SlideShare a Scribd company logo
1 of 77
Download to read offline
Volumes of Solids
Volumes By Discs & Washers
         slice  rotation 
Volumes of Solids
Volumes By Discs & Washers
                   slice  rotation 
About the x axis
Volumes of Solids
Volumes By Discs & Washers
                   slice  rotation 
About the x axis
                   y  f x
       y




                   x
Volumes of Solids
Volumes By Discs & Washers
                       slice  rotation 
About the x axis
                       y  f x
       y



           a       b   x
Volumes of Solids
Volumes By Discs & Washers
                       slice  rotation 
About the x axis
                       y  f x
       y



           a x    b   x
Volumes of Solids
Volumes By Discs & Washers
                     slice  rotation 
About the x axis
                     y  f x
       y
                                       y


           a x    b x

                                       x
Volumes of Solids
Volumes By Discs & Washers
                     slice  rotation 
About the x axis
                     y  f x
       y
                                       y  f x


           a x    b x

                                       x
Volumes of Solids
Volumes By Discs & Washers
                     slice  rotation 
About the x axis
                     y  f x
       y
                                       y  f x

                                                   A x     f  x 
                                                                       2


           a x    b x

                                       x
Volumes of Solids
Volumes By Discs & Washers
                     slice  rotation 
About the x axis
                     y  f x
       y
                                       y  f x

                                                   A x     f  x 
                                                                        2


           a x    b x                         V    f  x   x
                                                                    2


                                       x
Volumes of Solids
Volumes By Discs & Washers
                      slice  rotation 
About the x axis
                      y  f x
       y
                                        y  f x

                                                    A x     f  x 
                                                                         2


           a x    b x                           V    f  x   x
                                                                     2


                                         x
                                 b
                   V  lim    f  x   x
                                        2
                         x 0
                                 xa
Volumes of Solids
Volumes By Discs & Washers
                      slice  rotation 
About the x axis
                      y  f x
       y
                                            y  f x

                                                        A x     f  x 
                                                                             2


           a x    b x                              V    f  x   x
                                                                         2


                                            x
                                 b
                   V  lim    f  x   x
                                            2
                         x 0
                                 xa
                           b
                          f  x  dx
                                       2

                           a
About the y axis
                   y  f x
       y




                   x
About the y axis
                   y  f x
       y
       d

       c

                   x
About the y axis
                   y  f x
       y
       d
      y
       c

                   x
About the y axis
                   y  f x
       y
       d
      y                            x
                               y
       c

                   x
About the y axis
                   y  f x
       y
       d
      y                            x  g y
                               y
       c

                   x
About the y axis
                   y  f x
       y
       d
      y                                           x  g y
                               y
       c

                                    A y    g  y 
                                                       2
                   x
About the y axis
                   y  f x
       y
       d
      y                                           x  g y
                               y
       c

                                    A y    g  y 
                                                       2
                   x

                                     V   g  y   y
                                                           2
About the y axis
                      y  f x
       y
       d
      y                                                   x  g y
                                       y
       c

                                            A y    g  y 
                                                               2
                      x

                                             V   g  y   y
                                                                   2




                                 d
                   V  lim   g  y   y
                                              2
                       y  0
                                y c
About the y axis
                      y  f x
       y
       d
      y                                                   x  g y
                                       y
       c

                                            A y    g  y 
                                                               2
                      x

                                             V   g  y   y
                                                                   2




                                 d
                   V  lim   g  y   y
                                              2
                       y  0
                                y c
                          d
                        g  y  dy
                                       2

                          c
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                    y  4  x2

    -2          2       x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                    y  4  x2

    -2     x 2         x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                    y  4  x2

     -2       x 2      x




y  4  x2




             x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                    y  4  x2

     -2       x 2       x




y  4  x2

                     A x    4  x    
                                         2 2




             x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis
             y
             4
                    y  4  x2

     -2       x 2          x




y  4  x2

                       A x    4  x    
                                           2 2


                  V   16  8 x 2  x 4  x
             x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis

                                              V  lim   16  8 x 2  x 4  x
                                                           2
             y
             4                                    x 0
                                                        x  2
                    y  4 x  2




