SlideShare a Scribd company logo
1 of 58
Download to read offline
Velocity & Acceleration in
        Terms of x
Velocity & Acceleration in
        Terms of x
If v = f(x);
Velocity & Acceleration in
        Terms of x
If v = f(x);
               d 2x d  1 2 
                      v 
               dt 2
                     dx  2 
Velocity & Acceleration in
        Terms of x
If v = f(x);
                     d 2x d  1 2 
                            v 
                     dt 2
                           dx  2 
 Proof: d 2 x dv
            2
              
        dt      dt
Velocity & Acceleration in
        Terms of x
If v = f(x);
                    d 2x d  1 2 
                           v 
                    dt 2
                          dx  2 
 Proof: d 2 x dv
            2
              
        dt      dt
                dv dx
               
                dx dt
Velocity & Acceleration in
        Terms of x
If v = f(x);
                    d 2x d  1 2 
                           v 
                    dt 2
                          dx  2 
 Proof: d 2 x dv
            2
              
        dt      dt
                dv dx
               
                dx dt
                dv
               v
                dx
Velocity & Acceleration in
        Terms of x
If v = f(x);
                     d 2x d  1 2 
                            v 
                     dt 2
                           dx  2 
 Proof: d 2 x dv
            2
              
        dt      dt
                dv dx
               
                dx dt
                dv
               v
                dx
                dv d  1 2 
                  v 
                dx dv  2 
Velocity & Acceleration in
        Terms of x
If v = f(x);
                     d 2x d  1 2 
                            v 
                     dt 2
                           dx  2 
 Proof: d 2 x dv
            2
              
        dt      dt
                dv dx
               
                dx dt
                dv
               v
                dx
                dv d  1 2 
                  v 
                dx dv  2 
                 v2 
                 d 1
                        
                 dx  2 
e.g. (i) A particle moves in a straight line so that   3  2 x
                                                      x
         Find its velocity in terms of x given that v = 2 when x = 1.
e.g. (i) A particle moves in a straight line so that   3  2 x
                                                      x
         Find its velocity in terms of x given that v = 2 when x = 1.
       d 1 2 
           v   3  2x
       dx  2 
e.g. (i) A particle moves in a straight line so that   3  2 x
                                                      x
         Find its velocity in terms of x given that v = 2 when x = 1.
       d 1 2 
           v   3  2x
       dx  2 
             1 2
               v  3x  x 2  c
             2
e.g. (i) A particle moves in a straight line so that   3  2 x
                                                      x
         Find its velocity in terms of x given that v = 2 when x = 1.
       d 1 2 
           v   3  2x
       dx  2 
             1 2
               v  3x  x 2  c
             2
             when x  1, v  2
             1 2
         i.e. 2   31  12  c
             2
                  c0
e.g. (i) A particle moves in a straight line so that   3  2 x
                                                      x
         Find its velocity in terms of x given that v = 2 when x = 1.
       d 1 2 
           v   3  2x
       dx  2 
             1 2
               v  3x  x 2  c
             2
             when x  1, v  2
             1 2
         i.e. 2   31  12  c
             2
                  c0
             v2  6x  2x2
e.g. (i) A particle moves in a straight line so that   3  2 x
                                                      x
         Find its velocity in terms of x given that v = 2 when x = 1.
       d 1 2 
           v   3  2x
       dx  2 
             1 2
               v  3x  x 2  c
             2
             when x  1, v  2
             1 2
         i.e. 2   31  12  c
             2
                  c0
             v2  6x  2x2

                 v   6x  2x2
e.g. (i) A particle moves in a straight line so that   3  2 x
                                                      x
         Find its velocity in terms of x given that v = 2 when x = 1.
       d 1 2 
           v   3  2x
       dx  2 
                                          NOTE:
             1 2
               v  3x  x 2  c
             2                                        v2  0
             when x  1, v  2
             1 2
         i.e. 2   31  12  c
             2
                  c0
             v2  6x  2x2

                 v   6x  2x2
e.g. (i) A particle moves in a straight line so that   3  2 x
                                                      x
         Find its velocity in terms of x given that v = 2 when x = 1.
       d 1 2 
           v   3  2x
       dx  2 
                                          NOTE:
             1 2
               v  3x  x 2  c
             2                                        v2  0
             when x  1, v  2                   6x  2x2  0
             1 2
         i.e. 2   31  12  c
             2
                  c0
             v2  6x  2x2

                 v   6x  2x2
e.g. (i) A particle moves in a straight line so that   3  2 x
                                                      x
         Find its velocity in terms of x given that v = 2 when x = 1.
       d 1 2 
           v   3  2x
       dx  2 
                                          NOTE:
             1 2
               v  3x  x 2  c
             2                                        v2  0
             when x  1, v  2                   6x  2x2  0
             1 2
         i.e. 2   31  12  c              2 x3  x   0
             2
                  c0
             v2  6x  2x2

                 v   6x  2x2
e.g. (i) A particle moves in a straight line so that   3  2 x
                                                      x
         Find its velocity in terms of x given that v = 2 when x = 1.
       d 1 2 
           v   3  2x
       dx  2 
                                          NOTE:
             1 2
               v  3x  x 2  c
             2                                        v2  0
             when x  1, v  2                   6x  2x2  0
             1 2
         i.e. 2   31  12  c              2 x3  x   0
             2
                                                    0 x3
                  c0
             v2  6x  2x2

                 v   6x  2x2
e.g. (i) A particle moves in a straight line so that   3  2 x
                                                      x
         Find its velocity in terms of x given that v = 2 when x = 1.
       d 1 2 
           v   3  2x
       dx  2 
                                          NOTE:
             1 2
               v  3x  x 2  c
             2                                        v2  0
             when x  1, v  2                   6x  2x2  0
             1 2
         i.e. 2   31  12  c              2 x3  x   0
             2
                                                    0 x3
                  c0
                                         Particle moves between x = 0
             v  6x  2x
                 2           2
                                          and x = 3 and nowhere else.
                 v   6x  2x2
(ii) A particle’s acceleration is given by   3x 2 Initially, the particle is
                                             x     .
     1 unit to the right of O, and is traveling with a velocity of 2m/s in
     the negative direction. Find x in terms of t.
(ii) A particle’s acceleration is given by   3x 2 Initially, the particle is
                                             x     .
     1 unit to the right of O, and is traveling with a velocity of 2m/s in
     the negative direction. Find x in terms of t.

