SlideShare a Scribd company logo
1 of 4
Download to read offline
Apparent Weight: Person on Scale in Elevator

A person with mass, m, who is located at or near the surface of the Earth will always have some
weight W=mg. When a person stands on a scale, the reading (the number of pounds or newtons)
on the scale is actually the Normal Force that the scale exerts back towards the person to support
the person's weight. (Note that the person and the scale are stationary relative to each other, in
other words they are always in contact with each other, so they always have equal and opposite
action and reaction forces acting between them.)

Things get complicated, though, when the scale and the person experience acceleration. This
will change the contact force (the Normal Force) between the person and the scale.

Let's look at several cases. We will assume that Up is the positive direction and Down is the
negative direction.

Case 1: No acceleration of elevator

If the acceleration of the elevator is zero, then there are two possible
scenarios; the elevator can be at rest (stationary, zero velocity) or moving
with a constant speed (no acceleration if velocity does not change).

In this case, the action and reaction force pair between the person and the
scale is just the weight. The person pushes down on the scale with a force of
-W=-mg (negative direction) and the scale pushes back up against the man
with a Normal Force of FN = +W = +mg. Because the reading on the scale is
the magnitude of the normal force, the scale will read the true weight when
the elevator is NOT accelerating.


Case 2: going up & speeding up (acceleration a is positive (up))

In this case, the elevator and the person are starting from rest at a lower
floor. The elevator accelerates upward. The inertia of the person would
prefer to stay stationary, so the elevator floor and scale must push up on
the person to accelerate him upward along with the elevator. (The person
doesn't sink into the floor when the elevator accelerates up. The elevator
and the scale and the person all move together.)

The scale therefore has to push upward with extra force on the person to
accelerate the person's mass upward. This results in a greater contact
force between the scale and the person. Therefore the Normal Force is
larger, so the reading on the scale is a number that is GREATER than the
true weight.

Let's consider Newton's 2nd Law (ΣF=ma) acting on the person. The overall acceleration of the
person is upward (with the elevator). So ma is positive (upward). The only external forces
acting on the person are the force of gravity acting down (-W=-mg) and the supporting Normal
Force FN that the scale applies upward on the person. So ΣF=ma= -mg+FN . We want to know
FN because that is the number that we read off the scale. FN =mg+ma, which is GREATER than
the true weight.


Case 3: going up & slowing down (acceleration a is negative (down))

In this case, the elevator and the person are initially moving upward at a
constant speed and slowing down to rest at a higher floor. The
acceleration of the elevator is downward (opposite to the upward motion,
which causes a reduction of the velocity). The inertia of the person
would prefer to keep moving upward at a constant speed, so the elevator
floor and scale effectively drop out a little bit from underneath the person
as the elevator slows down.

The person doesn't float upward, because again the elevator and the
person move together, but the contact force between the person and the
scale is reduced. The scale therefore has to push upward with less force
on the person to support the person's weight. Therefore the Normal Force is smaller, so the
reading on the scale is a number that is LESS than the true weight.

Let's consider Newton's 2nd Law (ΣF=ma) acting on the person. The overall acceleration of the
person is downward (with the elevator). So ma is negative (downward). The only external
forces acting on the person are the force of gravity acting down (-W=-mg) and the supporting
Normal Force FN that the scale applies upward on the person. So ΣF= -ma= -mg+FN . We want
to know FN because that is the number that we read off the scale. FN =mg - ma, which is LESS
than the true weight.


Case 4: going down & slowing down (acceleration a is positive (up))

In this case, the elevator and the person are initially moving downward at
a constant speed and then slow to rest at a lower floor. The elevator
accelerates upward (opposite direction to negative/downward velocity to
reduce velocity magnitude). The inertia of the person would prefer to
keep moving downward at the constant speed, so the elevator floor and
scale must push up on the person to accelerate him upward, slowing him
down. (The person doesn't sink into the floor here either. Elevator and
scale and person move together.)