     -2       x 2          x




y  4  x2

                       A x    4  x    
                                           2 2


                  V   16  8 x 2  x 4  x
             x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis

                                              V  lim   16  8 x 2  x 4  x
                                                            2
             y
             4                                     x 0
                                                         x  2
                    y  4 x  2
                                                       2
                                                  2  16  8 x 2  x 4 dx
     -2       x 2          x
                                                     0




y  4  x2

                       A x    4  x    
                                           2 2


                  V   16  8 x 2  x 4  x
             x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis

                                              V  lim   16  8 x 2  x 4  x
                                                            2
             y
             4                                     x 0
                                                         x  2
                    y  4 x  2
                                                       2
                                                  2  16  8 x 2  x 4 dx
     -2       x 2          x
                                                        0
                                                                              2
                                                        16 x  8 x 3  1 x 5 
                                                    2 
                                                               3       5 0  


y  4  x2

                       A x    4  x    
                                           2 2


                  V   16  8 x 2  x 4  x
             x
e.g. i  Find the volume generated when the area between y  4  x 2 and
          the x axis is rotated about the x axis

                                              V  lim   16  8 x 2  x 4  x
                                                            2
             y
             4                                     x 0
                                                         x  2
                    y  4 x  2
                                                       2
                                                  2  16  8 x 2  x 4 dx
     -2       x 2          x
                                                        0
                                                                              2
                                                        16 x  8 x 3  1 x 5 
                                                    2 
                                                               3       5 0  
                                                        32 64 32 0
                                                    2     
                                                             3 5  
y  4  x2
                                                     512
                                                          units 3
                       A x    4  x    
                                           2 2        15
                  V   16  8 x 2  x 4  x
             x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
          y
          4
                       y3

                         x
                    y  4  x2
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
           y
           4
  (-1,3)        (1,3)   y3

                        x
                   y  4  x2
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
            y
            4
   (-1,3)         (1,3)   y3
                x
                           x
                      y  4  x2
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
            y
            4
   (-1,3)         (1,3)   y3
                x
                           x
                      y  4  x2




                                   x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
            y
            4
   (-1,3)         (1,3)    y3
                x
                            x
                       y  4  x2

                y  3  4  x2  3
                      1 x2



                                     x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
            y
            4
   (-1,3)         (1,3)      y3
                x
                             x
                        y  4  x2

                y  3  4  x2  3
                      1 x2

   A x    1  x    
                       2 2


                                     x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3
            y
            4
   (-1,3)         (1,3)       y3
                x
                              x
                         y  4  x2

                y  3  4  x2  3
                      1 x2

    A x    1  x    
                        2 2


V   1  2 x 2  x 4  x         x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3

                                                           1  2 x 2  x 4  x
                                                          1
            y
            4                               V  lim
                                               x  0
                                                        
                                                        x  1
   (-1,3)         (1,3)       y3
                x
                              x
                         y  4  x2

                y  3  4  x2  3
                      1 x2

    A x    1  x    
                        2 2


V   1  2 x 2  x 4  x         x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3

                                                           1  2 x 2  x 4  x
                                                          1
            y
            4                               V  lim
                                               x  0
                                                        
                                                        x  1
   (-1,3)         (1,3)       y3                   1

                x                             2  1  2 x 2  x 4 dx
                                                    0
                              x
                         y  4  x2

                y  3  4  x2  3
                      1 x2

    A x    1  x    
                        2 2


V   1  2 x 2  x 4  x         x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3

                                                           1  2 x 2  x 4  x
                                                          1
            y
            4                               V  lim
                                               x  0
                                                        
                                                        x  1
   (-1,3)         (1,3)       y3                   1

                x                             2  1  2 x 2  x 4 dx
                                                    0
                              x                                           1
                                                    x  2 x3  1 x5 
                                               2 
                         y  4  x2
                                                    3          5 0 

                y  3  4  x2  3
                      1 x2

    A x    1  x    
                        2 2


V   1  2 x 2  x 4  x         x
ii  Find the volume generated when the area enclosed by y  4  x 2 and
    y  3 is rotated about the line y  3

                                                           1  2 x 2  x 4  x
                                                          1
            y
            4                               V  lim
                                               x  0
                                                        