      d 1 2 
           v   3x 2
      dx  2 
(ii) A particle’s acceleration is given by   3x 2 Initially, the particle is
                                             x     .
     1 unit to the right of O, and is traveling with a velocity of 2m/s in
     the negative direction. Find x in terms of t.

      d 1 2 
            v   3x 2
      dx  2 
           1 2
             v  x3  c
           2
(ii) A particle’s acceleration is given by   3x 2 Initially, the particle is
                                             x     .
     1 unit to the right of O, and is traveling with a velocity of 2m/s in
     the negative direction. Find x in terms of t.

     d 1 2 
           v   3x 2
     dx  2 
          1 2
            v  x3  c
          2
  when t  0, x  1, v   2

    i.e.
           1
              2 2  13  c
           2
               c0
(ii) A particle’s acceleration is given by   3x 2 Initially, the particle is
                                             x     .
     1 unit to the right of O, and is traveling with a velocity of 2m/s in
     the negative direction. Find x in terms of t.

     d 1 2 
           v   3x 2
     dx  2 
          1 2
            v  x3  c
          2
  when t  0, x  1, v   2

    i.e.
           1
              2 2  13  c
           2
               c0
            v 2  2 x3
           v   2 x3
(ii) A particle’s acceleration is given by   3x 2 Initially, the particle is
                                             x     .
     1 unit to the right of O, and is traveling with a velocity of 2m/s in
     the negative direction. Find x in terms of t.

     d 1 2 
           v   3x 2                   dx
                                              2x 3
     dx  2                             dt
          1 2
            v  x3  c
          2
  when t  0, x  1, v   2

   i.e.  2   13  c
       1        2

       2
            c0
          v 2  2 x3
         v   2 x3
(ii) A particle’s acceleration is given by   3x 2 Initially, the particle is
                                             x     .
     1 unit to the right of O, and is traveling with a velocity of 2m/s in
     the negative direction. Find x in terms of t.

     d 1 2                                        (Choose –ve to satisfy
           v   3x 2                   dx
                                              2x the initial conditions)
                                                  3
     dx  2                             dt
          1 2
            v  x3  c
          2
  when t  0, x  1, v   2

   i.e.  2   13  c
       1        2

       2
            c0
          v 2  2 x3
         v   2 x3
(ii) A particle’s acceleration is given by   3x 2 Initially, the particle is
                                             x     .
     1 unit to the right of O, and is traveling with a velocity of 2m/s in
     the negative direction. Find x in terms of t.

     d 1 2                                        (Choose –ve to satisfy
           v   3x 2                   dx
                                              2x the initial conditions)
                                                  3
     dx  2                             dt
          1 2
            v  x3  c
                                                      3

          2                                    2x   2

  when t  0, x  1, v   2

   i.e.  2   13  c
       1        2

       2
            c0
          v 2  2 x3
         v   2 x3
(ii) A particle’s acceleration is given by   3x 2 Initially, the particle is
                                             x     .
     1 unit to the right of O, and is traveling with a velocity of 2m/s in
     the negative direction. Find x in terms of t.

     d 1 2                                        (Choose –ve to satisfy
           v   3x 2                   dx
                                              2x the initial conditions)
                                                  3
     dx  2                             dt
          1 2
            v  x3  c
                                                      3

          2                                    2x   2

  when t  0, x  1, v   2                              3
                                         dt    1 2
                                            
    i.e.
           1
              2 2  13  c            dx     2
                                                  x
           2
               c0
            v 2  2 x3
           v   2 x3
3
dt    1 2
       x
dx     2
3
                         dt    1 2
                                x
                         dx     2
                     1
    1        
t     2 x 2  c
     2
            1
        
  2x       2
                c
     2
      c
     x
3
                          dt    1 2
                                 x
                          dx     2
                      1
    1        
t     2 x 2  c
     2
             1
         
   2x       2
                 c
     2
      c
     x
when t = 0, x = 1
3
                          dt    1 2
                                 x
                          dx     2
                      1
    1        
t     2 x 2  c
     2
             1
         
   2x       2
                 c
     2
      c
     x
when t = 0, x = 1
 i.e. 0  2  c
      c 2
3
                          dt    1 2
                                 x
                          dx     2
                      1
    1        
t     2 x 2  c
     2
             1
         
   2x       2
                 c
     2
      c
     x
when t = 0, x = 1
 i.e. 0  2  c
   c 2
   2
t    2
   x
3
                          dt    1 2
                                 x
                          dx     2
                      1
    1        
t     2 x 2  c          OR
     2
             1
         
   2x       2
                 c
     2
      c
     x
when t = 0, x = 1
 i.e. 0  2  c
   c 2
   2
t    2
   x
3
                          dt    1 2
                                 x
                          dx     2
                      1                       x   3
    1                                     1    

                                            2
t     2 x 2  c          OR        t     x 2 dx
     2                                       1
             1
         
   2x       2
                 c
     2
      c
     x
when t = 0, x = 1
 i.e. 0  2  c
   c 2
   2
t    2
   x
3
                          dt    1 2
                                 x
                          dx     2
                      1                       x   3
    1                                     1    

