SlideShare a Scribd company logo
1 of 14
ISOLATOR DESIGN
1. Seismic zone factor, z = 0.4 (Table 16 – I)
2. Soil profile type SB (Table 16 – J)
3. Seismic co-efficient, CA = 0.4 (Table 16 – Q)
4. Seismic co-efficient, CV = 0.48 (Table 16 – R)
5. Near source factor, NA = 1 (Table 16 – S)
6. Near source factor, NV = 1.2 (Table 16 – T)
7. MCE Shaking intensity MMZ NA =0.48 , MM = 1.21
8. MCE Shaking intensity MMZ NV =0.58
9. Seismic Source type A (Table 16 – U)
10. Distance of known source (km) = 10 ( from site seismology)
11. MCE Response co-efficient, MM = 1.21 (Table A-16-D)
12. Lateral force co-efficient, R1 = 2 (Table A-16-E)
13. Fixed base Lateral force co-efficient, R = 5.5 (Table 16 – N)
14. Importance factor, I = 1 (Table 16 – K)
15. Seismic co-efficient, CAM = 0.484 (Table A-16-F)
16. Seismic co-efficient, CVM= 0.581 (Table A-16-G)
17. Eccentricity, e =1.8 (5% of d)
18. Shortest building dimension, b = 16 (Building site)
19. Longest building dimension, d = 36
20. Dimension of extreme isolator, y = 18 (from geometry)
21. DTD / DD = DTM / DM = [1 + (y x 12 x e) / (b2 + d2)]
= 1.25
Parameters:
22. Shear modulus (G) = 0.0004 (shear modulus of rubber, Table 5.4)
23. Ultimate elongation , €U = 6.5 (shear modulus of rubber, Table 5.4)
24. Material constant, K = 0.87 (shear modulus of rubber, Table 5.4)
25. Elastic modulus, E = 0.00135 (shear modulus of rubber, Table 5.4)
26. Bulk modulus, E∞ = 1.5 (Typical value for neutral rubber)
27. Damping, β = 0.05 (5% used for plain rubber bearings)
28. Lead yield strength, σy = 0.008 (Usually 7 to 8.5 Mpa)
29. Teflon co-efficient of friction, µ = 0.1 (Use high velocity for design)
30. Gravity, g = 9810
Isolator type & load data:
Number of bearing = 32
Avg DL + LL, Pd = 2593.5
Max DL + LL = 3372.7
Wing load/isolator = 50 50 x 32 = 1600
Seismic weight = 32 x 2593.5 + 1500 = 844.92
Isolator Dimension:
Plan dimension, B = 700mm
Layer thickness, t1 = 10
No of Layers, N = 21
Lead core size, dpl= 175
Shape C
Side cover, tsc = 10
Internal slim thickness, tsl = 3
Load plate thickness, Tpl = 40 [required to get total height]
Total rubber thickness, Tr = 210 [ Nt1 ]
Total height, H = 350 [ Nt1 + (N-1) tsl + 2Tpl]
Total yield level of system = 7.2% [(Qd x No of bearing) / W]
Gross area , Ag = 384650 [пB2 / 4]
Bonding dimension, Bb = 680 [B-2 tsc]
Bonding depth = Nil
Bond area, Ab = 322984 [пBb
2 / 4]
Plug area, Apl = 24040 [пdpl
2 / 4]
Net bonding area, Abn = 298944 [Ab - Apl]
Total rubber thickness, Tr = 210 [ Nt1 ]
Bonded perimeter, P = 2135 [пBb]
Shape factor , S =14.00 [Abn / t1p]
Characteristic strength , Qd = 192.4 [σy Apl]
Shear modulus [50%] = 0.0004 [G]
Yielded stiffness, Kr = 0.69 [G (Ag - Apl) / Tr]
For LRB,
C1, Co-efficient on Kr = 6.5 [Typical value]
C2, Co-efficient on Apl/Ab = 12 [Typical value]
Elastic stiffness, Kv = 8.8 [6.5 Kr (1 + (12 Apl / Abn))]
Yield force, Fy = 178.0 [Qd (1- (Kr / Kv))]
Yield displacement, ∆V = 20.20 [Fy / Kv]
Moment of inertia, I = 1.1 x 1010 [пBb
4 / 64] (circular)
Buckling factors
Height free to buckle, Hr = 2.70 [Tr + tsl (N-1)]
Buckling modulus, Eb = 0.20 [E (1+0.742S1
2)]
Constant, T = 2.88 x 1010 [Eb I Hr / Tr]
Constant, R = 186.3 [Kr Tr]
Constant, Q = 0.0116 [п / Hr]
Factor on €U = 0.33 [ factor of safety 3 for gravity]
Applied vertical load, PDL+LL = 3372.7
Applied displacement = 0
Applied rotation = 0
Shape factor, S1 = 14.00 [from properties]
Constant, K = 0.87 [from properties]
E= 0.0014 [from properties]
Compressive modulus, Ec = 0.478 [E (1+2KS1
2)]
Reduced area, Ar = 367500 [0.5 {B2 sin-1 (€ / Bb) - ∆€}] where € = (Bb
2 - ∆2
NS)0.5
Vertical stiffness, Kvi = 17566.5 [Ec Ar / t1] per layer
Compressive strain, €c = 0.019 [P / Kvi t1]
Compressive shear strain, €sc = 1.61 [6 S1€c]
Displacement strain, €sl = 0
Rotational strain, €sv = 0
Total strain, € = 1.61 [€sc + €sl + €sv]
Allowable strain = 2.16 [€U / f]
Buckling load, Pcr = 25542
Status Ok Satisfactory
If € < €V / f and Pcr > PDL+LL
Adjusted shear modulus = 0.00045 [G (1+ PD / Pcr)]
Adjusted stiffness, Kr
* = 0.6 [Kr (1- PD / Pcr)]
Vertical stiffness calculation
Kvi = 17566.5
Kv = 836.5
Bulk modulus, E∞ = 1.5 [from material properties]
Vertical stiffness, KV = 634 [Kv / (1+ (Ec / E∞))]
DBE: (Performance)
No of Isolators = 32
Elastic stiffness, KU = 8.8
Adjusted stiffness, Kr
* = 0.6
Yield displacement, ∆V = 20.20
Characteristic strength , Qd = 192.4
Iteration 1
Seismic displacement , DD = 180 [Assume a displacement adjust until SD / DD = 1]
Bearing force, F = 300 [Qd + DD Kr
*]
Effective stiffness, Ke = 1.668 [F/DD] Ke x 32 = 53.4
Seismic Weight = 84492 dead load
Seismic Weight = 8.61 W / g
Effective period, TE = 2.52 [2п (M/ Ke)0.5]
Loop area, Ah = 122982 [4 Qd (DD - ∆V)
Damping = 36.49% [(1/2п) x (Ah / Ke DD
2)]
Dampin factor, B = 1.81 [UBC Table A-16-C]
