SlideShare a Scribd company logo
1 of 12
Download to read offline
Autodesk Robot Structural Analysis Professional 2015
Design of fixed beam-to-column connection
EN 1993-1-8:2005/AC:2009
Ratio
0.68
GENERAL
Connection no.: 30
Connection name: Узел рамы
Structure node: 127
Structure bars: 118, 122
GEOMETRY
COLUMN
Section: ДК 25х1
Bar no.: 118
 = -90.0 [Deg] Inclination angle
hc = 246 [mm] Height of column section
bfc = 249 [mm] Width of column section
twc = 8 [mm] Thickness of the web of column section
tfc = 12 [mm] Thickness of the flange of column section
Ac = 77.52 [cm2] Cross-sectional area of a column
Ixc = 8917.12 [cm4] Moment of inertia of the column section
Material: С255
fyc = 250.00 [MPa] Resistance
BEAM
Section: ДК 26x2
Bar no.: 122
 = -0.0 [Deg] Inclination angle
hb = 258 [mm] Height of beam section
bf = 260 [mm] Width of beam section
Стр. 1 из 11
03.12.2015mhtml:file://C:UsersTRISTANDocumentsAutodeskOutputra_res.mht
twb = 9 [mm] Thickness of the web of beam section
tfb = 14 [mm] Thickness of the flange of beam section
rb = 16 [mm] Radius of beam section fillet
rb = 16 [mm] Radius of beam section fillet
Ab = 93.19 [cm2] Cross-sectional area of a beam
Ixb = 11700.00 [cm4] Moment of inertia of the beam section
Material: С255
fyb = 250.00 [MPa] Resistance
BOLTS
The shear plane passes through the UNTHREADED portion of the bolt.
d = 20 [mm] Bolt diameter
Class = 8.8 Bolt class
FtRd = 141.12 [kN] Tensile resistance of a bolt
nh = 2 Number of bolt columns
nv = 7 Number of bolt rows
h1 = 50 [mm] Distance between first bolt and upper edge of front plate
Horizontal spacing ei = 125 [mm]
Vertical spacing pi = 135;55;51;125;55;70 [mm]
PLATE
hp = 643 [mm] Plate height
bp = 249 [mm] Plate width
tp = 20 [mm] Plate thickness
Material: С345
fyp = 320.00 [MPa] Resistance
LOWER STIFFENER
wd = 249 [mm] Plate width
tfd = 14 [mm] Flange thickness
hd = 275 [mm] Plate height
twd = 10 [mm] Web thickness
ld = 300 [mm] Plate length
 = 42.5 [Deg] Inclination angle
Material: С255
fybu = 240.00 [MPa] Resistance
UPPER STIFFENER
hu = 50 [mm] Stiffener height
twu = 16 [mm] Thickness of vertical stiffener
lu = 300 [mm] Length of vertical stiffener
Material: С255
fyu = 240.00 [MPa] Resistance
COLUMN STIFFENER
Upper
hsu = 234 [mm] Stiffener height
bsu = 121 [mm] Stiffener width
thu = 10 [mm] Stiffener thickness
Material: С255
fysu = 240.00 [MPa] Resistance
Lower
Стр. 2 из 11
03.12.2015mhtml:file://C:UsersTRISTANDocumentsAutodeskOutputra_res.mht
hsd = 234 [mm] Stiffener height
bsd = 121 [mm] Stiffener width
thd = 10 [mm] Stiffener thickness
Material: С255
fysu = 240.00 [MPa] Resistance
PLATE STRENGTHENING COLUMN WEB
Typ: unilateral
ha = 480 [mm] Plate length
wa = 180 [mm] Plate width
ta = 12 [mm] Plate thickness
Material: С255
fya = 240.00 [MPa] Resistance
FILLET WELDS
aw = 8 [mm] Web weld
af = 10 [mm] Flange weld
as = 8 [mm] Stiffener weld
afd = 8 [mm] Horizontal weld
ap1 = 6 [mm] Horizontal weld
ap2 = 6 [mm] Vertical weld
MATERIAL FACTORS
M0 = 1.00 Partial safety factor [2.2]
M1 = 1.00 Partial safety factor [2.2]
M2 = 1.25 Partial safety factor [2.2]
M3 = 1.25 Partial safety factor [2.2]
LOADS
Ultimate limit state
Case: Manual calculations.
Mb1,Ed = 136.65 [kN*m] Bending moment in the right beam
Vb1,Ed = 148.53 [kN] Shear force in the right beam
Nb1,Ed = -26.80 [kN] Axial force in the right beam
Mc2,Ed = -50.07 [kN*m] Bending moment in the upper column
Vc2,Ed = -29.77 [kN] Shear force in the upper column
Nc2,Ed = -255.09 [kN] Axial force in the upper column
RESULTS
BEAM RESISTANCES
COMPRESSION
Ab = 93.19 [cm2] Area EN1993-1-1:[6.2.4]
Ncb,Rd = Ab fyb / M0
Ncb,Rd = 2329.75 [kN] Design compressive resistance of the section EN1993-1-1:[6.2.4]
SHEAR
Avb = 64.02 [cm2] Shear area EN1993-1-1:[6.2.6.(3)]
Vcb,Rd = Avb (fyb / 3) / M0
Стр. 3 из 11
03.12.2015mhtml:file://C:UsersTRISTANDocumentsAutodeskOutputra_res.mht
Vcb,Rd = 924.12 [kN] Design sectional resistance for shear EN1993-1-1:[6.2.6.(2)]
Vb1,Ed / Vcb,Rd ≤ 1,0 0.16 < 1.00 verified (0.16)
BENDING - PLASTIC MOMENT (WITHOUT BRACKETS)
Wplb = 978.26 [cm3] Plastic section modulus EN1993-1-1:[6.2.5.(2)]
Mb,pl,Rd = Wplb fyb / M0
Mb,pl,Rd = 244.56 [kN*m] Plastic resistance of the section for bending (without stiffeners) EN1993-1-1:[6.2.5.(2)]
BENDING ON THE CONTACT SURFACE WITH PLATE OR CONNECTED ELEMENT
Wpl = 2652.81 [cm3] Plastic section modulus EN1993-1-1:[6.2.5]