                                            2
t     2 x 2  c          OR        t     x 2 dx
     2                                       1
             1                                              x
         
   2x       2
                 c                        1        
                                                        1
                                            2 x 
                                                        2

     2                                      2      1
      c
     x
when t = 0, x = 1
 i.e. 0  2  c
   c 2
   2
t    2
   x
3
                          dt    1 2
                                 x
                          dx     2
                      1                       x   3
    1                                     1    

                                            2
t     2 x 2  c          OR        t     x 2 dx
     2                                       1
             1                                              x
         
   2x       2
                 c                        1        
                                                        1
                                            2 x 
                                                        2

     2                                      2      1
      c
     x                                      1  1
when t = 0, x = 1                        2      
                                             x 
 i.e. 0  2  c
   c 2
   2
t    2
   x
3
                          dt    1 2
                                 x
                          dx     2
                      1                       x   3
    1                                     1    

                                            2
t     2 x 2  c          OR        t     x 2 dx
     2                                       1
             1                                              x
         
   2x       2
                 c                        1        
                                                        1
                                            2 x 
                                                        2

     2                                      2      1
      c
     x                                      1  1
when t = 0, x = 1                        2      
                                             x 
                                2
 i.e. 0  2  c           t 2
                                x
   c 2
   2
t    2
   x
3
                          dt    1 2
                                 x
                          dx     2
                      1                          x   3
    1                                        1    

                                               2
t     2 x 2  c          OR           t     x 2 dx
     2                                          1
             1                                                 x
         
   2x       2
                 c                           1        
                                                           1
                                               2 x 
                                                           2

     2                                         2      1
      c
     x                                         1  1
when t = 0, x = 1                           2      
                                                x 
                                2
 i.e. 0  2  c           t 2
                                x
   c 2
                             t  2 
                          2           2
   2
t    2                  x
   x
3
                          dt    1 2
                                 x
                          dx     2
                      1                           x   3
    1                                         1    

                                                2
t     2 x 2  c          OR            t     x 2 dx
     2                                           1
             1                                                  x
         
   2x       2
                 c                            1        
                                                            1
                                                2 x 
                                                            2

     2                                          2      1
      c
     x                                          1  1
when t = 0, x = 1                            2      
                                                 x 
                                2
 i.e. 0  2  c           t 2
                                x
   c 2
                             t  2 
                          2            2
   2
t    2                  x
   x
                                  2
                          x
                              t  2 2
2004 Extension 1 HSC Q5a)
A particle is moving along the x axis starting from a position 2 metres to
the right of the origin (that is, x = 2 when t = 0) with an initial velocity
of 5 m/s and an acceleration given by   2 x 3  2 x
                                          x
(i) Show that x  x 2  1
              
2004 Extension 1 HSC Q5a)
A particle is moving along the x axis starting from a position 2 metres to
the right of the origin (that is, x = 2 when t = 0) with an initial velocity
of 5 m/s and an acceleration given by   2 x 3  2 x
                                          x
(i) Show that x  x 2  1
              
                d 1 2 
                    v   2x  2x
                             3

                dx  2 
2004 Extension 1 HSC Q5a)
A particle is moving along the x axis starting from a position 2 metres to
the right of the origin (that is, x = 2 when t = 0) with an initial velocity
of 5 m/s and an acceleration given by   2 x 3  2 x
                                          x
(i) Show that x  x 2  1
              
                d 1 2 
                    v   2x  2x
                             3

                dx  2 
                      1 2 1 4
                        v  x  x2  c
                      2    2
2004 Extension 1 HSC Q5a)
A particle is moving along the x axis starting from a position 2 metres to
the right of the origin (that is, x = 2 when t = 0) with an initial velocity
of 5 m/s and an acceleration given by   2 x 3  2 x
                                          x
(i) Show that x  x 2  1
              
                d 1 2 
                    v   2x  2x
                             3

                dx  2 
                      1 2 1 4
                        v  x  x2  c
                      2    2
  When x = 2, v = 5
2004 Extension 1 HSC Q5a)
A particle is moving along the x axis starting from a position 2 metres to
the right of the origin (that is, x = 2 when t = 0) with an initial velocity
of 5 m/s and an acceleration given by   2 x 3  2 x
                                          x
(i) Show that x  x 2  1
              
                d 1 2 
                    v   2x  2x
                             3

                dx  2 
                      1 2 1 4
                        v  x  x2  c
                      2    2
  When x = 2, v = 5
                  1        1
                     25  16    4   c
                  2        2
                           1
                        c
                           2
2004 Extension 1 HSC Q5a)
A particle is moving along the x axis starting from a position 2 metres to
the right of the origin (that is, x = 2 when t = 0) with an initial velocity
of 5 m/s and an acceleration given by   2 x 3  2 x
                                          x
(i) Show that x  x 2  1
              
                d 1 2 
                    v   2x  2x
                             3

                dx  2 
                      1 2 1 4
                        v  x  x2  c
                      2    2
  When x = 2, v = 5
                  1        1
                     25  16    4   c
                  2        2
                           1
                        c
                           2
                       v2  x4  2x2 1
2004 Extension 1 HSC Q5a)
A particle is moving along the x axis starting from a position 2 metres to
the right of the origin (that is, x = 2 when t = 0) with an initial velocity
of 5 m/s and an acceleration given by   2 x 3  2 x
                                          x
(i) Show that x  x 2  1
              
                d 1 2 
                    v   2x  2x
                             3

                dx  2 
                      1 2 1 4
                        v  x  x2  c
                      2    2
  When x = 2, v = 5

                                                      v  x  1
                  1        1
                     25  16    4   c           2     2    2

