SlideShare a Scribd company logo
1 of 123
Download to read offline
Deterministic Seismic Ground Motions 
and the PEER NGA Ground Motion 
Prediction Equations (GMPEs)
David M. Boore
EERI Utah Chapter Short Course on Seismic Ground Motions
West Jordan, Utah
March 05, 2015
1David M. Boore
http://www.daveboore.com/presentations.html
Contents of the Lecture
• Overview of Ground‐Motion Prediction Equations 
(GMPEs)
• Predicted and Predictor Variables
• The PEER NGA‐West2 GMPEs
• Data
• Functions
• Comparisons of median predictions
• Aleatory and Epistemic Uncertainties
• Comparing Greek Data to NGA‐West2 Predictions
• Present and Future Work
• Resources
2David M. Boore
Ground‐Motion Prediction Equations (GMPEs): 
What are they?
3David M. Boore
Ground‐Motion Prediction Equations (GMPEs): 
How are they used?
• Engineering: Specify motions for seismic 
design (critical individual structures as well as 
building codes)
• Seismology: Convenient summary of average 
M and R variation of motion from many 
recordings
• Source scaling
• Path effects
• Site effects
4David M. Boore
Developing GMPEs requires 
knowledge of:
• Data acquisition and processing
• Source physics
• Velocity determination
• Linear and nonlinear wave propagation
• Simulations of ground motion
• Model building and regression analysis
5David M. Boore
How are GMPEs derived?
• Collect data
• Choose functions (keeping in mind the 
application of predicting motions in future 
earthquakes).
• Do regression fit
• Study residuals 
• Revise functions if necessary
• Model building, not just curve fitting
P. Stafford 6David M. Boore
Considerations for the functions
• “…as simple as possible, but not simpler..” (A. 
Einstein)
• Give reasonable predictions in data‐poor but 
engineering‐important situations (e.g., close to 
M≈8 earthquakes)
• Use simulations to guide some functions and set 
some coefficients (an example of model building, 
not just curve fitting) 
7David M. Boore
Predicted and Predictor Variables
• Ground‐motion intensity measures
– Peak acceleration
– Peak velocity
– Response spectra
• Basic predictor variables
– Magnitude
– Distance
– Site characterization
• Additional predictor variables
– Basin depth
– Hanging wall/foot wall
– Depth to top of rupture
– etc.
8David M. Boore
Input Parameters in PEER Spreadsheet: Source
• Moment magnitude
• Fault Width
• Fault Dip
• Fault Type
– Unspecified
– Strikeslip
– Normal
– Reverse
• Depth to Top of Rupture 
• Hypocentral Depth
• Aftershock or Mainshock?
David M. Boore 9
Input Parameters in PEER Spreadsheet: Site
• VS30
• Was VS30 measured or inferred? (Needed for uncertainty calculation)
• Depth to 1.0 km/s shear‐wave velocity
• Depth to 2.5 km/s shear‐wave velocity
David M. Boore 10
Input Parameters in PEER Spreadsheet: Path
• Region
• RJB
• RRUP
• RX
• RY0
David M. Boore 11
Wave Type and Frequencies of Most 
Interest
12David M. Boore
• Seismic shaking in range of resonant frequencies of 
structures
• Shaking often strongest on horizontal component:
– Earthquakes radiate larger S waves than P waves
– Refraction of incoming waves toward the vertical     S 
waves primarily horizontal motion
• Buildings generally are weakest for horizontal shaking
• GMPEs for horizontal components have received the 
most attention
Horizontal S waves are most important for 
engineering seismology:

13David M. Boore
Frequencies of ground‐motion for engineering 
purposes
• 20 Hz ‐‐‐ 10 sec (usually less than 
about 3 sec)
• Resonant period of typical N story 
structure ≈ N/10 sec
– What is the resonant period of the 
building in which we are located?
14David M. Boore
What are response spectra? 
• The maximum response of a suite of single 
degree of freedom (SDOF) damped oscillators 
with a range of resonant periods for a given 
input motion
• Why useful?  Buildings can often be 
represented as SDOF oscillators, so a response 
spectrum provides the motion of an arbitrary 
structure to a given input motion 
15David M. Boore
Period = 0.2 s
0.5 s 1.0 s
Courtesy of J. Bommer
16David M. Boore
Response Spectrum
Courtesy of J. Bommer
17David M. Boore
18David M. Boore
PGA generally a 
poor measure of 
ground‐motion 
intensity.  All of 
these time 
series have the 
same PGA: 
19David M. Boore
But the response spectra (and consequences for 
structures) are quite different:
20David M. Boore
Design maps in building codes are for 
T=0.2 and T=1.0 s
• Design values at other periods are obtained by 
anchoring curves to the T=0.2 and T=1.0 s 
values, as shown in the next slide
• But PGA useful in liquefaction analysis (along 
with duration)
0.0 0.5 1.0 1.5 2.0
Period
0.0
0.5
1.0
1.5
2.0
2.5
SpectralResponseAcceleration
0.0 0.5 1.0 1.5 2.0
0.0
0.5
1.0
1.5
2.0
2.5
Construct response spectrum at all
periods using T = 0.2 and 1.0 sec values
Computing RotD50
• Project the two as‐recorded horizontal time series into 
azimuth Az
• For each period, compute PSA, store Az, PSA pairs in an 
array
• Increment Az by δα and repeat first two steps until 
Az=180
• Sort array over PSA values
• RotD50 is the median value
• RotD00, RotD100 are the minimum and maximum 
values
• NO geometric means are used
23
24
25
To convert GMPEs using 
random component  as the IM 
(essentially, the as‐recorded 
geometric mean), multiply by 
RotD50/GM_AR
To convert GMPEs using 
GMRotI50 as the IM (e.g., 2008 
NGA GMPEs), multiply by 
RotD50/GMRotI50
26David M. Boore
Strike-normal (also known as “fault-
normal”) motion only close to maximum
motion within about 3 km of the fault
27David M. Boore
What to use for the basic predictor 
variables?
• Moment magnitude
– Best single measure of overall size of an 
earthquake (it does not saturate)
– It can be estimated from geological observations
– Can be estimated from paleoseismological studies
– Can be related to slip rates on faults 
28David M. Boore
What to use for the basic predictor 
variables?
• Distance – many measures can be defined
29David M. Boore
What to use for the basic predictor 
variables?
• Distance
– The distance measure should help account for the 
extended fault rupture surface
– The distance measure must be something that can 
be estimated for a future earthquake
30David M. Boore
What to use for the basic predictor 
variables?
• Distance – not all measures useful for future events
31
Most Commonly Used:
RRUP
RJB (0.0 for station
over the fault)
David M. Boore
David M. Boore 32
David M. Boore 33
David M. Boore 34
Courtesy: Jennifer Donahue
What to use for the basic predictor 
variables?
• A measure of local site geology
35David M. Boore
Site Classifications for Use With
Ground-Motion Prediction Equations
• Rock = less than 5m soil over “granite”, “limestone”, etc.
• Soil= everything else
2. NEHRP Site Classes (based on VS30)
3. Continuous Variable (VS30)
1. Rock/Soil
620 m/s = typical rock
310 m/s = typical soil
36David M. Boore
0
( )
SZ z
S
z
V
d
V