Mcb,Rd = Wpl fyb / M0
Mcb,Rd = 663.20 [kN*m] Design resistance of the section for bending EN1993-1-1:[6.2.5]
FLANGE AND WEB - COMPRESSION
Mcb,Rd = 663.20 [kN*m] Design resistance of the section for bending EN1993-1-1:[6.2.5]
hf = 517 [mm] Distance between the centroids of flanges [6.2.6.7.(1)]
Fc,fb,Rd = Mcb,Rd / hf
Fc,fb,Rd = 1283.40 [kN] Resistance of the compressed flange and web [6.2.6.7.(1)]
WEB OR BRACKET FLANGE - COMPRESSION - LEVEL OF THE BEAM BOTTOM FLANGE
Bearing:
 = 0.0 [Deg] Angle between the front plate and the beam
 = 42.5 [Deg] Inclination angle of the bracket plate
beff,c,wb = 197 [mm] Effective width of the web for compression [6.2.6.2.(1)]
Avb = 28.52 [cm2] Shear area EN1993-1-1:[6.2.6.(3)]
 = 0.82 Reduction factor for interaction with shear [6.2.6.2.(1)]
com,Ed = 119.09 [MPa] Maximum compressive stress in web [6.2.6.2.(2)]
kwc = 1.00 Reduction factor conditioned by compressive stresses [6.2.6.2.(2)]
As = 18.91 [cm2] Area of the web stiffener EN1993-1-1:[6.2.4]
Fc,wb,Rd1 = [ kwc beff,c,wb twb fyb / M0 + As fyb / M0] cos() / sin( - )
Fc,wb,Rd1 = 868.43 [kN] Beam web resistance [6.2.6.2.(1)]
Buckling:
dwb = 199 [mm] Height of compressed web [6.2.6.2.(1)]
p = 0.72 Plate slenderness of an element [6.2.6.2.(1)]
 = 1.00 Reduction factor for element buckling [6.2.6.2.(1)]
s = 2.61 Stiffener slenderness EN1993-1-1:[6.3.1.2]
 = 1.00 Buckling coefficient of the stiffener EN1993-1-1:[6.3.1.2]
Fc,wb,Rd2 = [ kwc  beff,c,wb twb fyb / M1 + As  fyb / M1] cos() / sin( - )
Fc,wb,Rd2 = 868.30 [kN] Beam web resistance [6.2.6.2.(1)]
Resistance of the bracket flange
Fc,wb,Rd3 = bb tb fyb / (0.8*M0)
Fc,wb,Rd3 = 1137.50 [kN] Resistance of the bracket flange [6.2.6.7.(1)]
Final resistance:
Fc,wb,Rd,low = Min (Fc,wb,Rd1 , Fc,wb,Rd2 , Fc,wb,Rd3)
Fc,wb,Rd,low = 868.30 [kN] Beam web resistance [6.2.6.2.(1)]
COLUMN RESISTANCES
Стр. 4 из 11
03.12.2015mhtml:file://C:UsersTRISTANDocumentsAutodeskOutputra_res.mht
WEB PANEL - SHEAR
Mb1,Ed = 136.65 [kN*m] Bending moment (right beam) [5.3.(3)]
Mb2,Ed = 0.00 [kN*m] Bending moment (left beam) [5.3.(3)]
Vc1,Ed = 0.00 [kN] Shear force (lower column) [5.3.(3)]
Vc2,Ed = -29.77 [kN] Shear force (upper column) [5.3.(3)]
z = 486 [mm] Lever arm [6.2.5]
Vwp,Ed = (Mb1,Ed - Mb2,Ed) / z - (Vc1,Ed - Vc2,Ed) / 2
Vwp,Ed = 266.29 [kN] Shear force acting on the web panel [5.3.(3)]
Avs = 17.76 [cm2] Shear area of the column web EN1993-1-1:[6.2.6.(3)]
Avp = 14.40 [cm2] Area of the web stiffening plate EN1993-1-1:[6.2.6.(3)]
Avc = 32.16 [cm2] Shear area EN1993-1-1:[6.2.6.(3)]
ds = 523 [mm] Distance between the centroids of stiffeners [6.2.6.1.(4)]
Mpl,fc,Rd = 2.24 [kN*m] Plastic resistance of the column flange for bending [6.2.6.1.(4)]
Mpl,stu,Rd = 1.49 [kN*m] Plastic resistance of the upper transverse stiffener for bending [6.2.6.1.(4)]
Mpl,stl,Rd = 1.49 [kN*m] Plastic resistance of the lower transverse stiffener for bending [6.2.6.1.(4)]
Vwp,Rd = 0.9 ( Avs*fy,wc+Avp*fya ) / (3 M0) + Min(4 Mpl,fc,Rd / ds , (2 Mpl,fc,Rd + Mpl,stu,Rd + Mpl,stl,Rd) / ds)
Vwp,Rd = 424.57 [kN] Resistance of the column web panel for shear [6.2.6.1]
Vwp,Ed / Vwp,Rd ≤ 1,0 0.63 < 1.00 verified (0.63)
WEB - TRANSVERSE COMPRESSION - LEVEL OF THE BEAM BOTTOM FLANGE
Bearing:
twc = 12 [mm] Effective thickness of the column web [6.2.6.2.(6)]
beff,c,wc = 187 [mm] Effective width of the web for compression [6.2.6.2.(1)]
Avc = 32.16 [cm2] Shear area EN1993-1-1:[6.2.6.(3)]
 = 0.78 Reduction factor for interaction with shear [6.2.6.2.(1)]
com,Ed = 90.79 [MPa] Maximum compressive stress in web [6.2.6.2.(2)]
kwc = 1.00 Reduction factor conditioned by compressive stresses [6.2.6.2.(2)]
As = 24.10 [cm2] Area of the web stiffener EN1993-1-1:[6.2.4]
Fc,wc,Rd1 =  kwc beff,c,wc twc fyc / M0 + As fys / M0
Fc,wc,Rd1 = 1017.23 [kN] Column web resistance [6.2.6.2.(1)]
Buckling:
dwc = 206 [mm] Height of compressed web [6.2.6.2.(1)]
p = 0.54 Plate slenderness of an element [6.2.6.2.(1)]
 = 1.00 Reduction factor for element buckling [6.2.6.2.(1)]
s = 2.82 Stiffener slenderness EN1993-1-1:[6.3.1.2]
s = 1.00 Buckling coefficient of the stiffener EN1993-1-1:[6.3.1.2]
Fc,wc,Rd2 =  kwc  beff,c,wc twc fyc / M1 + As s fys / M1
Fc,wc,Rd2 = 1017.23 [kN] Column web resistance [6.2.6.2.(1)]
Final resistance:
Fc,wc,Rd,low = Min (Fc,wc,Rd1 , Fc,wc,Rd2)