                  2        2
                           1
                        c
                           2
                       v2  x4  2x2 1
2004 Extension 1 HSC Q5a)
A particle is moving along the x axis starting from a position 2 metres to
the right of the origin (that is, x = 2 when t = 0) with an initial velocity
of 5 m/s and an acceleration given by   2 x 3  2 x
                                          x
(i) Show that x  x 2  1
              
                d 1 2 
                    v   2x  2x
                             3

                dx  2 
                      1 2 1 4
                        v  x  x2  c
                      2    2
  When x = 2, v = 5

                                                      v  x  1
                  1        1
                     25  16    4   c           2     2     2

                  2        2
                           1                            v  x2 1
                        c
                           2
                       v2  x4  2x2 1
2004 Extension 1 HSC Q5a)
A particle is moving along the x axis starting from a position 2 metres to
the right of the origin (that is, x = 2 when t = 0) with an initial velocity
of 5 m/s and an acceleration given by   2 x 3  2 x
                                          x
(i) Show that x  x 2  1
              
                d 1 2 
                    v   2x  2x
                             3

                dx  2 
                      1 2 1 4
                        v  x  x2  c
                      2    2
  When x = 2, v = 5

                                                      v  x  1
                  1        1
                     25  16    4   c           2     2     2

                  2        2
                           1                            v  x2 1
                        c
                           2                      Note: v > 0, in order
                       v2  x4  2x2 1             to satisfy initial
                                                       conditions
(ii) Hence find an expression for x in terms of t
(ii) Hence find an expression for x in terms of t
     dx
         x2 1
     dt
(ii) Hence find an expression for x in terms of t
      dx
          x2 1
      dt
    t      x
               dx
     dt   x 2  1
    0      2
(ii) Hence find an expression for x in terms of t
      dx
          x2 1
      dt
    t      x
               dx
     dt   x 2  1
    0      2

     t  tan x 2
             1   x
(ii) Hence find an expression for x in terms of t
      dx
          x2 1
      dt
    t      x
               dx
     dt   x 2  1
    0      2

     t  tan x 2
             1   x



     t  tan 1 x  tan 1 2
(ii) Hence find an expression for x in terms of t
      dx
          x2 1
      dt
    t      x
               dx
     dt   x 2  1
    0      2

     t  tan x 2
             1   x



     t  tan 1 x  tan 1 2

     tan 1 x  t  tan 1 2
(ii) Hence find an expression for x in terms of t
      dx
          x2 1
      dt
    t      x
               dx
     dt   x 2  1
    0      2

     t  tan x 2
              1   x



     t  tan 1 x  tan 1 2

     tan 1 x  t  tan 1 2
      x  tan t  tan 1 2 
(ii) Hence find an expression for x in terms of t
      dx
          x2 1
      dt
    t      x
               dx
     dt   x 2  1
    0      2

     t  tan x 2
              1   x



     t  tan 1 x  tan 1 2

     tan 1 x  t  tan 1 2
      x  tan t  tan 1 2 
          tan t  2
      x
         1  2 tan t
(ii) Hence find an expression for x in terms of t
      dx
          x2 1
      dt
    t      x
               dx
     dt   x 2  1
    0      2

     t  tan x 2
              1   x

                                           Exercise 3E; 1 to 3 acfh,
     t  tan 1 x  tan 1 2                7 , 9, 11, 13, 15, 17, 18,
                                                    20, 21, 24*
     tan 1 x  t  tan 1 2
      x  tan t  tan 1 2 
          tan t  2
      x
         1  2 tan t

More Related Content

What's hot

Primer for ordinary differential equations
Primer for ordinary differential equationsPrimer for ordinary differential equations
Primer for ordinary differential equationsTarun Gehlot
 
12 x1 t04 05 displacement, velocity, acceleration (2012)
12 x1 t04 05 displacement, velocity, acceleration (2012)12 x1 t04 05 displacement, velocity, acceleration (2012)
12 x1 t04 05 displacement, velocity, acceleration (2012)Nigel Simmons
 
Estimation and Prediction of Complex Systems: Progress in Weather and Climate
Estimation and Prediction of Complex Systems: Progress in Weather and ClimateEstimation and Prediction of Complex Systems: Progress in Weather and Climate
Estimation and Prediction of Complex Systems: Progress in Weather and Climatemodons
 
Lesson 16: Implicit Differentiation
Lesson 16: Implicit DifferentiationLesson 16: Implicit Differentiation
Lesson 16: Implicit DifferentiationMatthew Leingang
 
Kenimatics vector
Kenimatics vectorKenimatics vector
Kenimatics vectorohmed
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceresearchinventy
 
Lesson 24: Implicit Differentiation
Lesson 24: Implicit DifferentiationLesson 24: Implicit Differentiation
Lesson 24: Implicit DifferentiationMatthew Leingang
 
A Generalized Metric Space and Related Fixed Point Theorems
A Generalized Metric Space and Related Fixed Point TheoremsA Generalized Metric Space and Related Fixed Point Theorems
A Generalized Metric Space and Related Fixed Point TheoremsIRJET Journal
 
Ma 104 differential equations
Ma 104 differential equationsMa 104 differential equations
Ma 104 differential equationsarvindpt1
 
Lesson 27: Integration by Substitution, part II (Section 10 version)
Lesson 27: Integration by Substitution, part II (Section 10 version)Lesson 27: Integration by Substitution, part II (Section 10 version)
Lesson 27: Integration by Substitution, part II (Section 10 version)Matthew Leingang
 
Meanshift Tracking Presentation
Meanshift Tracking PresentationMeanshift Tracking Presentation
Meanshift Tracking Presentationsandtouch
 
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...inventionjournals
 
Differential equation.ypm
Differential equation.ypmDifferential equation.ypm
Differential equation.ypmyogirajpm
 

What's hot (18)

Primer for ordinary differential equations
Primer for ordinary differential equationsPrimer for ordinary differential equations
Primer for ordinary differential equations
 