Spectral acceleration, SA = 0.1 [CV / BTE]
Spectral displacement, SD = 166.23 [ (g x CV x TE) / (4 п2B)]
Iteration 2
Seismic displacement , DD = 166.23
Bearing force, F = 292.13
Effective stiffness, Ke = 1.73 [F/DD] Ke x 32 = 56.23
Seismic Weight = 84492 dead load
Seismic Weight = 8.61 W / g
Effective period, TE = 2.45
Loop area, Ah = 11236.22
Damping = 37.5%
Dampin factor , B = 1.85
Spectral acceleration , SA = 0.1
Spectral displacement, SD = 158.11
Iteration 3
Seismic displacement , DD = 158.11
Bearing force, F = 287
Effective stiffness, Ke = 1.84 [F/DD] Ke x 32 = 59.19
Seismic Weight = 84492 dead load
Seismic Weight = 8.61 W / g
Effective period, TE = 2.39
Loop area, Ah = 106123.5
Damping = 36.7%
Dampin factor , B = 1.83
Spectral acceleration , SA = 0.1
Spectral displacement, SD = 156
Iteration 4
Seismic displacement , DD = 156
Bearing force, F = 286
Effective stiffness, Ke = 1.8 [F/DD] Ke x 32 = 59.2
Seismic Weight = 84492 dead load
Seismic Weight = 8.61 W / g
Effective period, TE = 2.38
Loop area, Ah = 104542
Damping = 36%
Dampin factor , B = 1.82
Spectral acceleration , SA = 0.1
Spectral displacement, SD = 156
Check convergence = 1 [ SD / DD]
MCE performance
No of isolator = 32
Elastic stiffness, KU = 8.8
Adjusted stiffness, Kr
* = 0.6
Yield displacement, ∆V = 20.20
Characteristic strength , Qd = 192.4
Iteration 1
DM = 230
F = 330.4
Ke = 1.43
TE = 2.72
Loop area, Ah = 161337
Damping = 33.9%
Dampin factor , B = 1.78
Spectral acceleration , SA = 0.099
Spectral displacement, SD = 182.4
Iteration 2
DM = 182.4
F = 302
Ke = 1.652
TE = 2.52
Loop area, Ah = 124782
Damping = 36%
Dampin factor , B = 1.82
Spectral acceleration , SA = 0.1
Spectral displacement, SD = 165.3
Iteration 3
DM = 165.3
F = 291.1
Ke = 1.76
TE = 2.44
Loop area, Ah = 111546
Damping = 37%
Dampin factor , B = 1.84
Spectral acceleration , SA = 0.1
Spectral displacement, SD = 158.3
Iteration 4
DM = 158.3
F = 287.3
Ke = 1.82
TE = 2.41
Loop area, Ah = 106050
Damping = 37%
Dampin factor , B = 1.84
Spectral acceleration , SA = 0.1
Spectral displacement, SD = 156.38
Iteration 5
DM = 156.2
F = 286.7
Ke = 1.83
TE = 2.4
Loop area, Ah = 104066
Damping = 37%
Dampin factor , B = 1.84
Spectral acceleration , SA = 0.1
Spectral displacement, SD = 156.2
Check convergence = 1 [ SD / DD]
Earthquake design
Eu = 0.75
Applied vertical load, PDL + SLL + E = 8206 [ Max DL + SLL + E]
DBE displacement = 156 [DBE displacement DD]
Factor on displacement = 1.25 [DTD / DD]
Applied displacement = 195 [DD]
Applied rotation = 0
Shape factor, S1 = 14
Constant, K =0.87 [ from properties]
E = 0.0014
EC = 0.6
Ar = 318500
Kvi = 19110
€c = 0.042
€sc = 3.6
€sh = 0.928
€sr = 0
€ = 4.5, allowable strain = 4.88
Buckling load, Pcr = 19703
Status Ok [€ < €u / f & Pcr > PDL+LL]
MCE
Factor of mu€u = 1
Applied vertical load = 8206
MCE displacement = 156.2
Factor on displacement = 195.2
Factor on rotaion = 0
Shape factor = 14
K = 0.87
E = 0.0014
Ec = 0.6
Ar = 318500
Kvi = 19110
€c = 0.042
€sc = 3.6
€sh = 0.928
€ = 4.5, allowable strain = 6.5
Buckling load, Pcr = 19703
Status Ok
Gravity strain FS 4.03 €u / € = 6.5 / 1.61
Buckling FS 7.57 Pcr / P = 25542 / 3372.5
DBE strain FS 1.44 €u / € = 6.5 / 4.5
Buckling FS 2.4 Pcr / P = 19703 / 8206
MCE strain FS 1.44 €u / € = 6.5 / 4.5
Buckling FS 2.4 Pcr / P = 19703 / 8206
Reduced area / Gross area 98.6 at MCE = Ar / Ab
Max shear strain at MCE = €sh
DBE MCE Comments
Effective period TD TM 2.38 2.4
From seismic performanceDisplacement DD DM 165 15
Total Displacement DTD DTM 206 206
Force co- efficient Vb / w 0.1 0.1 SA
Force co- efficient Vs / w 0.05 SA / R1
1.5 x yield force / w Fy / w
Wind force / w 0.018 Fw / w
Fixed base v @ TD From UBC
Base shear force
Max (Vs , Vy , Vw , Vf ) x w @
DBE
Damping, Deff 36% 36%
From seismic performance
Damping co-efficient BD BM 1.82 1.84
Sl No. Comments
First data line:
1 ID 1 Identification No
2 Type LRB Biaxial Hysteretic
3 KE2 1.76
Spring effective stiffness = Kr
* + Qd / Dd
4 KE3 1.76
5 DE2 0.310
Spring effective damping ratio = β – 0.05
6 DE3 0.310
Second data line:
7 K1 634 Spring stiffness along Axis 1 (axial)
8 K2 8.8
Initial spring constant = Ku
9 K3 8.8
10 FY2 / K11 / CFF2 178
Yield force = (Fy for LRB)
11 FY3 / K22 / CFF3 178
12 RK2 / K33 / CFF2 0.07
Post – yield stiffness ratio = Kr
* / Ku
13 RK3 / CFS3 0.07
Hysteresis properties
Displacement Force Comments
Yield displacement 20.25 Bearing properties
Design displacement 165 DBE properties
Yield force, Fy 178 Bearing properties
Origin 0 0 Start of plot
Point A 20.25 178
∆ = ∆Y
F = Fy
Point B 165 291.4
∆ = DD
F = QD + DD Kr
*
Point C 124.5 -6.46
∆ = DD - 2∆Y
F = QD + DD Kr
* - 2Fy
Point D -165 -291.4
∆ = -DD
F = - QD - DD Kr
*
Point E -124.5 6.46
∆ = - DD + 2∆Y
F = - QD - DD Kr
* + 2Fy
Point A 20.25 178
∆ = ∆Y
F = Fy

