SlideShare a Scribd company logo
1 of 57
Calculating Coefficients
without Pascal’s Triangle
Calculating Coefficients
without Pascal’s Triangle
 !!
!
knk
n
Ck
n


Calculating Coefficients
without Pascal’s Triangle
Proof
 !!
!
knk
n
Ck
n


Calculating Coefficients
without Pascal’s Triangle
Proof
 !!
!
knk
n
Ck
n


Step 1: Prove true for k = 0
Calculating Coefficients
without Pascal’s Triangle
1
0

 CLHS n
Proof
 !!
!
knk
n
Ck
n


Step 1: Prove true for k = 0
Calculating Coefficients
without Pascal’s Triangle
1
0

 CLHS n
Proof
1
!
!
!!0
!



n
n
n
n
RHS
 !!
!
knk
n
Ck
n


Step 1: Prove true for k = 0
Calculating Coefficients
without Pascal’s Triangle
1
0

 CLHS n
RHSLHS 
Proof
1
!
!
!!0
!



n
n
n
n
RHS
 !!
!
knk
n
Ck
n


Step 1: Prove true for k = 0
Calculating Coefficients
without Pascal’s Triangle
1
0

 CLHS n
RHSLHS 
Proof
1
!
!
!!0
!



n
n
n
n
RHS
 !!
!
knk
n
Ck
n


Step 1: Prove true for k = 0
Hence the result is true for k = 0
0integeraniswherefortrueisresulttheAssume:2Step  rrk
0integeraniswherefortrueisresulttheAssume:2Step  rrk
 !!
!
..
rnr
n
Cei r
n


0integeraniswherefortrueisresulttheAssume:2Step  rrk
 !!
!
..
rnr
n
Cei r
n


1fortrueisresulttheProve:3Step  rk
0integeraniswherefortrueisresulttheAssume:2Step  rrk
 !!
!
..
rnr
n
Cei r
n


1fortrueisresulttheProve:3Step  rk
   !1!1
!
.. 1


rnr
n
Cei r
n
0integeraniswherefortrueisresulttheAssume:2Step  rrk
 !!
!
..
rnr
n
Cei r
n


1fortrueisresulttheProve:3Step  rk
   !1!1
!
.. 1


rnr
n
Cei r
n
Proof
0integeraniswherefortrueisresulttheAssume:2Step  rrk
 !!
!
..
rnr
n
Cei r
n


1fortrueisresulttheProve:3Step  rk
   !1!1
!
.. 1


rnr
n
Cei r
n
Proof
11
1


 r
n
r
n
r
n
CCC
0integeraniswherefortrueisresulttheAssume:2Step  rrk
 !!
!
..
rnr
n
Cei r
n


1fortrueisresulttheProve:3Step  rk
   !1!1
!
.. 1


rnr
n
Cei r
n
Proof
11
1


 r
n
r
n
r
n
CCC
r
n
r
n
r
n
CCC  

 1
1
1
0integeraniswherefortrueisresulttheAssume:2Step  rrk
 !!
!
..
rnr
n
Cei r
n


1fortrueisresulttheProve:3Step  rk
   !1!1
!
.. 1


rnr
n
Cei r
n
Proof
11
1


 r
n
r
n
r
n
CCC
r
n
r
n
r
n
CCC  

 1
1
1
 
     !!
!
!!1
!1
rnr
n
rnr
n





0integeraniswherefortrueisresulttheAssume:2Step  rrk
 !!
!
..
rnr
n
Cei r
n


1fortrueisresulttheProve:3Step  rk
   !1!1
!
.. 1


rnr
n
Cei r
n
Proof
11
1


 r
n
r
n
r
n
CCC
r
n
r
n
r
n
CCC  

 1
1
1
 
     !!
!
!!1
!1
rnr
n
rnr
n





   
   !!1
1!!1
rnr
rnn



0integeraniswherefortrueisresulttheAssume:2Step  rrk
 !!
!
..
rnr
n
Cei r
n


1fortrueisresulttheProve:3Step  rk
   !1!1
!
.. 1


rnr
n
Cei r
n
Proof
11
1


 r
n
r
n
r
n
CCC
r
n
r
n
r
n
CCC  

 1
1
1
 
     !!
!
!!1
!1
rnr
n
rnr
n





   
   !!1
1!!1
rnr
rnn



 
   !!1
11!
rnr
rnn



 
   !!1
11!
rnr
rnn



 
   !!1
11!
rnr
rnn



 
   !!1
!
rnr
rnn



 
   !!1
11!
rnr
rnn



 
   !!1
!
rnr
rnn



   !1!1
!