                                                        x  1
   (-1,3)         (1,3)       y3                   1

                x                             2  1  2 x 2  x 4 dx
                                                    0
                              x                                           1
                                                    x  2 x3  1 x5 
                                               2 
                         y  4  x2
                                                    3          5 0 

                y  3  4  x2  3                 1 2 1 0
                                               2     
                                                    3 5 
                      1 x2
                                                16
                                                    units 3
    A x    1  x    
                        2 2
                                                 15

V   1  2 x 2  x 4  x         x
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                             x  y2



                         x
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                             x  y2
           (1,1)

                         x
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                             x  y2
           (1,1)
              y
                         x
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                             x  y2
           (1,1)
              y
                         x
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                                x  y2
           (1,1)
              y
                            x

                        1
                 x y   2
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                                x  y2
           (1,1)
              y
                            x

                        1
x y   2
                 x y   2
iii  The area between the curves y  x 2 and x  y 2 is rotated
    about the line y axis. Find the volume generated.
         y          y  x2

                                 x  y2
            (1,1)
               y
                             x

                         1
x y   2
                  x y   2




            1  2        
A y     y    y  
            
               2      2 2

            
                          
                           
iii  The area between the curves y  x 2 and x  y 2 is rotated
     about the line y axis. Find the volume generated.
          y          y  x2

                                 x  y2
            (1,1)
               y
                             x

                         1
x y   2
                  x y   2




            1  2         
A y     y    y  
            
               2       2 2

            
                           
                            
 V    y  y 4  y
iii  The area between the curves y  x 2 and x  y 2 is rotated
     about the line y axis. Find the volume generated.
          y          y  x2
                                            V  lim    y  y 4  y
                                                         1

                                 x y   2
                                                y 0
                                                        y 0
            (1,1)
               y
                             x

                         1
x y   2
                  x y   2




            1  2         
A y     y    y  
            
               2       2 2

            
                           
                            
 V    y  y 4  y
iii  The area between the curves y  x 2 and x  y 2 is rotated
     about the line y axis. Find the volume generated.
          y          y  x2
                                            V  lim    y  y 4  y
                                                         1

                                 x y   2
                                                y 0
                                                        y 0
            (1,1)                                 1

               y                                 y  y 4 dy
                                                  0
                             x

                         1
x y   2
                  x y   2




            1  2         
A y     y    y  
            
               2       2 2

            
                           
                            
 V    y  y 4  y
iii  The area between the curves y  x 2 and x  y 2 is rotated
     about the line y axis. Find the volume generated.
          y          y  x2
                                            V  lim    y  y 4  y
                                                         1

                                 x y   2
                                                y 0
                                                        y 0
            (1,1)                                 1

               y                                 y  y 4 dy
                                                  0
                             x
                                                                    1
                                                1 2 1 5 
                                               y  y 
                         1                      2   5 0
x y   2
                  x y   2




            1  2         
A y     y    y  
            
               2       2 2

            
                           
                            
 V    y  y 4  y
iii  The area between the curves y  x 2 and x  y 2 is rotated
     about the line y axis. Find the volume generated.
          y          y  x2
                                            V  lim    y  y 4  y
                                                         1

                                 x y   2
                                                y 0
                                                        y 0
            (1,1)                                 1

               y                                 y  y 4 dy
                                                  0
                             x
                                                                    1
                                                1 2 1 5 
                                               y  y 
                         1                      2   5 0
x y   2
                  x y   2

                                                  1 1 0
                                                 
                                                 2 5 
                                                3
            1  2                              units 3
A y     y    y  
            
               2       2 2                     10
            
                           
                            
 V    y  y 4  y
(iv) (1996)        y
                   1
      x  y2  0            S

                           1                  4     x


                   -1
The shaded region is bounded by the lines x = 1, y = 1 and y = -1 and
the curve x  y  0 . The region is rotated through 360 about the line
                2

x = 4 to form a solid.