More Related Content

What's hot

Behaviour and Analysis of Large Diameter Laterally Loaded Piles
Behaviour and Analysis of Large Diameter Laterally Loaded PilesBehaviour and Analysis of Large Diameter Laterally Loaded Piles
Behaviour and Analysis of Large Diameter Laterally Loaded PilesHenry Pik Yap Sia
 
Eksentrisitas pada-pondasi
Eksentrisitas pada-pondasiEksentrisitas pada-pondasi
Eksentrisitas pada-pondasidwidam
 
Excel Perhitungan Beton 4
Excel Perhitungan Beton 4Excel Perhitungan Beton 4
Excel Perhitungan Beton 4Fairuz Tito
 
Bab iii analisis geser
Bab iii analisis geserBab iii analisis geser
Bab iii analisis geserKetut Swandana
 
LAPORAN PRAKTIKUM HIDROLIKA PINTU AIR BAB 1-4
LAPORAN PRAKTIKUM HIDROLIKA PINTU AIR BAB 1-4LAPORAN PRAKTIKUM HIDROLIKA PINTU AIR BAB 1-4
LAPORAN PRAKTIKUM HIDROLIKA PINTU AIR BAB 1-4MOSES HADUN
 
Tugas iv mekanika tanah
Tugas iv mekanika tanahTugas iv mekanika tanah
Tugas iv mekanika tanahapaAPAaja82
 
Penurunan Pondasi Dangkal.ppt
Penurunan Pondasi Dangkal.pptPenurunan Pondasi Dangkal.ppt
Penurunan Pondasi Dangkal.pptmuhammad316072
 
Diagram interaksi kolom beton menggunakan software PCA COL
Diagram interaksi kolom beton menggunakan software PCA COLDiagram interaksi kolom beton menggunakan software PCA COL
Diagram interaksi kolom beton menggunakan software PCA COLAfret Nobel
 
Tower design using etabs- Nada Zarrak
Tower design using etabs- Nada Zarrak Tower design using etabs- Nada Zarrak
Tower design using etabs- Nada Zarrak Nada Zarrak
 
Pembebanan jembatan rangka (revisi profil baja)
Pembebanan jembatan rangka (revisi profil baja) Pembebanan jembatan rangka (revisi profil baja)
Pembebanan jembatan rangka (revisi profil baja) NitaMewaKameliaSiman
 
Modul TKP M2KB3 - Mekanika Bahan
Modul TKP M2KB3 - Mekanika Bahan Modul TKP M2KB3 - Mekanika Bahan
Modul TKP M2KB3 - Mekanika Bahan PPGHybrid1
 
Contoh penyelesaian soal uas beton ii
Contoh penyelesaian soal uas beton iiContoh penyelesaian soal uas beton ii
Contoh penyelesaian soal uas beton iiHarry Calbara
 
STRUKTUR STATIS TAK TENTU METODE CLAPEYRON- CONTINUOUS BEAM-2
STRUKTUR STATIS TAK TENTU METODE CLAPEYRON- CONTINUOUS BEAM-2STRUKTUR STATIS TAK TENTU METODE CLAPEYRON- CONTINUOUS BEAM-2
STRUKTUR STATIS TAK TENTU METODE CLAPEYRON- CONTINUOUS BEAM-2MOSES HADUN
 
2. analisis tenaga alat berat
2. analisis tenaga alat berat2. analisis tenaga alat berat
2. analisis tenaga alat beratAhmad Wiratama
 

What's hot (20)

Behaviour and Analysis of Large Diameter Laterally Loaded Piles
Behaviour and Analysis of Large Diameter Laterally Loaded PilesBehaviour and Analysis of Large Diameter Laterally Loaded Piles
Behaviour and Analysis of Large Diameter Laterally Loaded Piles
 
