SlideShare a Scribd company logo
1 of 47
Download to read offline
Volumes of Solids
  of Revolution
 y
            y = f(x)


              x
Volumes of Solids
  of Revolution
 y
               y = f(x)


     a     b     x
Volumes of Solids
  of Revolution
 y
               y = f(x)


     a     b     x
Volumes of Solids
        of Revolution
           y
                                             y = f(x)


                 a                       b     x



Volume of a solid of revolution about;
Volumes of Solids
        of Revolution
            y
                                                 y = f(x)


                  a                         b      x



Volume of a solid of revolution about; i x axis : V   y 2 dx
                                                            b
                                                           a
Volumes of Solids
        of Revolution
            y
                                                  y = f(x)


                  a                         b        x



Volume of a solid of revolution about; i x axis : V   y 2 dx
                                                             b
                                                            a

                                        ii  y axis : V   c x 2 dy
                                                                 d
e.g. (i) cone

          y
                y  mx



                h x
e.g. (i) cone

          y
                y  mx



                h x
e.g. (i) cone            V    y 2 dx
                                h

          y                   m 2 x 2 dx
                y  mx          0




                h x
e.g. (i) cone            V    y 2 dx
                                h

          y                   m 2 x 2 dx
                y  mx          0
                                              h
                                2 1 3 
                             m  x 
                                  3  0

                h x
e.g. (i) cone            V    y 2 dx
                                h

          y                   m 2 x 2 dx
                y  mx          0
                                              h
                                2 1 3 
                             m  x 
                                  3  0
                             m h  0 
                              1 2 3
                h x           3
                              1 2 3
                             m h
                              3
e.g. (i) cone            V    y 2 dx
                                h

          y                   m 2 x 2 dx
                y  mx          0
                                              h
                                2 1 3 
                             m  x 
                                  3  0
                r
                             m h  0 
                              1 2 3
                h x           3
                              1 2 3
                             m h
                              3
e.g. (i) cone                   V    y 2 dx
                                       h

          y                          m 2 x 2 dx
                       y  mx          0
                                                     h
                                       2 1 3 
                                    m  x 
                                         3  0
                       r
                                    m h  0 
                                     1 2 3
                       h x           3
                                     1 2 3
                                    m h
                                     3
                   r
                m
                   h
e.g. (i) cone                   V    y 2 dx
                                       h

          y                          m 2 x 2 dx
                       y  mx          0
                                                     h
                                         2 1 3 
                                    m  x 
                                           3  0
                       r
                                    m h  0 
                                     1 2 3
                       h x           3
                                     1 2 3
                                    m h
                                     3        2
                   r
                                       h3
                m                   1 r
                                          
                   h                 3 h
                                     r 2 h 3
                                   
                                      3h 2
                                     r 2 h
                                   
                                       3
(ii) sphere

              y
                  x2  y2  r 2



                        rx
(ii) sphere

              y
                  x2  y2  r 2



                        rx
(ii) sphere

              y                   V    y 2 dx
                  x2  y2  r 2           r
                                     2  r 2  x 2 dx
                                          0


                        rx
(ii) sphere

              y                   V    y 2 dx
                  x2  y2  r 2           r
                                     2  r 2  x 2 dx
                                          0
                                                         r
                                          r 2 x  1 x 3 
                                      2 
                        rx
                                                  3 0  
(ii) sphere

              y                   V    y 2 dx
                  x2  y2  r 2           r
                                     2  r 2  x 2 dx
                                          0
                                                         r
                                          r 2 x  1 x 3 
                                      2 
                        rx
                                                  3 0  
                                                      1  
                                      2  r 2 r   r 3   0
                                           
                                                     3  
                                          2 3
                                      2  r 
                                          3 
                                       4
                                      r 3
                                       3
(iii) Find the volume of the solid generated when y  x 2 is revolved
      around the y axis between y  0 and y  1.
(iii) Find the volume of the solid generated when y  x 2 is revolved
      around the y axis between y  0 and y  1.

          y           y  x2




                           x
(iii) Find the volume of the solid generated when y  x 2 is revolved
      around the y axis between y  0 and y  1.