Fc,wc,Rd = 1017.23 [kN] Column web resistance [6.2.6.2.(1)]
WEB - TRANSVERSE COMPRESSION - LEVEL OF THE BEAM TOP FLANGE
Bearing:
twc = 12 [mm] Effective thickness of the column web [6.2.6.2.(6)]
Стр. 5 из 11
03.12.2015mhtml:file://C:UsersTRISTANDocumentsAutodeskOutputra_res.mht
beff,c,wc = 181 [mm] Effective width of the web for compression [6.2.6.2.(1)]
Avc = 32.16 [cm2] Shear area EN1993-1-1:[6.2.6.(3)]
 = 0.79 Reduction factor for interaction with shear [6.2.6.2.(1)]
com,Ed = 90.79 [MPa] Maximum compressive stress in web [6.2.6.2.(2)]
kwc = 1.00 Reduction factor conditioned by compressive stresses [6.2.6.2.(2)]
As = 24.10 [cm2] Area of the web stiffener EN1993-1-1:[6.2.4]
Fc,wc,Rd1 =  kwc beff,c,wc twc fyc / M0 + As fys / M0
Fc,wc,Rd1 = 1009.20 [kN] Column web resistance [6.2.6.2.(1)]
Buckling:
dwc = 206 [mm] Height of compressed web [6.2.6.2.(1)]
p = 0.53 Plate slenderness of an element [6.2.6.2.(1)]
 = 1.00 Reduction factor for element buckling [6.2.6.2.(1)]
s = 2.82 Stiffener slenderness EN1993-1-1:[6.3.1.2]
s = 1.00 Buckling coefficient of the stiffener EN1993-1-1:[6.3.1.2]
Fc,wc,Rd2 =  kwc  beff,c,wc twc fyc / M1 + As s fys / M1
Fc,wc,Rd2 = 1009.20 [kN] Column web resistance [6.2.6.2.(1)]
Final resistance:
Fc,wc,Rd,upp = Min (Fc,wc,Rd1 , Fc,wc,Rd2)
Fc,wc,Rd,upp = 1009.20 [kN] Column web resistance [6.2.6.2.(1)]
GEOMETRICAL PARAMETERS OF A CONNECTION
EFFECTIVE LENGTHS AND PARAMETERS - COLUMN FLANGE
Nr m mx e ex p leff,cp leff,nc leff,1 leff,2 leff,cp,g leff,nc,g leff,1,g leff,2,g
1 49 - 62 - 74 255 308 255 308 0 0 0 0
2 49 - 62 - 55 311 284 284 284 210 174 174 174
3 49 - 62 - 53 311 275 275 275 106 53 53 53
4 49 - 62 - 88 311 275 275 275 176 88 88 88
5 49 - 62 - 90 311 275 275 275 180 90 90 90
6 49 - 62 - 63 311 275 275 275 125 63 63 63
7 49 - 62 - 70 311 318 311 318 225 215 215 215
EFFECTIVE LENGTHS AND PARAMETERS - FRONT PLATE
Nr m mx e ex p leff,cp leff,nc leff,1 leff,2 leff,cp,g leff,nc,g leff,1,g leff,2,g
1 45 - 62 - 74 286 364 286 364 216 271 216 271
2 49 - 62 - 55 308 282 282 282 209 173 173 173
3 49 - 62 - 53 308 273 273 273 106 53 53 53
4 49 - 62 - 88 308 273 273 273 176 88 88 88
5 49 - 62 - 90 308 273 273 273 180 90 90 90
6 49 - 62 - 63 308 273 273 273 125 63 63 63
7 49 - 62 - 70 308 273 273 273 224 172 172 172
m – Bolt distance from the web
mx – Bolt distance from the beam flange
e – Bolt distance from the outer edge
ex – Bolt distance from the horizontal outer edge
p – Distance between bolts
leff,cp – Effective length for a single bolt in the circular failure mode
leff,nc – Effective length for a single bolt in the non-circular failure mode
Стр. 6 из 11
03.12.2015mhtml:file://C:UsersTRISTANDocumentsAutodeskOutputra_res.mht
leff,1 – Effective length for a single bolt for mode 1
leff,2 – Effective length for a single bolt for mode 2
leff,cp,g – Effective length for a group of bolts in the circular failure mode
leff,nc,g – Effective length for a group of bolts in the non-circular failure mode
leff,1,g – Effective length for a group of bolts for mode 1
leff,2,g – Effective length for a group of bolts for mode 2
CONNECTION RESISTANCE FOR COMPRESSION
Nj,Rd = Min ( Ncb,Rd2 Fc,wb,Rd,low , 2 Fc,wc,Rd,low , 2 Fc,wc,Rd,upp )
Nj,Rd = 1736.60 [kN] Connection resistance for compression [6.2]
Nb1,Ed / Nj,Rd ≤ 1,0 0.02 < 1.00 verified (0.02)
CONNECTION RESISTANCE FOR BENDING
Ft,Rd = 141.12 [kN] Bolt resistance for tension [Table 3.4]
Bp,Rd = 200.86 [kN] Punching shear resistance of a bolt [Table 3.4]
Ft,fc,Rd – column flange resistance due to bending
Ft,wc,Rd – column web resistance due to tension
Ft,ep,Rd – resistance of the front plate due to bending
Ft,wb,Rd – resistance of the web in tension
Ft,fc,Rd = Min (FT,1,fc,Rd , FT,2,fc,Rd , FT,3,fc,Rd) [6.2.6.4] , [Tab.6.2]
Ft,wc,Rd =  beff,t,wc twc fyc / M0 [6.2.6.3.(1)]
Ft,ep,Rd = Min (FT,1,ep,Rd , FT,2,ep,Rd , FT,3,ep,Rd) [6.2.6.5] , [Tab.6.2]
Ft,wb,Rd = beff,t,wb twb fyb / M0 [6.2.6.8.(1)]
RESISTANCE OF THE BOLT ROW NO. 1
Ft1,Rd,comp - Formula Ft1,Rd,comp Component
Ft,fc,Rd(1) = 185.90 185.90 Column flange - tension
Ft,wc,Rd(1) = 579.06 579.06 Column web - tension
Ft,ep,Rd(1) = 282.24 282.24 Front plate - tension
Bp,Rd = 401.72 401.72 Bolts due to shear punching
Vwp,Rd/ = 424.57 424.57 Web panel - shear
Fc,wc,Rd = 1017.23 1017.23 Column web - compression
Fc,fb,Rd = 1283.40 1283.40 Beam flange - compression