Eksentrisitas pada-pondasi
Eksentrisitas pada-pondasiEksentrisitas pada-pondasi
Eksentrisitas pada-pondasi
 
Excel Perhitungan Beton 4
Excel Perhitungan Beton 4Excel Perhitungan Beton 4
Excel Perhitungan Beton 4
 
Bab iii analisis geser
Bab iii analisis geserBab iii analisis geser
Bab iii analisis geser
 
Kuat geser
Kuat geserKuat geser
Kuat geser
 
LAPORAN PRAKTIKUM HIDROLIKA PINTU AIR BAB 1-4
LAPORAN PRAKTIKUM HIDROLIKA PINTU AIR BAB 1-4LAPORAN PRAKTIKUM HIDROLIKA PINTU AIR BAB 1-4
LAPORAN PRAKTIKUM HIDROLIKA PINTU AIR BAB 1-4
 
Perencanaan gording dan penggantung
Perencanaan gording dan penggantungPerencanaan gording dan penggantung
Perencanaan gording dan penggantung
 
Analisa pushover kelompok 3
Analisa pushover kelompok 3Analisa pushover kelompok 3
Analisa pushover kelompok 3
 
Tugas iv mekanika tanah
Tugas iv mekanika tanahTugas iv mekanika tanah
Tugas iv mekanika tanah
 
Penurunan Pondasi Dangkal.ppt
Penurunan Pondasi Dangkal.pptPenurunan Pondasi Dangkal.ppt
Penurunan Pondasi Dangkal.ppt
 
Tegangan
TeganganTegangan
Tegangan
 
Diagram interaksi kolom beton menggunakan software PCA COL
Diagram interaksi kolom beton menggunakan software PCA COLDiagram interaksi kolom beton menggunakan software PCA COL
Diagram interaksi kolom beton menggunakan software PCA COL
 
Tower design using etabs- Nada Zarrak
Tower design using etabs- Nada Zarrak Tower design using etabs- Nada Zarrak
Tower design using etabs- Nada Zarrak
 
Pembebanan jembatan rangka (revisi profil baja)
Pembebanan jembatan rangka (revisi profil baja) Pembebanan jembatan rangka (revisi profil baja)
Pembebanan jembatan rangka (revisi profil baja)
 
Modul TKP M2KB3 - Mekanika Bahan
Modul TKP M2KB3 - Mekanika Bahan Modul TKP M2KB3 - Mekanika Bahan
Modul TKP M2KB3 - Mekanika Bahan
 
makalah mekanika tanah
makalah mekanika tanahmakalah mekanika tanah
makalah mekanika tanah
 
Contoh penyelesaian soal uas beton ii
Contoh penyelesaian soal uas beton iiContoh penyelesaian soal uas beton ii
Contoh penyelesaian soal uas beton ii
 
STRUKTUR STATIS TAK TENTU METODE CLAPEYRON- CONTINUOUS BEAM-2
STRUKTUR STATIS TAK TENTU METODE CLAPEYRON- CONTINUOUS BEAM-2STRUKTUR STATIS TAK TENTU METODE CLAPEYRON- CONTINUOUS BEAM-2
STRUKTUR STATIS TAK TENTU METODE CLAPEYRON- CONTINUOUS BEAM-2
 
2. analisis tenaga alat berat
2. analisis tenaga alat berat2. analisis tenaga alat berat
2. analisis tenaga alat berat
 
1 perhitungan-balok
1 perhitungan-balok1 perhitungan-balok
1 perhitungan-balok
 

Viewers also liked

Microsoft Word - BASE ISOLATION
Microsoft Word - BASE ISOLATIONMicrosoft Word - BASE ISOLATION
Microsoft Word - BASE ISOLATIONSumit Srivastav
 
Base isolation
Base isolationBase isolation
Base isolationpremsai05
 
Base Isolation(2000.12.28)
Base Isolation(2000.12.28)Base Isolation(2000.12.28)
Base Isolation(2000.12.28)mahadianto
 
Base isolator presentation
Base isolator presentationBase isolator presentation
Base isolator presentationpremkumar mk
 
Buildings with Base Isolation Techniques
Buildings with Base Isolation TechniquesBuildings with Base Isolation Techniques
Buildings with Base Isolation TechniquesMahmoud Sayed Ahmed
 
Base isolation.ppt [Autosaved] [Autosaved]
Base isolation.ppt [Autosaved] [Autosaved]Base isolation.ppt [Autosaved] [Autosaved]
Base isolation.ppt [Autosaved] [Autosaved]Sumit Srivastav
 
BASE ISOLATION SYSTEM
BASE ISOLATION SYSTEMBASE ISOLATION SYSTEM
BASE ISOLATION SYSTEMSyed Jaber
 
Deprem Yönetmeliğine Uygun Time History Analizi Örneği
Deprem Yönetmeliğine Uygun Time History Analizi ÖrneğiDeprem Yönetmeliğine Uygun Time History Analizi Örneği
Deprem Yönetmeliğine Uygun Time History Analizi ÖrneğiYusuf Yıldız
 
Seismic retrofitting of buildings
Seismic retrofitting of buildingsSeismic retrofitting of buildings
Seismic retrofitting of buildingsSukanta Paul
 
Eatrhquake response of reinforced cocrete multi storey building with base iso...
Eatrhquake response of reinforced cocrete multi storey building with base iso...Eatrhquake response of reinforced cocrete multi storey building with base iso...
Eatrhquake response of reinforced cocrete multi storey building with base iso...eSAT Journals
 
Seismic Protection of Structures with Base Isolation
Seismic Protection of Structures with Base IsolationSeismic Protection of Structures with Base Isolation
Seismic Protection of Structures with Base IsolationLuis Andrade Insúa
 