When the region is rotated, the line segment S at height y sweeps out
an annulus.
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 




  y
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 




  y               r
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 


                      R
  y
1
x  y2  0        S

                  1   4   x


             -1
1
x  y2  0        S r

                  1     4   x


             -1
1
x  y2  0         S r  4 1
                       3
                  1             4   x


             -1
1
x  y2  0         S r  4 1
                       3
                  1             4   x

                     R
             -1
1
x  y2  0         S r  4 1
                       3
                  1               4   x

                     R  4 x
             -1         4  y2
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 




  y
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 

                               R  4 x
                                   4  y2
  y
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 

                               R  4 x
                                   4  y2
  y


               r  4 1
                 3
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 

                               R  4 x
                                   4  y2
  y


               r  4 1
                                                   
                                          A y    4  y      3 
                                                              2 2    2

                 3
a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 

                               R  4 x
                                   4  y2
  y


               r  4 1
                                                    
                                          A y    4  y      3 
                                                              2 2       2

                 3
                                                  16  8 y 2  y 4  9 
                                                  y 4  8 y 2  7
b) Hence find the volume of the solid.
b) Hence find the volume of the solid.

   V    y 4  8 y 2  7  y
b) Hence find the volume of the solid.

   V    y 4  8 y 2  7  y

                       y 4  8 y 2  7  y
                     1
    V  lim
          y  0
                   
                   y  1
b) Hence find the volume of the solid.

   V    y 4  8 y 2  7  y

                       y 4  8 y 2  7  y
                     1
    V  lim
          y  0
                   
                   y  1
               1
         2   y 4  8 y 2  7 dy
               0
b) Hence find the volume of the solid.

   V    y 4  8 y 2  7  y

                       y 4  8 y 2  7  y
                     1
    V  lim
          y  0
                   
                   y  1
               1
         2   y 4  8 y 2  7 dy
               0
                                       1

         2  y 5  y 3  7 y 
               1    8
             5
                   3          0
                               
b) Hence find the volume of the solid.

   V    y 4  8 y 2  7  y

                       y 4  8 y 2  7  y
                     1
    V  lim
          y  0
                   
                   y  1
               1
         2   y 4  8 y 2  7 dy
               0
                                       1

         2  y 5  y 3  7 y 
               1     8
             5
                    3         0
                               
             1  8   
         2          7 0
             5 3         
          296
                units 3
            15
b) Hence find the volume of the solid.

   V    y 4  8 y 2  7  y

                       y 4  8 y 2  7  y
                     1
    V  lim
          y  0
                   
                   y  1
               1
         2   y 4  8 y 2  7 dy                 Exercise 3A;
               0
                                       1          2, 5, 7, 9, 13, 14, 15
         2  y 5  y 3  7 y 
               1     8
             5
                    3         0
                                                     Exercise 3B;
             1  8   
         2                                    1, 2, 5, 7, 9, 10, 11, 12
                       7 0
             5 3         
          296
                units 3
            15

More Related Content

Similar to X2 T06 01 discs and washers (2010)

X2 t05 02 cylindrical shells (2013)
X2 t05 02 cylindrical shells (2013)X2 t05 02 cylindrical shells (2013)
X2 t05 02 cylindrical shells (2013)Nigel Simmons
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)Nigel Simmons
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)Nigel Simmons
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)Nigel Simmons
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]Nigel Simmons
 
11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)Nigel Simmons
 
11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)Nigel Simmons
 
11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves II11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves IINigel Simmons
 
11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)Nigel Simmons
 
11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)Nigel Simmons
 
Pc12 sol c03_3-5
Pc12 sol c03_3-5Pc12 sol c03_3-5
Pc12 sol c03_3-5Garden City
 
X2 T04 05 curve sketching - powers of functions
X2 T04 05 curve sketching - powers of functionsX2 T04 05 curve sketching - powers of functions
X2 T04 05 curve sketching - powers of functionsNigel Simmons
 
X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)Nigel Simmons
 
X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)Nigel Simmons
 
11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)Nigel Simmons
 
X2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical ShellsX2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical ShellsNigel Simmons
 
X2 T06 01 Discs & Washers
X2 T06 01 Discs & WashersX2 T06 01 Discs & Washers
X2 T06 01 Discs & WashersNigel Simmons
 
11 x1 t16 07 approximations (2012)
11 x1 t16 07 approximations (2012)11 x1 t16 07 approximations (2012)
11 x1 t16 07 approximations (2012)Nigel Simmons
 