Fc,wb,Rd = 868.30 868.30 Beam web - compression
Ft1,Rd = Min (Ft1,Rd,comp) 185.90 Bolt row resistance
RESISTANCE OF THE BOLT ROW NO. 2
Ft2,Rd,comp - Formula Ft2,Rd,comp Component
Ft,fc,Rd(2) = 202.82 202.82 Column flange - tension
Ft,wc,Rd(2) = 619.91 619.91 Column web - tension
Ft,ep,Rd(2) = 282.24 282.24 Front plate - tension
Ft,wb,Rd(2) = 635.39 635.39 Beam web - tension
Стр. 7 из 11
03.12.2015mhtml:file://C:UsersTRISTANDocumentsAutodeskOutputra_res.mht
Bp,Rd = 401.72 401.72 Bolts due to shear punching
Vwp,Rd/ - ∑1
1 Fti,Rd = 424.57 - 185.90 238.67 Web panel - shear
Fc,wc,Rd - ∑1
1 Ftj,Rd = 1017.23 - 185.90 831.33 Column web - compression
Fc,fb,Rd - ∑1
1 Ftj,Rd = 1283.40 - 185.90 1097.50 Beam flange - compression
Fc,wb,Rd - ∑1
1 Ftj,Rd = 868.30 - 185.90 682.40 Beam web - compression
Ft2,Rd = Min (Ft2,Rd,comp) 202.82 Bolt row resistance
RESISTANCE OF THE BOLT ROW NO. 3
Ft3,Rd,comp - Formula Ft3,Rd,comp Component
Ft,fc,Rd(3) = 200.42 200.42 Column flange - tension
Ft,wc,Rd(3) = 607.56 607.56 Column web - tension
Ft,ep,Rd(3) = 282.24 282.24 Front plate - tension
Ft,wb,Rd(3) = 614.92 614.92 Beam web - tension
Bp,Rd = 401.72 401.72 Bolts due to shear punching
Vwp,Rd/ - ∑1
2 Fti,Rd = 424.57 - 388.72 35.85 Web panel - shear
Fc,wc,Rd - ∑1
2 Ftj,Rd = 1017.23 - 388.72 628.51 Column web - compression
Fc,fb,Rd - ∑1
2 Ftj,Rd = 1283.40 - 388.72 894.68 Beam flange - compression
Fc,wb,Rd - ∑1
2 Ftj,Rd = 868.30 - 388.72 479.58 Beam web - compression
Ft,fc,Rd(3 + 2) - ∑2
2 Ftj,Rd = 165.50 - 202.82 -37.32 Column flange - tension - group
Ft,wc,Rd(3 + 2) - ∑2
2 Ftj,Rd = 534.96 - 202.82 332.14 Column web - tension - group
Ft,fc,Rd(3 + 2) - ∑2
2 Ftj,Rd = 165.50 - 202.82 -37.32 Column flange - tension - group
Ft,wc,Rd(3 + 2) - ∑2
2 Ftj,Rd = 534.96 - 202.82 332.14 Column web - tension - group
Ft,ep,Rd(3 + 2) - ∑2
2 Ftj,Rd = 445.07 - 202.82 242.25 Front plate - tension - group
Ft,wb,Rd(3 + 2) - ∑2
2 Ftj,Rd = 509.05 - 202.82 306.23 Beam web - tension - group
Ft,ep,Rd(3 + 2) - ∑2
2 Ftj,Rd = 445.07 - 202.82 242.25 Front plate - tension - group
Ft,wb,Rd(3 + 2) - ∑2
2 Ftj,Rd = 509.05 - 202.82 306.23 Beam web - tension - group
Ft3,Rd = Min (Ft3,Rd,comp) 35.85 Bolt row resistance
RESISTANCE OF THE BOLT ROW NO. 4
Ft4,Rd,comp - Formula Ft4,Rd,comp Component
Ft,fc,Rd(4) = 200.42 200.42 Column flange - tension
Ft,wc,Rd(4) = 607.56 607.56 Column web - tension
Ft,ep,Rd(4) = 282.24 282.24 Front plate - tension
Ft,wb,Rd(4) = 614.92 614.92 Beam web - tension
Bp,Rd = 401.72 401.72 Bolts due to shear punching
Vwp,Rd/ - ∑1
3 Fti,Rd = 424.57 - 424.57 0.00 Web panel - shear
Fc,wc,Rd - ∑1
3 Ftj,Rd = 1017.23 - 424.57 592.66 Column web - compression
Fc,fb,Rd - ∑1
3 Ftj,Rd = 1283.40 - 424.57 858.83 Beam flange - compression
Fc,wb,Rd - ∑1
3 Ftj,Rd = 868.30 - 424.57 443.73 Beam web - compression
Ft,fc,Rd(4 + 3) - ∑3
3 Ftj,Rd = 102.65 - 35.85 66.80 Column flange - tension - group
Ft,wc,Rd(4 + 3) - ∑3
3 Ftj,Rd = 366.57 - 35.85 330.73 Column web - tension - group
Ft,fc,Rd(4 + 3 + 2) - ∑3
2 Ftj,Rd = 229.57 - 238.67 -9.10 Column flange - tension - group
Стр. 8 из 11
03.12.2015mhtml:file://C:UsersTRISTANDocumentsAutodeskOutputra_res.mht
Ft,wc,Rd(4 + 3 + 2) - ∑3
2 Ftj,Rd = 658.11 - 238.67 419.44 Column web - tension - group
Ft,fc,Rd(4 + 3 + 2) - ∑3
2 Ftj,Rd = 229.57 - 238.67 -9.10 Column flange - tension - group
Ft,wc,Rd(4 + 3 + 2) - ∑3
2 Ftj,Rd = 658.11 - 238.67 419.44 Column web - tension - group
Ft,ep,Rd(4 + 3) - ∑3
3 Ftj,Rd = 368.71 - 35.85 332.86 Front plate - tension - group
Ft,wb,Rd(4 + 3) - ∑3
3 Ftj,Rd = 317.25 - 35.85 281.40 Beam web - tension - group
Ft,ep,Rd(4 + 3 + 2) - ∑3
2 Ftj,Rd = 653.01 - 238.67 414.34 Front plate - tension - group
Ft,wb,Rd(4 + 3 + 2) - ∑3
2 Ftj,Rd = 707.05 - 238.67 468.38 Beam web - tension - group
Ft,ep,Rd(4 + 3 + 2) - ∑3
2 Ftj,Rd = 653.01 - 238.67 414.34 Front plate - tension - group
Ft,wb,Rd(4 + 3 + 2) - ∑3
2 Ftj,Rd = 707.05 - 238.67 468.38 Beam web - tension - group
Ft4,Rd = Min (Ft4,Rd,comp) 0.00 Bolt row resistance
The remaining bolts are inactive (they do not carry loads) because resistance of one of the connection components
has been used up or these bolts are positioned below the center of rotation.
SUMMARY TABLE OF FORCES
Nr hj Ftj,Rd Ft,fc,Rd Ft,wc,Rd Ft,ep,Rd Ft,wb,Rd Ft,Rd Bp,Rd
1 554 185.90 185.90 579.06 282.24 - 282.24 401.72
2 419 202.82 202.82 619.91 282.24 635.39 282.24 401.72