The scale therefore has to push upward with extra force on the person to
accelerate the person's mass upward. This results in a greater contact
force between the scale and the person. Therefore the Normal Force is
larger, so the reading on the scale is a number that is GREATER than the
true weight.
Let's consider Newton's 2nd Law (ΣF=ma) acting on the person. The overall acceleration of the
person is upward (with the elevator). So ma is positive (upward). The only external forces
acting on the person are the force of gravity acting down (-W=-mg) and the supporting Normal
Force FN that the scale applies upward on the person. So ΣF=ma= -mg+FN . (Note that this is
the same equation as we got in case 2.) We want to know FN because that is the number that we
read off the scale. FN =mg+ma, which is GREATER than the true weight.


Case 5: going down & speeding up (acceleration a is negative (down))

In this case, the elevator and the person are initially at rest at a higher
floor. The elevator then speeds up in the downward direction towards a
lower floor. The elevator acceleration of the elevator is
negative/downward (increasing the velocity magnitude in the downward
direction). The inertia of the person would prefer to stay at rest, so the
elevator floor and scale effectively drop out a little bit from underneath
the person as the elevator accelerates down.

The person doesn't float upward here also, because again the elevator and
the person move together, but the contact force between the person and
the scale is reduced. The scale therefore has to push upward with less
force on the person to support the person's weight. Therefore the Normal Force is smaller, so the
reading on the scale is a number that is LESS than the true weight.

Let's consider Newton's 2nd Law (ΣF=ma) acting on the person. The overall acceleration of the
person is downward (with the elevator). So ma is negative (downward). The only external
forces acting on the person are the force of gravity acting down (-W=-mg) and the supporting
Normal Force FN that the scale applies upward on the person. So ΣF= -ma= -mg+FN . (Note
that this is the same equation that we got for Case 3.) We want to know FN because that is the
number that we read off the scale. FN =mg - ma, which is LESS than the true weight.

Case 6: freefall (a = -g)

If the elevator cable were to break, the whole elevator-scale-person
system would all begin to accelerate downward due to the force of
gravity. All objects in freefall accelerate downward with the same
magnitude (acceleration due to gravity, g). The scale and the person are
freefalling together, so there is NO contact force (Normal Force)
between the scale and the person. (When they are both falling together,
there is no way that the scale can support any of the person's weight.)

Note that this is a special case of downward acceleration, which we
discussed in Case 3 and Case 5. Just as in Cases 3 and 5, the apparent
weight (which is zero when a=-g) is less than the true weight.
A pictorial summary of apparent weight:

More Related Content

Recently uploaded

IATP How-to Foreign Travel May 2024.pdff
IATP How-to Foreign Travel May 2024.pdffIATP How-to Foreign Travel May 2024.pdff
IATP How-to Foreign Travel May 2024.pdff
17thcssbs2
 
Neurulation and the formation of the neural tube
Neurulation and the formation of the neural tubeNeurulation and the formation of the neural tube
Neurulation and the formation of the neural tube
SaadHumayun7
 
ppt your views.ppt your views of your college in your eyes
ppt your views.ppt your views of your college in your eyesppt your views.ppt your views of your college in your eyes
ppt your views.ppt your views of your college in your eyes
ashishpaul799
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
中 央社
 

Recently uploaded (20)

Word Stress rules esl .pptx
Word Stress rules esl               .pptxWord Stress rules esl               .pptx
Word Stress rules esl .pptx
 
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
Removal Strategy _ FEFO _ Working with Perishable Products in Odoo 17
 
IATP How-to Foreign Travel May 2024.pdff
IATP How-to Foreign Travel May 2024.pdffIATP How-to Foreign Travel May 2024.pdff
IATP How-to Foreign Travel May 2024.pdff
 
MichaelStarkes_UncutGemsProjectSummary.pdf
MichaelStarkes_UncutGemsProjectSummary.pdfMichaelStarkes_UncutGemsProjectSummary.pdf
MichaelStarkes_UncutGemsProjectSummary.pdf
 
Incoming and Outgoing Shipments in 2 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 2 STEPS Using Odoo 17Incoming and Outgoing Shipments in 2 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 2 STEPS Using Odoo 17
 