Comparison of Two Similar Buildings with and without Base Isolation
Comparison of Two Similar Buildings with and without Base IsolationComparison of Two Similar Buildings with and without Base Isolation
Comparison of Two Similar Buildings with and without Base IsolationIJARIIT
 
Comparision of building for sesmic response by using base isolation
Comparision of building for sesmic response by using base isolationComparision of building for sesmic response by using base isolation
Comparision of building for sesmic response by using base isolationeSAT Journals
 
Libro con aisladores de base
Libro con aisladores de baseLibro con aisladores de base
Libro con aisladores de baseCisneros Cisne
 
Seismic performance of structure with fixed base, base isolated structure and...
Seismic performance of structure with fixed base, base isolated structure and...Seismic performance of structure with fixed base, base isolated structure and...
Seismic performance of structure with fixed base, base isolated structure and...eSAT Journals
 
Vibration isolators
Vibration isolatorsVibration isolators
Vibration isolatorsreachneerajs
 
Aisladores elastoméricos[1]
Aisladores elastoméricos[1]Aisladores elastoméricos[1]
Aisladores elastoméricos[1]Feb2015
 

Viewers also liked (20)

Microsoft Word - BASE ISOLATION
Microsoft Word - BASE ISOLATIONMicrosoft Word - BASE ISOLATION
Microsoft Word - BASE ISOLATION
 
Base isolation
Base isolationBase isolation
Base isolation
 
Base Isolation(2000.12.28)
Base Isolation(2000.12.28)Base Isolation(2000.12.28)
Base Isolation(2000.12.28)
 
Base isolator presentation
Base isolator presentationBase isolator presentation
Base isolator presentation
 
Vibration isolation
Vibration isolationVibration isolation
Vibration isolation
 
Buildings with Base Isolation Techniques
Buildings with Base Isolation TechniquesBuildings with Base Isolation Techniques
Buildings with Base Isolation Techniques
 
Base isolation.ppt [Autosaved] [Autosaved]
Base isolation.ppt [Autosaved] [Autosaved]Base isolation.ppt [Autosaved] [Autosaved]
Base isolation.ppt [Autosaved] [Autosaved]
 
BASE ISOLATION SYSTEM
BASE ISOLATION SYSTEMBASE ISOLATION SYSTEM
BASE ISOLATION SYSTEM
 
Deprem Yönetmeliğine Uygun Time History Analizi Örneği
Deprem Yönetmeliğine Uygun Time History Analizi ÖrneğiDeprem Yönetmeliğine Uygun Time History Analizi Örneği
Deprem Yönetmeliğine Uygun Time History Analizi Örneği
 
Seismic retrofitting of buildings
Seismic retrofitting of buildingsSeismic retrofitting of buildings
Seismic retrofitting of buildings
 
fulltext
fulltextfulltext
fulltext
 
T uce-0011-68
T uce-0011-68T uce-0011-68
T uce-0011-68
 
Eatrhquake response of reinforced cocrete multi storey building with base iso...
Eatrhquake response of reinforced cocrete multi storey building with base iso...Eatrhquake response of reinforced cocrete multi storey building with base iso...
Eatrhquake response of reinforced cocrete multi storey building with base iso...
 
Seismic Protection of Structures with Base Isolation
Seismic Protection of Structures with Base IsolationSeismic Protection of Structures with Base Isolation
Seismic Protection of Structures with Base Isolation
 
Comparison of Two Similar Buildings with and without Base Isolation
Comparison of Two Similar Buildings with and without Base IsolationComparison of Two Similar Buildings with and without Base Isolation
Comparison of Two Similar Buildings with and without Base Isolation
 
Comparision of building for sesmic response by using base isolation
Comparision of building for sesmic response by using base isolationComparision of building for sesmic response by using base isolation
Comparision of building for sesmic response by using base isolation
 
Libro con aisladores de base
Libro con aisladores de baseLibro con aisladores de base
Libro con aisladores de base
 
Seismic performance of structure with fixed base, base isolated structure and...
Seismic performance of structure with fixed base, base isolated structure and...Seismic performance of structure with fixed base, base isolated structure and...
Seismic performance of structure with fixed base, base isolated structure and...
 
Vibration isolators
Vibration isolatorsVibration isolators
Vibration isolators
 
Aisladores elastoméricos[1]
Aisladores elastoméricos[1]Aisladores elastoméricos[1]
Aisladores elastoméricos[1]
 

Similar to DESIGN OF ISOLATOR (LEAD RUBBER BEARING)

Design of an automotive differential with reduction ratio greater than 6
Design of an automotive differential with reduction ratio greater than 6Design of an automotive differential with reduction ratio greater than 6
Design of an automotive differential with reduction ratio greater than 6eSAT Publishing House
 
LeadRubberBearing2.pptx
LeadRubberBearing2.pptxLeadRubberBearing2.pptx
LeadRubberBearing2.pptxTonyOng26
 
Roof Truss Design (By Hamza Waheed UET Lahore )
Roof Truss Design (By Hamza Waheed UET Lahore )Roof Truss Design (By Hamza Waheed UET Lahore )
Roof Truss Design (By Hamza Waheed UET Lahore )Hamza Waheed
 
Ship design project &amp; presentation 3
Ship design project &amp;  presentation 3Ship design project &amp;  presentation 3
Ship design project &amp; presentation 3Kifayath Chowdhury
 
Сalculation of the сentral node
Сalculation of the сentral nodeСalculation of the сentral node
Сalculation of the сentral nodeDmitriy Semenov
 
Diesel Production: Equipments Design
Diesel Production: Equipments DesignDiesel Production: Equipments Design
Diesel Production: Equipments DesignPratik Patel
 
Building Structure calculation
Building Structure calculationBuilding Structure calculation
Building Structure calculationJy Chong
 
96729556 hoja-de-calculo-para-zapatas
96729556 hoja-de-calculo-para-zapatas96729556 hoja-de-calculo-para-zapatas
96729556 hoja-de-calculo-para-zapatasWalther Castro
 