3 364 35.85 200.42 607.56 282.24 614.92 282.24 401.72
4 313 - 200.42 607.56 282.24 614.92 282.24 401.72
5 188 - 200.42 607.56 282.24 614.92 282.24 401.72
6 133 - 200.42 607.56 282.24 614.92 282.24 401.72
7 63 - 208.25 652.69 282.24 614.92 282.24 401.72
CONNECTION RESISTANCE FOR BENDING Mj,Rd
Mj,Rd = ∑ hj Ftj,Rd
Mj,Rd = 200.81 [kN*m] Connection resistance for bending [6.2]
Mb1,Ed / Mj,Rd ≤ 1,0 0.68 < 1.00 verified (0.68)
CONNECTION RESISTANCE FOR SHEAR
v = 0.60 Coefficient for calculation of Fv,Rd [Table 3.4]
Lf = 0.95 Reduction factor for long connections [3.8]
Fv,Rd = 114.88 [kN] Shear resistance of a single bolt [Table 3.4]
Ft,Rd,max = 141.12 [kN] Tensile resistance of a single bolt [Table 3.4]
Fb,Rd,int = 92.84 [kN] Bearing resistance of an intermediate bolt [Table 3.4]
Fb,Rd,ext = 177.60 [kN] Bearing resistance of an outermost bolt [Table 3.4]
Nr Ftj,Rd,N Ftj,Ed,N Ftj,Rd,M Ftj,Ed,M Ftj,Ed Fvj,Rd
1 282.24 -3.83 185.90 126.50 122.68 158.42
2 282.24 -3.83 202.82 138.02 134.19 151.73
3 282.24 -3.83 35.85 24.39 20.57 185.67
4 282.24 -3.83 0.00 0.00 -3.83 185.67
5 282.24 -3.83 0.00 0.00 -3.83 185.67
6 282.24 -3.83 0.00 0.00 -3.83 185.67
7 282.24 -3.83 0.00 0.00 -3.83 185.67
Стр. 9 из 11
03.12.2015mhtml:file://C:UsersTRISTANDocumentsAutodeskOutputra_res.mht
Ftj,Rd,N – Bolt row resistance for simple tension
Ftj,Ed,N – Force due to axial force in a bolt row
Ftj,Rd,M – Bolt row resistance for simple bending
Ftj,Ed,M – Force due to moment in a bolt row
Ftj,Ed – Maximum tensile force in a bolt row
Fvj,Rd – Reduced bolt row resistance
Ftj,Ed,N = Nj,Ed Ftj,Rd,N / Nj,Rd
Ftj,Ed,M = Mj,Ed Ftj,Rd,M / Mj,Rd
Ftj,Ed = Ftj,Ed,N + Ftj,Ed,M
Fvj,Rd = Min (nh Fv,Ed (1 - Ftj,Ed/ (1.4 nh Ft,Rd,max), nh Fv,Rd , nh Fb,Rd))
Vj,Rd = nh ∑1
n Fvj,Rd [Table 3.4]
Vj,Rd = 1238.51 [kN] Connection resistance for shear [Table 3.4]
Vb1,Ed / Vj,Rd ≤ 1,0 0.12 < 1.00 verified (0.12)
WELD RESISTANCE
Aw = 213.60 [cm2] Area of all welds [4.5.3.2(2)]
Awy = 132.80 [cm2] Area of horizontal welds [4.5.3.2(2)]
Awz = 80.80 [cm2] Area of vertical welds [4.5.3.2(2)]
Iwy = 82311.12 [cm4] Moment of inertia of the weld arrangement with respect to the hor. axis [4.5.3.2(5)]
max=max = 36.10 [MPa] Normal stress in a weld [4.5.3.2(5)]
= = 36.10 [MPa] Stress in a vertical weld [4.5.3.2(5)]
II = 18.38 [MPa] Tangent stress [4.5.3.2(5)]
w = 0.85 Correlation coefficient [4.5.3.2(7)]
[max
2 + 3*(max
2)] ≤ fu/(w*M2) 72.21 < 348.24 verified (0.21)
[
2 + 3*(
2+II
2)] ≤ fu/(w*M2) 78.91 < 348.24 verified (0.23)
 ≤ 0.9*fu/M2 36.10 < 266.40 verified (0.14)
CONNECTION STIFFNESS
twash = 4 [mm] Washer thickness [6.2.6.3.(2)]
hhead = 14 [mm] Bolt head height [6.2.6.3.(2)]
hnut = 20 [mm] Bolt nut height [6.2.6.3.(2)]
Lb = 57 [mm] Bolt length [6.2.6.3.(2)]
k10 = 7 [mm] Stiffness coefficient of bolts [6.3.2.(1)]
STIFFNESSES OF BOLT ROWS
Nr hj k3 k4 k5 keff,j keff,j hj
keff,j
hj
2
1 554 0 0 17 0 0.00 0.00
2 419 4 2 11 1 4.58 191.87
3 364 1 1 3 0 1.36 49.53
4 313 2 1 5 1 1.88 58.67
5 188 2 1 6 1 1.15 21.56
6 133 2 1 4 0 0.58 7.69
7 63 5 3 11 1 0.80 4.97
Sum 10.35 334.30
Стр. 10 из 11
03.12.2015mhtml:file://C:UsersTRISTANDocumentsAutodeskOutputra_res.mht
keff,j = 1 / (∑3
5 (1 / ki,j)) [6.3.3.1.(2)]
zeq = ∑j keff,j hj
2 / ∑j keff,j hj
zeq = 323 [mm] Equivalent force arm [6.3.3.1.(3)]
keq = ∑j keff,j hj / zeq
keq = 3 [mm] Equivalent stiffness coefficient of a bolt arrangement [6.3.3.1.(1)]
Avc = 32.16 [cm2] Shear area EN1993-1-1:[6.2.6.(3)]
 = 1.00 Transformation parameter [5.3.(7)]
z = 323 [mm] Lever arm [6.2.5]
k1 = 4 [mm] Stiffness coefficient of the column web panel subjected to shear [6.3.2.(1)]
k2 = Stiffness coefficient of the compressed column web [6.3.2.(1)]
Sj,ini = E zeq
2 / ∑i (1 / k1 + 1 / k2 + 1 / keq) [6.3.1.(4)]
Sj,ini = 36199.63 [kN*m] Initial rotational stiffness [6.3.1.(4)]
 = 1.06 Stiffness coefficient of a connection [6.3.1.(6)]
Sj = Sj,ini /  [6.3.1.(4)]
Sj = 34247.54 [kN*m] Final rotational stiffness [6.3.1.(4)]
Connection classification due to stiffness.
Sj,rig = 31357.65 [kN*m] Stiffness of a rigid connection [5.2.2.5]
Sj,pin = 1959.85 [kN*m] Stiffness of a pinned connection [5.2.2.5]
Sj,ini  Sj,rig RIGID
WEAKEST COMPONENT:
COLUMN WEB PANEL - SHEAR
Connection conforms to the code Ratio 0.68
Стр. 11 из 11
03.12.2015mhtml:file://C:UsersTRISTANDocumentsAutodeskOutputra_res.mht
Сalculation of the сentral node