rnr
n
 
   !!1
11!
rnr
rnn



 
   !!1
!
rnr
rnn



   !1!1
!


rnr
n
Hence the result is true for k = r + 1 if it is also true for k = r
 
   !!1
11!
rnr
rnn



 
   !!1
!
rnr
rnn



   !1!1
!


rnr
n
Hence the result is true for k = r + 1 if it is also true for k = r
Step 4: Hence the result is true for all positive integral values of n
by induction
The Binomial Theorem
The Binomial Theorem
  n
n
nk
k
nnnnn
xCxCxCxCCx  2
2101
The Binomial Theorem
  n
n
nk
k
nnnnn
xCxCxCxCCx  2
2101


n
k
k
k
n
xC
0
The Binomial Theorem
  n
n
nk
k
nnnnn
xCxCxCxCCx  2
2101


n
k
k
k
n
xC
0
 
integerpositiveaisand
!!
!
where n
knk
n
Ck
n


The Binomial Theorem
  n
n
nk
k
nnnnn
xCxCxCxCCx  2
2101


n
k
k
k
n
xC
0
 
integerpositiveaisand
!!
!
where n
knk
n
Ck
n


NOTE: there are (n + 1) terms
The Binomial Theorem
  n
n
nk
k
nnnnn
xCxCxCxCCx  2
2101


n
k
k
k
n
xC
0
 
integerpositiveaisand
!!
!
where n
knk
n
Ck
n


NOTE: there are (n + 1) terms
This extends to;
  


n
k
kkn
k
nn
baCba
0
The Binomial Theorem
  n
n
nk
k
nnnnn
xCxCxCxCCx  2
2101


n
k
k
k
n
xC
0
 
integerpositiveaisand
!!
!
where n
knk
n
Ck
n


NOTE: there are (n + 1) terms
This extends to;
  


n
k
kkn
k
nn
baCba
0
4
11
Evaluate.. Cge
The Binomial Theorem
  n
n
nk
k
nnnnn
xCxCxCxCCx  2
2101


n
k
k
k
n
xC
0
 
integerpositiveaisand
!!
!
where n
knk
n
Ck
n


NOTE: there are (n + 1) terms
This extends to;
  


n
k
kkn
k
nn
baCba
0
4
11
Evaluate.. Cge
!7!4
!11
4
11
C
The Binomial Theorem
  n
n
nk
k
nnnnn
xCxCxCxCCx  2
2101


n
k
k
k
n
xC
0
 
integerpositiveaisand
!!
!
where n
knk
n
Ck
n


NOTE: there are (n + 1) terms
This extends to;
  


n
k
kkn
k
nn
baCba
0
4
11
Evaluate.. Cge
!7!4
!11
4
11
C
1234
891011



The Binomial Theorem
  n
n
nk
k
nnnnn
xCxCxCxCCx  2
2101


n
k
k
k
n
xC
0
 
integerpositiveaisand
!!
!
where n
knk
n
Ck
n


NOTE: there are (n + 1) terms
This extends to;
  


n
k
kkn
k
nn
baCba
0
4
11
Evaluate.. Cge
!7!4
!11
4
11
C
1234
891011



The Binomial Theorem
  n
n
nk
k
nnnnn
xCxCxCxCCx  2
2101


n
k
k
k
n
xC
0
 
integerpositiveaisand
!!
!
where n
knk
n
Ck
n


NOTE: there are (n + 1) terms
This extends to;
  


n
k
kkn
k
nn
baCba
0
4
11
Evaluate.. Cge
!7!4
!11
4
11
C
1234
891011



3
The Binomial Theorem
  n
n
nk
k
nnnnn
xCxCxCxCCx  2
2101


n
k
k
k
n
xC
0
 
integerpositiveaisand
!!
!
where n
knk
n
Ck
n


NOTE: there are (n + 1) terms
This extends to;
  


n
k
kkn
k
nn
baCba
0
4
11
Evaluate.. Cge
!7!4
!11
4
11
C
1234
891011



330
3
(ii) Find the value of n so that;
(ii) Find the value of n so that;
85a) CC nn