0
1 1
( )
z
SZ S
SZ
S S d
V z
   
Time-averaged shear-wave velocity to depth z:
Average shear-wave slowness to depth z:
37David M. Boore
Why VS30?
• Most data available when the idea of using average 
Vs was developed were from 30 m holes, the average 
depth that could be drilled in one day
• Better would be Vsz, where z corresponds to a 
quarter‐wavelength for the period of interest, but
• Few observations of Vs are available for greater 
depths
• Vsz correlates quite well with Vs30 for a wide range of 
z greater than 30 m (see next slide, from Boore et al., 
BSSA, 2011, pp. 3046—3059)
38David M. Boore
David M. Boore 39
Vsz correlates quite well with Vs30 for a wide 
range of z greater than 30 m
40
But regional differences exist
David M. Boore
VS Profiles for VS30=270 (± 5%)
CALIFORNIA JAPAN
From Kamai et al (2015)
Abrahamson (2015)
41David M. Boore
0 500 1000 1500
0.1
0.2
1
2
10
index (sorted by V30)
observed/predicted(nositecorrection)
class D
class C
class B
T = 2.0 sec, rjb < 80 km
File:C:peer_ngateamxresids_dmb_mr6_6_by_class_t2p0.draw;Date:2005-04-20;Time:16:37:55
Large scatter would remain after removing site effect based on site class
Knowing site class shifts aleatory to epistemic uncertainty
This figure is also a good representation of the data availability for
various site classes: most data are from class D, very few from class B
(rock) 42David M. Boore
200 1000 2000
0.4
0.5
1
2
3
4
5
V30, m/sec
Amplification
T=0.10 s
slope = bv, where Y (V30)bV
200 1000 2000
0.4
0.5
1
2
3
4
5
V30, m/sec
T=2.00 s
VS30 as continuous variable
Note period dependence of site response
43David M. Boore
Effect of different site characterizations
for a small subset of data for which V30
values are available
• No site characterization
• Rock/soil
• NEHRP class
• V30 (continuous variable)
44David M. Boore
-0.5
0
0.5
1
1.5
Obs-BJF(M,R)
Rock
Soil
T = 2.0 sec
Residuals computed as obs-bjf (with no site correction,
which is the same as assuming BJF class A or V30 = VA).
200 300 400 1000
-1
-0.5
0
0.5
1
V30 (m/sec)
Obs-BJF(M,R)-Site(rock,soil)
Rock
Soil
T = 2.0 sec
rock & soil site classification
File:C:psvDEVELOPRSDL2A_B_ppt.draw;Date:2003-06-13;Time:19:07:42
σ=0.25
σ=0.25
45David M. Boore
-1
-0.5
0
0.5
1
Obs-BJF(M,R)-Site(B,C,D)
Rock
Soil
T = 2.0 sec
NEHRP B,C,D site classification
200 300 400 1000
-1
-0.5
0
0.5
1
V30 (m/sec)
Obs-BJF(M,R)-Site(V30)
Rock
Soil
T = 2.0 sec
V30 site classification (continuous)
File:C:psvDEVELOPRSDL2C_D_ppt.draw;Date:2003-06-13;Time:19:08:04
σ=0.21
σ=0.20
46David M. Boore
2002 M 7.9 Denali Fault
47David M. Boore
K2-16
1741
K2-03
K2-06
K2-09
K2-11
K2-12
K2-14
K2-22
1744
1751
K2-02
K2-13
1734
1737
K2-01
K2-04
K2-05
K2-07
K2-19
1397
1731
1736
K2-08
K2-20
K2-21
-150 -149.8
61.1
61.2
Longitude (o
E)
Latitude(o
N)
D
C/D C
ChugachMts.
Site Classes
are based on
the average
shear-wave
velocity in the
upper 30 m
48David M. Boore
Remove high 
frequencies by 
filtering to 
emphasize 
similarity of 
longer‐period 
waveforms
49David M. Boore
0.1 1 10
0.001
0.01
0.1
1
10
100
Frequency (Hz)
FourierAcceleration(cm/sec)
Denali: EW
class D
class C/D
class C
class B (one site)
range of previous site response studies
0.1 1 10
0.1
0.2
1
2
Frequency (Hz)
Ratio(relativetoavgC)
Denali: EW
class D
class C/D
class C
class B (one site)
range of previous site response studies
File:C:anchorage_gmfas_and_ratio_EW_avg_ref_cc_4ppt.draw;Date:2005-04-19;Time:17:19:5
50David M. Boore
51David M. Boore
•Strong
correlation
between Ztor and
M
•Most M>7
earthquakes
reach the surface
(but no data for
normal-fault
earthquakes with
M>7)
Correlation between Ztor, mechanism, and M
52David M. Boore
53David M. Boore
Stewart et al., PEER 2013/22; Courtesy of Y. Bozorgnia
GMPEs:  The Past
54David M. Boore
The large epistemic variations in predicted motions are 
not decreasing with time
From
Douglas
(2010)
Mw6 strike-slip earthquake at rjb = 20 km on a NEHRP
C site
55
(M=6, R=20 km)
David M. Boore
GMPEs:  The Present
• Illustrate Empirical GMPEs with PEER NGA‐
West 2 
• (NGA = Next Generation Attenuation 
relations, although the older term 
“attenuation relations” has been replaced by 
“ground‐motion prediction equations”) 
56David M. Boore
PEER NGA‐West 2 Project Overview
• Developer Teams (each developed their own GMPEs)
• Supporting Working Groups
– Directivity
– Site Response
– Database
– Directionality
– Uncertainty
– Vertical Component
– Adjustment for Damping
57David M. Boore
NGA-West2 Developer Teams:
• Abrahamson, Silva, & Kamai (ASK14)
• Boore, Stewart, Seyhan, & Atkinson (BSSA14)
• Campbell & Bozorgnia (CB14)
• Chiou & Youngs (CY14)
• Idriss (I14)
58David M. Boore
PEER NGA‐West 2 Project Overview
• All developers used subsets of data chosen from a 
common database 
– Metadata
– Uniformly processed strong‐motion recordings
– U.S. and foreign earthquakes
– Active tectonic regions (subduction, stable continental 
regions are separate projects)
• The database development was a major time‐
consuming effort
59David M. Boore
Observed data generally
adequate for regression,
but note relative lack of
data for distances less
than 10 km. Data are
available for few large
magnitude events.
NGA-West2 database includes over
21,000 three-component recordings
from more than 600 earthquakes
60David M. Boore
Observed data not
adequate for regression,
use simulated data (the
subject of a different
lecture)
Observed data adequate
for regression except
close to large ‘quakes
61David M. Boore
62David M. Boore
63David M. Boore
Restricted to data within 80 km with at least 4 recordings per event
NGA‐West2 PSAs for ss events (adjusted to Vs30=760 m/s) vs. RRUP
64
nrecs = 11,318 for TOSC=0.2 s; nrecs = 3,359 for TOSC=6.0 s
David M. Boore
NGA‐West2 PSAs for ss events (adjusted to Vs30=760 m/s) vs. RRUP
65
There is significant scatter in the data, with scatter being larger for small earthquakes. 
David M. Boore
NGA‐West2 PSAs for ss events (adjusted to Vs30=760 m/s) vs. RRUP
66
For a single magnitude and for all periods the motions tend to saturate for large 
earthquakes as the distance from the fault rupture to the observation point decreases. 
David M. Boore
NGA‐West2 PSAs for ss events (adjusted to Vs30=760 m/s) vs. RRUP
67
At any fixed distance the ground motion increases with magnitude in a nonlinear fashion, 
with a tendency to saturate for large magnitudes, particularly for shorter period motions.  
To show this, plot PSA within the bands vs. M.
David M. Boore
NGA‐West2 PSAs for ss events (adjusted to Vs30=760 m/s) vs. RRUP
68
At any fixed distance (centered on 50 km here, including PSA in the 40 km to 62.5 km 
range) the ground motion increases with magnitude in a nonlinear fashion, with a 
tendency to saturate for large magnitudes, particularly for shorter period motions.  PSA for 
larger magnitudes is more sensitive to M for long‐period motions than for short‐period 
motions  
David M. Boore
David M. Boore 69
David M. Boore 70
NGA‐West2 PSAs for ss events (adjusted to Vs30=760 m/s) vs. RRUP
71
For a given period and magnitude the median ground motions decay with distance; this 
decay shows curvature at greater distances, more pronounced for short than long periods.
(lines are drawn by eye and are intended to give a qualitative indication of the trends)
David M. Boore
Characteristics of Data that GMPEs 
need to capture
• Magnitude‐distance distribution depends on region
• Change of amplitude with distance for fixed magnitude
• Change of amplitude with magnitude after removing 
distance dependence
• Site dependence (including basin depth dependence 
and nonlinear response)
• Earthquake type, hanging wall, depth to top of rupture, 
etc.
• Scatter
72David M. Boore
In 1994
• Typical functional form of GMPEs
(Courtesy of Yousef Bozorgnia)
(Boore, Joyner, and Fumal, 1994)
73David M. Boore
In 
2014
(Courtesy of Yousef Bozorgnia)
74David M. Boore
Boore, Stewart, Seyhan, and Atkinson 
(BSSA14) GMPEs
• General form:
• M scaling
• Distance scaling:
     