More Related Content

What's hot

Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...Dr.Costas Sachpazis
 
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008Dr.Costas Sachpazis
 
Design of Cantilever retaining wall
Design of Cantilever retaining wallDesign of Cantilever retaining wall
Design of Cantilever retaining wallAchuthan Karnnan
 
Lec 16-flexural analysis and design of beamns
Lec 16-flexural analysis and design of beamnsLec 16-flexural analysis and design of beamns
Lec 16-flexural analysis and design of beamnsMUST,Mirpur AJK,Pakistan
 
Exemplu de calcul şarpantă din lemn folosind programul WoodExpress
Exemplu de calcul şarpantă din lemn folosind programul WoodExpressExemplu de calcul şarpantă din lemn folosind programul WoodExpress
Exemplu de calcul şarpantă din lemn folosind programul WoodExpressUrsachi Răzvan
 
Finite Element Analysis of the Beams Under Thermal Loading
Finite Element Analysis of the Beams Under Thermal LoadingFinite Element Analysis of the Beams Under Thermal Loading
Finite Element Analysis of the Beams Under Thermal LoadingMohammad Tawfik
 
Shallow Foundations ( Combined, Strap, Raft foundation)
Shallow Foundations ( Combined, Strap, Raft foundation)Shallow Foundations ( Combined, Strap, Raft foundation)
Shallow Foundations ( Combined, Strap, Raft foundation)Mohammed Zakaria
 
Free pier uls section check
Free pier uls section checkFree pier uls section check
Free pier uls section checkfarrukhnazim
 
individual part
individual part individual part
individual part KC Wong
 
MERENCANAKAN BALOK BETON PRATEGANG
MERENCANAKAN BALOK BETON PRATEGANGMERENCANAKAN BALOK BETON PRATEGANG
MERENCANAKAN BALOK BETON PRATEGANGMira Pemayun
 
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...Dr.youssef hamida
 
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...Dr.Costas Sachpazis
 
Possible solution struct_hub_design assessment
Possible solution struct_hub_design assessmentPossible solution struct_hub_design assessment
Possible solution struct_hub_design assessmentVictor Omotoriogun
 
05-Strength of Double Angle Bolted Tension Members (Steel Structural Design &...
05-Strength of Double Angle Bolted Tension Members (Steel Structural Design &...05-Strength of Double Angle Bolted Tension Members (Steel Structural Design &...
05-Strength of Double Angle Bolted Tension Members (Steel Structural Design &...Hossam Shafiq II
 
Structures (Group Assignment) - Structural Design and Analysis of a RC Bungalow
Structures (Group Assignment) - Structural Design and Analysis of a RC BungalowStructures (Group Assignment) - Structural Design and Analysis of a RC Bungalow
Structures (Group Assignment) - Structural Design and Analysis of a RC BungalowYee Len Wan
 
Design of an automotive differential with reduction ratio greater than 6
Design of an automotive differential with reduction ratio greater than 6Design of an automotive differential with reduction ratio greater than 6
Design of an automotive differential with reduction ratio greater than 6eSAT Publishing House
 
Stress&strain part 2
Stress&strain part 2Stress&strain part 2
Stress&strain part 2AHMED SABER
 

What's hot (20)

Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
 
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
 
Design of Cantilever retaining wall
Design of Cantilever retaining wallDesign of Cantilever retaining wall
Design of Cantilever retaining wall
 
Lec 16-flexural analysis and design of beamns
Lec 16-flexural analysis and design of beamnsLec 16-flexural analysis and design of beamns
Lec 16-flexural analysis and design of beamns
 
Exemplu de calcul şarpantă din lemn folosind programul WoodExpress
Exemplu de calcul şarpantă din lemn folosind programul WoodExpressExemplu de calcul şarpantă din lemn folosind programul WoodExpress
Exemplu de calcul şarpantă din lemn folosind programul WoodExpress
 
Finite Element Analysis of the Beams Under Thermal Loading
Finite Element Analysis of the Beams Under Thermal LoadingFinite Element Analysis of the Beams Under Thermal Loading
Finite Element Analysis of the Beams Under Thermal Loading
 
Water tank design ppt
Water tank design pptWater tank design ppt
Water tank design ppt
 
Shallow Foundations ( Combined, Strap, Raft foundation)
Shallow Foundations ( Combined, Strap, Raft foundation)Shallow Foundations ( Combined, Strap, Raft foundation)
Shallow Foundations ( Combined, Strap, Raft foundation)
 
Free pier uls section check
Free pier uls section checkFree pier uls section check
Free pier uls section check
 
individual part
individual part individual part
individual part
 
MERENCANAKAN BALOK BETON PRATEGANG
MERENCANAKAN BALOK BETON PRATEGANGMERENCANAKAN BALOK BETON PRATEGANG
MERENCANAKAN BALOK BETON PRATEGANG
 
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...
Design and detailing_of_retaining_walls counter fort.تصميم الجدران الاستنادية...
 
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
 
H#8
H#8H#8
H#8
 
Deflection and member deformation
Deflection and member deformationDeflection and member deformation
Deflection and member deformation
 
Possible solution struct_hub_design assessment
Possible solution struct_hub_design assessmentPossible solution struct_hub_design assessment
Possible solution struct_hub_design assessment
 
05-Strength of Double Angle Bolted Tension Members (Steel Structural Design &...
05-Strength of Double Angle Bolted Tension Members (Steel Structural Design &...05-Strength of Double Angle Bolted Tension Members (Steel Structural Design &...
05-Strength of Double Angle Bolted Tension Members (Steel Structural Design &...
 