11X1 T16 07 approximations (2011)
11X1 T16 07 approximations (2011)11X1 T16 07 approximations (2011)
11X1 T16 07 approximations (2011)Nigel Simmons
 

Similar to X2 T06 01 discs and washers (2010) (20)

X2 t05 02 cylindrical shells (2013)
X2 t05 02 cylindrical shells (2013)X2 t05 02 cylindrical shells (2013)
X2 t05 02 cylindrical shells (2013)
 
11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)11 X1 T02 07 sketching graphs (2010)
11 X1 T02 07 sketching graphs (2010)
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]
 
11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)
 
11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)
 
11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves II11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves II
 
11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)
 
11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)11 x1 t16 04 areas (2012)
11 x1 t16 04 areas (2012)
 
Pc12 sol c03_3-5
Pc12 sol c03_3-5Pc12 sol c03_3-5
Pc12 sol c03_3-5
 
X2 T04 05 curve sketching - powers of functions
X2 T04 05 curve sketching - powers of functionsX2 T04 05 curve sketching - powers of functions
X2 T04 05 curve sketching - powers of functions
 
X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)X2 t07 05 powers of functions (2012)
X2 t07 05 powers of functions (2012)
 
X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)X2 T07 05 powers of functions (2011)
X2 T07 05 powers of functions (2011)
 
11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)11X1 T16 04 areas (2011)
11X1 T16 04 areas (2011)
 
11X1 T17 04 areas
11X1 T17 04 areas11X1 T17 04 areas
11X1 T17 04 areas
 
X2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical ShellsX2 T06 02 Cylindrical Shells
X2 T06 02 Cylindrical Shells
 
X2 T06 01 Discs & Washers
X2 T06 01 Discs & WashersX2 T06 01 Discs & Washers
X2 T06 01 Discs & Washers
 
11 x1 t16 07 approximations (2012)
11 x1 t16 07 approximations (2012)11 x1 t16 07 approximations (2012)
11 x1 t16 07 approximations (2012)
 
11X1 T16 07 approximations (2011)
11X1 T16 07 approximations (2011)11X1 T16 07 approximations (2011)
11X1 T16 07 approximations (2011)
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Recently uploaded

18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 

Recently uploaded (20)

18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 

X2 T06 01 discs and washers (2010)

