SlideShare a Scribd company logo
1 of 18
Steel StructuresLab
1
UNIVERSITY OF ENGINEERING AND
TECHNOLOGY LAHORE
Steel structures lab
Design ASSIGNMENT
Submitted By:
HAMZA WAHEED
2015-CIV-111
Section C
Submitted To:
Dr. Qasim Shaukat Khan
DEPARTMENT OF CIVIL ENGINEERING
UET LAHORE
Steel StructuresLab
2
Assignment#01: Design of Truss Roof
Givendata:
Galvanized Iron corrugated sheet as a roofing material
N0 = -750
R = N - N0 = 56 – (-750) (where N is the registration number)
Truss spacing = s = 2.5 + (R-700) / 50 (m)
Span of truss = L = 10 + (R-700) / 5 (m)
Solution:
R = N - N0 = 56 – (-750) = 806
Truss spacing = s = 2.5 + (R-700) / 50 (m) = 2.5 + (806-700) / 50 = 4.62 m
Span of truss = L = 10 + (R-700) / 5 (m) = 10 + (806-700) / 5 = 31.2 m
Panel Length = p = L / 8 = 31.2 / 8 = 3.9 m
Angle of top chord = Ө = tan-1 (1.3 / 15.6) = 4.764○
Dead load of roofing (GI corrugated sheet) = 15 kg / m2
Dead load of insulation boards = 5 kg / m2
Self-weight of purlins = 10 kg / m2
Self-weight of bracing elements = 5 kg / m2
Miscellaneous = 5 kg / m2
Total dead load excluding truss self-weight = 15 + 5 + 10 + 5 + 5 = 40 kg / m2
Steel StructuresLab
3
Live load from design aids (for Ө = 4.764○) = 100 kg / m2
Total gravity load = w = 40 + 100 = 140 kg / m2
Now, using Thayer’s Formula:
Self-weight of truss = √
𝑤
𝑠
(
𝐿
8.5
+ 0.5) = √
140
4.62
(
31.2
8.5
+ 0.5) = 22.96kg / m2
Total dead load = 40 + 22.96 = 62.96 kg / m2
Leeward wind pressure = Pl = 1250 Cq = 1250 (-0.7) = -875 N / m2
Windward wind pressure = Pw = 1250 Cq = 1250 (-0.7) = -875 N / m2
(for Ө = 0○ to 9.5○, Cq =-0.7)
Panel dead load = PD = w * p * s = 62.96 * 3.9 * 4.62 * 9.81 / 1000 = 11.13 KN
Panel live load = PL = w * p * s = 100 * 3.9 * 4.62 * 9.81 / 1000 = 17.68 KN
Panel wind load on Leeward side = Plw = Pl * (p / cosӨ) * (s / 1000)
= (-875) * (3.9 / cos 4.764○) * (4.62 / 1000)
Plw = -15.82 KN
Panel wind load on Leeward side = Pww = Pw * (p / cos Ө) * (s / 1000)
Steel StructuresLab
4
= (-875) * (3.9 / cos 4.764○) * (4.62 / 1000)
Pww = -15.82 KN
Unitgravityload analysis of truss roof:
Unitwindload analysisonhinge side oftruss roof:
Steel StructuresLab
5
Unitwindload analysisonroller side oftrussroof:
Steel StructuresLab
6
So, the values required for the table of forces are as follows:
Panel dead load = PD = 11.13 KN
Panel live load = PL = 17.68 KN
Panel wind load on Leeward side = Plw = -15.82 KN
Panel wind load on Leeward side = Pww = -15.82 KN
Table of forces
Member
Name
Member
Force
Under
Unit
Gravity
Load
Member
Force
Under
Unit Wind
Load On
Hinge
Side
Member
Force
Under
Unit
Wind
Load On
Roller
Side
(1.2Pd+1.6
Pl)*Col2
(1.2Pd+
0.5Pl)*
Col2+
(1.3Pww*
Col3)+
(1.3Plw)*
Col4
(1.2Pd+
0.5Pl)*
Col2+
(1.3Pww*
Col4)+
(1.3Plw)*
Col3
(0.9Pd)*
Col2+
(1.3Pww)
*Col3+
(1.3Plw)*
Col4
(0.9Pd)*Col2
+ (1.3Pww)*
Col4+
(1.3Plw)*
Col3
Max
Factored
Tension
Max
Factored
Compression
Remarks
AB 0 0.32 -0.32 0 0 0 0 0 0.000 0.000
BC 4.67 3.59 1.05 194.47748 8.22908 8.22908 -48.64685 -48.64685 194.477 48.647 Tension
L89X76X
7.9
CD 7.2 5 2.15 299.8368 12.7643 12.7643 -74.9245 -74.9245 299.837 74.925 Tension
L89X76X
7.9
DE 8.18 5.07 3.05 340.64792 14.56736 14.56736 -85.05686 -85.05686 340.648 85.057 Tension
L89X76X
7.9
EF 8.18 3.37 4.75 340.64792 14.56736 14.56736 -85.05686 -85.05686 340.648 85.057 Tension
L89X76X
7.9
Steel StructuresLab
7
FG 7.2 2.47 4.68 299.8368 12.7643 12.7643 -74.9245 -74.9245 299.837 74.925 Tension
L89X76X
7.9
GH 4.67 1.37 3.27 194.47748 8.22908 8.22908 -48.64685 -48.64685 194.477 48.647 Tension
L89X76X
7.9
HI 0 0 0 0 0 0 0 0 0.000 0.000
IK -4 -1.03 -2.95 -166.576 -6.93132 -6.93132 41.78468 41.78468 41.785 166.576 Compr…
L89X76X
7.9
KM -4.68 -1.38 -3.32 -194.89392 -7.21708 -7.21708 49.78064 49.78064 49.781 194.894 Compr…
L89X76X
7.9
MO -7.22 -2.48 -4.82 -300.66968 -10.12332 -10.12332 77.80906 77.80906 77.809 300.670 Compr…
L102X89
X9.5
OQ -8.21 -3.38 -4.96 -341.89724 -10.70872 -10.70872 89.28087 89.28087 89.281 341.897 Compr…
L102X89
X9.5
QR -8.03 -4.13 -4.09 -334.40132 -9.18136 -9.18136 88.61601 88.61601 88.616 334.401 Compr…
L102X89
X9.5
RP -8.03 -4.09 -4.13 -334.40132 -9.18136 -9.18136 88.61601 88.61601 88.616 334.401 Compr…
L102X89
X9.5
PN -8.21 -4.96 -3.38 -341.89724 -10.70872 -10.70872 89.28087 89.28087 89.281 341.897 Compr…
L102X89
X9.5
NL -7.22 -4.82 -2.48 -300.66968 -10.12332 -10.12332 77.80906 77.80906 77.809 300.670 Compr…
L102X89
X9.5
LJ -4.68 -3.32 -1.38 -194.89392 -7.21708 -7.21708 49.78064 49.78064 49.781 194.894 Compr…
L89X76X
7.9