(ii) Find the value of n so that;
85a) CC nn

kn
n
k
n
CC 
(ii) Find the value of n so that;
85a) CC nn

kn
n
k
n
CC 
13
58


n
n
(ii) Find the value of n so that;
85a) CC nn

kn
n
k
n
CC 
13
58


n
n
8
20
87b) CCC nn

(ii) Find the value of n so that;
85a) CC nn

kn
n
k
n
CC 
13
58


n
n
8
20
87b) CCC nn

k
n
k
n
k
n
CCC  

1
11
(ii) Find the value of n so that;
85a) CC nn

kn
n
k
n
CC 
13
58


n
n
8
20
87b) CCC nn

k
n
k
n
k
n
CCC  

1
11
19n
(ii) Find the value of n so that;
85a) CC nn

kn
n
k
n
CC 
13
58


n
n
8
20
87b) CCC nn

k
n
k
n
k
n
CCC  

1
11
19n
 
11
3
5ofexpansionin the5th termtheFind 




 
b
aiii
(ii) Find the value of n so that;
85a) CC nn

kn
n
k
n
CC 
13
58


n
n
8
20
87b) CCC nn

k
n
k
n
k
n
CCC  

1
11
19n
 
11
3
5ofexpansionin the5th termtheFind 




 
b
aiii
 
k
k
kk
b
aCT 







3
5
1111
1
(ii) Find the value of n so that;
85a) CC nn

kn
n
k
n
CC 
13
58


n
n
8
20
87b) CCC nn

k
n
k
n
k
n
CCC  

1
11
19n
 
11
3
5ofexpansionin the5th termtheFind 




 
b
aiii
 
k
k
kk
b
aCT 







3
5
1111
1
 
4
7
4
11
5
3
5 





b
aCT
(ii) Find the value of n so that;
85a) CC nn

kn
n
k
n
CC 
13
58


n
n
8
20
87b) CCC nn

k
n
k
n
k
n
CCC  

1
11
19n
 
11
3
5ofexpansionin the5th termtheFind 




 
b
aiii
 
k
k
kk
b
aCT 







3
5
1111
1
 
4
7
4
11
5
3
5 





b
aCT
4
747
4
11
35
b
aC

(ii) Find the value of n so that;
85a) CC nn

kn
n
k
n
CC 
13
58


n
n
8
20
87b) CCC nn

k
n
k
n
k
n
CCC  

1
11
19n
 
11
3
5ofexpansionin the5th termtheFind 




 
b
aiii
 
k
k
kk
b
aCT 







3
5
1111
1
 
4
7
4
11
5
3
5 





b
aCT
4
747
4
11
35
b
aC
 unsimplified
(ii) Find the value of n so that;
85a) CC nn