2
0 1 2 3 4 5,        E h hF mech e U e SS e NS e RS e eM M M M M
   0 1 2 3 6,E hF mech e U e SS e NS e RS e     M M M
M ≤ Mh:
M >Mh:
     
 
30 1
30
ln , , , , , , ,
, ,
E P JB S S JB
n JB S
Y F mech F R region F V R region z
R V 
  

M M M
M
75Modified from a slide by E. Seyhan
        1 2 3 3, , ln /P JB ref ref refF R region c c R R c c R R        M M M
2 2
JBR R h 
• General form:
• M scaling
• Distance scaling:
     
2
0 1 2 3 4 5,        E h hF mech e U e SS e NS e RS e eM M M M M
   0 1 2 3 6,E hF mech e U e SS e NS e RS e     M M M
M ≤ Mh:
M >Mh:
     
 
30 1
30
ln , , , , , , ,
, ,
E P JB S S JB
n JB S
Y F mech F R region F V R region z
R V 
  

M M M
M
76Modified from a slide by E. Seyhan
        1 2 3 3, , ln /P JB ref ref refF R region c c R R c c R R        M M M
2 2
JBR R h 
focal mechanism quadratic M-scaling
linear M-scaling
Boore, Stewart, Seyhan, and Atkinson 
(BSSA14) GMPEs
BSSA14 GMPEs
• General form:
• M scaling
• Distance scaling:
     
2
0 1 2 3 4 5,        E h hF mech e U e SS e NS e RS e eM M M M M
   0 1 2 3 6,E hF mech e U e SS e NS e RS e     M M M
M ≤ Mh:
M >Mh:
     