          y           y  x2

              1


                           x
(iii) Find the volume of the solid generated when y  x 2 is revolved
      around the y axis between y  0 and y  1.

          y           y  x2

              1


                           x
(iii) Find the volume of the solid generated when y  x 2 is revolved
      around the y axis between y  0 and y  1.

          y           y  x2        V       x 2 dy
                                           1
              1                           ydy
                                           0




                           x
(iii) Find the volume of the solid generated when y  x 2 is revolved
      around the y axis between y  0 and y  1.

          y           y  x2        V          x 2 dy
                                              1
              1                              ydy
                                              0

                                          
                                      
                                          2
                                            y    2 1
                                                     0

                           x
(iii) Find the volume of the solid generated when y  x 2 is revolved
      around the y axis between y  0 and y  1.

          y           y  x2        V          x 2 dy
                                              1
              1                              ydy
                                              0

                                          
                                      
                                          2
                                            y     2 1
                                                      0

                           x
                                          
                                             1   2
                                                        0
                                          2
                                          
                                                 units    3

                                          2
(iv) Find the volume of the solid when the shaded region is rotated
     about the x axis
      y
                      y  5x
      5



                     x
(iv) Find the volume of the solid when the shaded region is rotated
     about the x axis
      y                      V    y 2 dx
                      y  5x
                                                
                                    1
      5
                                   52  5 x  dx
                                                 2

                                   0
                                   1

                     x            25  25 x 2 dx
                                   0
(iv) Find the volume of the solid when the shaded region is rotated
     about the x axis
      y                      V    y 2 dx
                      y  5x
                                                
                                    1
      5
                                   52  5 x  dx
                                                 2

                                   0
                                   1

                     x            25  25 x 2 dx
                                   0
                                                     1
                                       x  1 x3 
                                 25 
                                       3 0     
(iv) Find the volume of the solid when the shaded region is rotated
     about the x axis
      y                      V    y 2 dx
                      y  5x
                                                
                                    1
      5
                                   52  5 x  dx
                                                 2

                                   0
                                   1

                     x            25  25 x 2 dx
                                   0
                                                     1
                                       x  1 x3 
                                 25 
                                       3 0     
                                      1 1 13 0
                                 25             
                                       3            
                                  50
                                      unit 3
                                   3
(iv) Find the volume of the solid when the shaded region is rotated
     about the x axis
      y                      V    y 2 dx
                      y  5x
                                                
                                    1
      5
                                   52  5 x  dx
                                                 2

                                   0
                                   1

                     x            25  25 x 2 dx
                                   0
                                                     1
                                       x  1 x3 
                                 25 
                                       3 0     
                                      1 1 13 0
 OR                              25             
                                       3            
                                  50
                                      unit 3
                                   3
(iv) Find the volume of the solid when the shaded region is rotated
     about the x axis
      y                      V    y 2 dx
                      y  5x
                                                
                                    1
      5
                                   52  5 x  dx
                                                 2

                                   0
                                   1

                     x            25  25 x 2 dx
                                   0
                                                     1
                                       x  1 x3 
                                 25 
                                       3 0     
                 1                    1 1 13 0
 OR V  r 2 h  r 2 h          25             
                 3                     3            
        2                         50
        5 1               
                2
                                       unit 3
        3                          3
        50
             units 3
          3
2005 HSC Question 6c)




The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the
diagram.
(i) Find the points of intersection of the two curves.                 (1)
2005 HSC Question 6c)




The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the
diagram.
(i) Find the points of intersection of the two curves.                 (1)
                         x 2  12  2 x 2
2005 HSC Question 6c)




The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the
diagram.
(i) Find the points of intersection of the two curves.                 (1)
                          x 2  12  2 x 2
                        3 x 2  12
                         x2  4
                          x  2
2005 HSC Question 6c)




The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the
diagram.
(i) Find the points of intersection of the two curves.                 (1)
                          x 2  12  2 x 2
                        3 x 2  12
                         x2  4
                          x  2
                         meet at  2, 4 
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.




  V    x 2 dy
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.




  V    x 2 dy
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.