kn
n
k
n
CC 
13
58


n
n
8
20
87b) CCC nn

k
n
k
n
k
n
CCC  

1
11
19n
 
11
3
5ofexpansionin the5th termtheFind 




 
b
aiii
 
k
k
kk
b
aCT 







3
5
1111
1
 
4
7
4
11
5
3
5 





b
aCT
4
747
4
11
35
b
aC
 unsimplified
4
7
8178125330
b
a

(ii) Find the value of n so that;
85a) CC nn

kn
n
k
n
CC 
13
58


n
n
8
20
87b) CCC nn

k
n
k
n
k
n
CCC  

1
11
19n
 
11
3
5ofexpansionin the5th termtheFind 




 
b
aiii
 
k
k
kk
b
aCT 







3
5
1111
1
 
4
7
4
11
5
3
5 





b
aCT
4
747
4
11
35
b
aC
 unsimplified
4
7
8178125330
b
a

4
7
2088281250
b
a

 
9
2
2
1
3inoftindependentermObtain the 




 
x
xxiv
 
9
2
2
1
3inoftindependentermObtain the 




 
x
xxiv
 
k
k
kk
x
xCT 







2
1
3
929
1
 
9
2
2
1
3inoftindependentermObtain the 




 
x
xxiv
 
k
k
kk
x
xCT 







2
1
3
929
1
0
withtermmeansoftindependenterm xx
 
9
2
2
1
3inoftindependentermObtain the 




 
x
xxiv
 
k
k
kk
x
xCT 







2
1
3
929
1
0
withtermmeansoftindependenterm xx
    0192
xxx
kk

 
9
2
2
1
3inoftindependentermObtain the 




 
x
xxiv
 
k
k
kk
x
xCT 







2
1
3
929
1
0
withtermmeansoftindependenterm xx
    0192
xxx
kk

6
0318
0218


 
k
k
xxx kk
 
9
2
2
1
3inoftindependentermObtain the 




 
x
xxiv
 
k
k
kk
x
xCT 







2
1
3
929
1
0
withtermmeansoftindependenterm xx
    0192
xxx
kk

6
0318
0218


 
k
k
xxx kk
 
6
32
6
9
7
2
1
3 





x
xCT
 
9
2
2
1
3inoftindependentermObtain the 




 
x
xxiv
 
k
k
kk
x
xCT 







2
1
3
929
1
0
withtermmeansoftindependenterm xx
    0192
xxx
kk

6
0318
0218


 
k
k
xxx kk
 
6
32
6
9
7
2
1
3 





x
xCT
6
3
6
9
2
3C

 
9
2
2
1
3inoftindependentermObtain the 




 
x
xxiv
 
k
k
kk
x
xCT 







2
1
3
929
1
0
withtermmeansoftindependenterm xx
    0192
xxx
kk

6
0318
0218


 
k
k
xxx kk
 
6
32
6
9
7
2
1
3 





x
xCT
6
3
6
9
2
3C

Exercise 5D; 2, 3, 5, 7, 9, 10ac, 12ac, 13,
14, 15ac, 19, 25

More Related Content

Similar to 12 x1 t08 03 binomial theorem (2013)

12 x1 t08 03 binomial theorem (12)
12 x1 t08 03 binomial theorem (12)12 x1 t08 03 binomial theorem (12)
12 x1 t08 03 binomial theorem (12)
Nigel Simmons
 
12X1 T08 03 binomial theorem (2011)
12X1 T08 03 binomial theorem (2011)12X1 T08 03 binomial theorem (2011)
12X1 T08 03 binomial theorem (2011)
Nigel Simmons
 
11 x1 t14 11 some different types (2013)
11 x1 t14 11 some different types (2013)11 x1 t14 11 some different types (2013)
11 x1 t14 11 some different types (2013)
Nigel Simmons
 
X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)
Nigel Simmons
 
11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)
Nigel Simmons
 
11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)
Nigel Simmons
 
11X1 T14 10 mathematical induction 3 (2010)
11X1 T14 10 mathematical induction 3 (2010)11X1 T14 10 mathematical induction 3 (2010)
11X1 T14 10 mathematical induction 3 (2010)
Nigel Simmons
 
11X1 T10 10 mathematical induction 3
11X1 T10 10 mathematical induction 311X1 T10 10 mathematical induction 3
11X1 T10 10 mathematical induction 3
Nigel Simmons
 
11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)
Nigel Simmons
 
11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)
Nigel Simmons
 
Docdownloader.com pdf-filosofia-general-fgc-404-practica-extra-aulica-final-v...
Docdownloader.com pdf-filosofia-general-fgc-404-practica-extra-aulica-final-v...Docdownloader.com pdf-filosofia-general-fgc-404-practica-extra-aulica-final-v...
Docdownloader.com pdf-filosofia-general-fgc-404-practica-extra-aulica-final-v...
LeurySantiago
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
ankush_kumar
 
11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)
Nigel Simmons
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
ankush_kumar
 
11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)
Nigel Simmons
 
12X1 T08 02 general binomial expansions (2011)
12X1 T08 02 general binomial expansions (2011)12X1 T08 02 general binomial expansions (2011)
12X1 T08 02 general binomial expansions (2011)
Nigel Simmons
 
12X1 T08 02 general binomial expansions
12X1 T08 02 general binomial expansions12X1 T08 02 general binomial expansions
12X1 T08 02 general binomial expansions
Nigel Simmons
 

Similar to 12 x1 t08 03 binomial theorem (2013) (20)

12 x1 t08 03 binomial theorem (12)
12 x1 t08 03 binomial theorem (12)12 x1 t08 03 binomial theorem (12)
12 x1 t08 03 binomial theorem (12)
 