12 x1 t04 05 displacement, velocity, acceleration (2012)
12 x1 t04 05 displacement, velocity, acceleration (2012)12 x1 t04 05 displacement, velocity, acceleration (2012)
12 x1 t04 05 displacement, velocity, acceleration (2012)
 
Estimation and Prediction of Complex Systems: Progress in Weather and Climate
Estimation and Prediction of Complex Systems: Progress in Weather and ClimateEstimation and Prediction of Complex Systems: Progress in Weather and Climate
Estimation and Prediction of Complex Systems: Progress in Weather and Climate
 
Sect1 2
Sect1 2Sect1 2
Sect1 2
 
Lagrange
LagrangeLagrange
Lagrange
 
Caims 2009
Caims 2009Caims 2009
Caims 2009
 
Lesson 16: Implicit Differentiation
Lesson 16: Implicit DifferentiationLesson 16: Implicit Differentiation
Lesson 16: Implicit Differentiation
 
Kenimatics vector
Kenimatics vectorKenimatics vector
Kenimatics vector
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
Lesson 24: Implicit Differentiation
Lesson 24: Implicit DifferentiationLesson 24: Implicit Differentiation
Lesson 24: Implicit Differentiation
 
A Generalized Metric Space and Related Fixed Point Theorems
A Generalized Metric Space and Related Fixed Point TheoremsA Generalized Metric Space and Related Fixed Point Theorems
A Generalized Metric Space and Related Fixed Point Theorems
 
Limit of algebraic functions
Limit of algebraic functionsLimit of algebraic functions
Limit of algebraic functions
 
Ma 104 differential equations
Ma 104 differential equationsMa 104 differential equations
Ma 104 differential equations
 
Taller 2. 4264. (2)
Taller 2. 4264. (2)Taller 2. 4264. (2)
Taller 2. 4264. (2)
 
Lesson 27: Integration by Substitution, part II (Section 10 version)
Lesson 27: Integration by Substitution, part II (Section 10 version)Lesson 27: Integration by Substitution, part II (Section 10 version)
Lesson 27: Integration by Substitution, part II (Section 10 version)
 
Meanshift Tracking Presentation
Meanshift Tracking PresentationMeanshift Tracking Presentation
Meanshift Tracking Presentation
 
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...
 
Differential equation.ypm
Differential equation.ypmDifferential equation.ypm
Differential equation.ypm
 

Similar to 12 x1 t07 02 v and a in terms of x (2012)

12 x1 t07 02 v and a in terms of x (2013)
12 x1 t07 02 v and a in terms of x (2013)12 x1 t07 02 v and a in terms of x (2013)
12 x1 t07 02 v and a in terms of x (2013)Nigel Simmons
 
Differential equations
Differential equationsDifferential equations
Differential equationsjanetvmiller
 
Antiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialAntiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialZerick Lucernas
 
Torsion of circular shafts
Torsion of circular shaftsTorsion of circular shafts
Torsion of circular shaftsaero103
 
11X1 T09 03 second derivative
11X1 T09 03 second derivative11X1 T09 03 second derivative
11X1 T09 03 second derivativeNigel Simmons
 
Maths assignment
Maths assignmentMaths assignment
Maths assignmentNtshima
 
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...Matthew Leingang
 
Differential Equation Tutorial 1
Differential Equation Tutorial 1Differential Equation Tutorial 1
Differential Equation Tutorial 1Yong Sheng
 
Chapter 4(differentiation)
Chapter 4(differentiation)Chapter 4(differentiation)
Chapter 4(differentiation)Eko Wijayanto
 
Lesson 6 Nov 23 24 09
Lesson 6 Nov 23 24 09Lesson 6 Nov 23 24 09
Lesson 6 Nov 23 24 09ingroy
 
X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)Nigel Simmons
 
X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)Nigel Simmons
 
X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)Nigel Simmons
 
Coordinate transformations
Coordinate transformationsCoordinate transformations
Coordinate transformationsRohit Bapat
 
Coordinate system transformation
Coordinate system transformationCoordinate system transformation
Coordinate system transformationTarun Gehlot
 

Similar to 12 x1 t07 02 v and a in terms of x (2012) (20)

12 x1 t07 02 v and a in terms of x (2013)
12 x1 t07 02 v and a in terms of x (2013)12 x1 t07 02 v and a in terms of x (2013)
12 x1 t07 02 v and a in terms of x (2013)
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
Antiderivatives nako sa calculus official
Antiderivatives nako sa calculus officialAntiderivatives nako sa calculus official
Antiderivatives nako sa calculus official
 
Torsion of circular shafts
Torsion of circular shaftsTorsion of circular shafts
Torsion of circular shafts
 
11X1 T09 03 second derivative
11X1 T09 03 second derivative11X1 T09 03 second derivative
11X1 T09 03 second derivative
 
Calculus Final Exam
Calculus Final ExamCalculus Final Exam
Calculus Final Exam
 
Nts
NtsNts
Nts
 
Maths assignment
Maths assignmentMaths assignment
Maths assignment
 
整卷
整卷整卷
整卷
 
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
Lesson 8: Derivatives of Logarithmic and Exponential Functions (worksheet sol...
 