JA -4 -2.95 -1.03 -166.576 -6.93132 -6.93132 41.78468 41.78468 41.785 166.576 Compr…
L89X76X
7.9
JB 5.61 3.93 1.65 233.62284 9.76128 9.76128 -58.56291 -58.56291 233.623 58.563 Tension
L89X76X
7.9
LB -3.11 -2.18 -0.91 -129.51284 -5.48062 -5.48062 32.39607 32.39607 32.396 129.513 Compr…
L89X76X
7.9
LC 3.17 1.77 1.37 132.01148 5.78408 5.78408 -32.82335 -32.82335 132.011 32.823 Tension
L89X76X
7.9
NC -1.9 -1.06 -0.82 -79.1236 -3.50832 -3.50832 19.63178 19.63178 19.632 79.124 Compr…
L89X76X
7.9
ND 1.28 0.08 1.17 53.30432 2.70338 2.70338 -12.88574 -12.88574 53.304 12.886 Tension
L89X76X
7.9
PD -0.82 -0.05 -0.75 -34.14808 -1.74792 -1.74792 8.23886 8.23886 8.239 34.148 Compr…
L89X76X
7.9
PE -0.25 -1.29 1.02 -10.411 0.00382 0.00382 3.04857 3.04857 3.049 10.411 Compr…
L89X76X
7.9
RE 0.33 0.18 0.18 13.74252 -0.07908 -0.07908 -4.09815 -4.09815 13.743 4.098 Tension
L89X76X
7.9
QE -0.25 1.02 -1.29 -10.411 0.00382 0.00382 3.04857 3.04857 3.049 10.411 Tension
L89X76X
Steel StructuresLab
8
7.9
QF -0.82 -0.75 -0.05 -34.14808 -1.74792 -1.74792 8.23886 8.23886 8.239 34.148 Compr…
L89X76X
7.9
OF 1.28 1.17 0.08 53.30432 2.70338 2.70338 -12.88574 -12.88574 53.304 12.886 Tension
L89X76X
7.9
OG -1.9 -0.82 -1.06 -79.1236 -3.50832 -3.50832 19.63178 19.63178 19.632 79.124 Compr…
L89X76X
7.9
MG 3.17 1.37 1.77 132.01148 5.78408 5.78408 -32.82335 -32.82335 132.011 32.823 Tension
L89X76X
7.9
MH -3.11 -0.91 -2.18 -129.51284 -5.48062 -5.48062 32.39607 32.39607 32.396 129.513 Compr…
L89X76X
7.9
KH 5.61 1.65 3.93 233.62284 9.76128 9.76128 -58.56291 -58.56291 233.623 58.563 Tension
L89X76X
7.9
Assignment#02: Design of purlin
Givendata:
Galvanized Iron corrugated sheet as a roofing material
N0 = -750
R = N - N0 = 56 – (-750) (where N is the registration number)
Truss spacing = s = 2.5 + (R-700) / 50 (m)
Span of truss = L = 10 + (R-700) / 5 (m)
Steel StructuresLab
9
Solution:
R = N - N0 = 56 – (-750) = 806
Truss spacing = s = 2.5 + (R-700) / 50 (m) = 2.5 + (806-700) / 50 = 4.62 m
Span of truss = L = 10 + (R-700) / 5 (m) = 10 + (806-700) / 5 = 31.2 m
Panel Length = p = L / 8 = 31.2 / 8 = 3.9 m
Angle of top chord = Ө = tan-1 (1.3 / 15.6) = 4.764○
Dead load of roofing (GI corrugated sheet) = 25 kg / m2
Dead load of insulation boards = 6 kg / m2
Miscellaneous = 9 kg / m2
Live load from design aids (for Ө = 4.764○) = 100 kg / m2
Total Gravity Load = 25 + 6 + 9 + 100 = 140 kg / m2
Assumed self-weight of purlin = 0.15 * Total Gravity Load = 0.15 * 140 = 21 kg / m2
No. of truss panels = 8
Steel StructuresLab
10
Dead Load = (25 * 6 * 9) * 3.9 * 9.81 + (21 * 3.9 * 9.81) = (1530.36 + 803.44) N/m
Live Load = (100 * 3.9 * 9.81) = 3825.9 N/m
Total Gravity Load = ((1530.36 + 3825.9) + 803.44)= (5356.26 + 803.44)N/m
Now
Mx = wcosӨ (S2/8)
= 6159.7cos4.764 (4.622/8)
Mx = 16377.61 N/m
My = wsinӨ (S2/8) + wsinӨ (S2/8)
= 5356.26sin4.764 (4.622/8) + 803.44sin4.764 (4.622/8)
My = (1186.87+ 178.03) N/m
Now For Channel Section:
Mx (assumed)= Mx + 15My
= 16377.61 + 15(1186.87 + 178.03)
Steel StructuresLab
11
= 36851.11 Nm
Sx (Required) = Mx (assumed) / 0.66 Fy
= (36851.11 * 1000) / (0.66 * 250) = 223340 mm3 = 223.3 * 103 mm3
dmin. = S / 27.5 = 4.62 / 27.5 = 0.168 m = 168 mm
Trial Section No. 1:
C250 * 30
dmin. Check:
d = 254 mm >dmin. OK.
Applied Stress Check:
Sx = 259 * 103mm3
Sy = 21.6 * 103mm3
fb = Mx / Sx + My / (Sy/2) + My / Sy
= (16377.61 * 1000) / (259 * 103) + (1186.87 * 1000) / ((21.6/2) * 103) +
(178.03 * 1000) / (21.6 * 103)
fb = 181.37MPa>Fb NOT OK.
Trial Section No. 2:
C250 * 37
dmin. Check:
d = 254 mm >dmin. OK.
Applied Stress Check:
Sx = 298 * 103mm3
Sy = 24.3 * 103mm3
fb = Mx / Sx + My / (Sy/2) + My / Sy
= (16377.61 * 1000) / (298 * 103) + (1186.87 * 1000) / ((24.3/2) * 103) +
(178.03 * 1000) / (24.3 * 103)
fb = 159.97 MPa<Fb OK.
Steel StructuresLab
12
Compactness Check:
bf / tf = 73 / 11.1 = 6.6 < 10.7 OK.
Check for self-weight of purlin:
Actual Self-Weight of purlin = 37 * 10 / 31.2 = 11.86 Kg / m2< 1.2 * 21 OK.
So the final section is
Now For W Section:
Mx (assumed)= Mx + 15My
= 16377.61 + 15(1186.87 + 178.03)
= 36851.11 Nm
Sx (Required) = Mx (assumed) / 0.66 Fy
= (36851.11 * 1000) / (0.66 * 250) = 223340 mm3 = 223.3 * 103 mm3
dmin. = S / 27.5 = 4.62 / 27.5 = 0.168 m = 168 mm
Trial Section No. 1:
W310 * 21
dmin. Check:
d = 302 mm >dmin. OK.
Applied Stress Check:
Sx = 244 * 103mm3
Sy = 19.5 * 103mm3
fb = Mx / Sx + My / (Sy/2) + My / Sy
= (16377.61 * 1000) / (244 * 103) + (1186.87 * 1000) / ((19.5/2) * 103) +
(178.03 * 1000) / (19.5 * 103)
fb = 197.98 MPa>Fb NOT OK.
C250 * 37
Steel StructuresLab