12X1 T08 03 binomial theorem (2011)
12X1 T08 03 binomial theorem (2011)12X1 T08 03 binomial theorem (2011)
12X1 T08 03 binomial theorem (2011)
 
11 x1 t14 11 some different types (2013)
11 x1 t14 11 some different types (2013)11 x1 t14 11 some different types (2013)
11 x1 t14 11 some different types (2013)
 
X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)X2 t08 03 inequalities & graphs (2013)
X2 t08 03 inequalities & graphs (2013)
 
jalalam.ppt
jalalam.pptjalalam.ppt
jalalam.ppt
 
Binomial theorem
Binomial theorem Binomial theorem
Binomial theorem
 
11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)11 x1 t14 10 mathematical induction 3 (2012)
11 x1 t14 10 mathematical induction 3 (2012)
 
11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)11X1 T14 10 mathematical induction 3 (2011)
11X1 T14 10 mathematical induction 3 (2011)
 
11X1 T14 10 mathematical induction 3 (2010)
11X1 T14 10 mathematical induction 3 (2010)11X1 T14 10 mathematical induction 3 (2010)
11X1 T14 10 mathematical induction 3 (2010)
 
11X1 T10 10 mathematical induction 3
11X1 T10 10 mathematical induction 311X1 T10 10 mathematical induction 3
11X1 T10 10 mathematical induction 3
 
11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)11 x1 t14 09 mathematical induction 2 (2013)
11 x1 t14 09 mathematical induction 2 (2013)
 
11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)11 x1 t14 08 mathematical induction 1 (2013)
11 x1 t14 08 mathematical induction 1 (2013)
 
Docdownloader.com pdf-filosofia-general-fgc-404-practica-extra-aulica-final-v...
Docdownloader.com pdf-filosofia-general-fgc-404-practica-extra-aulica-final-v...Docdownloader.com pdf-filosofia-general-fgc-404-practica-extra-aulica-final-v...
Docdownloader.com pdf-filosofia-general-fgc-404-practica-extra-aulica-final-v...
 
Encrypting with entanglement matthias christandl
Encrypting with entanglement matthias christandlEncrypting with entanglement matthias christandl
Encrypting with entanglement matthias christandl
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
 
11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)11X1 T14 09 mathematical induction 2 (2011)
11X1 T14 09 mathematical induction 2 (2011)
 
mathematical induction
mathematical inductionmathematical induction
mathematical induction
 
11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)11 x1 t14 09 mathematical induction 2 (2012)
11 x1 t14 09 mathematical induction 2 (2012)
 
12X1 T08 02 general binomial expansions (2011)
12X1 T08 02 general binomial expansions (2011)12X1 T08 02 general binomial expansions (2011)
12X1 T08 02 general binomial expansions (2011)
 
12X1 T08 02 general binomial expansions
12X1 T08 02 general binomial expansions12X1 T08 02 general binomial expansions
12X1 T08 02 general binomial expansions
 

More from Nigel Simmons

12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
EADTU
 

Recently uploaded (20)

OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & Systems
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
dusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningdusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learning
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
VAMOS CUIDAR DO NOSSO PLANETA! .
VAMOS CUIDAR DO NOSSO PLANETA!                    .VAMOS CUIDAR DO NOSSO PLANETA!                    .
VAMOS CUIDAR DO NOSSO PLANETA! .
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Economic Importance Of Fungi In Food Additives
Economic Importance Of Fungi In Food AdditivesEconomic Importance Of Fungi In Food Additives
Economic Importance Of Fungi In Food Additives
 
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
 
PANDITA RAMABAI- Indian political thought GENDER.pptx
PANDITA RAMABAI- Indian political thought GENDER.pptxPANDITA RAMABAI- Indian political thought GENDER.pptx
PANDITA RAMABAI- Indian political thought GENDER.pptx
 
Simple, Complex, and Compound Sentences Exercises.pdf
Simple, Complex, and Compound Sentences Exercises.pdfSimple, Complex, and Compound Sentences Exercises.pdf
Simple, Complex, and Compound Sentences Exercises.pdf
 