Cross product
Cross productCross product
Cross product
 
Differential Equation Tutorial 1
Differential Equation Tutorial 1Differential Equation Tutorial 1
Differential Equation Tutorial 1
 
Chapter 4(differentiation)
Chapter 4(differentiation)Chapter 4(differentiation)
Chapter 4(differentiation)
 
Lesson 6 Nov 23 24 09
Lesson 6 Nov 23 24 09Lesson 6 Nov 23 24 09
Lesson 6 Nov 23 24 09
 
Sect1 4
Sect1 4Sect1 4
Sect1 4
 
X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)X2 t08 03 inequalities & graphs (2012)
X2 t08 03 inequalities & graphs (2012)
 
X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)X2 T08 01 inequalities and graphs (2010)
X2 T08 01 inequalities and graphs (2010)
 
X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)X2 T08 03 inequalities & graphs (2011)
X2 T08 03 inequalities & graphs (2011)
 
Coordinate transformations
Coordinate transformationsCoordinate transformations
Coordinate transformations
 
Coordinate system transformation
Coordinate system transformationCoordinate system transformation
Coordinate system transformation
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 

Recently uploaded (20)

Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 

12 x1 t07 02 v and a in terms of x (2012)

  • 1. Velocity & Acceleration in Terms of x
  • 2. Velocity & Acceleration in Terms of x If v = f(x);
  • 3. Velocity & Acceleration in Terms of x If v = f(x); d 2x d  1 2    v  dt 2 dx  2 
  • 4. Velocity & Acceleration in Terms of x If v = f(x); d 2x d  1 2    v  dt 2 dx  2  Proof: d 2 x dv 2  dt dt
  • 5. Velocity & Acceleration in Terms of x If v = f(x); d 2x d  1 2    v  dt 2 dx  2  Proof: d 2 x dv 2  dt dt dv dx   dx dt
  • 6. Velocity & Acceleration in Terms of x If v = f(x); d 2x d  1 2    v  dt 2 dx  2  Proof: d 2 x dv 2  dt dt dv dx   dx dt dv  v dx
  • 7. Velocity & Acceleration in Terms of x If v = f(x); d 2x d  1 2    v  dt 2 dx  2  Proof: d 2 x dv 2  dt dt dv dx   dx dt dv  v dx dv d  1 2     v  dx dv  2 
  • 8. Velocity & Acceleration in Terms of x If v = f(x); d 2x d  1 2    v  dt 2 dx  2  Proof: d 2 x dv 2  dt dt dv dx   dx dt dv  v dx dv d  1 2     v  dx dv  2    v2  d 1   dx  2 
  • 9. e.g. (i) A particle moves in a straight line so that   3  2 x x Find its velocity in terms of x given that v = 2 when x = 1.
  • 10. e.g. (i) A particle moves in a straight line so that   3  2 x x Find its velocity in terms of x given that v = 2 when x = 1. d 1 2   v   3  2x dx  2 
  • 11. e.g. (i) A particle moves in a straight line so that   3  2 x x Find its velocity in terms of x given that v = 2 when x = 1. d 1 2   v   3  2x dx  2  1 2 v  3x  x 2  c 2
  • 12. e.g. (i) A particle moves in a straight line so that   3  2 x x Find its velocity in terms of x given that v = 2 when x = 1. d 1 2   v   3  2x dx  2  1 2 v  3x  x 2  c 2 when x  1, v  2 1 2 i.e. 2   31  12  c 2 c0
  • 13. e.g. (i) A particle moves in a straight line so that   3  2 x x Find its velocity in terms of x given that v = 2 when x = 1. d 1 2   v   3  2x dx  2  1 2 v  3x  x 2  c 2 when x  1, v  2 1 2 i.e. 2   31  12  c 2 c0 v2  6x  2x2
  • 14. e.g. (i) A particle moves in a straight line so that   3  2 x x Find its velocity in terms of x given that v = 2 when x = 1. d 1 2   v   3  2x dx  2  1 2 v  3x  x 2  c 2 when x  1, v  2 1 2 i.e. 2   31  12  c 2 c0 v2  6x  2x2 v   6x  2x2
  • 15. e.g. (i) A particle moves in a straight line so that   3  2 x x Find its velocity in terms of x given that v = 2 when x = 1. d 1 2   v   3  2x dx  2  NOTE: 1 2 v  3x  x 2  c 2 v2  0 when x  1, v  2 1 2 i.e. 2   31  12  c 2 c0 v2  6x  2x2 v   6x  2x2
  • 16. e.g. (i) A particle moves in a straight line so that   3  2 x x Find its velocity in terms of x given that v = 2 when x = 1. d 1 2   v   3  2x dx  2  NOTE: 1 2 v  3x  x 2  c 2 v2  0 when x  1, v  2 6x  2x2  0 1 2 i.e. 2   31  12  c 2 c0 v2  6x  2x2 v   6x  2x2
  • 17. e.g. (i) A particle moves in a straight line so that   3  2 x x Find its velocity in terms of x given that v = 2 when x = 1. d 1 2   v   3  2x dx  2  NOTE: 1 2 v  3x  x 2  c 2 v2  0 when x  1, v  2 6x  2x2  0 1 2 i.e. 2   31  12  c 2 x3  x   0 2 c0 v2  6x  2x2 v   6x  2x2
  • 18. e.g. (i) A particle moves in a straight line so that   3  2 x x Find its velocity in terms of x given that v = 2 when x = 1. d 1 2   v   3  2x dx  2  NOTE: 1 2 v  3x  x 2  c 2 v2  0 when x  1, v  2 6x  2x2  0 1 2 i.e. 2   31  12  c 2 x3  x   0 2 0 x3 c0 v2  6x  2x2 v   6x  2x2