                                                         x2  y




  V    x 2 dy
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.

                                                         x2  y


                                                                  1
                                                            x  6 y
                                                             2

  V    x 2 dy                                                  2
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.

                                                         x2  y


                                                                  1
                                                            x  6 y
                                                             2

  V    x 2 dy                                                  2
         4                12
           1  
  V   6   y  dy  ydy
        0
             2      4
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.

                                                         x2  y


                                                                  1
                                                            x  6 y
                                                             2

  V    x 2 dy                                                  2
         4                12
            1  
  V   6    y  dy    ydy
        0
              2        4
                    4         12

      6 y  y     y 
              1 2       1 2
        
             4 0      2 4
                       
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.

                                                         x2  y


                                                                  1
                                                            x  6 y
                                                             2

  V    x 2 dy                                                  2
         4                12
            1  
  V   6      y  dy      ydy
        0
                2          4
                      4           12

      6 y  y     y 
                1 2         1 2
        
               4 0        2 4
                           

                1 2
                              
                               
      6  4    4   0  12    4 
                 4             2
                                     2      2
                                                
(ii) The shaded region between the two curves and the y axis is        (3)
     rotated about the y axis. By splitting the shaded region into two
     parts, or otherwise, find the volume of the solid formed.

                                                         x2  y


                                                                  1
                                                            x  6 y
                                                             2

  V    x 2 dy                                                  2
         4                12
            1  
  V   6      y  dy      ydy
        0
                2          4
                      4           12

      6 y  y     y 
                1 2         1 2
        
               4 0        2 4
                           

                1 2
                              
                               
      6  4    4   0  12    4 
                 4             2
                                     2      2
                                                
     84 units3
Exercise 11G; 3bdef, 4eg, 5cd, 6d, 8ad,
      12, 16a, 19 to 22, 24*, 25*

More Related Content

What's hot

Sheet1 simplified
Sheet1 simplifiedSheet1 simplified
Sheet1 simplifiedmarwan a
 
Control digital: Tema 2. transformada Z
Control digital: Tema 2. transformada ZControl digital: Tema 2. transformada Z
Control digital: Tema 2. transformada ZSANTIAGO PABLO ALBERTO
 
Limits and derivatives
Limits and derivativesLimits and derivatives
Limits and derivativessahil9100
 
Answer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercisesAnswer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercisespaufong
 
11X1 T12 04 concavity (2010)
11X1 T12 04 concavity (2010)11X1 T12 04 concavity (2010)
11X1 T12 04 concavity (2010)Nigel Simmons
 
TABLA DE DERIVADAS
TABLA DE DERIVADASTABLA DE DERIVADAS
TABLA DE DERIVADASEducación
 
11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)Nigel Simmons
 
Diego vega deber 29 03-11
Diego vega deber 29 03-11Diego vega deber 29 03-11
Diego vega deber 29 03-11diego
 

What's hot (9)

Sheet1 simplified
Sheet1 simplifiedSheet1 simplified
Sheet1 simplified
 
Control digital: Tema 2. transformada Z
Control digital: Tema 2. transformada ZControl digital: Tema 2. transformada Z
Control digital: Tema 2. transformada Z
 
Limits and derivatives
Limits and derivativesLimits and derivatives
Limits and derivatives
 
Answer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercisesAnswer to selected_miscellaneous_exercises
Answer to selected_miscellaneous_exercises
 
11X1 T12 04 concavity (2010)
11X1 T12 04 concavity (2010)11X1 T12 04 concavity (2010)
11X1 T12 04 concavity (2010)
 
TABLA DE DERIVADAS
TABLA DE DERIVADASTABLA DE DERIVADAS
TABLA DE DERIVADAS
 
Chapter 16
Chapter 16Chapter 16
Chapter 16
 
11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)11 X1 T04 06 cosine rule (2010)
11 X1 T04 06 cosine rule (2010)
 
Diego vega deber 29 03-11
Diego vega deber 29 03-11Diego vega deber 29 03-11
Diego vega deber 29 03-11
 