Horizontal Wind Turbine
Horizontal Wind TurbineHorizontal Wind Turbine
Horizontal Wind TurbineAnas Aljunaidi
 
Transmission and distribution line design final
Transmission and distribution line design finalTransmission and distribution line design final
Transmission and distribution line design finalBhanu Poudyal
 
Diethyl Ether (DEE): Equipments Design
Diethyl Ether (DEE): Equipments DesignDiethyl Ether (DEE): Equipments Design
Diethyl Ether (DEE): Equipments DesignPratik Patel
 
Design of rc building
Design of rc buildingDesign of rc building
Design of rc buildingNirzzhor
 
Design ppt
Design pptDesign ppt
Design ppttishu001
 

Similar to DESIGN OF ISOLATOR (LEAD RUBBER BEARING) (20)

Design of an automotive differential with reduction ratio greater than 6
Design of an automotive differential with reduction ratio greater than 6Design of an automotive differential with reduction ratio greater than 6
Design of an automotive differential with reduction ratio greater than 6
 
Steel warehouse design report
Steel warehouse design reportSteel warehouse design report
Steel warehouse design report
 
LeadRubberBearing2.pptx
LeadRubberBearing2.pptxLeadRubberBearing2.pptx
LeadRubberBearing2.pptx
 
Roof Truss Design (By Hamza Waheed UET Lahore )
Roof Truss Design (By Hamza Waheed UET Lahore )Roof Truss Design (By Hamza Waheed UET Lahore )
Roof Truss Design (By Hamza Waheed UET Lahore )
 
Ship design project &amp; presentation 3
Ship design project &amp;  presentation 3Ship design project &amp;  presentation 3
Ship design project &amp; presentation 3
 
Сalculation of the сentral node
Сalculation of the сentral nodeСalculation of the сentral node
Сalculation of the сentral node
 
Diesel Production: Equipments Design
Diesel Production: Equipments DesignDiesel Production: Equipments Design
Diesel Production: Equipments Design
 
Baja kuda kuda
Baja kuda kudaBaja kuda kuda
Baja kuda kuda
 
Puentes
PuentesPuentes
Puentes
 
H c verma part 1 solution
H c verma part 1 solutionH c verma part 1 solution
H c verma part 1 solution
 
Scantling of Ship
Scantling of ShipScantling of Ship
Scantling of Ship
 
G.p presentation
G.p presentationG.p presentation
G.p presentation
 
Building Structure calculation
Building Structure calculationBuilding Structure calculation
Building Structure calculation
 
96729556 hoja-de-calculo-para-zapatas
96729556 hoja-de-calculo-para-zapatas96729556 hoja-de-calculo-para-zapatas
96729556 hoja-de-calculo-para-zapatas
 
Horizontal Wind Turbine
Horizontal Wind TurbineHorizontal Wind Turbine
Horizontal Wind Turbine
 
Transmission and distribution line design final
Transmission and distribution line design finalTransmission and distribution line design final
Transmission and distribution line design final
 
Isolated Footing
Isolated FootingIsolated Footing
Isolated Footing
 
Diethyl Ether (DEE): Equipments Design
Diethyl Ether (DEE): Equipments DesignDiethyl Ether (DEE): Equipments Design
Diethyl Ether (DEE): Equipments Design
 
Design of rc building
Design of rc buildingDesign of rc building
Design of rc building
 
Design ppt
Design pptDesign ppt
Design ppt
 

Recently uploaded

Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncssuser2ae721
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Comparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization TechniquesComparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization Techniquesugginaramesh
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 

Recently uploaded (20)

Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Comparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization TechniquesComparative Analysis of Text Summarization Techniques
Comparative Analysis of Text Summarization Techniques
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 

DESIGN OF ISOLATOR (LEAD RUBBER BEARING)