13
Trial Section No. 2:
W250 * 28.4
dmin. Check:
d = 259 mm >dmin. OK.
Applied Stress Check:
Sx = 308 * 103mm3
Sy = 35.1 * 103mm3
fb = Mx / Sx + My / (Sy/2) + My / Sy
= (16377.61 * 1000) / (308 * 103) + (1186.87 * 1000) / ((35.1/2) * 103) +
(178.03 * 1000) / (35.1 * 103)
fb = 125.87MPa<Fb OK.
Compactness Check:
bf / tf = 102 / 10 = 10.2< 10.7 OK.
Check for self-weight of purlin:
Actual Self-Weight of purlin = 28.4 * 10 / 31.2 = 9.10 Kg / m2< 1.2 * 21 OK.
So the final section is
As angle Ө = 4.764○
; so there is no need to design the “sag rod”.
W250 * 28.4
Steel StructuresLab
14
Assignment # 03: Design of corrugated sheet
Givendata:
Design of 75 * 20 Galvanized Iron corrugated sheet
Number of sheets required = ?
N0 = -750
R = N - N0 = 56 – (-750) (where N is the registration number)
Truss spacing = s = 2.5 + (R-700) / 50 (m)
Span of truss = L = 10 + (R-700) / 5 (m)
Solution:
R = N - N0 = 56 – (-750) = 806
Truss spacing = s = 2.5 + (R-700) / 50 (m) = 2.5 + (806-700) / 50 = 4.62 m
Span of truss = L = 10 + (R-700) / 5 (m) = 10 + (806-700) / 5 = 31.2 m
Panel Length = p = L / 8 = 31.2 / 8 = 3.9 m
Angle of top chord = Ө = tan-1 (1.3 / 15.6) = 4.764○
Assumed dead load of roofing = 20 kg / m2
Insulation not attached to the sheet
Miscellaneous load = 6 kg / m2
Live load from design aids (for Ө = 4.764○) = 100 kg / m2
Steel StructuresLab
15
Live load from design aids (for Ө = 4.764○) = 100 kg / m (For 1 m wide strip)
Total Gravity Load w = 25 + (1/3)6 + 100 + 100 = 127 kg / m2
No. of truss panels = 8
Number of trusses = 9
Sheet projection beyond center of truss support = 300 mm
Total gravity load = w = 127 * 9.81 = 124 6 N/m2
w = 1246 N/m for 1 meter wide strip
Length of one sheet = L = (np / cos Ө ) + E
L1 = (1* 3.9 / cos 4.7640 ) + 0.2 = 4.11 m (Not possible because 1.5 m < L < 4 m)
L2 = (2 * 3.9 / cos 4.7640 ) + 0.2 = 8.03 m (Not possible because 1.5 m < L < 4 m)
L3 = (3 * 3.9 / cos 4.7640 ) + 0.2 = 11.94 m (Not possible because 1.5 m < L < 4 m)
As no length is satisfying so we increase the number of purlins. We introduce another purlim in
between the two purlins.
Steel StructuresLab
16
Now;
Panel length = p = 3.9 / 2 = 1.95 m
So
L1 = (1* 1.95 / cos 4.7640 ) + 0.2 = 2.16 m
L2 = (2 * 1.95 / cos 4.7640 ) + 0.2 = 4.11 m (Not possible because 1.5 m < L < 4 m)
L3 = (3 * 1.95 / cos 4.7640 ) + 0.2 = 6.07 m (Not possible because 1.5 m < L < 4 m)
So length of one sheet = L = 2.25 m
Mmax = w * p2 / 8 = 1246 * 1.952 / 8 = 592.24 Nm
(Sx)Required = Mmax * 1000 / 0.6 Fy = 592.24 * 1000 / 0.6 * 250 = 3.95 * 103 mm3
Trial sheet gage 1 = 22; I = 4.23 * 104 mm4
Self weight of roofing check:
Actual self weight of roofing = 77.6 N/m2
Assumed self weight of roofing = 20 * 9.81 = 196.2 N/m2
Now
(1.35 * 77.6 = 104.76) < (1.2 * 196.2 = 235.44) OK.
Maximum deflection check:
Live load = wL = 100 Kg / m = 100 * 9.81 = 981 N/m = 0.981 N / mm
For simply supported sheet:
∆max = 0.013 wL * p4 / EI
∆max = 0.013 * 0.981 * 19504 / 200000 * 4.23 * 104 = 21.8 mm
For S.S Sheet with partial fixity at one end
∆max = 0.01 wL * p4 / EI
∆max = 0.01 * 0.981 * 19504 / 200000 * 4.23 * 104 = 16.8 mm
So
∆max = 21.8 mm
Now
Steel StructuresLab
17
∆allowed= span / 90 = 1950 / 90 = 21.7 mm
So
∆max = 21.8 mm > ∆allowed= 21.7 mm NOT OK.
Trial sheet gage 2 = 20; I = 5.04 * 104 mm4
Self weight of roofing check:
Actual self weight of roofing = 91.5 N/m2
Assumed self weight of roofing = 20 * 9.81 = 196.2 N/m2
Now
(1.35 * 91.5 = 123.5) < (1.2 * 196.2 = 235.44) OK.
Maximum deflection check:
Live load = wL = 100 Kg / m = 100 * 9.81 = 981 N/m = 0.981 N / mm
For simply supported sheet:
∆max = 0.013 wL * p4 / EI
∆max = 0.013 * 0.981 * 19504 / 200000 * 5.04 * 104 = 18.3 mm
For S.S Sheet with partial fixity at one end
∆max = 0.01 wL * p4 / EI
∆max = 0.01 * 0.981 * 19504 / 200000 * 5.04 * 104 = 14.1 mm
So
∆max = 18.3 mm
Now
∆allowed= span / 90 = 1950 / 90 = 21.7 mm
So
∆max = 18.3 mm < ∆allowed= 21.7 mm OK.
Now
Number of sheet panels required for 100 m2 of roof area = N100 = 108 / C (L-E)
N100 = 108 / 585 (2160 – 200) = 87.21 = 88
Now
The inclined roof area on one side = A = ((L / 2 + Sheet projection) * (Nt – 1) * S) / cos Ө
Steel StructuresLab
18
A = (31.2 / 2 + 0.3) * (9 – 1) * 4.62 / cos 4.7640
A = 589.7 m2
Number of sheets on one side = N1 = (A * N100) / 100
= 589.7 * 88 / 100
= 519
Total number of sheets = 2 * N1 = 2 * 519 = 1038
Final Results:
Gage of G.I Corrugated sheet = 20 gage
Standard Designation = 75 * 20
Sheet panel size = 0.7 * 2.25 m
Total number of sheets = 1038