Viewers also liked

PM [B04] Plane Polar Coordinates
PM [B04] Plane Polar CoordinatesPM [B04] Plane Polar Coordinates
PM [B04] Plane Polar CoordinatesStephen Kwong
 
Mathcad volumes and plane areas
Mathcad   volumes and plane areasMathcad   volumes and plane areas
Mathcad volumes and plane areasJulio Banks
 
Group6 b competing against free_bm
Group6 b competing against free_bmGroup6 b competing against free_bm
Group6 b competing against free_bmSameer Mathur
 
Lesson 16 length of an arc
Lesson 16 length of an arcLesson 16 length of an arc
Lesson 16 length of an arcLawrence De Vera
 
7.2 volumes by slicing disks and washers
7.2 volumes by slicing disks and washers7.2 volumes by slicing disks and washers
7.2 volumes by slicing disks and washersdicosmo178
 
Lesson 13 algebraic curves
Lesson 13    algebraic curvesLesson 13    algebraic curves
Lesson 13 algebraic curvesJean Leano
 
Lesson 17 work done by a spring and pump final (1)
Lesson 17 work done by a spring and pump final (1)Lesson 17 work done by a spring and pump final (1)
Lesson 17 work done by a spring and pump final (1)Lawrence De Vera
 
Parametric equations
Parametric equationsParametric equations
Parametric equationsTarun Gehlot
 
Lesson 15 polar curves
Lesson 15    polar curvesLesson 15    polar curves
Lesson 15 polar curvesJean Leano
 
Lesson 11 plane areas area by integration
Lesson 11 plane areas area by integrationLesson 11 plane areas area by integration
Lesson 11 plane areas area by integrationLawrence De Vera
 
6161103 9.2 center of gravity and center of mass and centroid for a body
6161103 9.2 center of gravity and center of mass and centroid for a body6161103 9.2 center of gravity and center of mass and centroid for a body
6161103 9.2 center of gravity and center of mass and centroid for a bodyetcenterrbru
 
The washer method
The washer methodThe washer method
The washer methodRon Eick
 
Lesson 14 centroid of volume
Lesson 14 centroid of volumeLesson 14 centroid of volume
Lesson 14 centroid of volumeLawrence De Vera
 
Lesson 14 a - parametric equations
Lesson 14 a - parametric equationsLesson 14 a - parametric equations
Lesson 14 a - parametric equationsJean Leano
 
Polar Graphs: Limaçons, Roses, Lemniscates, & Cardioids
Polar Graphs: Limaçons, Roses, Lemniscates, & CardioidsPolar Graphs: Limaçons, Roses, Lemniscates, & Cardioids
Polar Graphs: Limaçons, Roses, Lemniscates, & Cardioidsnicportugal
 

Viewers also liked (20)

Resume1
Resume1Resume1
Resume1
 
PM [B04] Plane Polar Coordinates
PM [B04] Plane Polar CoordinatesPM [B04] Plane Polar Coordinates
PM [B04] Plane Polar Coordinates
 
Mathcad volumes and plane areas
Mathcad   volumes and plane areasMathcad   volumes and plane areas
Mathcad volumes and plane areas
 
Group6 b competing against free_bm
Group6 b competing against free_bmGroup6 b competing against free_bm
Group6 b competing against free_bm
 
Calc 7.2a
Calc 7.2aCalc 7.2a
Calc 7.2a
 
Lesson 16 length of an arc
Lesson 16 length of an arcLesson 16 length of an arc
Lesson 16 length of an arc
 
Ch 7 c volumes
Ch 7 c  volumesCh 7 c  volumes
Ch 7 c volumes
 
7.2 volumes by slicing disks and washers
7.2 volumes by slicing disks and washers7.2 volumes by slicing disks and washers
7.2 volumes by slicing disks and washers
 
Lesson 13 algebraic curves
Lesson 13    algebraic curvesLesson 13    algebraic curves
Lesson 13 algebraic curves
 
Lesson 17 work done by a spring and pump final (1)
Lesson 17 work done by a spring and pump final (1)Lesson 17 work done by a spring and pump final (1)
Lesson 17 work done by a spring and pump final (1)
 