  • 1. ISOLATOR DESIGN 1. Seismic zone factor, z = 0.4 (Table 16 – I) 2. Soil profile type SB (Table 16 – J) 3. Seismic co-efficient, CA = 0.4 (Table 16 – Q) 4. Seismic co-efficient, CV = 0.48 (Table 16 – R) 5. Near source factor, NA = 1 (Table 16 – S) 6. Near source factor, NV = 1.2 (Table 16 – T) 7. MCE Shaking intensity MMZ NA =0.48 , MM = 1.21 8. MCE Shaking intensity MMZ NV =0.58 9. Seismic Source type A (Table 16 – U) 10. Distance of known source (km) = 10 ( from site seismology) 11. MCE Response co-efficient, MM = 1.21 (Table A-16-D) 12. Lateral force co-efficient, R1 = 2 (Table A-16-E) 13. Fixed base Lateral force co-efficient, R = 5.5 (Table 16 – N) 14. Importance factor, I = 1 (Table 16 – K) 15. Seismic co-efficient, CAM = 0.484 (Table A-16-F) 16. Seismic co-efficient, CVM= 0.581 (Table A-16-G) 17. Eccentricity, e =1.8 (5% of d) 18. Shortest building dimension, b = 16 (Building site) 19. Longest building dimension, d = 36 20. Dimension of extreme isolator, y = 18 (from geometry) 21. DTD / DD = DTM / DM = [1 + (y x 12 x e) / (b2 + d2)] = 1.25 Parameters: 22. Shear modulus (G) = 0.0004 (shear modulus of rubber, Table 5.4) 23. Ultimate elongation , €U = 6.5 (shear modulus of rubber, Table 5.4) 24. Material constant, K = 0.87 (shear modulus of rubber, Table 5.4) 25. Elastic modulus, E = 0.00135 (shear modulus of rubber, Table 5.4) 26. Bulk modulus, E∞ = 1.5 (Typical value for neutral rubber) 27. Damping, β = 0.05 (5% used for plain rubber bearings) 28. Lead yield strength, σy = 0.008 (Usually 7 to 8.5 Mpa) 29. Teflon co-efficient of friction, µ = 0.1 (Use high velocity for design)
  • 2. 30. Gravity, g = 9810 Isolator type & load data: Number of bearing = 32 Avg DL + LL, Pd = 2593.5 Max DL + LL = 3372.7 Wing load/isolator = 50 50 x 32 = 1600 Seismic weight = 32 x 2593.5 + 1500 = 844.92 Isolator Dimension: Plan dimension, B = 700mm Layer thickness, t1 = 10 No of Layers, N = 21 Lead core size, dpl= 175 Shape C Side cover, tsc = 10 Internal slim thickness, tsl = 3 Load plate thickness, Tpl = 40 [required to get total height] Total rubber thickness, Tr = 210 [ Nt1 ] Total height, H = 350 [ Nt1 + (N-1) tsl + 2Tpl] Total yield level of system = 7.2% [(Qd x No of bearing) / W] Gross area , Ag = 384650 [пB2 / 4] Bonding dimension, Bb = 680 [B-2 tsc] Bonding depth = Nil
  • 3. Bond area, Ab = 322984 [пBb 2 / 4] Plug area, Apl = 24040 [пdpl 2 / 4] Net bonding area, Abn = 298944 [Ab - Apl] Total rubber thickness, Tr = 210 [ Nt1 ] Bonded perimeter, P = 2135 [пBb] Shape factor , S =14.00 [Abn / t1p] Characteristic strength , Qd = 192.4 [σy Apl] Shear modulus [50%] = 0.0004 [G] Yielded stiffness, Kr = 0.69 [G (Ag - Apl) / Tr] For LRB, C1, Co-efficient on Kr = 6.5 [Typical value] C2, Co-efficient on Apl/Ab = 12 [Typical value] Elastic stiffness, Kv = 8.8 [6.5 Kr (1 + (12 Apl / Abn))] Yield force, Fy = 178.0 [Qd (1- (Kr / Kv))] Yield displacement, ∆V = 20.20 [Fy / Kv] Moment of inertia, I = 1.1 x 1010 [пBb 4 / 64] (circular) Buckling factors Height free to buckle, Hr = 2.70 [Tr + tsl (N-1)] Buckling modulus, Eb = 0.20 [E (1+0.742S1 2)] Constant, T = 2.88 x 1010 [Eb I Hr / Tr] Constant, R = 186.3 [Kr Tr] Constant, Q = 0.0116 [п / Hr] Factor on €U = 0.33 [ factor of safety 3 for gravity]
  • 4. Applied vertical load, PDL+LL = 3372.7 Applied displacement = 0 Applied rotation = 0 Shape factor, S1 = 14.00 [from properties] Constant, K = 0.87 [from properties] E= 0.0014 [from properties] Compressive modulus, Ec = 0.478 [E (1+2KS1 2)] Reduced area, Ar = 367500 [0.5 {B2 sin-1 (€ / Bb) - ∆€}] where € = (Bb 2 - ∆2 NS)0.5 Vertical stiffness, Kvi = 17566.5 [Ec Ar / t1] per layer Compressive strain, €c = 0.019 [P / Kvi t1] Compressive shear strain, €sc = 1.61 [6 S1€c] Displacement strain, €sl = 0 Rotational strain, €sv = 0 Total strain, € = 1.61 [€sc + €sl + €sv] Allowable strain = 2.16 [€U / f] Buckling load, Pcr = 25542 Status Ok Satisfactory If € < €V / f and Pcr > PDL+LL Adjusted shear modulus = 0.00045 [G (1+ PD / Pcr)] Adjusted stiffness, Kr * = 0.6 [Kr (1- PD / Pcr)]
  • 5. Vertical stiffness calculation Kvi = 17566.5 Kv = 836.5 Bulk modulus, E∞ = 1.5 [from material properties] Vertical stiffness, KV = 634 [Kv / (1+ (Ec / E∞))] DBE: (Performance) No of Isolators = 32 Elastic stiffness, KU = 8.8 Adjusted stiffness, Kr * = 0.6 Yield displacement, ∆V = 20.20 Characteristic strength , Qd = 192.4 Iteration 1 Seismic displacement , DD = 180 [Assume a displacement adjust until SD / DD = 1] Bearing force, F = 300 [Qd + DD Kr *] Effective stiffness, Ke = 1.668 [F/DD] Ke x 32 = 53.4 Seismic Weight = 84492 dead load Seismic Weight = 8.61 W / g Effective period, TE = 2.52 [2п (M/ Ke)0.5] Loop area, Ah = 122982 [4 Qd (DD - ∆V) Damping = 36.49% [(1/2п) x (Ah / Ke DD 2)] Dampin factor, B = 1.81 [UBC Table A-16-C] Spectral acceleration, SA = 0.1 [CV / BTE] Spectral displacement, SD = 166.23 [ (g x CV x TE) / (4 п2B)]