More Related Content

What's hot

Bearing capacity ch#05(geotech)
Bearing capacity ch#05(geotech)Bearing capacity ch#05(geotech)
Bearing capacity ch#05(geotech)
Irfan Malik
 
Beams design and analysis
Beams design and analysisBeams design and analysis
Beams design and analysis
Aman Adam
 

What's hot (20)

Steel strucure lec # (16)
Steel strucure lec #  (16)Steel strucure lec #  (16)
Steel strucure lec # (16)
 
Prestressed Concrete Design
Prestressed Concrete DesignPrestressed Concrete Design
Prestressed Concrete Design
 
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
19-Examples for Beam Column (Steel Structural Design & Prof. Shehab Mourad)
 
Design of column base plates anchor bolt
Design of column base plates anchor boltDesign of column base plates anchor bolt
Design of column base plates anchor bolt
 
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
Geotechnical Engineering-II [Lec #19: General Bearing Capacity Equation]
 
Problems on piles and deep footing
Problems on piles and deep footingProblems on piles and deep footing
Problems on piles and deep footing
 
Doubly reinforced beam design
Doubly reinforced beam   designDoubly reinforced beam   design
Doubly reinforced beam design
 
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
 
Lecture 8 raft foundation
Lecture 8 raft foundationLecture 8 raft foundation
Lecture 8 raft foundation
 
Steel strucure lec # (21)
Steel strucure lec #  (21)Steel strucure lec #  (21)
Steel strucure lec # (21)
 
Lec.4 working stress 2
Lec.4   working stress 2Lec.4   working stress 2
Lec.4 working stress 2
 
Examples on total consolidation
Examples on total  consolidationExamples on total  consolidation
Examples on total consolidation
 
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
Numerical problem and solution on pile capacity (usefulsearch.org) ( usefuls...
 
Design of RCC Column footing
Design of RCC Column footingDesign of RCC Column footing
Design of RCC Column footing
 
Design of columns axial load as per IS 456-2000
Design of columns  axial load as per IS 456-2000Design of columns  axial load as per IS 456-2000
Design of columns axial load as per IS 456-2000
 
Rcc member design steps
Rcc member design stepsRcc member design steps
Rcc member design steps
 
Bearing capacity ch#05(geotech)
Bearing capacity ch#05(geotech)Bearing capacity ch#05(geotech)
Bearing capacity ch#05(geotech)
 
Beams design and analysis
Beams design and analysisBeams design and analysis
Beams design and analysis
 
Design and analysis of slabs
Design and analysis of slabsDesign and analysis of slabs
Design and analysis of slabs
 
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
 

Similar to Roof Truss Design (By Hamza Waheed UET Lahore )

Shallow and Deep Founation Design Calucations
Shallow and Deep Founation Design CalucationsShallow and Deep Founation Design Calucations
Shallow and Deep Founation Design Calucations
Tyler Edgington
 
Diseno y-calculo-de-puentes
Diseno y-calculo-de-puentesDiseno y-calculo-de-puentes
Diseno y-calculo-de-puentes
carlos
 

Similar to Roof Truss Design (By Hamza Waheed UET Lahore ) (20)

Puentes
PuentesPuentes
Puentes
 
Shallow and Deep Founation Design Calucations
Shallow and Deep Founation Design CalucationsShallow and Deep Founation Design Calucations
Shallow and Deep Founation Design Calucations
 
Diesel Production: Equipments Design
Diesel Production: Equipments DesignDiesel Production: Equipments Design
Diesel Production: Equipments Design
 
Concreto armado
Concreto armadoConcreto armado
Concreto armado
 
Baja kuda kuda
Baja kuda kudaBaja kuda kuda
Baja kuda kuda
 
Diseño y calculo de un puente de placa y vigas
Diseño y calculo de un puente de placa y vigasDiseño y calculo de un puente de placa y vigas
Diseño y calculo de un puente de placa y vigas
 