  • 19. e.g. (i) A particle moves in a straight line so that   3  2 x x Find its velocity in terms of x given that v = 2 when x = 1. d 1 2   v   3  2x dx  2  NOTE: 1 2 v  3x  x 2  c 2 v2  0 when x  1, v  2 6x  2x2  0 1 2 i.e. 2   31  12  c 2 x3  x   0 2 0 x3 c0 Particle moves between x = 0 v  6x  2x 2 2 and x = 3 and nowhere else. v   6x  2x2
  • 20. (ii) A particle’s acceleration is given by   3x 2 Initially, the particle is x . 1 unit to the right of O, and is traveling with a velocity of 2m/s in the negative direction. Find x in terms of t.
  • 21. (ii) A particle’s acceleration is given by   3x 2 Initially, the particle is x . 1 unit to the right of O, and is traveling with a velocity of 2m/s in the negative direction. Find x in terms of t. d 1 2   v   3x 2 dx  2 
  • 22. (ii) A particle’s acceleration is given by   3x 2 Initially, the particle is x . 1 unit to the right of O, and is traveling with a velocity of 2m/s in the negative direction. Find x in terms of t. d 1 2   v   3x 2 dx  2  1 2 v  x3  c 2
  • 23. (ii) A particle’s acceleration is given by   3x 2 Initially, the particle is x . 1 unit to the right of O, and is traveling with a velocity of 2m/s in the negative direction. Find x in terms of t. d 1 2   v   3x 2 dx  2  1 2 v  x3  c 2 when t  0, x  1, v   2 i.e. 1  2 2  13  c 2 c0
  • 24. (ii) A particle’s acceleration is given by   3x 2 Initially, the particle is x . 1 unit to the right of O, and is traveling with a velocity of 2m/s in the negative direction. Find x in terms of t. d 1 2   v   3x 2 dx  2  1 2 v  x3  c 2 when t  0, x  1, v   2 i.e. 1  2 2  13  c 2 c0  v 2  2 x3 v   2 x3
  • 25. (ii) A particle’s acceleration is given by   3x 2 Initially, the particle is x . 1 unit to the right of O, and is traveling with a velocity of 2m/s in the negative direction. Find x in terms of t. d 1 2   v   3x 2 dx   2x 3 dx  2  dt 1 2 v  x3  c 2 when t  0, x  1, v   2 i.e.  2   13  c 1 2 2 c0  v 2  2 x3 v   2 x3
  • 26. (ii) A particle’s acceleration is given by   3x 2 Initially, the particle is x . 1 unit to the right of O, and is traveling with a velocity of 2m/s in the negative direction. Find x in terms of t. d 1 2  (Choose –ve to satisfy  v   3x 2 dx   2x the initial conditions) 3 dx  2  dt 1 2 v  x3  c 2 when t  0, x  1, v   2 i.e.  2   13  c 1 2 2 c0  v 2  2 x3 v   2 x3
  • 27. (ii) A particle’s acceleration is given by   3x 2 Initially, the particle is x . 1 unit to the right of O, and is traveling with a velocity of 2m/s in the negative direction. Find x in terms of t. d 1 2  (Choose –ve to satisfy  v   3x 2 dx   2x the initial conditions) 3 dx  2  dt 1 2 v  x3  c 3 2   2x 2 when t  0, x  1, v   2 i.e.  2   13  c 1 2 2 c0  v 2  2 x3 v   2 x3
  • 28. (ii) A particle’s acceleration is given by   3x 2 Initially, the particle is x . 1 unit to the right of O, and is traveling with a velocity of 2m/s in the negative direction. Find x in terms of t. d 1 2  (Choose –ve to satisfy  v   3x 2 dx   2x the initial conditions) 3 dx  2  dt 1 2 v  x3  c 3 2   2x 2 when t  0, x  1, v   2 3 dt 1 2  i.e. 1  2 2  13  c dx 2 x 2 c0  v 2  2 x3 v   2 x3
  • 29. 3 dt 1 2  x dx 2
  • 30. 3 dt 1 2  x dx 2 1 1  t  2 x 2  c 2 1   2x 2 c 2  c x
  • 31. 3 dt 1 2  x dx 2 1 1  t  2 x 2  c 2 1   2x 2 c 2  c x when t = 0, x = 1
  • 32. 3 dt 1 2  x dx 2 1 1  t  2 x 2  c 2 1   2x 2 c 2  c x when t = 0, x = 1 i.e. 0  2  c c 2
  • 33. 3 dt 1 2  x dx 2 1 1  t  2 x 2  c 2 1   2x 2 c 2  c x when t = 0, x = 1 i.e. 0  2  c c 2 2 t  2 x
  • 34. 3 dt 1 2  x dx 2 1 1  t  2 x 2  c OR 2 1   2x 2 c 2  c x when t = 0, x = 1 i.e. 0  2  c c 2 2 t  2 x
  • 35. 3 dt 1 2  x dx 2 1 x 3 1  1  2 t  2 x 2  c OR t x 2 dx 2 1 1   2x 2 c 2  c x when t = 0, x = 1 i.e. 0  2  c c 2 2 t  2 x
  • 36. 3 dt 1 2  x dx 2 1 x 3 1  1  2 t  2 x 2  c OR t x 2 dx 2 1 1 x   2x 2 c 1    1   2 x  2 2 2 1  c x when t = 0, x = 1 i.e. 0  2  c c 2 2 t  2 x
  • 37. 3 dt 1 2  x dx 2 1 x 3 1  1  2 t  2 x 2  c OR t x 2 dx 2 1 1 x   2x 2 c 1    1   2 x  2 2 2 1  c x  1  1 when t = 0, x = 1  2   x  i.e. 0  2  c c 2 2 t  2 x
  • 38. 3 dt 1 2  x dx 2 1 x 3 1  1  2 t  2 x 2  c OR t x 2 dx 2 1 1 x   2x 2 c 1    1   2 x  2 2 2 1  c x  1  1 when t = 0, x = 1  2   x  2 i.e. 0  2  c t 2 x c 2 2 t  2 x
  • 39. 3 dt 1 2  x dx 2 1 x 3 1  1  2 t  2 x 2  c OR t x 2 dx 2 1 1 x   2x 2 c 1    1   2 x  2 2 2 1  c x  1  1 when t = 0, x = 1  2   x  2 i.e. 0  2  c t 2 x c 2  t  2  2 2 2 t  2 x x
  • 40. 3 dt 1 2  x dx 2 1 x 3 1  1  2 t  2 x 2  c OR t x 2 dx 2 1 1 x   2x 2 c 1    1   2 x  2 2 2 1  c x  1  1 when t = 0, x = 1  2   x  2 i.e. 0  2  c t 2 x c 2  t  2  2 2 2 t  2 x x 2 x t  2 2
  • 41. 2004 Extension 1 HSC Q5a) A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, x = 2 when t = 0) with an initial velocity of 5 m/s and an acceleration given by   2 x 3  2 x x (i) Show that x  x 2  1 
  • 42. 2004 Extension 1 HSC Q5a) A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, x = 2 when t = 0) with an initial velocity of 5 m/s and an acceleration given by   2 x 3  2 x x (i) Show that x  x 2  1  d 1 2   v   2x  2x 3 dx  2 
  • 43. 2004 Extension 1 HSC Q5a) A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, x = 2 when t = 0) with an initial velocity of 5 m/s and an acceleration given by   2 x 3  2 x x (i) Show that x  x 2  1  d 1 2   v   2x  2x 3 dx  2  1 2 1 4 v  x  x2  c 2 2
  • 44. 2004 Extension 1 HSC Q5a) A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, x = 2 when t = 0) with an initial velocity of 5 m/s and an acceleration given by   2 x 3  2 x x (i) Show that x  x 2  1  d 1 2   v   2x  2x 3 dx  2  1 2 1 4 v  x  x2  c 2 2 When x = 2, v = 5
  • 45. 2004 Extension 1 HSC Q5a) A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, x = 2 when t = 0) with an initial velocity of 5 m/s and an acceleration given by   2 x 3  2 x x (i) Show that x  x 2  1  d 1 2   v   2x  2x 3 dx  2  1 2 1 4 v  x  x2  c 2 2 When x = 2, v = 5 1 1  25  16    4   c 2 2 1 c 2
  • 46. 2004 Extension 1 HSC Q5a) A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, x = 2 when t = 0) with an initial velocity of 5 m/s and an acceleration given by   2 x 3  2 x x (i) Show that x  x 2  1  d 1 2   v   2x  2x 3 dx  2  1 2 1 4 v  x  x2  c 2 2 When x = 2, v = 5 1 1  25  16    4   c 2 2 1 c 2 v2  x4  2x2 1
  • 47. 2004 Extension 1 HSC Q5a) A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, x = 2 when t = 0) with an initial velocity of 5 m/s and an acceleration given by   2 x 3  2 x x (i) Show that x  x 2  1  d 1 2   v   2x  2x 3 dx  2  1 2 1 4 v  x  x2  c 2 2 When x = 2, v = 5 v  x  1 1 1  25  16    4   c 2 2 2 2 2 1 c 2 v2  x4  2x2 1
  • 48. 2004 Extension 1 HSC Q5a) A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, x = 2 when t = 0) with an initial velocity of 5 m/s and an acceleration given by   2 x 3  2 x x (i) Show that x  x 2  1  d 1 2   v   2x  2x 3 dx  2  1 2 1 4 v  x  x2  c 2 2 When x = 2, v = 5 v  x  1 1 1  25  16    4   c 2 2 2 2 2 1 v  x2 1 c 2 v2  x4  2x2 1
  • 49. 2004 Extension 1 HSC Q5a) A particle is moving along the x axis starting from a position 2 metres to the right of the origin (that is, x = 2 when t = 0) with an initial velocity of 5 m/s and an acceleration given by   2 x 3  2 x x (i) Show that x  x 2  1  d 1 2   v   2x  2x 3 dx  2  1 2 1 4 v  x  x2  c 2 2 When x = 2, v = 5 v  x  1 1 1  25  16    4   c 2 2 2 2 2 1 v  x2 1 c 2 Note: v > 0, in order v2  x4  2x2 1 to satisfy initial conditions
  • 50. (ii) Hence find an expression for x in terms of t
  • 51. (ii) Hence find an expression for x in terms of t dx  x2 1 dt
  • 52. (ii) Hence find an expression for x in terms of t dx  x2 1 dt t x dx  dt   x 2  1 0 2
  • 53. (ii) Hence find an expression for x in terms of t dx  x2 1 dt t x dx  dt   x 2  1 0 2 t  tan x 2 1 x
  • 54. (ii) Hence find an expression for x in terms of t dx  x2 1 dt t x dx  dt   x 2  1 0 2 t  tan x 2 1 x t  tan 1 x  tan 1 2
  • 55. (ii) Hence find an expression for x in terms of t dx  x2 1 dt t x dx  dt   x 2  1 0 2 t  tan x 2 1 x t  tan 1 x  tan 1 2 tan 1 x  t  tan 1 2
  • 56. (ii) Hence find an expression for x in terms of t dx  x2 1 dt t x dx  dt   x 2  1 0 2 t  tan x 2 1 x t  tan 1 x  tan 1 2 tan 1 x  t  tan 1 2 x  tan t  tan 1 2 
  • 57. (ii) Hence find an expression for x in terms of t dx  x2 1 dt t x dx  dt   x 2  1 0 2 t  tan x 2 1 x t  tan 1 x  tan 1 2 tan 1 x  t  tan 1 2 x  tan t  tan 1 2  tan t  2 x 1  2 tan t
  • 58. (ii) Hence find an expression for x in terms of t dx  x2 1 dt t x dx  dt   x 2  1 0 2 t  tan x 2 1 x Exercise 3E; 1 to 3 acfh, t  tan 1 x  tan 1 2 7 , 9, 11, 13, 15, 17, 18, 20, 21, 24* tan 1 x  t  tan 1 2 x  tan t  tan 1 2  tan t  2 x 1  2 tan t