Volume of revolution
Volume of revolutionVolume of revolution
Volume of revolution
 
Parametric equations
Parametric equationsParametric equations
Parametric equations
 
C4 parametric curves_lesson
C4 parametric curves_lessonC4 parametric curves_lesson
C4 parametric curves_lesson
 
Lesson 15 polar curves
Lesson 15    polar curvesLesson 15    polar curves
Lesson 15 polar curves
 
Lesson 11 plane areas area by integration
Lesson 11 plane areas area by integrationLesson 11 plane areas area by integration
Lesson 11 plane areas area by integration
 
6161103 9.2 center of gravity and center of mass and centroid for a body
6161103 9.2 center of gravity and center of mass and centroid for a body6161103 9.2 center of gravity and center of mass and centroid for a body
6161103 9.2 center of gravity and center of mass and centroid for a body
 
The washer method
The washer methodThe washer method
The washer method
 
Lesson 14 centroid of volume
Lesson 14 centroid of volumeLesson 14 centroid of volume
Lesson 14 centroid of volume
 
Lesson 14 a - parametric equations
Lesson 14 a - parametric equationsLesson 14 a - parametric equations
Lesson 14 a - parametric equations
 
Polar Graphs: Limaçons, Roses, Lemniscates, & Cardioids
Polar Graphs: Limaçons, Roses, Lemniscates, & CardioidsPolar Graphs: Limaçons, Roses, Lemniscates, & Cardioids
Polar Graphs: Limaçons, Roses, Lemniscates, & Cardioids
 

Similar to 11 x1 t16 05 volumes (2012)

11X1 T16 05 volumes (2011)
11X1 T16 05 volumes (2011)11X1 T16 05 volumes (2011)
11X1 T16 05 volumes (2011)Nigel Simmons
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)Nigel Simmons
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]Nigel Simmons
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)Nigel Simmons
 
11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)Nigel Simmons
 
11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)Nigel Simmons
 
11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves II11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves IINigel Simmons
 
11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)Nigel Simmons
 
[4] num integration
[4] num integration[4] num integration
[4] num integrationikhulsys
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
Pc12 sol c03_3-5
Pc12 sol c03_3-5Pc12 sol c03_3-5
Pc12 sol c03_3-5Garden City
 
Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16derry92
 
sol pg 104 # 1,2,3.
sol pg 104 # 1,2,3.sol pg 104 # 1,2,3.
sol pg 104 # 1,2,3.Garden City
 
Perceptron Arboles De Decision
Perceptron Arboles De DecisionPerceptron Arboles De Decision
Perceptron Arboles De DecisionESCOM
 
P1 Graph Function Test
P1 Graph Function TestP1 Graph Function Test
P1 Graph Function Testguest3952880
 
12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)Nigel Simmons
 

Similar to 11 x1 t16 05 volumes (2012) (20)

11X1 T17 05 volumes
11X1 T17 05 volumes11X1 T17 05 volumes
11X1 T17 05 volumes
 
11X1 T16 05 volumes (2011)
11X1 T16 05 volumes (2011)11X1 T16 05 volumes (2011)
11X1 T16 05 volumes (2011)
 
1 d wave equation
1 d wave equation1 d wave equation
1 d wave equation
 
Figures
FiguresFigures
Figures
 
Figures
FiguresFigures
Figures
 
11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)11 x1 t02 07 sketching graphs (2012)
11 x1 t02 07 sketching graphs (2012)
 
11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]11X1 T02 07 sketching graphs [2011]
11X1 T02 07 sketching graphs [2011]
 
11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)11 Ext1 t02 07 sketching graphs (13)
11 Ext1 t02 07 sketching graphs (13)
 
11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)11X1 T02 10 shifting curves ii (2011)
11X1 T02 10 shifting curves ii (2011)
 
11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)11 x1 t02 10 shifting curves ii (2012)
11 x1 t02 10 shifting curves ii (2012)
 
11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves II11 X1 T02 10 shifting curves II
11 X1 T02 10 shifting curves II
 
11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)11 x1 t02 10 shifting curves ii (2013)
11 x1 t02 10 shifting curves ii (2013)
 
[4] num integration
[4] num integration[4] num integration
[4] num integration
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
Pc12 sol c03_3-5
Pc12 sol c03_3-5Pc12 sol c03_3-5
Pc12 sol c03_3-5
 
Mathematical physics group 16
Mathematical physics group 16Mathematical physics group 16
Mathematical physics group 16
 
sol pg 104 # 1,2,3.
sol pg 104 # 1,2,3.sol pg 104 # 1,2,3.
sol pg 104 # 1,2,3.
 