2 compression
2  compression2  compression
2 compression
 
Metalicas
MetalicasMetalicas
Metalicas
 
Diseno y-calculo-de-puentes
Diseno y-calculo-de-puentesDiseno y-calculo-de-puentes
Diseno y-calculo-de-puentes
 
Design and analysis of school building
Design and analysis of school buildingDesign and analysis of school building
Design and analysis of school building
 
96729556 hoja-de-calculo-para-zapatas
96729556 hoja-de-calculo-para-zapatas96729556 hoja-de-calculo-para-zapatas
96729556 hoja-de-calculo-para-zapatas
 
Muro contension raul1
Muro contension raul1Muro contension raul1
Muro contension raul1
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
design of water section concrete structures
design of water section concrete structuresdesign of water section concrete structures
design of water section concrete structures
 
Calculo de losa aligerada
Calculo de losa aligeradaCalculo de losa aligerada
Calculo de losa aligerada
 
Structural building by engineer abdikani farah ahmed(enggalaydh)
Structural building by engineer abdikani farah ahmed(enggalaydh)Structural building by engineer abdikani farah ahmed(enggalaydh)
Structural building by engineer abdikani farah ahmed(enggalaydh)
 
Shi20396 ch08
Shi20396 ch08Shi20396 ch08
Shi20396 ch08
 
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
 
Transmission and distribution system design
Transmission and distribution system designTransmission and distribution system design
Transmission and distribution system design
 
Power screw application
Power screw applicationPower screw application
Power screw application
 

More from Hamza Waheed

More from Hamza Waheed (7)

ALL ROUNDER COVER LETTER
ALL ROUNDER COVER LETTERALL ROUNDER COVER LETTER
ALL ROUNDER COVER LETTER
 
PLAIN AND REINFORCED CONRETE (LAB MANUAL)
PLAIN AND REINFORCED CONRETE (LAB MANUAL)PLAIN AND REINFORCED CONRETE (LAB MANUAL)
PLAIN AND REINFORCED CONRETE (LAB MANUAL)
 
How to find missing children, vulnerable groups and managing them
How to find missing children, vulnerable groups and managing themHow to find missing children, vulnerable groups and managing them
How to find missing children, vulnerable groups and managing them
 
All Rounder CV (modern CV sample)
All Rounder CV (modern CV sample)All Rounder CV (modern CV sample)
All Rounder CV (modern CV sample)
 
Construction report (boq, wbs, reports, evm)
Construction report (boq, wbs, reports, evm)Construction report (boq, wbs, reports, evm)
Construction report (boq, wbs, reports, evm)
 
How to write an effective paragraph with example
How to write an effective paragraph with exampleHow to write an effective paragraph with example
How to write an effective paragraph with example
 
CONSTRUCTION PROCESSES in CIVIL ENGINEERING (HISTORICAL AND MODERN)
CONSTRUCTION PROCESSES  in CIVIL ENGINEERING (HISTORICAL AND MODERN) CONSTRUCTION PROCESSES  in CIVIL ENGINEERING (HISTORICAL AND MODERN)
CONSTRUCTION PROCESSES in CIVIL ENGINEERING (HISTORICAL AND MODERN)
 

Recently uploaded

Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
pritamlangde
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
ssuser89054b
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
 

Recently uploaded (20)

Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
8086 Microprocessor Architecture: 16-bit microprocessor
8086 Microprocessor Architecture: 16-bit microprocessor8086 Microprocessor Architecture: 16-bit microprocessor
8086 Microprocessor Architecture: 16-bit microprocessor
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdf
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata Model
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
 
Signal Processing and Linear System Analysis
Signal Processing and Linear System AnalysisSignal Processing and Linear System Analysis
Signal Processing and Linear System Analysis
 
Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
Electromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptxElectromagnetic relays used for power system .pptx
Electromagnetic relays used for power system .pptx
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 
👉 Yavatmal Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top Class Call Girl S...
👉 Yavatmal Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top Class Call Girl S...👉 Yavatmal Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top Class Call Girl S...
👉 Yavatmal Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top Class Call Girl S...
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesLinux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 

Roof Truss Design (By Hamza Waheed UET Lahore )