How to Add a Tool Tip to a Field in Odoo 17
How to Add a Tool Tip to a Field in Odoo 17How to Add a Tool Tip to a Field in Odoo 17
How to Add a Tool Tip to a Field in Odoo 17
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
AIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.pptAIM of Education-Teachers Training-2024.ppt
AIM of Education-Teachers Training-2024.ppt
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 

12 x1 t08 03 binomial theorem (2013)

  • 2. Calculating Coefficients without Pascal’s Triangle  !! ! knk n Ck n  
  • 3. Calculating Coefficients without Pascal’s Triangle Proof  !! ! knk n Ck n  
  • 4. Calculating Coefficients without Pascal’s Triangle Proof  !! ! knk n Ck n   Step 1: Prove true for k = 0
  • 5. Calculating Coefficients without Pascal’s Triangle 1 0   CLHS n Proof  !! ! knk n Ck n   Step 1: Prove true for k = 0
  • 6. Calculating Coefficients without Pascal’s Triangle 1 0   CLHS n Proof 1 ! ! !!0 !    n n n n RHS  !! ! knk n Ck n   Step 1: Prove true for k = 0
  • 7. Calculating Coefficients without Pascal’s Triangle 1 0   CLHS n RHSLHS  Proof 1 ! ! !!0 !    n n n n RHS  !! ! knk n Ck n   Step 1: Prove true for k = 0
  • 8. Calculating Coefficients without Pascal’s Triangle 1 0   CLHS n RHSLHS  Proof 1 ! ! !!0 !    n n n n RHS  !! ! knk n Ck n   Step 1: Prove true for k = 0 Hence the result is true for k = 0
  • 11. 0integeraniswherefortrueisresulttheAssume:2Step  rrk  !! ! .. rnr n Cei r n   1fortrueisresulttheProve:3Step  rk
  • 12. 0integeraniswherefortrueisresulttheAssume:2Step  rrk  !! ! .. rnr n Cei r n   1fortrueisresulttheProve:3Step  rk    !1!1 ! .. 1   rnr n Cei r n
  • 13. 0integeraniswherefortrueisresulttheAssume:2Step  rrk  !! ! .. rnr n Cei r n   1fortrueisresulttheProve:3Step  rk    !1!1 ! .. 1   rnr n Cei r n Proof
  • 14. 0integeraniswherefortrueisresulttheAssume:2Step  rrk  !! ! .. rnr n Cei r n   1fortrueisresulttheProve:3Step  rk    !1!1 ! .. 1   rnr n Cei r n Proof 11 1    r n r n r n CCC
  • 15. 0integeraniswherefortrueisresulttheAssume:2Step  rrk  !! ! .. rnr n Cei r n   1fortrueisresulttheProve:3Step  rk    !1!1 ! .. 1   rnr n Cei r n Proof 11 1    r n r n r n CCC r n r n r n CCC     1 1 1
  • 16. 0integeraniswherefortrueisresulttheAssume:2Step  rrk  !! ! .. rnr n Cei r n   1fortrueisresulttheProve:3Step  rk    !1!1 ! .. 1   rnr n Cei r n Proof 11 1    r n r n r n CCC r n r n r n CCC     1 1 1        !! ! !!1 !1 rnr n rnr n     
  • 17. 0integeraniswherefortrueisresulttheAssume:2Step  rrk  !! ! .. rnr n Cei r n   1fortrueisresulttheProve:3Step  rk    !1!1 ! .. 1   rnr n Cei r n Proof 11 1    r n r n r n CCC r n r n r n CCC     1 1 1        !! ! !!1 !1 rnr n rnr n             !!1 1!!1 rnr rnn   
  • 18. 0integeraniswherefortrueisresulttheAssume:2Step  rrk  !! ! .. rnr n Cei r n   1fortrueisresulttheProve:3Step  rk    !1!1 ! .. 1   rnr n Cei r n Proof 11 1    r n r n r n CCC r n r n r n CCC     1 1 1        !! ! !!1 !1 rnr n rnr n             !!1 1!!1 rnr rnn         !!1 11! rnr rnn   
  • 19.      !!1 11! rnr rnn   
  • 20.      !!1 11! rnr rnn         !!1 ! rnr rnn   
  • 21.      !!1 11! rnr rnn         !!1 ! rnr rnn       !1!1 !   rnr n