Perceptron Arboles De Decision
Perceptron Arboles De DecisionPerceptron Arboles De Decision
Perceptron Arboles De Decision
 
P1 Graph Function Test
P1 Graph Function TestP1 Graph Function Test
P1 Graph Function Test
 
12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)12 x1 t07 02 v and a in terms of x (2012)
12 x1 t07 02 v and a in terms of x (2012)
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 

Recently uploaded

Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingTeacherCyreneCayanan
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 

Recently uploaded (20)

Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 

11 x1 t16 05 volumes (2012)

  • 1. Volumes of Solids of Revolution y y = f(x) x
  • 2. Volumes of Solids of Revolution y y = f(x) a b x
  • 3. Volumes of Solids of Revolution y y = f(x) a b x
  • 4. Volumes of Solids of Revolution y y = f(x) a b x Volume of a solid of revolution about;
  • 5. Volumes of Solids of Revolution y y = f(x) a b x Volume of a solid of revolution about; i x axis : V   y 2 dx b  a
  • 6. Volumes of Solids of Revolution y y = f(x) a b x Volume of a solid of revolution about; i x axis : V   y 2 dx b  a ii  y axis : V   c x 2 dy d
  • 7. e.g. (i) cone y y  mx h x
  • 8. e.g. (i) cone y y  mx h x
  • 9. e.g. (i) cone V    y 2 dx h y    m 2 x 2 dx y  mx 0 h x
  • 10. e.g. (i) cone V    y 2 dx h y    m 2 x 2 dx y  mx 0 h 2 1 3   m  x  3  0 h x
  • 11. e.g. (i) cone V    y 2 dx h y    m 2 x 2 dx y  mx 0 h 2 1 3   m  x  3  0  m h  0  1 2 3 h x 3 1 2 3  m h 3
  • 12. e.g. (i) cone V    y 2 dx h y    m 2 x 2 dx y  mx 0 h 2 1 3   m  x  3  0 r  m h  0  1 2 3 h x 3 1 2 3  m h 3
  • 13. e.g. (i) cone V    y 2 dx h y    m 2 x 2 dx y  mx 0 h 2 1 3   m  x  3  0 r  m h  0  1 2 3 h x 3 1 2 3  m h 3 r m h
  • 14. e.g. (i) cone V    y 2 dx h y    m 2 x 2 dx y  mx 0 h 2 1 3   m  x  3  0 r  m h  0  1 2 3 h x 3 1 2 3  m h 3 2 r     h3 m 1 r   h 3 h r 2 h 3  3h 2 r 2 h  3
  • 15. (ii) sphere y x2  y2  r 2 rx
  • 16. (ii) sphere y x2  y2  r 2 rx
  • 17. (ii) sphere y V    y 2 dx x2  y2  r 2 r  2  r 2  x 2 dx 0 rx
  • 18. (ii) sphere y V    y 2 dx x2  y2  r 2 r  2  r 2  x 2 dx 0 r r 2 x  1 x 3   2  rx  3 0 
  • 19. (ii) sphere y V    y 2 dx x2  y2  r 2 r  2  r 2  x 2 dx 0 r r 2 x  1 x 3   2  rx  3 0   1    2  r 2 r   r 3   0   3   2 3  2  r  3  4  r 3 3
  • 20. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1.
  • 21. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1. y y  x2 x
  • 22. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1. y y  x2 1 x
  • 23. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1. y y  x2 1 x
  • 24. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1. y y  x2 V   x 2 dy 1 1   ydy 0 x
  • 25. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1. y y  x2 V   x 2 dy 1 1   ydy 0   2 y  2 1 0 x
  • 26. (iii) Find the volume of the solid generated when y  x 2 is revolved around the y axis between y  0 and y  1. y y  x2 V   x 2 dy 1 1   ydy 0   2 y  2 1 0 x   1 2  0 2   units 3 2
  • 27. (iv) Find the volume of the solid when the shaded region is rotated about the x axis y y  5x 5 x