Mbaye_Astou.Education Civica_Human Rights.pptx
Mbaye_Astou.Education Civica_Human Rights.pptxMbaye_Astou.Education Civica_Human Rights.pptx
Mbaye_Astou.Education Civica_Human Rights.pptx
 
The Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. HenryThe Last Leaf, a short story by O. Henry
The Last Leaf, a short story by O. Henry
 
Neurulation and the formation of the neural tube
Neurulation and the formation of the neural tubeNeurulation and the formation of the neural tube
Neurulation and the formation of the neural tube
 
Danh sách HSG Bộ môn cấp trường - Cấp THPT.pdf
Danh sách HSG Bộ môn cấp trường - Cấp THPT.pdfDanh sách HSG Bộ môn cấp trường - Cấp THPT.pdf
Danh sách HSG Bộ môn cấp trường - Cấp THPT.pdf
 
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
50 ĐỀ LUYỆN THI IOE LỚP 9 - NĂM HỌC 2022-2023 (CÓ LINK HÌNH, FILE AUDIO VÀ ĐÁ...
 
Dementia (Alzheimer & vasular dementia).
Dementia (Alzheimer & vasular dementia).Dementia (Alzheimer & vasular dementia).
Dementia (Alzheimer & vasular dementia).
 
How to Manage Notification Preferences in the Odoo 17
How to Manage Notification Preferences in the Odoo 17How to Manage Notification Preferences in the Odoo 17
How to Manage Notification Preferences in the Odoo 17
 
Capitol Tech Univ Doctoral Presentation -May 2024
Capitol Tech Univ Doctoral Presentation -May 2024Capitol Tech Univ Doctoral Presentation -May 2024
Capitol Tech Univ Doctoral Presentation -May 2024
 
Basic Civil Engg Notes_Chapter-6_Environment Pollution & Engineering
Basic Civil Engg Notes_Chapter-6_Environment Pollution & EngineeringBasic Civil Engg Notes_Chapter-6_Environment Pollution & Engineering
Basic Civil Engg Notes_Chapter-6_Environment Pollution & Engineering
 
B.ed spl. HI pdusu exam paper-2023-24.pdf
B.ed spl. HI pdusu exam paper-2023-24.pdfB.ed spl. HI pdusu exam paper-2023-24.pdf
B.ed spl. HI pdusu exam paper-2023-24.pdf
 
ppt your views.ppt your views of your college in your eyes
ppt your views.ppt your views of your college in your eyesppt your views.ppt your views of your college in your eyes
ppt your views.ppt your views of your college in your eyes
 
Research Methods in Psychology | Cambridge AS Level | Cambridge Assessment In...
Research Methods in Psychology | Cambridge AS Level | Cambridge Assessment In...Research Methods in Psychology | Cambridge AS Level | Cambridge Assessment In...
Research Methods in Psychology | Cambridge AS Level | Cambridge Assessment In...
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
 
INU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdf
INU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdfINU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdf
INU_CAPSTONEDESIGN_비밀번호486_업로드용 발표자료.pdf
 
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...
TỔNG HỢP HƠN 100 ĐỀ THI THỬ TỐT NGHIỆP THPT VẬT LÝ 2024 - TỪ CÁC TRƯỜNG, TRƯ...
 

Featured

Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
Kurio // The Social Media Age(ncy)
 

Featured (20)

PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024PEPSICO Presentation to CAGNY Conference Feb 2024
PEPSICO Presentation to CAGNY Conference Feb 2024
 
Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)Content Methodology: A Best Practices Report (Webinar)
Content Methodology: A Best Practices Report (Webinar)
 
How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024How to Prepare For a Successful Job Search for 2024
How to Prepare For a Successful Job Search for 2024
 
Social Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie InsightsSocial Media Marketing Trends 2024 // The Global Indie Insights
Social Media Marketing Trends 2024 // The Global Indie Insights
 
Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024Trends In Paid Search: Navigating The Digital Landscape In 2024
Trends In Paid Search: Navigating The Digital Landscape In 2024
 