 
30 1
30
ln , , , , , , ,
, ,
E P JB S S JB
n JB S
Y F mech F R region F V R region z
R V 
  

M M M
M
77Modified from a slide by E. Seyhan
        1 2 3 3, , ln /P JB ref ref refF R region c c R R c c R R        M M M
2 2
JBR R h 
M-indep.
M-dependent distance decay
pseudo depth
BSSA14 GMPEs
• General form:
• M scaling
• Distance scaling:
     
2
0 1 2 3 4 5,        E h hF mech e U e SS e NS e RS e eM M M M M
   0 1 2 3 6,E hF mech e U e SS e NS e RS e     M M M
M ≤ Mh:
M >Mh:
     
 
30 1
30
ln , , , , , , ,
, ,
E P JB S S JB
n JB S
Y F mech F R region F V R region z
R V 
  

M M M
M
78Modified from a slide by E. Seyhan
        1 2 3 3, , ln /P JB ref ref refF R region c c R R c c R R        M M M
2 2
JBR R h  anelastic attenuation
regional corrections
BSSA14 GMPEs
• Site term
Linear site term
Nonlinear site term
        
3
1 2
3
2 30 4 5 30 5
ln( ) *ln
, ( ) exp ( )* min ,760 360 exp ( )* 760 360
nl
s s
PGAr f
F f f
f
f V T f T f T V f T
 
   
 
    
 
 
30
30
30
ln
ln
ln
S
S c
ref
lin
c
S c
ref
V
c V V
V
F
V
c V V
V
  
     
 
 
   
 
      130 1 1, , , , ln ln ( , )S S JB lin nl zF V R z region F F F z region   M
VS30-scaling
Break velocity
Slope of nonlinearity
Vs30 (m/s)
ln(Flin)
PGA
c
1
V
c
PGAr (g)ln(Fnl
)
soft soil
stiff soil
PGA
f2
1
79Modified from a slide by E. Seyhan
80David M. Boore
Why ln Y?
Residuals are
log-normally
distributed
Adding BSSA14 curves to data plots shown before
81David M. Boore
• Need complicated equations to capture effects of:
– M: 3 to 8.5 (strike‐slip)
– Distance: 0 to 300km
– Hanging wall and footwall sites
– Soil VS30: 150‐1500 m/sec
– Soil nonlinearity
– Deep basins
– Strike‐slip, Reverse, Normal faulting mechanisms
– Period: 0‐10 seconds
• The BSSA14 GMPEs are probably the simplest, but 
there may be situations where they should be used 
with caution.
Courtesy of Yousef Bozorgnia)
82David M. Boore
83David M. Boore
Model Applicability
84David M. Boore
Developer M R Vs30
ASK14 3.0‐8.5 0‐300 180‐1000
BSSA14 3.0‐8.5 0‐400 150‐1500
3.0‐7.0 (NS) 0‐400 150‐1500
CB14 3.3‐8.5 (SS) 0‐300 150‐1500
3.3‐8.0 (RS) 0‐300 150‐1500
3.3‐7.5 (NS) 0‐300 150‐1500
CY14 3.5‐8.5 (SS) 0‐300 180‐1500
3.5‐8.0 (RS, NS) 0‐300 180‐1500
I14 >=5.0 0‐150 >=450
Comparisons of NGA‐West1 and NGA‐
West2 results for each developer
David M. Boore 85
David M. Boore 86
David M. Boore 87
David M. Boore 88
David M. Boore 89
David M. Boore 90
Comparisons of NGA‐West2 results for 
the five developer teams
David M. Boore 91
92David M. Boore
93David M. Boore
94David M. Boore
95David M. Boore
96David M. Boore
97David M. Boore
98David M. Boore
Surface outcrop, 45 degree dip to right, to 15 km depth
99David M. Boore
Quantifying the Uncertainty
• The GMPEs predict the distribution of motions for a
given set of predictor variables
• The dispersion about the median motions can be
crucial for low annual-frequency-of-exceedance
hazard estimates (rare occurrences for highly critical
sites, such as nuclear power plants, nuclear waste
repositories)
• Must be clear on type of uncertainty
• The scatter is very large; can it be reduced?
100David M. Boore
101David M. Boore
BSSA14 GMPEs
• Aleatory uncertainty
     2 2
30 30, , , ,JB S JB SR V R V   M M M
    
1
1 2 1
2
4.5
4.5 4.5 5.5
5.5

   


     