  • 28. (iv) Find the volume of the solid when the shaded region is rotated about the x axis y V    y 2 dx y  5x   1 5    52  5 x  dx 2 0 1 x    25  25 x 2 dx 0
  • 29. (iv) Find the volume of the solid when the shaded region is rotated about the x axis y V    y 2 dx y  5x   1 5    52  5 x  dx 2 0 1 x    25  25 x 2 dx 0 1  x  1 x3   25   3 0 
  • 30. (iv) Find the volume of the solid when the shaded region is rotated about the x axis y V    y 2 dx y  5x   1 5    52  5 x  dx 2 0 1 x    25  25 x 2 dx 0 1  x  1 x3   25   3 0  1 1 13 0  25      3  50  unit 3 3
  • 31. (iv) Find the volume of the solid when the shaded region is rotated about the x axis y V    y 2 dx y  5x   1 5    52  5 x  dx 2 0 1 x    25  25 x 2 dx 0 1  x  1 x3   25   3 0  1 1 13 0 OR  25      3  50  unit 3 3
  • 32. (iv) Find the volume of the solid when the shaded region is rotated about the x axis y V    y 2 dx y  5x   1 5    52  5 x  dx 2 0 1 x    25  25 x 2 dx 0 1  x  1 x3   25   3 0  1 1 1 13 0 OR V  r 2 h  r 2 h  25     3  3  2 50   5 1  2 unit 3 3 3 50  units 3 3
  • 33. 2005 HSC Question 6c) The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the diagram. (i) Find the points of intersection of the two curves. (1)
  • 34. 2005 HSC Question 6c) The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the diagram. (i) Find the points of intersection of the two curves. (1) x 2  12  2 x 2
  • 35. 2005 HSC Question 6c) The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the diagram. (i) Find the points of intersection of the two curves. (1) x 2  12  2 x 2 3 x 2  12 x2  4 x  2
  • 36. 2005 HSC Question 6c) The graphs of the curves y  x 2 and y  12  2 x 2 are shown in the diagram. (i) Find the points of intersection of the two curves. (1) x 2  12  2 x 2 3 x 2  12 x2  4 x  2  meet at  2, 4 
  • 37. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed.
  • 38. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed.
  • 39. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. V    x 2 dy
  • 40. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. V    x 2 dy
  • 41. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. x2  y V    x 2 dy
  • 42. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. x2  y 1 x  6 y 2 V    x 2 dy 2
  • 43. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. x2  y 1 x  6 y 2 V    x 2 dy 2 4 12   1   V   6 y  dy  ydy 0 2  4
  • 44. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. x2  y 1 x  6 y 2 V    x 2 dy 2 4 12   1   V   6 y  dy  ydy 0 2  4 4 12   6 y  y     y  1 2 1 2   4 0  2 4 
  • 45. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. x2  y 1 x  6 y 2 V    x 2 dy 2 4 12   1   V   6 y  dy  ydy 0 2  4 4 12   6 y  y     y  1 2 1 2   4 0  2 4   1 2      6  4    4   0  12    4  4 2 2 2 
  • 46. (ii) The shaded region between the two curves and the y axis is (3) rotated about the y axis. By splitting the shaded region into two parts, or otherwise, find the volume of the solid formed. x2  y 1 x  6 y 2 V    x 2 dy 2 4 12   1   V   6 y  dy  ydy 0 2  4 4 12   6 y  y     y  1 2 1 2   4 0  2 4   1 2      6  4    4   0  12    4  4 2 2 2   84 units3
  • 47. Exercise 11G; 3bdef, 4eg, 5cd, 6d, 8ad, 12, 16a, 19 to 22, 24*, 25*