  • 22.      !!1 11! rnr rnn         !!1 ! rnr rnn       !1!1 !   rnr n Hence the result is true for k = r + 1 if it is also true for k = r
  • 23.      !!1 11! rnr rnn         !!1 ! rnr rnn       !1!1 !   rnr n Hence the result is true for k = r + 1 if it is also true for k = r Step 4: Hence the result is true for all positive integral values of n by induction
  • 25. The Binomial Theorem   n n nk k nnnnn xCxCxCxCCx  2 2101
  • 26. The Binomial Theorem   n n nk k nnnnn xCxCxCxCCx  2 2101   n k k k n xC 0
  • 27. The Binomial Theorem   n n nk k nnnnn xCxCxCxCCx  2 2101   n k k k n xC 0   integerpositiveaisand !! ! where n knk n Ck n  
  • 28. The Binomial Theorem   n n nk k nnnnn xCxCxCxCCx  2 2101   n k k k n xC 0   integerpositiveaisand !! ! where n knk n Ck n   NOTE: there are (n + 1) terms
  • 29. The Binomial Theorem   n n nk k nnnnn xCxCxCxCCx  2 2101   n k k k n xC 0   integerpositiveaisand !! ! where n knk n Ck n   NOTE: there are (n + 1) terms This extends to;      n k kkn k nn baCba 0
  • 30. The Binomial Theorem   n n nk k nnnnn xCxCxCxCCx  2 2101   n k k k n xC 0   integerpositiveaisand !! ! where n knk n Ck n   NOTE: there are (n + 1) terms This extends to;      n k kkn k nn baCba 0 4 11 Evaluate.. Cge
  • 31. The Binomial Theorem   n n nk k nnnnn xCxCxCxCCx  2 2101   n k k k n xC 0   integerpositiveaisand !! ! where n knk n Ck n   NOTE: there are (n + 1) terms This extends to;      n k kkn k nn baCba 0 4 11 Evaluate.. Cge !7!4 !11 4 11 C
  • 32. The Binomial Theorem   n n nk k nnnnn xCxCxCxCCx  2 2101   n k k k n xC 0   integerpositiveaisand !! ! where n knk n Ck n   NOTE: there are (n + 1) terms This extends to;      n k kkn k nn baCba 0 4 11 Evaluate.. Cge !7!4 !11 4 11 C 1234 891011   
  • 33. The Binomial Theorem   n n nk k nnnnn xCxCxCxCCx  2 2101   n k k k n xC 0   integerpositiveaisand !! ! where n knk n Ck n   NOTE: there are (n + 1) terms This extends to;      n k kkn k nn baCba 0 4 11 Evaluate.. Cge !7!4 !11 4 11 C 1234 891011   
  • 34. The Binomial Theorem   n n nk k nnnnn xCxCxCxCCx  2 2101   n k k k n xC 0   integerpositiveaisand !! ! where n knk n Ck n   NOTE: there are (n + 1) terms This extends to;      n k kkn k nn baCba 0 4 11 Evaluate.. Cge !7!4 !11 4 11 C 1234 891011    3
  • 35. The Binomial Theorem   n n nk k nnnnn xCxCxCxCCx  2 2101   n k k k n xC 0   integerpositiveaisand !! ! where n knk n Ck n   NOTE: there are (n + 1) terms This extends to;      n k kkn k nn baCba 0 4 11 Evaluate.. Cge !7!4 !11 4 11 C 1234 891011    330 3
  • 36. (ii) Find the value of n so that;
  • 37. (ii) Find the value of n so that; 85a) CC nn 
  • 38. (ii) Find the value of n so that; 85a) CC nn  kn n k n CC 
  • 39. (ii) Find the value of n so that; 85a) CC nn  kn n k n CC  13 58   n n
  • 40. (ii) Find the value of n so that; 85a) CC nn  kn n k n CC  13 58   n n 8 20 87b) CCC nn 
  • 41. (ii) Find the value of n so that; 85a) CC nn  kn n k n CC  13 58   n n 8 20 87b) CCC nn  k n k n k n CCC    1 11
  • 42. (ii) Find the value of n so that; 85a) CC nn  kn n k n CC  13 58   n n 8 20 87b) CCC nn  k n k n k n CCC    1 11 19n