  • 1. Volumes of Solids Volumes By Discs & Washers slice  rotation 
  • 2. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis
  • 3. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y x
  • 4. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y a b x
  • 5. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y a x b x
  • 6. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y y a x b x x
  • 7. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y y  f x a x b x x
  • 8. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y y  f x A x     f  x  2 a x b x x
  • 9. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y y  f x A x     f  x  2 a x b x V    f  x   x 2 x
  • 10. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y y  f x A x     f  x  2 a x b x V    f  x   x 2 x b V  lim    f  x   x 2 x 0 xa
  • 11. Volumes of Solids Volumes By Discs & Washers slice  rotation  About the x axis y  f x y y  f x A x     f  x  2 a x b x V    f  x   x 2 x b V  lim    f  x   x 2 x 0 xa b     f  x  dx 2 a
  • 12. About the y axis y  f x y x
  • 13. About the y axis y  f x y d c x
  • 14. About the y axis y  f x y d y c x
  • 15. About the y axis y  f x y d y x y c x
  • 16. About the y axis y  f x y d y x  g y y c x
  • 17. About the y axis y  f x y d y x  g y y c A y    g  y  2 x
  • 18. About the y axis y  f x y d y x  g y y c A y    g  y  2 x V   g  y   y 2
  • 19. About the y axis y  f x y d y x  g y y c A y    g  y  2 x V   g  y   y 2 d V  lim   g  y   y 2 y  0 y c
  • 20. About the y axis y  f x y d y x  g y y c A y    g  y  2 x V   g  y   y 2 d V  lim   g  y   y 2 y  0 y c d    g  y  dy 2 c
  • 21. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis
  • 22. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 -2 2 x
  • 23. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 -2 x 2 x
  • 24. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 -2 x 2 x y  4  x2 x
  • 25. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 -2 x 2 x y  4  x2 A x    4  x  2 2 x
  • 26. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis y 4 y  4  x2 -2 x 2 x y  4  x2 A x    4  x  2 2 V   16  8 x 2  x 4  x x
  • 27. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis V  lim   16  8 x 2  x 4  x 2 y 4 x 0 x  2 y  4 x 2 -2 x 2 x y  4  x2 A x    4  x  2 2 V   16  8 x 2  x 4  x x
  • 28. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis V  lim   16  8 x 2  x 4  x 2 y 4 x 0 x  2 y  4 x 2 2  2  16  8 x 2  x 4 dx -2 x 2 x 0 y  4  x2 A x    4  x  2 2 V   16  8 x 2  x 4  x x
  • 29. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis V  lim   16  8 x 2  x 4  x 2 y 4 x 0 x  2 y  4 x 2 2  2  16  8 x 2  x 4 dx -2 x 2 x 0 2 16 x  8 x 3  1 x 5   2   3 5 0  y  4  x2 A x    4  x  2 2 V   16  8 x 2  x 4  x x
  • 30. e.g. i  Find the volume generated when the area between y  4  x 2 and the x axis is rotated about the x axis V  lim   16  8 x 2  x 4  x 2 y 4 x 0 x  2 y  4 x 2 2  2  16  8 x 2  x 4 dx -2 x 2 x 0 2 16 x  8 x 3  1 x 5   2   3 5 0  32 64 32 0  2       3 5  y  4  x2 512  units 3 A x    4  x  2 2 15 V   16  8 x 2  x 4  x x
  • 31. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3
  • 32. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 y3 x y  4  x2
  • 33. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 (-1,3) (1,3) y3 x y  4  x2
  • 34. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 (-1,3) (1,3) y3 x x y  4  x2
  • 35. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 (-1,3) (1,3) y3 x x y  4  x2 x
  • 36. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 (-1,3) (1,3) y3 x x y  4  x2 y  3  4  x2  3  1 x2 x
  • 37. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 (-1,3) (1,3) y3 x x y  4  x2 y  3  4  x2  3  1 x2 A x    1  x  2 2 x
  • 38. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3 y 4 (-1,3) (1,3) y3 x x y  4  x2 y  3  4  x2  3  1 x2 A x    1  x  2 2 V   1  2 x 2  x 4  x x
  • 39. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3  1  2 x 2  x 4  x 1 y 4 V  lim x  0  x  1 (-1,3) (1,3) y3 x x y  4  x2 y  3  4  x2  3  1 x2 A x    1  x  2 2 V   1  2 x 2  x 4  x x
  • 40. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3  1  2 x 2  x 4  x 1 y 4 V  lim x  0  x  1 (-1,3) (1,3) y3 1 x  2  1  2 x 2  x 4 dx 0 x y  4  x2 y  3  4  x2  3  1 x2 A x    1  x  2 2 V   1  2 x 2  x 4  x x
  • 41. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3  1  2 x 2  x 4  x 1 y 4 V  lim x  0  x  1 (-1,3) (1,3) y3 1 x  2  1  2 x 2  x 4 dx 0 x 1  x  2 x3  1 x5   2  y  4  x2  3 5 0  y  3  4  x2  3  1 x2 A x    1  x  2 2 V   1  2 x 2  x 4  x x
  • 42. ii  Find the volume generated when the area enclosed by y  4  x 2 and y  3 is rotated about the line y  3  1  2 x 2  x 4  x 1 y 4 V  lim x  0  x  1 (-1,3) (1,3) y3 1 x  2  1  2 x 2  x 4 dx 0 x 1  x  2 x3  1 x5   2  y  4  x2  3 5 0  y  3  4  x2  3 1 2 1 0  2       3 5   1 x2 16  units 3 A x    1  x  2 2 15 V   1  2 x 2  x 4  x x
  • 43. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated.
  • 44. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 x
  • 45. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) x
  • 46. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) y x
  • 47. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) y x
  • 48. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) y x 1 x y 2
  • 49. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) y x 1 x y 2 x y 2
  • 50. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) y x 1 x y 2 x y 2  1  2  A y     y    y    2 2 2     
  • 51. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 x  y2 (1,1) y x 1 x y 2 x y 2  1  2  A y     y    y    2 2 2      V    y  y 4  y
  • 52. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 V  lim    y  y 4  y 1 x y 2 y 0 y 0 (1,1) y x 1 x y 2 x y 2  1  2  A y     y    y    2 2 2      V    y  y 4  y
  • 53. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 V  lim    y  y 4  y 1 x y 2 y 0 y 0 (1,1) 1 y     y  y 4 dy 0 x 1 x y 2 x y 2  1  2  A y     y    y    2 2 2      V    y  y 4  y
  • 54. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 V  lim    y  y 4  y 1 x y 2 y 0 y 0 (1,1) 1 y     y  y 4 dy 0 x 1 1 2 1 5   y  y  1 2 5 0 x y 2 x y 2  1  2  A y     y    y    2 2 2      V    y  y 4  y
  • 55. iii  The area between the curves y  x 2 and x  y 2 is rotated about the line y axis. Find the volume generated. y y  x2 V  lim    y  y 4  y 1 x y 2 y 0 y 0 (1,1) 1 y     y  y 4 dy 0 x 1 1 2 1 5   y  y  1 2 5 0 x y 2 x y 2  1 1 0     2 5  3  1  2   units 3 A y     y    y    2 2 2 10      V    y  y 4  y
  • 56. (iv) (1996) y 1 x  y2  0 S 1 4 x -1 The shaded region is bounded by the lines x = 1, y = 1 and y = -1 and the curve x  y  0 . The region is rotated through 360 about the line 2 x = 4 to form a solid. When the region is rotated, the line segment S at height y sweeps out an annulus.
  • 57. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7 
  • 58. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  y
  • 59. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  y r
  • 60. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  R y
  • 61. 1 x  y2  0 S 1 4 x -1
  • 62. 1 x  y2  0 S r 1 4 x -1
  • 63. 1 x  y2  0 S r  4 1 3 1 4 x -1
  • 64. 1 x  y2  0 S r  4 1 3 1 4 x R -1
  • 65. 1 x  y2  0 S r  4 1 3 1 4 x R  4 x -1  4  y2
  • 66. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  y
  • 67. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  R  4 x  4  y2 y
  • 68. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  R  4 x  4  y2 y r  4 1 3
  • 69. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  R  4 x  4  y2 y r  4 1  A y    4  y   3  2 2 2 3
  • 70. a) Show that the area of the annulus at height y is equal to   y 4  8 y 2  7  R  4 x  4  y2 y r  4 1  A y    4  y   3  2 2 2 3   16  8 y 2  y 4  9    y 4  8 y 2  7
  • 71. b) Hence find the volume of the solid.
  • 72. b) Hence find the volume of the solid. V    y 4  8 y 2  7  y
  • 73. b) Hence find the volume of the solid. V    y 4  8 y 2  7  y   y 4  8 y 2  7  y 1 V  lim y  0  y  1
  • 74. b) Hence find the volume of the solid. V    y 4  8 y 2  7  y   y 4  8 y 2  7  y 1 V  lim y  0  y  1 1  2   y 4  8 y 2  7 dy 0
  • 75. b) Hence find the volume of the solid. V    y 4  8 y 2  7  y   y 4  8 y 2  7  y 1 V  lim y  0  y  1 1  2   y 4  8 y 2  7 dy 0 1  2  y 5  y 3  7 y  1 8 5  3 0 
  • 76. b) Hence find the volume of the solid. V    y 4  8 y 2  7  y   y 4  8 y 2  7  y 1 V  lim y  0  y  1 1  2   y 4  8 y 2  7 dy 0 1  2  y 5  y 3  7 y  1 8 5  3 0  1  8     2  7 0 5 3  296  units 3 15
  • 77. b) Hence find the volume of the solid. V    y 4  8 y 2  7  y   y 4  8 y 2  7  y 1 V  lim y  0  y  1 1  2   y 4  8 y 2  7 dy Exercise 3A; 0 1 2, 5, 7, 9, 13, 14, 15  2  y 5  y 3  7 y  1 8 5  3 0  Exercise 3B; 1  8     2  1, 2, 5, 7, 9, 10, 11, 12 7 0 5 3  296  units 3 15