5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary5 Public speaking tips from TED - Visualized summary
5 Public speaking tips from TED - Visualized summary
 
ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd ChatGPT and the Future of Work - Clark Boyd
ChatGPT and the Future of Work - Clark Boyd
 
Getting into the tech field. what next
Getting into the tech field. what next Getting into the tech field. what next
Getting into the tech field. what next
 
Google's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search IntentGoogle's Just Not That Into You: Understanding Core Updates & Search Intent
Google's Just Not That Into You: Understanding Core Updates & Search Intent
 
How to have difficult conversations
How to have difficult conversations How to have difficult conversations
How to have difficult conversations
 
Introduction to Data Science
Introduction to Data ScienceIntroduction to Data Science
Introduction to Data Science
 
Time Management & Productivity - Best Practices
Time Management & Productivity -  Best PracticesTime Management & Productivity -  Best Practices
Time Management & Productivity - Best Practices
 
The six step guide to practical project management
The six step guide to practical project managementThe six step guide to practical project management
The six step guide to practical project management
 
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
Beginners Guide to TikTok for Search - Rachel Pearson - We are Tilt __ Bright...
 
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
Unlocking the Power of ChatGPT and AI in Testing - A Real-World Look, present...
 
12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work12 Ways to Increase Your Influence at Work
12 Ways to Increase Your Influence at Work
 
ChatGPT webinar slides
ChatGPT webinar slidesChatGPT webinar slides
ChatGPT webinar slides
 
More than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike RoutesMore than Just Lines on a Map: Best Practices for U.S Bike Routes
More than Just Lines on a Map: Best Practices for U.S Bike Routes
 
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
Ride the Storm: Navigating Through Unstable Periods / Katerina Rudko (Belka G...
 
Barbie - Brand Strategy Presentation
Barbie - Brand Strategy PresentationBarbie - Brand Strategy Presentation
Barbie - Brand Strategy Presentation
 