M
M M M
M
 30, ,JB SR V M
between-event aleatory
uncertainty
within-event aleatory uncertainty
Total aleatory uncertainty
102Modified from a slide by E. Seyhan
Stage 1 Regression: Determine the distance function and event offsets
103David M. Boore
Stage 2 Regression: Determine the magnitude scaling
104David M. Boore
105David M. Boore
106
Example of comparison of total standard deviations
Gregor et al., 2014)
David M. Boore
107David M. Boore
108
Al Atik and Youngs, 2014)
David M. Boore
Epistemic
uncertainty for
normal faults
Model-to-model
variability is
generally larger
than the uncertainty
in the medians of
each model
Comparisons of Greek Data and the 
NGA‐W2 GMPEs
• Residual = ln Observed – ln Predicted from 
NGA‐W2
• For each period, use mixed effects regression 
to separate residuals into 
– 1) overall bias
– 2) earthquake‐to‐earthquake (inter‐earthquake) 
variation
– 3) within earthquake (intra‐earthquake) 
variation 
109David M. Boore
Mixed effects regressions
i<0
ij
ij
i>0
EQID: 1
EQID: 2
ij
 30ln , , ,
| EQID
The random part fits a mean to each of the random groups defined in EQID
( ) 0 var( )
ij ij ij JB S
ij k i ij
ij ij ij
R Y M mech R V
R c
vector IID randomerror terms withmean E and Z

 
  
 
  
 

110
Greek Data compared with NGA‐W2 GMPEs
Residual=ln Observed – ln  NGA‐W2
Except for Vs30 dependence for small 
Vs30, overall dependence of Greek 
and NGA‐W2 predictions are similar
111David M. Boore
Significant overall bias for sort periods (max 
factor=0.68)—due to filtering effects of structures from 
which records were obtained?
112David M. Boore
GMPEs:  The Future
• Future PEER NGA Work 
• Using simulations to fill in gaps in existing 
recorded motions
113David M. Boore
 NGA-West2/3
 Vertical component (finished)
 Add directivity
 NGA-East
 For stable continental regions
 2015
 NGA-Sub
 For subduction regions
 2016
NGA: 2014 and beyond
Slide from Y. Bozorgnia
114David M. Boore
Vertical/Horizontal (from SBSA14/BSSA14)
115
Magnitude Dependence VS30 Dependence
NOTE: Rule
of thumb
V/H=2/3 OK
only for
RJB=70 km,
VS30= 760
m/s
New data may not fill in gaps in data in the near 
term, particularly  close to large earthquakes 
and for important fault‐site geometries, such as 
over the hanging wall of a reverse‐slip fault.
116David M. Boore
New data may not fill in gaps in data in the near 
term, particularly  close to large earthquakes 
and for important fault‐site geometries, such as 
over the hanging wall of a reverse‐slip fault.
117David M. Boore
New data may not fill in gaps in data in the near 
term, particularly  close to large earthquakes 
and for important fault‐site geometries, such as 
over the hanging wall of a reverse‐slip fault.
118David M. Boore
Use of Simulated Motions
• Supplement observed data and derive GMPEs from 
the combined observed and simulated motions
• Constrain/adjust GMPEs for things such as:
– Hanging wall
– Saturation
– Directivity
– Splay faults and complex fault geometry
– Nonlinear soil response
119David M. Boore
Resources
• Web Sites
– peer.berkeley.edu/ngawest2/
• peer.berkeley.edu/ngawest2/final-products/
• peer.berkeley.edu/ngawest2/databases/
– www.daveboore.com
• Papers
• Software for evaluating GMPEs
120David M. Boore
Resources
• Paper and Reports
– 2013 PEER Reports (from PEER web site)
– 2014 Earthquake Spectra Papers (H
component papers published in vol. 30(3),
August, 2014)
121David M. Boore
Resources
• Programs to evaluate GMPEs
– NGA-West2 GMPEs Excel file (from
databases page of NGA-West2 web site)
– http://www.daveboore.com/pubs_online.ht
ml (Fortran programs available under the
entry for BSSA14)
– Matlab code for ASK14 from EqS
supplement
122David M. Boore
Thank You
123David M. Boore

More Related Content

What's hot

Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Muhammad Irfan
 
02 chapter: Earthquake: Strong Motion and Estimation of Seismic Hazard
02 chapter: Earthquake: Strong Motion and Estimation of Seismic Hazard02 chapter: Earthquake: Strong Motion and Estimation of Seismic Hazard
02 chapter: Earthquake: Strong Motion and Estimation of Seismic HazardPriodeep Chowdhury
 
Consolidation settlement with sand drains – analytical and numerical approaches
Consolidation settlement with sand drains – analytical and numerical approachesConsolidation settlement with sand drains – analytical and numerical approaches
Consolidation settlement with sand drains – analytical and numerical approachesUmed Paliwal
 
Slope deflection method
Slope deflection methodSlope deflection method
Slope deflection methodAnik Mamun
 
Engineering considerations
Engineering considerationsEngineering considerations
Engineering considerationsPrashant Katti
 
Chapter 1: Foundation Engineering
Chapter 1: Foundation EngineeringChapter 1: Foundation Engineering
Chapter 1: Foundation Engineeringanandpanta1
 
seismic control of structure
seismic control of structureseismic control of structure
seismic control of structurefazalrahman rang
 
ppt of consolidation and settlement of soil
ppt of consolidation and settlement of soilppt of consolidation and settlement of soil
ppt of consolidation and settlement of soilSAMRAT CHODHURY
 
INFLUENCE OF SOIL-STRUCTURE INTERACTION ON RESPONSE OF A MULTI-STORIED BUILDI...
INFLUENCE OF SOIL-STRUCTURE INTERACTION ON RESPONSE OF A MULTI-STORIED BUILDI...INFLUENCE OF SOIL-STRUCTURE INTERACTION ON RESPONSE OF A MULTI-STORIED BUILDI...
INFLUENCE OF SOIL-STRUCTURE INTERACTION ON RESPONSE OF A MULTI-STORIED BUILDI...SJ BASHA
 
Slope stabilty
Slope stabiltySlope stabilty
Slope stabiltyRiyaz Bhat
 

What's hot (20)

Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
Geotechnical Engineering-II [Lec #9+10: Westergaard Theory]
 
02 chapter: Earthquake: Strong Motion and Estimation of Seismic Hazard
02 chapter: Earthquake: Strong Motion and Estimation of Seismic Hazard02 chapter: Earthquake: Strong Motion and Estimation of Seismic Hazard
02 chapter: Earthquake: Strong Motion and Estimation of Seismic Hazard
 
Tunnelling
TunnellingTunnelling
Tunnelling
 
Consolidation settlement with sand drains – analytical and numerical approaches
Consolidation settlement with sand drains – analytical and numerical approachesConsolidation settlement with sand drains – analytical and numerical approaches
Consolidation settlement with sand drains – analytical and numerical approaches
 
2 tunnels
2 tunnels2 tunnels
2 tunnels
 
Soil dyn __2
Soil dyn __2Soil dyn __2
Soil dyn __2
 
Slope deflection method
Slope deflection methodSlope deflection method
Slope deflection method
 
Strong Motion Seismology
Strong Motion SeismologyStrong Motion Seismology
Strong Motion Seismology
 
Soil dynamics
Soil dynamicsSoil dynamics
Soil dynamics
 
Structural Geology II
Structural Geology IIStructural Geology II
Structural Geology II
 
Seismic Design - Introduction
Seismic Design - IntroductionSeismic Design - Introduction
Seismic Design - Introduction
 
Soil Exploration
Soil ExplorationSoil Exploration
Soil Exploration
 
Engineering considerations
Engineering considerationsEngineering considerations
Engineering considerations
 
Slope stability
Slope stabilitySlope stability
Slope stability
 
Chapter 1: Foundation Engineering
Chapter 1: Foundation EngineeringChapter 1: Foundation Engineering
Chapter 1: Foundation Engineering
 
seismic control of structure
seismic control of structureseismic control of structure
seismic control of structure
 
ppt of consolidation and settlement of soil
ppt of consolidation and settlement of soilppt of consolidation and settlement of soil
ppt of consolidation and settlement of soil
 
INFLUENCE OF SOIL-STRUCTURE INTERACTION ON RESPONSE OF A MULTI-STORIED BUILDI...
INFLUENCE OF SOIL-STRUCTURE INTERACTION ON RESPONSE OF A MULTI-STORIED BUILDI...INFLUENCE OF SOIL-STRUCTURE INTERACTION ON RESPONSE OF A MULTI-STORIED BUILDI...
INFLUENCE OF SOIL-STRUCTURE INTERACTION ON RESPONSE OF A MULTI-STORIED BUILDI...
 
Slope stabilty
Slope stabiltySlope stabilty
Slope stabilty
 
Slope stability
Slope stabilitySlope stability
Slope stability
 

More from Ali Osman Öncel

Riskli Yapılar - Çevre ve Şehircilik
Riskli Yapılar - Çevre ve ŞehircilikRiskli Yapılar - Çevre ve Şehircilik
Riskli Yapılar - Çevre ve ŞehircilikAli Osman Öncel
 
Riskli Yapılar -Çevre ve Şehircilik
Riskli Yapılar -Çevre ve ŞehircilikRiskli Yapılar -Çevre ve Şehircilik
Riskli Yapılar -Çevre ve ŞehircilikAli Osman Öncel
 
Kar Kar Geothermal Field Work
Kar Kar Geothermal Field WorkKar Kar Geothermal Field Work
Kar Kar Geothermal Field WorkAli Osman Öncel
 
High Resolution Earth's Gravitational Field
High Resolution Earth's Gravitational FieldHigh Resolution Earth's Gravitational Field
High Resolution Earth's Gravitational FieldAli Osman Öncel
 
Gravity Predictions for Earthquakes
Gravity Predictions for EarthquakesGravity Predictions for Earthquakes
Gravity Predictions for EarthquakesAli Osman Öncel
 
Nakamura Technique for Soil Characterization
Nakamura Technique for Soil CharacterizationNakamura Technique for Soil Characterization
Nakamura Technique for Soil CharacterizationAli Osman Öncel
 
Geopsy: Seismic Vibration Processing
Geopsy: Seismic Vibration ProcessingGeopsy: Seismic Vibration Processing
Geopsy: Seismic Vibration ProcessingAli Osman Öncel
 

More from Ali Osman Öncel (20)

APA Yazım Kuralları
APA Yazım KurallarıAPA Yazım Kuralları
APA Yazım Kuralları
 
Gravimetri : Ders 14
Gravimetri : Ders 14Gravimetri : Ders 14
Gravimetri : Ders 14
 
Gravimetri : Ders 13
Gravimetri : Ders 13Gravimetri : Ders 13
Gravimetri : Ders 13
 
Gravimetri : Ders 12
Gravimetri : Ders 12Gravimetri : Ders 12
Gravimetri : Ders 12
 
Riskli Yapılar - Çevre ve Şehircilik
Riskli Yapılar - Çevre ve ŞehircilikRiskli Yapılar - Çevre ve Şehircilik
Riskli Yapılar - Çevre ve Şehircilik
 
Riskli Yapılar -Çevre ve Şehircilik
Riskli Yapılar -Çevre ve ŞehircilikRiskli Yapılar -Çevre ve Şehircilik
Riskli Yapılar -Çevre ve Şehircilik
 
Gravimetri : Ders 07
Gravimetri : Ders 07Gravimetri : Ders 07
Gravimetri : Ders 07
 
Gravimetri : Ders 06
Gravimetri : Ders 06Gravimetri : Ders 06
Gravimetri : Ders 06
 
Gravimetri: Ders 05
Gravimetri: Ders 05Gravimetri: Ders 05
Gravimetri: Ders 05
 
Gravimetri : Ders 04
Gravimetri : Ders 04Gravimetri : Ders 04
Gravimetri : Ders 04
 
Gravimetri : Ders 03
Gravimetri : Ders 03Gravimetri : Ders 03
Gravimetri : Ders 03
 
Gravimetri Ders 02
Gravimetri Ders 02Gravimetri Ders 02
Gravimetri Ders 02
 
Gravimetri Ders 01
Gravimetri Ders 01Gravimetri Ders 01
Gravimetri Ders 01
 
Kar Kar Geothermal Field Work
Kar Kar Geothermal Field WorkKar Kar Geothermal Field Work
Kar Kar Geothermal Field Work
 
Beppu geothermal field
Beppu geothermal fieldBeppu geothermal field
Beppu geothermal field
 
High Resolution Earth's Gravitational Field
High Resolution Earth's Gravitational FieldHigh Resolution Earth's Gravitational Field
High Resolution Earth's Gravitational Field
 
Gravity Predictions for Earthquakes
Gravity Predictions for EarthquakesGravity Predictions for Earthquakes
Gravity Predictions for Earthquakes
 
Nakamura Technique for Soil Characterization
Nakamura Technique for Soil CharacterizationNakamura Technique for Soil Characterization
Nakamura Technique for Soil Characterization
 
H/V User Guidelines
H/V User Guidelines H/V User Guidelines
H/V User Guidelines
 
Geopsy: Seismic Vibration Processing
Geopsy: Seismic Vibration ProcessingGeopsy: Seismic Vibration Processing
Geopsy: Seismic Vibration Processing
 

Recently uploaded

call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
Quarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayQuarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayMakMakNepo
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
ROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationAadityaSharma884161
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 

Recently uploaded (20)

call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Quarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayQuarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up Friday
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
ROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint Presentation
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 

Deterministic Strong Ground Motions