  • 1. Steel StructuresLab 1 UNIVERSITY OF ENGINEERING AND TECHNOLOGY LAHORE Steel structures lab Design ASSIGNMENT Submitted By: HAMZA WAHEED 2015-CIV-111 Section C Submitted To: Dr. Qasim Shaukat Khan DEPARTMENT OF CIVIL ENGINEERING UET LAHORE
  • 2. Steel StructuresLab 2 Assignment#01: Design of Truss Roof Givendata: Galvanized Iron corrugated sheet as a roofing material N0 = -750 R = N - N0 = 56 – (-750) (where N is the registration number) Truss spacing = s = 2.5 + (R-700) / 50 (m) Span of truss = L = 10 + (R-700) / 5 (m) Solution: R = N - N0 = 56 – (-750) = 806 Truss spacing = s = 2.5 + (R-700) / 50 (m) = 2.5 + (806-700) / 50 = 4.62 m Span of truss = L = 10 + (R-700) / 5 (m) = 10 + (806-700) / 5 = 31.2 m Panel Length = p = L / 8 = 31.2 / 8 = 3.9 m Angle of top chord = Ө = tan-1 (1.3 / 15.6) = 4.764○ Dead load of roofing (GI corrugated sheet) = 15 kg / m2 Dead load of insulation boards = 5 kg / m2 Self-weight of purlins = 10 kg / m2 Self-weight of bracing elements = 5 kg / m2 Miscellaneous = 5 kg / m2 Total dead load excluding truss self-weight = 15 + 5 + 10 + 5 + 5 = 40 kg / m2
  • 3. Steel StructuresLab 3 Live load from design aids (for Ө = 4.764○) = 100 kg / m2 Total gravity load = w = 40 + 100 = 140 kg / m2 Now, using Thayer’s Formula: Self-weight of truss = √ 𝑤 𝑠 ( 𝐿 8.5 + 0.5) = √ 140 4.62 ( 31.2 8.5 + 0.5) = 22.96kg / m2 Total dead load = 40 + 22.96 = 62.96 kg / m2 Leeward wind pressure = Pl = 1250 Cq = 1250 (-0.7) = -875 N / m2 Windward wind pressure = Pw = 1250 Cq = 1250 (-0.7) = -875 N / m2 (for Ө = 0○ to 9.5○, Cq =-0.7) Panel dead load = PD = w * p * s = 62.96 * 3.9 * 4.62 * 9.81 / 1000 = 11.13 KN Panel live load = PL = w * p * s = 100 * 3.9 * 4.62 * 9.81 / 1000 = 17.68 KN Panel wind load on Leeward side = Plw = Pl * (p / cosӨ) * (s / 1000) = (-875) * (3.9 / cos 4.764○) * (4.62 / 1000) Plw = -15.82 KN Panel wind load on Leeward side = Pww = Pw * (p / cos Ө) * (s / 1000)
  • 4. Steel StructuresLab 4 = (-875) * (3.9 / cos 4.764○) * (4.62 / 1000) Pww = -15.82 KN Unitgravityload analysis of truss roof: Unitwindload analysisonhinge side oftruss roof:
  • 6. Steel StructuresLab 6 So, the values required for the table of forces are as follows: Panel dead load = PD = 11.13 KN Panel live load = PL = 17.68 KN Panel wind load on Leeward side = Plw = -15.82 KN Panel wind load on Leeward side = Pww = -15.82 KN Table of forces Member Name Member Force Under Unit Gravity Load Member Force Under Unit Wind Load On Hinge Side Member Force Under Unit Wind Load On Roller Side (1.2Pd+1.6 Pl)*Col2 (1.2Pd+ 0.5Pl)* Col2+ (1.3Pww* Col3)+ (1.3Plw)* Col4 (1.2Pd+ 0.5Pl)* Col2+ (1.3Pww* Col4)+ (1.3Plw)* Col3 (0.9Pd)* Col2+ (1.3Pww) *Col3+ (1.3Plw)* Col4 (0.9Pd)*Col2 + (1.3Pww)* Col4+ (1.3Plw)* Col3 Max Factored Tension Max Factored Compression Remarks AB 0 0.32 -0.32 0 0 0 0 0 0.000 0.000 BC 4.67 3.59 1.05 194.47748 8.22908 8.22908 -48.64685 -48.64685 194.477 48.647 Tension L89X76X 7.9 CD 7.2 5 2.15 299.8368 12.7643 12.7643 -74.9245 -74.9245 299.837 74.925 Tension L89X76X 7.9 DE 8.18 5.07 3.05 340.64792 14.56736 14.56736 -85.05686 -85.05686 340.648 85.057 Tension L89X76X 7.9 EF 8.18 3.37 4.75 340.64792 14.56736 14.56736 -85.05686 -85.05686 340.648 85.057 Tension L89X76X 7.9
  • 7. Steel StructuresLab 7 FG 7.2 2.47 4.68 299.8368 12.7643 12.7643 -74.9245 -74.9245 299.837 74.925 Tension L89X76X 7.9 GH 4.67 1.37 3.27 194.47748 8.22908 8.22908 -48.64685 -48.64685 194.477 48.647 Tension L89X76X 7.9 HI 0 0 0 0 0 0 0 0 0.000 0.000 IK -4 -1.03 -2.95 -166.576 -6.93132 -6.93132 41.78468 41.78468 41.785 166.576 Compr… L89X76X 7.9 KM -4.68 -1.38 -3.32 -194.89392 -7.21708 -7.21708 49.78064 49.78064 49.781 194.894 Compr… L89X76X 7.9 MO -7.22 -2.48 -4.82 -300.66968 -10.12332 -10.12332 77.80906 77.80906 77.809 300.670 Compr… L102X89 X9.5 OQ -8.21 -3.38 -4.96 -341.89724 -10.70872 -10.70872 89.28087 89.28087 89.281 341.897 Compr… L102X89 X9.5 QR -8.03 -4.13 -4.09 -334.40132 -9.18136 -9.18136 88.61601 88.61601 88.616 334.401 Compr… L102X89 X9.5 RP -8.03 -4.09 -4.13 -334.40132 -9.18136 -9.18136 88.61601 88.61601 88.616 334.401 Compr… L102X89 X9.5 PN -8.21 -4.96 -3.38 -341.89724 -10.70872 -10.70872 89.28087 89.28087 89.281 341.897 Compr… L102X89 X9.5 NL -7.22 -4.82 -2.48 -300.66968 -10.12332 -10.12332 77.80906 77.80906 77.809 300.670 Compr… L102X89 X9.5 LJ -4.68 -3.32 -1.38 -194.89392 -7.21708 -7.21708 49.78064 49.78064 49.781 194.894 Compr… L89X76X 7.9 JA -4 -2.95 -1.03 -166.576 -6.93132 -6.93132 41.78468 41.78468 41.785 166.576 Compr… L89X76X 7.9 JB 