Apparent weight in lift of an object

  • 1. Apparent Weight: Person on Scale in Elevator A person with mass, m, who is located at or near the surface of the Earth will always have some weight W=mg. When a person stands on a scale, the reading (the number of pounds or newtons) on the scale is actually the Normal Force that the scale exerts back towards the person to support the person's weight. (Note that the person and the scale are stationary relative to each other, in other words they are always in contact with each other, so they always have equal and opposite action and reaction forces acting between them.) Things get complicated, though, when the scale and the person experience acceleration. This will change the contact force (the Normal Force) between the person and the scale. Let's look at several cases. We will assume that Up is the positive direction and Down is the negative direction. Case 1: No acceleration of elevator If the acceleration of the elevator is zero, then there are two possible scenarios; the elevator can be at rest (stationary, zero velocity) or moving with a constant speed (no acceleration if velocity does not change). In this case, the action and reaction force pair between the person and the scale is just the weight. The person pushes down on the scale with a force of -W=-mg (negative direction) and the scale pushes back up against the man with a Normal Force of FN = +W = +mg. Because the reading on the scale is the magnitude of the normal force, the scale will read the true weight when the elevator is NOT accelerating. Case 2: going up & speeding up (acceleration a is positive (up)) In this case, the elevator and the person are starting from rest at a lower floor. The elevator accelerates upward. The inertia of the person would prefer to stay stationary, so the elevator floor and scale must push up on the person to accelerate him upward along with the elevator. (The person doesn't sink into the floor when the elevator accelerates up. The elevator and the scale and the person all move together.) The scale therefore has to push upward with extra force on the person to accelerate the person's mass upward. This results in a greater contact force between the scale and the person. Therefore the Normal Force is larger, so the reading on the scale is a number that is GREATER than the true weight. Let's consider Newton's 2nd Law (ΣF=ma) acting on the person. The overall acceleration of the person is upward (with the elevator). So ma is positive (upward). The only external forces
  • 2. acting on the person are the force of gravity acting down (-W=-mg) and the supporting Normal Force FN that the scale applies upward on the person. So ΣF=ma= -mg+FN . We want to know FN because that is the number that we read off the scale. FN =mg+ma, which is GREATER than the true weight. Case 3: going up & slowing down (acceleration a is negative (down)) In this case, the elevator and the person are initially moving upward at a constant speed and slowing down to rest at a higher floor. The acceleration of the elevator is downward (opposite to the upward motion, which causes a reduction of the velocity). The inertia of the person would prefer to keep moving upward at a constant speed, so the elevator floor and scale effectively drop out a little bit from underneath the person as the elevator slows down. The person doesn't float upward, because again the elevator and the person move together, but the contact force between the person and the scale is reduced. The scale therefore has to push upward with less force on the person to support the person's weight. Therefore the Normal Force is smaller, so the reading on the scale is a number that is LESS than the true weight. Let's consider Newton's 2nd Law (ΣF=ma) acting on the person. The overall acceleration of the person is downward (with the elevator). So ma is negative (downward). The only external forces acting on the person are the force of gravity acting down (-W=-mg) and the supporting Normal Force FN that the scale applies upward on the person. So ΣF= -ma= -mg+FN . We want to know FN because that is the number that we read off the scale. FN =mg - ma, which is LESS than the true weight. Case 4: going down & slowing down (acceleration a is positive (up)) In this case, the elevator and the person are initially moving downward at a constant speed and then slow to rest at a lower floor. The elevator accelerates upward (opposite direction to negative/downward velocity to reduce velocity magnitude). The inertia of the person would prefer to keep moving downward at the constant speed, so the elevator floor and scale must push up on the person to accelerate him upward, slowing him down. (The person doesn't sink into the floor here either. Elevator and scale and person move together.) The scale therefore has to push upward with extra force on the person to accelerate the person's mass upward. This results in a greater contact force between the scale and the person. Therefore the Normal Force is larger, so the reading on the scale is a number that is GREATER than the true weight.
  • 3. Let's consider Newton's 2nd Law (ΣF=ma) acting on the person. The overall acceleration of the person is upward (with the elevator). So ma is positive (upward). The only external forces acting on the person are the force of gravity acting down (-W=-mg) and the supporting Normal Force FN that the scale applies upward on the person. So ΣF=ma= -mg+FN . (Note that this is the same equation as we got in case 2.) We want to know FN because that is the number that we read off the scale. FN =mg+ma, which is GREATER than the true weight. Case 5: going down & speeding up (acceleration a is negative (down)) In this case, the elevator and the person are initially at rest at a higher floor. The elevator then speeds up in the downward direction towards a lower floor. The elevator acceleration of the elevator is negative/downward (increasing the velocity magnitude in the downward direction). The inertia of the person would prefer to stay at rest, so the elevator floor and scale effectively drop out a little bit from underneath the person as the elevator accelerates down. The person doesn't float upward here also, because again the elevator and the person move together, but the contact force between the person and the scale is reduced. The scale therefore has to push upward with less force on the person to support the person's weight. Therefore the Normal Force is smaller, so the reading on the scale is a number that is LESS than the true weight. Let's consider Newton's 2nd Law (ΣF=ma) acting on the person. The overall acceleration of the person is downward (with the elevator). So ma is negative (downward). The only external forces acting on the person are the force of gravity acting down (-W=-mg) and the supporting Normal Force FN that the scale applies upward on the person. So ΣF= -ma= -mg+FN . (Note that this is the same equation that we got for Case 3.) We want to know FN because that is the number that we read off the scale. FN =mg - ma, which is LESS than the true weight. Case 6: freefall (a = -g) If the elevator cable were to break, the whole elevator-scale-person system would all begin to accelerate downward due to the force of gravity. All objects in freefall accelerate downward with the same magnitude (acceleration due to gravity, g). The scale and the person are freefalling together, so there is NO contact force (Normal Force) between the scale and the person. (When they are both falling together, there is no way that the scale can support any of the person's weight.) Note that this is a special case of downward acceleration, which we discussed in Case 3 and Case 5. Just as in Cases 3 and 5, the apparent weight (which is zero when a=-g) is less than the true weight.
  • 4. A pictorial summary of apparent weight: