaj Li:- Vr A -ec:: ~ l :J s: VJ 0 Armature Circuit Field Circuit >la
  • 230. Where: Va = Applied Armature Voltage Kt = Motor Design Constants <I> = Shunt Field Flux n = Armature Speed la= Armature Current Ra = Armature Resistance Va = (Kt<I>n) + (laRa)
  • 231. Speed (RPM) 10007505002500 0 375 Va- (laRa) Speed (n) = ~ Kt<!) g 250u or 0 Speed (n) "' CEMF (() 125 500
  • 232. CEMF <l> Ktct> M "' la<D Speed (n) "' or Va - (la Ra) Speed(n)= I.- Constant Torque.-1- Constant Horsepower -1 tBase Speed
  • 233. 500 750 1000 Speed (RPM) 2500 0 500 375 Speed (n) = Va - (la Ra) Kt<PIf) -g 250 or u 0 CEMF Speed (n) "' <I> 125 M,. la<P
  • 237. _ ___.n~-- [C Jl~- Rectified DC at Cathode Gate Current Applied AC Sinewave Applied to Anode
  • 238. L1 3121, 460 VAC Variable Supply DC Voltage L2 L2 L1 L3 I I L3 I v I
  • 239. Volts RMS a Cosine Formula voe 460 VAe 0 1.00 voe = 460 x 1.35 x 1 621 460 VAC 30 0.87 voe = 460 x 1.35 x o.87 538 460 VAe 60 0.50 voe= 460 x 1.35 x o.so 310.5 460 VAe 90 0.00 voe = 460 x 1.35 x o 0 460 VAC 120 -0.50 voe= 460 x 1.35 x <-0.50) -310.5 460 VAC 150 -0.87 voe = 460 x 1.35 x <-0.87) -538 460 VAC 180 -1.00 VDC= 460 x 1 .35 x (- 1 ) -621
  • 240. Voe = 1.35 x VRMS x coso
  • 241. Average DC Voltage as a Function of a OVDC -a= so- -£21 VDC a= 180° OVDC a = go• '''.. J /<I, I /' /• /• / I I I J 1 ' v v ~ ~ ., ~ ~ x ~ ~ ~...._, .._ _ .; ~ _ .. ...,.,,. .....,., ...,,........f..... '<".."<." -;<."_";'..,_'X" ..~ ~ ..:'...- ..~~ ,' ,' / / / / 1 1 I I I I ) ' ' 621 VDC a = 0°
  • 242. iQ) ~ ::i -0 0 Q) (/) u: u +-' 0 c: Q) ::i +-' .1= <ti (/) ~ <ti 0. Q) (/) l A 1 ·,)~:;;-,>::·;:,.:-,.,: :..;>(:•::(;;-.~:(; ' ) I I I I I I ' ' ' ' 't' t I J r I /' ' /I J I / I t I I , I .> ';.., _>..,..> v.. - > <.. )' .. ................................................ ,. I I I I L3~~1~~~~-'------,+----t~-. Ra
  • 243. OLT @ MOD PWRSlJP C INSUL CLASS F DUTY FLDAMPS 1.4 ARM AMPS 17.0 HP 10 RPM SIEME @ c ENCL DPTYPE E
  • 245. = + Va = laRa + CEMF Va= 0 + 450 Va= 450VDC OVDC Va= 1.35 x VRMS x COSa Va= 1.35 x 460VAC x 0.7246 Va= 450VDC 450VDC 460VAC RaGating Angle 43.56° COSa = 0.7246 -,
  • 246. + Va = laRa + CEMF Va= 50 + 450 Va= 500VDC Ala Va= 1.35 x VRMS x COSa Va = 1.35 x 460 VAC x 0.8052 Va= 500VDC 500VDC 460VAC 50VDC RaGating Angle 36.37° COSa = 0.8052 ""-
  • 247. 4 Quadrant- 12 SCRs1 Quadrant - 6 SCRs
  • 248. (Car Moving Forward (Car Moving Forward Brake Applied) N Accelerator Applied) CW Rotation () M Braking II M =Torque -M M Driving Ill IV Braking N =Speed l) (O)MM CCW Rotation CCW Rotation -N (Car Moving in Reverse (Car Moving in Reverse Accelerator Applied) Brake Applied)
  • 249. Reverse Armature Polarity or Reverse Shunt Field Polarity + + c =c F1 = Fl + Fl -0 -0 -0 -0 Qi Qi Qi <!) u: u: u::: u::: - - - A -c c c c ::J ::J ::J ::J s: s: s: J:. l/) l/) l/) l/) = F2 c F2 F2 F2 = c n n n
  • 250. Reverse Direction (Quadrant Ill) Forward Direction (Quadrant I) F F + + F F2 F F2 R R li 11R l R MOV MOV R i R F Fl F Fl
  • 251. Motoring Ra 50VDC + M ll - =A(.) c <l)M 0 ~ (!)~> :J L2 0 (.)L!) -0 <:!" QiM u::L3
  • 252. Braking Ra 50VDC + M ~ -L1 ir~ u M 0 >L2 0 Ros0 co Cl) u::: M L3
  • 253. M =Torque N =Speed M -N CW Rotation CW Rotation () () M M Braking II Driving Driving Ill IV Braking {:) 0 M M CCW Rotation CCW Rotation N
  • 255. Va = laRa + CEMF Va= 50 + 450 Va= 500VDC 50VDC Ra Va= 1.35 xVRMS x COSet Va= 1.35 x 460VAC x 0.8052 Va= 500VDC Regen Bridge Driving BridgeGating Angle 36.37° COSet = 0.8052 "-l L1 450VDC CEMF ~ ~ u ..., c 460VAC 0 Q) > ~ L2 A ~ 0 la :J 0 u U') -0 Qi u: L3
  • 256. Va = laRa + CEMF Va= -50 + 450 Va= 400VOC 450VOC CEMF - A u ....c 0 Q) > ~ A ~ 0 la ::> 0 u ~ -0 .<:!! l.L -50VOC Ra Va= 1.35 xVRMS x COSa Va = 1.35 x 460 VAC x 0.643 Va= 400VOC 460VAC L2~~~~~..;.-1-----<1~--l----t-~--.. Gating Angle 130° COSo. = 0.643 ---t-+--+--1--?' L1~~~~~-'-<.----1~--l---;---9 Regen Bridge Motoring Bridge
  • 257. Time~ ', -.-, ',___ Dynamic Braking ---- --------- ----------· Base Speed Regen or Dynamic Braking at 150% Current Maximum Speed i
  • 258. A Ra ............................... · : : .............................................................. ,. . Motoring Bridge Regen Bridge
  • 259. -1-Phase AC Input Calculated CEMF (Ea) Feedback Ea =Va - (laRa) Firing Circuit Current Controller 3-Phase AC Input Current Feedback Speed Controller Ramp Function Generator Speed Ref.
  • 260. -1-Phase AC Input Firing Circuit .__ Sp_e_e_d_F_e_e_d_ba_c_k@-·--- Current Controller 3-Phase AC Input Current Feedback Speed Controller Ramp Function Generator Speed Ref.
  • 261. ._,..., 1-Phase AC Input Firing Circuit Speed Controller ,_ Sp_e_e_d_F_e_e_d_ba_c_k©-- --- Current Feedback 3-Phase AC Input Ramp Function Generator Speed Ref.
  • 262. -1-Phase AC Input Firing Circuit Current Controller 3-Phase AC Input Current FeedbackUpper ' Limit / Torque Torque Ref. Calculation I Lower ' Limit
  • 263. INew Speed /Initial Overshoot / Oscillations Initial Speed -.
  • 265. 10 20 ._ __ ___. ___. _.._-i> Time in Seconds 50% . - . - .... . .. . .. . . . . . .· : - .. ·. 100% ·····-··-··-·-······---41--- ...······-··-·········· P303 Run P304 M------~: ,. ., : M------~ Speed
  • 266. 10 20 """'-----'------------'----3'..~ Time in Seconds 50°/o · ·· · ·· · · ·' · · · · · · · · :- · · · · · · · · ·· ; · · · ·· · · · ·· · · · ·· · - · ' . /' R di .; oun 1ng : 100% -_;;.·' ""'! !-" .;..:' ' .......•. ' P303 Run P304 H114------•I:14 •I: !+-------fol Speed
  • 267. 1 T =ConstantT""N T~N T"" N2 HP = Constant HP"' N HP"' N2 HP::. N3 HP T , ------ I/ / /, HP/ / T I T I / I / / HP T 7 / / ,.,,.,HP/ /, ,,.. / N N N N Winders Hoisting gear Calenders with Pumps Facing lathes Belt conveyors viscous friction Fans Rotary cutting Process machines Eddy-current Centrifuges machines involving forming brakes Rolling mills Planers
  • 268. Cateaorv Descriotion The load is essentially the same throughout the Constant Torque speed range. Hoisting gear and belt conveyors are examples. Variable Torque The load increases as speed increases. Pumps and fans are examples. Constant The load decreases as speed increases. Winders Horsepower and rotary cutting machines are examples. Loads generally fall into one of three categories:
  • 269. Photo 3, Arcing Caused by Loose Input Contacts
  • 270. Photo 4, Arcing Caused by Loose Output Contacts
  • 271. Photo 2, Corrosion on Board Traces Caused by Moisture
  • 272. Photo 6, Capacitor Failure
  • 273. Photo 5, Foreign Object in Fan
  • 274. (a) acb phase sequenceabc phase. sequence
  • 276. P = output power fu1 =no-load frequency of the generator (,ys= operating frequency of system Sp = slo e of curve in kW/Hz or MW/Hz Where Since mechanical speed is related to the electrical frequency and electrical frequency is related with the out ut ower, hence we will obtain the following uation: P=s J, " )11/ - J j s._,,..... Typical values of SD are 2% - 4%. Most governors have some type of set oint adjustment to allow the no-load speed of the turbine to be varied. A typical speed vs. power plot is as shown below. Where n01 is the no-load prime mover speed and ne is the full-load prime mover speed. n -nSD= .,,, fl x'TOO% nil Whatever governor mechanism is present on a prime mover, it will always be adjusted to provide a slight droo ing characteristic with increasing load. The s eed droo SD) of a rime mover is defined as:
  • 279. ous generator operating with an infinite bus Infinite bus ) Loads ) ) ' A synchron Generator in parallel (a)
  • 280. The frequency-power diagram (house diagram) for a synchronous generator in arallel with an infinite bus. (b) fu1
  • 283. P,kW The effect of increasing the governor's set oint on the house diagram
  • 285. The house diagram at the moment G2 is paralleled with the system (b) l'c1 ~GI
  • 286. kW The effect of increasing G2 's governor set points on the operation of the system. -- -1- ----- -- 1 j I I I I I I I I I I I I I I I I Generator 2.r,Generator I As a result, the power-frequency curve of G2 shifts upward as shown here: What happens ifthe governor set points of G1 are increased? The total power P101 (which is equal to P1oad) and reactive power respectively are given by:
  • 287. (d) Qlot kVARkYAR The effectof increasing G2' s field current on the operating of the system. Generator I Generatur2 ---r------1 I I V.,-1 I I I I I I I I I I I I I I t I I I I
  • 288. P. real power Prime mover lirnilField Current limit Or Maximum Ea limit Q, Reactive power Stator Current limit
  • 289. Figure 13 A. Salient Pole
  • 290. Figure 2-1: Relationship between current, magnetic field strength and flux Magnetic flux out (8) 3 H co Current in
  • 291. /1B V,=-NsA- 1:!.t • Figure 2-2: Transformer schematic *N.1 • Pe • 'N,,• I •• • • • • • • • • • • • • • •'· .
  • 292. Figure 2-4: 8-H Loop I Energy released by collapsing field Energy used to esteblish field • Field strength, HField strength, H co co Ji. Ji.... ...c c'1) '1) ~ ~ x x ::i ::i u.. u..
  • 293. THANK YOU! For Contact Email: arslan_engineer61@yahoo.com LinkedIn: https://pk.linkedin.com/pub/arslan-ahmed-amin-p-e-b-sc-ee-m-sc-ee-m-b- a/24/853/68