  • 6. Iteration 2 Seismic displacement , DD = 166.23 Bearing force, F = 292.13 Effective stiffness, Ke = 1.73 [F/DD] Ke x 32 = 56.23 Seismic Weight = 84492 dead load Seismic Weight = 8.61 W / g Effective period, TE = 2.45 Loop area, Ah = 11236.22 Damping = 37.5% Dampin factor , B = 1.85 Spectral acceleration , SA = 0.1 Spectral displacement, SD = 158.11 Iteration 3 Seismic displacement , DD = 158.11 Bearing force, F = 287 Effective stiffness, Ke = 1.84 [F/DD] Ke x 32 = 59.19 Seismic Weight = 84492 dead load Seismic Weight = 8.61 W / g Effective period, TE = 2.39 Loop area, Ah = 106123.5 Damping = 36.7% Dampin factor , B = 1.83 Spectral acceleration , SA = 0.1
  • 7. Spectral displacement, SD = 156 Iteration 4 Seismic displacement , DD = 156 Bearing force, F = 286 Effective stiffness, Ke = 1.8 [F/DD] Ke x 32 = 59.2 Seismic Weight = 84492 dead load Seismic Weight = 8.61 W / g Effective period, TE = 2.38 Loop area, Ah = 104542 Damping = 36% Dampin factor , B = 1.82 Spectral acceleration , SA = 0.1 Spectral displacement, SD = 156 Check convergence = 1 [ SD / DD] MCE performance No of isolator = 32 Elastic stiffness, KU = 8.8 Adjusted stiffness, Kr * = 0.6 Yield displacement, ∆V = 20.20 Characteristic strength , Qd = 192.4 Iteration 1 DM = 230 F = 330.4
  • 8. Ke = 1.43 TE = 2.72 Loop area, Ah = 161337 Damping = 33.9% Dampin factor , B = 1.78 Spectral acceleration , SA = 0.099 Spectral displacement, SD = 182.4 Iteration 2 DM = 182.4 F = 302 Ke = 1.652 TE = 2.52 Loop area, Ah = 124782 Damping = 36% Dampin factor , B = 1.82 Spectral acceleration , SA = 0.1 Spectral displacement, SD = 165.3 Iteration 3 DM = 165.3 F = 291.1 Ke = 1.76 TE = 2.44 Loop area, Ah = 111546
  • 9. Damping = 37% Dampin factor , B = 1.84 Spectral acceleration , SA = 0.1 Spectral displacement, SD = 158.3 Iteration 4 DM = 158.3 F = 287.3 Ke = 1.82 TE = 2.41 Loop area, Ah = 106050 Damping = 37% Dampin factor , B = 1.84 Spectral acceleration , SA = 0.1 Spectral displacement, SD = 156.38 Iteration 5 DM = 156.2 F = 286.7 Ke = 1.83 TE = 2.4 Loop area, Ah = 104066 Damping = 37% Dampin factor , B = 1.84 Spectral acceleration , SA = 0.1
  • 10. Spectral displacement, SD = 156.2 Check convergence = 1 [ SD / DD] Earthquake design Eu = 0.75 Applied vertical load, PDL + SLL + E = 8206 [ Max DL + SLL + E] DBE displacement = 156 [DBE displacement DD] Factor on displacement = 1.25 [DTD / DD] Applied displacement = 195 [DD] Applied rotation = 0 Shape factor, S1 = 14 Constant, K =0.87 [ from properties] E = 0.0014 EC = 0.6 Ar = 318500 Kvi = 19110 €c = 0.042 €sc = 3.6 €sh = 0.928 €sr = 0 € = 4.5, allowable strain = 4.88 Buckling load, Pcr = 19703 Status Ok [€ < €u / f & Pcr > PDL+LL]
  • 11. MCE Factor of mu€u = 1 Applied vertical load = 8206 MCE displacement = 156.2 Factor on displacement = 195.2 Factor on rotaion = 0 Shape factor = 14 K = 0.87 E = 0.0014 Ec = 0.6 Ar = 318500 Kvi = 19110 €c = 0.042 €sc = 3.6 €sh = 0.928 € = 4.5, allowable strain = 6.5 Buckling load, Pcr = 19703 Status Ok
  • 12. Gravity strain FS 4.03 €u / € = 6.5 / 1.61 Buckling FS 7.57 Pcr / P = 25542 / 3372.5 DBE strain FS 1.44 €u / € = 6.5 / 4.5 Buckling FS 2.4 Pcr / P = 19703 / 8206 MCE strain FS 1.44 €u / € = 6.5 / 4.5 Buckling FS 2.4 Pcr / P = 19703 / 8206 Reduced area / Gross area 98.6 at MCE = Ar / Ab Max shear strain at MCE = €sh DBE MCE Comments Effective period TD TM 2.38 2.4 From seismic performanceDisplacement DD DM 165 15 Total Displacement DTD DTM 206 206 Force co- efficient Vb / w 0.1 0.1 SA Force co- efficient Vs / w 0.05 SA / R1 1.5 x yield force / w Fy / w Wind force / w 0.018 Fw / w Fixed base v @ TD From UBC Base shear force Max (Vs , Vy , Vw , Vf ) x w @ DBE Damping, Deff 36% 36% From seismic performance Damping co-efficient BD BM 1.82 1.84
  • 13. Sl No. Comments First data line: 1 ID 1 Identification No 2 Type LRB Biaxial Hysteretic 3 KE2 1.76 Spring effective stiffness = Kr * + Qd / Dd 4 KE3 1.76 5 DE2 0.310 Spring effective damping ratio = β – 0.05 6 DE3 0.310 Second data line: 7 K1 634 Spring stiffness along Axis 1 (axial) 8 K2 8.8 Initial spring constant = Ku 9 K3 8.8 10 FY2 / K11 / CFF2 178 Yield force = (Fy for LRB) 11 FY3 / K22 / CFF3 178 12 RK2 / K33 / CFF2 0.07 Post – yield stiffness ratio = Kr * / Ku 13 RK3 / CFS3 0.07
  • 14. Hysteresis properties Displacement Force Comments Yield displacement 20.25 Bearing properties Design displacement 165 DBE properties Yield force, Fy 178 Bearing properties Origin 0 0 Start of plot Point A 20.25 178 ∆ = ∆Y F = Fy Point B 165 291.4 ∆ = DD F = QD + DD Kr * Point C 124.5 -6.46 ∆ = DD - 2∆Y F = QD + DD Kr * - 2Fy Point D -165 -291.4 ∆ = -DD F = - QD - DD Kr * Point E -124.5 6.46 ∆ = - DD + 2∆Y F = - QD - DD Kr * + 2Fy Point A 20.25 178 ∆ = ∆Y F = Fy