  • 43. (ii) Find the value of n so that; 85a) CC nn  kn n k n CC  13 58   n n 8 20 87b) CCC nn  k n k n k n CCC    1 11 19n   11 3 5ofexpansionin the5th termtheFind        b aiii
  • 44. (ii) Find the value of n so that; 85a) CC nn  kn n k n CC  13 58   n n 8 20 87b) CCC nn  k n k n k n CCC    1 11 19n   11 3 5ofexpansionin the5th termtheFind        b aiii   k k kk b aCT         3 5 1111 1
  • 45. (ii) Find the value of n so that; 85a) CC nn  kn n k n CC  13 58   n n 8 20 87b) CCC nn  k n k n k n CCC    1 11 19n   11 3 5ofexpansionin the5th termtheFind        b aiii   k k kk b aCT         3 5 1111 1   4 7 4 11 5 3 5       b aCT
  • 46. (ii) Find the value of n so that; 85a) CC nn  kn n k n CC  13 58   n n 8 20 87b) CCC nn  k n k n k n CCC    1 11 19n   11 3 5ofexpansionin the5th termtheFind        b aiii   k k kk b aCT         3 5 1111 1   4 7 4 11 5 3 5       b aCT 4 747 4 11 35 b aC 
  • 47. (ii) Find the value of n so that; 85a) CC nn  kn n k n CC  13 58   n n 8 20 87b) CCC nn  k n k n k n CCC    1 11 19n   11 3 5ofexpansionin the5th termtheFind        b aiii   k k kk b aCT         3 5 1111 1   4 7 4 11 5 3 5       b aCT 4 747 4 11 35 b aC  unsimplified
  • 48. (ii) Find the value of n so that; 85a) CC nn  kn n k n CC  13 58   n n 8 20 87b) CCC nn  k n k n k n CCC    1 11 19n   11 3 5ofexpansionin the5th termtheFind        b aiii   k k kk b aCT         3 5 1111 1   4 7 4 11 5 3 5       b aCT 4 747 4 11 35 b aC  unsimplified 4 7 8178125330 b a 
  • 49. (ii) Find the value of n so that; 85a) CC nn  kn n k n CC  13 58   n n 8 20 87b) CCC nn  k n k n k n CCC    1 11 19n   11 3 5ofexpansionin the5th termtheFind        b aiii   k k kk b aCT         3 5 1111 1   4 7 4 11 5 3 5       b aCT 4 747 4 11 35 b aC  unsimplified 4 7 8178125330 b a  4 7 2088281250 b a 
  • 50.   9 2 2 1 3inoftindependentermObtain the        x xxiv
  • 51.   9 2 2 1 3inoftindependentermObtain the        x xxiv   k k kk x xCT         2 1 3 929 1
  • 52.   9 2 2 1 3inoftindependentermObtain the        x xxiv   k k kk x xCT         2 1 3 929 1 0 withtermmeansoftindependenterm xx
  • 53.   9 2 2 1 3inoftindependentermObtain the        x xxiv   k k kk x xCT         2 1 3 929 1 0 withtermmeansoftindependenterm xx     0192 xxx kk 
  • 54.   9 2 2 1 3inoftindependentermObtain the        x xxiv   k k kk x xCT         2 1 3 929 1 0 withtermmeansoftindependenterm xx     0192 xxx kk  6 0318 0218     k k xxx kk
  • 55.   9 2 2 1 3inoftindependentermObtain the        x xxiv   k k kk x xCT         2 1 3 929 1 0 withtermmeansoftindependenterm xx     0192 xxx kk  6 0318 0218     k k xxx kk   6 32 6 9 7 2 1 3       x xCT
  • 56.   9 2 2 1 3inoftindependentermObtain the        x xxiv   k k kk x xCT         2 1 3 929 1 0 withtermmeansoftindependenterm xx     0192 xxx kk  6 0318 0218     k k xxx kk   6 32 6 9 7 2 1 3       x xCT 6 3 6 9 2 3C 
  • 57.   9 2 2 1 3inoftindependentermObtain the        x xxiv   k k kk x xCT         2 1 3 929 1 0 withtermmeansoftindependenterm xx     0192 xxx kk  6 0318 0218     k k xxx kk   6 32 6 9 7 2 1 3       x xCT 6 3 6 9 2 3C  Exercise 5D; 2, 3, 5, 7, 9, 10ac, 12ac, 13, 14, 15ac, 19, 25