5.61 3.93 1.65 233.62284 9.76128 9.76128 -58.56291 -58.56291 233.623 58.563 Tension L89X76X 7.9 LB -3.11 -2.18 -0.91 -129.51284 -5.48062 -5.48062 32.39607 32.39607 32.396 129.513 Compr… L89X76X 7.9 LC 3.17 1.77 1.37 132.01148 5.78408 5.78408 -32.82335 -32.82335 132.011 32.823 Tension L89X76X 7.9 NC -1.9 -1.06 -0.82 -79.1236 -3.50832 -3.50832 19.63178 19.63178 19.632 79.124 Compr… L89X76X 7.9 ND 1.28 0.08 1.17 53.30432 2.70338 2.70338 -12.88574 -12.88574 53.304 12.886 Tension L89X76X 7.9 PD -0.82 -0.05 -0.75 -34.14808 -1.74792 -1.74792 8.23886 8.23886 8.239 34.148 Compr… L89X76X 7.9 PE -0.25 -1.29 1.02 -10.411 0.00382 0.00382 3.04857 3.04857 3.049 10.411 Compr… L89X76X 7.9 RE 0.33 0.18 0.18 13.74252 -0.07908 -0.07908 -4.09815 -4.09815 13.743 4.098 Tension L89X76X 7.9 QE -0.25 1.02 -1.29 -10.411 0.00382 0.00382 3.04857 3.04857 3.049 10.411 Tension L89X76X
  • 8. Steel StructuresLab 8 7.9 QF -0.82 -0.75 -0.05 -34.14808 -1.74792 -1.74792 8.23886 8.23886 8.239 34.148 Compr… L89X76X 7.9 OF 1.28 1.17 0.08 53.30432 2.70338 2.70338 -12.88574 -12.88574 53.304 12.886 Tension L89X76X 7.9 OG -1.9 -0.82 -1.06 -79.1236 -3.50832 -3.50832 19.63178 19.63178 19.632 79.124 Compr… L89X76X 7.9 MG 3.17 1.37 1.77 132.01148 5.78408 5.78408 -32.82335 -32.82335 132.011 32.823 Tension L89X76X 7.9 MH -3.11 -0.91 -2.18 -129.51284 -5.48062 -5.48062 32.39607 32.39607 32.396 129.513 Compr… L89X76X 7.9 KH 5.61 1.65 3.93 233.62284 9.76128 9.76128 -58.56291 -58.56291 233.623 58.563 Tension L89X76X 7.9 Assignment#02: Design of purlin Givendata: Galvanized Iron corrugated sheet as a roofing material N0 = -750 R = N - N0 = 56 – (-750) (where N is the registration number) Truss spacing = s = 2.5 + (R-700) / 50 (m) Span of truss = L = 10 + (R-700) / 5 (m)
  • 9. Steel StructuresLab 9 Solution: R = N - N0 = 56 – (-750) = 806 Truss spacing = s = 2.5 + (R-700) / 50 (m) = 2.5 + (806-700) / 50 = 4.62 m Span of truss = L = 10 + (R-700) / 5 (m) = 10 + (806-700) / 5 = 31.2 m Panel Length = p = L / 8 = 31.2 / 8 = 3.9 m Angle of top chord = Ө = tan-1 (1.3 / 15.6) = 4.764○ Dead load of roofing (GI corrugated sheet) = 25 kg / m2 Dead load of insulation boards = 6 kg / m2 Miscellaneous = 9 kg / m2 Live load from design aids (for Ө = 4.764○) = 100 kg / m2 Total Gravity Load = 25 + 6 + 9 + 100 = 140 kg / m2 Assumed self-weight of purlin = 0.15 * Total Gravity Load = 0.15 * 140 = 21 kg / m2 No. of truss panels = 8
  • 10. Steel StructuresLab 10 Dead Load = (25 * 6 * 9) * 3.9 * 9.81 + (21 * 3.9 * 9.81) = (1530.36 + 803.44) N/m Live Load = (100 * 3.9 * 9.81) = 3825.9 N/m Total Gravity Load = ((1530.36 + 3825.9) + 803.44)= (5356.26 + 803.44)N/m Now Mx = wcosӨ (S2/8) = 6159.7cos4.764 (4.622/8) Mx = 16377.61 N/m My = wsinӨ (S2/8) + wsinӨ (S2/8) = 5356.26sin4.764 (4.622/8) + 803.44sin4.764 (4.622/8) My = (1186.87+ 178.03) N/m Now For Channel Section: Mx (assumed)= Mx + 15My = 16377.61 + 15(1186.87 + 178.03)
  • 11. Steel StructuresLab 11 = 36851.11 Nm Sx (Required) = Mx (assumed) / 0.66 Fy = (36851.11 * 1000) / (0.66 * 250) = 223340 mm3 = 223.3 * 103 mm3 dmin. = S / 27.5 = 4.62 / 27.5 = 0.168 m = 168 mm Trial Section No. 1: C250 * 30 dmin. Check: d = 254 mm >dmin. OK. Applied Stress Check: Sx = 259 * 103mm3 Sy = 21.6 * 103mm3 fb = Mx / Sx + My / (Sy/2) + My / Sy = (16377.61 * 1000) / (259 * 103) + (1186.87 * 1000) / ((21.6/2) * 103) + (178.03 * 1000) / (21.6 * 103) fb = 181.37MPa>Fb NOT OK. Trial Section No. 2: C250 * 37 dmin. Check: d = 254 mm >dmin. OK. Applied Stress Check: Sx = 298 * 103mm3 Sy = 24.3 * 103mm3 fb = Mx / Sx + My / (Sy/2) + My / Sy = (16377.61 * 1000) / (298 * 103) + (1186.87 * 1000) / ((24.3/2) * 103) + (178.03 * 1000) / (24.3 * 103) fb = 159.97 MPa<Fb OK.
  • 12. Steel StructuresLab 12 Compactness Check: bf / tf = 73 / 11.1 = 6.6 < 10.7 OK. Check for self-weight of purlin: Actual Self-Weight of purlin = 37 * 10 / 31.2 = 11.86 Kg / m2< 1.2 * 21 OK. So the final section is Now For W Section: Mx (assumed)= Mx + 15My = 16377.61 + 15(1186.87 + 178.03) = 36851.11 Nm Sx (Required) = Mx (assumed) / 0.66 Fy = (36851.11 * 1000) / (0.66 * 250) = 223340 mm3 = 223.3 * 103 mm3 dmin. = S / 27.5 = 4.62 / 27.5 = 0.168 m = 168 mm Trial Section No. 1: W310 * 21 dmin. Check: d = 302 mm >dmin. OK. Applied Stress Check: Sx = 244 * 103mm3 Sy = 19.5 * 103mm3 fb = Mx / Sx + My / (Sy/2) + My / Sy = (16377.61 * 1000) / (244 * 103) + (1186.87 * 1000) / ((19.5/2) * 103) + (178.03 * 1000) / (19.5 * 103) fb = 197.98 MPa>Fb NOT OK. C250 * 37
  • 13. Steel StructuresLab 13 Trial Section No. 2: W250 * 28.4 dmin. Check: d = 259 mm >dmin. OK. Applied Stress Check: Sx = 308 * 103mm3 Sy = 35.1 * 103mm3 fb = Mx / Sx + My / (Sy/2) + My / Sy = (16377.61 * 1000) / (308 * 103) + (1186.87 * 1000) / ((35.1/2) * 103) + (178.03 * 1000) / (35.1 * 103) fb = 125.87MPa<Fb OK. Compactness Check: bf / tf = 102 / 10 = 10.2< 10.7 OK. Check for self-weight of purlin: Actual Self-Weight of purlin = 28.4 * 10 / 31.2 = 9.10 Kg / m2< 1.2 * 21 OK. So the final section is As angle Ө = 4.764○ ; so there is no need to design the “sag rod”. W250 * 28.4
  • 14. Steel StructuresLab 14 Assignment # 03: Design of corrugated sheet Givendata: Design of 75 * 20 Galvanized Iron corrugated sheet Number of sheets required = ? N0 = -750 R = N - N0 = 56 – (-750) (where N is the registration number) Truss spacing = s = 2.5 + (R-700) / 50 (m) Span of truss = L = 10 + (R-700) / 5 (m) Solution: R = N - N0 = 56 – (-750) = 806 Truss spacing = s = 2.5 + (R-700) / 50 (m) = 2.5 + (806-700) / 50 = 4.62 m Span of truss = L = 10 + (R-700) / 5 (m) = 10 + (806-700) / 5 = 31.2 m Panel Length = p = L / 8 = 31.2 / 8 = 3.9 m Angle of top chord = Ө = tan-1 (1.3 / 15.6) = 4.764○ Assumed dead load of roofing = 20 kg / m2 Insulation not attached to the sheet Miscellaneous load = 6 kg / m2 Live load from design aids (for Ө = 4.764○) = 100 kg / m2
  • 15. Steel StructuresLab 15 Live load from design aids (for Ө = 4.764○) = 100 kg / m (For 1 m wide strip) Total Gravity Load w = 25 + (1/3)6 + 100 + 100 = 127 kg / m2 No. of truss panels = 8 Number of trusses = 9 Sheet projection beyond center of truss support = 300 mm Total gravity load = w = 127 * 9.81 = 124 6 N/m2 w = 1246 N/m for 1 meter wide strip Length of one sheet = L = (np / cos Ө ) + E L1 = (1* 3.9 / cos 4.7640 ) + 0.2 = 4.11 m (Not possible because 1.5 m < L < 4 m) L2 = (2 * 3.9 / cos 4.7640 ) + 0.2 = 8.03 m (Not possible because 1.5 m < L < 4 m) L3 = (3 * 3.9 / cos 4.7640 ) + 0.2 = 11.94 m (Not possible because 1.5 m < L < 4 m) As no length is satisfying so we increase the number of purlins. We introduce another purlim in between the two purlins.
  • 16. Steel StructuresLab 16 Now; Panel length = p = 3.9 / 2 = 1.95 m So L1 = (1* 1.95 / cos 4.7640 ) + 0.2 = 2.16 m L2 = (2 * 1.95 / cos 4.7640 ) + 0.2 = 4.11 m (Not possible because 1.5 m < L < 4 m) L3 = (3 * 1.95 / cos 4.7640 ) + 0.2 = 6.07 m (Not possible because 1.5 m < L < 4 m) So length of one sheet = L = 2.25 m Mmax = w * p2 / 8 = 1246 * 1.952 / 8 = 592.24 Nm (Sx)Required = Mmax * 1000 / 0.6 Fy = 592.24 * 1000 / 0.6 * 250 = 3.95 * 103 mm3 Trial sheet gage 1 = 22; I = 4.23 * 104 mm4 Self weight of roofing check: Actual self weight of roofing = 77.6 N/m2 Assumed self weight of roofing = 20 * 9.81 = 196.2 N/m2 Now (1.35 * 77.6 = 104.76) < (1.2 * 196.2 = 235.44) OK. Maximum deflection check: Live load = wL = 100 Kg / m = 100 * 9.81 = 981 N/m = 0.981 N / mm For simply supported sheet: ∆max = 0.013 wL * p4 / EI ∆max = 0.013 * 0.981 * 19504 / 200000 * 4.23 * 104 = 21.8 mm For S.S Sheet with partial fixity at one end ∆max = 0.01 wL * p4 / EI ∆max = 0.01 * 0.981 * 19504 / 200000 * 4.23 * 104 = 16.8 mm So ∆max = 21.8 mm Now
  • 17. Steel StructuresLab 17 ∆allowed= span / 90 = 1950 / 90 = 21.7 mm So ∆max = 21.8 mm > ∆allowed= 21.7 mm NOT OK. Trial sheet gage 2 = 20; I = 5.04 * 104 mm4 Self weight of roofing check: Actual self weight of roofing = 91.5 N/m2 Assumed self weight of roofing = 20 * 9.81 = 196.2 N/m2 Now (1.35 * 91.5 = 123.5) < (1.2 * 196.2 = 235.44) OK. Maximum deflection check: Live load = wL = 100 Kg / m = 100 * 9.81 = 981 N/m = 0.981 N / mm For simply supported sheet: ∆max = 0.013 wL * p4 / EI ∆max = 0.013 * 0.981 * 19504 / 200000 * 5.04 * 104 = 18.3 mm For S.S Sheet with partial fixity at one end ∆max = 0.01 wL * p4 / EI ∆max = 0.01 * 0.981 * 19504 / 200000 * 5.04 * 104 = 14.1 mm So ∆max = 18.3 mm Now ∆allowed= span / 90 = 1950 / 90 = 21.7 mm So ∆max = 18.3 mm < ∆allowed= 21.7 mm OK. Now Number of sheet panels required for 100 m2 of roof area = N100 = 108 / C (L-E) N100 = 108 / 585 (2160 – 200) = 87.21 = 88 Now The inclined roof area on one side = A = ((L / 2 + Sheet projection) * (Nt – 1) * S) / cos Ө
  • 18. Steel StructuresLab 18 A = (31.2 / 2 + 0.3) * (9 – 1) * 4.62 / cos 4.7640 A = 589.7 m2 Number of sheets on one side = N1 = (A * N100) / 100 = 589.7 * 88 / 100 = 519 Total number of sheets = 2 * N1 = 2 * 519 = 1038 Final Results: Gage of G.I Corrugated sheet = 20 gage Standard Designation = 75 * 20 Sheet panel size = 0.7 * 2.25 m Total number of sheets = 1038