Structures (Group Assignment) - Structural Design and Analysis of a RC Bungalow
Structures (Group Assignment) - Structural Design and Analysis of a RC BungalowStructures (Group Assignment) - Structural Design and Analysis of a RC Bungalow
Structures (Group Assignment) - Structural Design and Analysis of a RC Bungalow
 
Design of an automotive differential with reduction ratio greater than 6
Design of an automotive differential with reduction ratio greater than 6Design of an automotive differential with reduction ratio greater than 6
Design of an automotive differential with reduction ratio greater than 6
 
Stress&strain part 2
Stress&strain part 2Stress&strain part 2
Stress&strain part 2
 

Similar to Сalculation of the сentral node

3F TO 5F BEAM DESIGN SUMMARY.pdf
3F TO 5F BEAM DESIGN SUMMARY.pdf3F TO 5F BEAM DESIGN SUMMARY.pdf
3F TO 5F BEAM DESIGN SUMMARY.pdfNicolasGeotina
 
3F TO 5F BEAM DESIGN SUMMARY.pdf
3F TO 5F BEAM DESIGN SUMMARY.pdf3F TO 5F BEAM DESIGN SUMMARY.pdf
3F TO 5F BEAM DESIGN SUMMARY.pdfNicolasGeotina
 
Analysis and Design of Residential building.pptx
Analysis and Design of Residential building.pptxAnalysis and Design of Residential building.pptx
Analysis and Design of Residential building.pptxDP NITHIN
 
RC member analysis and design
RC member analysis and designRC member analysis and design
RC member analysis and designKingsley Aboagye
 
Structural Design
Structural DesignStructural Design
Structural DesignVj NiroSh
 
Ship design project &amp; presentation 3
Ship design project &amp;  presentation 3Ship design project &amp;  presentation 3
Ship design project &amp; presentation 3Kifayath Chowdhury
 
DESIGN OF ISOLATOR (LEAD RUBBER BEARING)
DESIGN OF ISOLATOR (LEAD RUBBER BEARING)DESIGN OF ISOLATOR (LEAD RUBBER BEARING)
DESIGN OF ISOLATOR (LEAD RUBBER BEARING)premkumar mk
 
Anchor bolt design
Anchor bolt designAnchor bolt design
Anchor bolt designVaradaraj Ck
 
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)Dr.Costas Sachpazis
 
COMPARISON BETWEEN VARIOUS STEEL SECTION BY USING IS CODE AND EURO CODE
COMPARISON BETWEEN VARIOUS STEEL SECTION BY USING IS CODE AND EURO CODECOMPARISON BETWEEN VARIOUS STEEL SECTION BY USING IS CODE AND EURO CODE
COMPARISON BETWEEN VARIOUS STEEL SECTION BY USING IS CODE AND EURO CODEIRJET Journal
 
final internship ppt.pptx
final internship ppt.pptxfinal internship ppt.pptx
final internship ppt.pptxKiranKr32
 
Sachpazis: Steel member design in biaxial bending and axial compression examp...
Sachpazis: Steel member design in biaxial bending and axial compression examp...Sachpazis: Steel member design in biaxial bending and axial compression examp...
Sachpazis: Steel member design in biaxial bending and axial compression examp...Dr.Costas Sachpazis
 
IRJET- Planning, Analysis and Designing of Cantilever Residential Building
IRJET- Planning, Analysis and Designing of Cantilever Residential BuildingIRJET- Planning, Analysis and Designing of Cantilever Residential Building
IRJET- Planning, Analysis and Designing of Cantilever Residential BuildingIRJET Journal
 
Design ppt
Design pptDesign ppt
Design ppttishu001
 
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptxDESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptxsubhashini214160
 
Worked example extract_flat_slabs
Worked example extract_flat_slabsWorked example extract_flat_slabs
Worked example extract_flat_slabsLuan Truong Van
 
Design of Bioclimatic Structure with Insulation of Cavity Wall
Design of  Bioclimatic Structure with Insulation of Cavity WallDesign of  Bioclimatic Structure with Insulation of Cavity Wall
Design of Bioclimatic Structure with Insulation of Cavity WallIRJET Journal
 
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.SachpazisSingle pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.SachpazisDr.Costas Sachpazis
 

Similar to Сalculation of the сentral node (20)

3F TO 5F BEAM DESIGN SUMMARY.pdf
3F TO 5F BEAM DESIGN SUMMARY.pdf3F TO 5F BEAM DESIGN SUMMARY.pdf
3F TO 5F BEAM DESIGN SUMMARY.pdf
 
3F TO 5F BEAM DESIGN SUMMARY.pdf
3F TO 5F BEAM DESIGN SUMMARY.pdf3F TO 5F BEAM DESIGN SUMMARY.pdf
3F TO 5F BEAM DESIGN SUMMARY.pdf
 
Analysis and Design of Residential building.pptx
Analysis and Design of Residential building.pptxAnalysis and Design of Residential building.pptx
Analysis and Design of Residential building.pptx
 
RC member analysis and design
RC member analysis and designRC member analysis and design
RC member analysis and design
 
Structural Design
Structural DesignStructural Design
Structural Design
 
Ship design project &amp; presentation 3
Ship design project &amp;  presentation 3Ship design project &amp;  presentation 3
Ship design project &amp; presentation 3
 
DESIGN OF ISOLATOR (LEAD RUBBER BEARING)
DESIGN OF ISOLATOR (LEAD RUBBER BEARING)DESIGN OF ISOLATOR (LEAD RUBBER BEARING)
DESIGN OF ISOLATOR (LEAD RUBBER BEARING)
 
Anchor bolt design
Anchor bolt designAnchor bolt design
Anchor bolt design
 
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
 
COMPARISON BETWEEN VARIOUS STEEL SECTION BY USING IS CODE AND EURO CODE
COMPARISON BETWEEN VARIOUS STEEL SECTION BY USING IS CODE AND EURO CODECOMPARISON BETWEEN VARIOUS STEEL SECTION BY USING IS CODE AND EURO CODE
COMPARISON BETWEEN VARIOUS STEEL SECTION BY USING IS CODE AND EURO CODE
 
final internship ppt.pptx
final internship ppt.pptxfinal internship ppt.pptx
final internship ppt.pptx
 
Sachpazis: Steel member design in biaxial bending and axial compression examp...
Sachpazis: Steel member design in biaxial bending and axial compression examp...Sachpazis: Steel member design in biaxial bending and axial compression examp...
Sachpazis: Steel member design in biaxial bending and axial compression examp...
 
IRJET- Planning, Analysis and Designing of Cantilever Residential Building
IRJET- Planning, Analysis and Designing of Cantilever Residential BuildingIRJET- Planning, Analysis and Designing of Cantilever Residential Building
IRJET- Planning, Analysis and Designing of Cantilever Residential Building
 
Design ppt
Design pptDesign ppt
Design ppt
 
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptxDESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
 
Thong so hilti
Thong so hiltiThong so hilti
Thong so hilti
 
RCC BMD
RCC BMDRCC BMD
RCC BMD
 
Worked example extract_flat_slabs
Worked example extract_flat_slabsWorked example extract_flat_slabs
Worked example extract_flat_slabs
 
Design of Bioclimatic Structure with Insulation of Cavity Wall
Design of  Bioclimatic Structure with Insulation of Cavity WallDesign of  Bioclimatic Structure with Insulation of Cavity Wall
Design of Bioclimatic Structure with Insulation of Cavity Wall
 
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.SachpazisSingle pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis &amp; design, l=18,00m d=1,10m, by C.Sachpazis
 

Сalculation of the сentral node

  • 1. Autodesk Robot Structural Analysis Professional 2015 Design of fixed beam-to-column connection EN 1993-1-8:2005/AC:2009 Ratio 0.68 GENERAL Connection no.: 30 Connection name: Узел рамы Structure node: 127 Structure bars: 118, 122 GEOMETRY COLUMN Section: ДК 25х1 Bar no.: 118  = -90.0 [Deg] Inclination angle hc = 246 [mm] Height of column section bfc = 249 [mm] Width of column section twc = 8 [mm] Thickness of the web of column section tfc = 12 [mm] Thickness of the flange of column section Ac = 77.52 [cm2] Cross-sectional area of a column Ixc = 8917.12 [cm4] Moment of inertia of the column section Material: С255 fyc = 250.00 [MPa] Resistance BEAM Section: ДК 26x2 Bar no.: 122  = -0.0 [Deg] Inclination angle hb = 258 [mm] Height of beam section bf = 260 [mm] Width of beam section Стр. 1 из 11 03.12.2015mhtml:file://C:UsersTRISTANDocumentsAutodeskOutputra_res.mht
  • 2. twb = 9 [mm] Thickness of the web of beam section tfb = 14 [mm] Thickness of the flange of beam section rb = 16 [mm] Radius of beam section fillet rb = 16 [mm] Radius of beam section fillet Ab = 93.19 [cm2] Cross-sectional area of a beam Ixb = 11700.00 [cm4] Moment of inertia of the beam section Material: С255 fyb = 250.00 [MPa] Resistance BOLTS The shear plane passes through the UNTHREADED portion of the bolt. d = 20 [mm] Bolt diameter Class = 8.8 Bolt class FtRd = 141.12 [kN] Tensile resistance of a bolt nh = 2 Number of bolt columns nv = 7 Number of bolt rows h1 = 50 [mm] Distance between first bolt and upper edge of front plate Horizontal spacing ei = 125 [mm] Vertical spacing pi = 135;55;51;125;55;70 [mm] PLATE hp = 643 [mm] Plate height bp = 249 [mm] Plate width tp = 20 [mm] Plate thickness Material: С345 fyp = 320.00 [MPa] Resistance LOWER STIFFENER wd = 249 [mm] Plate width tfd = 14 [mm] Flange thickness hd = 275 [mm] Plate height twd = 10 [mm] Web thickness ld = 300 [mm] Plate length  = 42.5 [Deg] Inclination angle Material: С255 fybu = 240.00 [MPa] Resistance UPPER STIFFENER hu = 50 [mm] Stiffener height twu = 16 [mm] Thickness of vertical stiffener lu = 300 [mm] Length of vertical stiffener Material: С255 fyu = 240.00 [MPa] Resistance COLUMN STIFFENER Upper hsu = 234 [mm] Stiffener height bsu = 121 [mm] Stiffener width thu = 10 [mm] Stiffener thickness Material: С255 fysu = 240.00 [MPa] Resistance Lower Стр. 2 из 11 03.12.2015mhtml:file://C:UsersTRISTANDocumentsAutodeskOutputra_res.mht
  • 3. hsd = 234 [mm] Stiffener height bsd = 121 [mm] Stiffener width thd = 10 [mm] Stiffener thickness Material: С255 fysu = 240.00 [MPa] Resistance PLATE STRENGTHENING COLUMN WEB Typ: unilateral ha = 480 [mm] Plate length wa = 180 [mm] Plate width ta = 12 [mm] Plate thickness Material: С255 fya = 240.00 [MPa] Resistance FILLET WELDS aw = 8 [mm] Web weld af = 10 [mm] Flange weld as = 8 [mm] Stiffener weld afd = 8 [mm] Horizontal weld ap1 = 6 [mm] Horizontal weld ap2 = 6 [mm] Vertical weld MATERIAL FACTORS M0 = 1.00 Partial safety factor [2.2] M1 = 1.00 Partial safety factor [2.2] M2 = 1.25 Partial safety factor [2.2] M3 = 1.25 Partial safety factor [2.2] LOADS Ultimate limit state Case: Manual calculations. Mb1,Ed = 136.65 [kN*m] Bending moment in the right beam Vb1,Ed = 148.53 [kN] Shear force in the right beam Nb1,Ed = -26.80 [kN] Axial force in the right beam Mc2,Ed = -50.07 [kN*m] Bending moment in the upper column Vc2,Ed = -29.77 [kN] Shear force in the upper column Nc2,Ed = -255.09 [kN] Axial force in the upper column RESULTS BEAM RESISTANCES COMPRESSION Ab = 93.19 [cm2] Area EN1993-1-1:[6.2.4] Ncb,Rd = Ab fyb / M0 Ncb,Rd = 2329.75 [kN] Design compressive resistance of the section EN1993-1-1:[6.2.4] SHEAR Avb = 64.02 [cm2] Shear area EN1993-1-1:[6.2.6.(3)] Vcb,Rd = Avb (fyb / 3) / M0 Стр. 3 из 11 03.12.2015mhtml:file://C:UsersTRISTANDocumentsAutodeskOutputra_res.mht
  • 4. Vcb,Rd = 924.12 [kN] Design sectional resistance for shear EN1993-1-1:[6.2.6.(2)] Vb1,Ed / Vcb,Rd ≤ 1,0 0.16 < 1.00 verified (0.16) BENDING - PLASTIC MOMENT (WITHOUT BRACKETS) Wplb = 978.26 [cm3] Plastic section modulus EN1993-1-1:[6.2.5.(2)] Mb,pl,Rd = Wplb fyb / M0 Mb,pl,Rd = 244.56 [kN*m] Plastic resistance of the section for bending (without stiffeners) EN1993-1-1:[6.2.5.(2)] BENDING ON THE CONTACT SURFACE WITH PLATE OR CONNECTED ELEMENT Wpl = 2652.81 [cm3] Plastic section modulus EN1993-1-1:[6.2.5] Mcb,Rd = Wpl fyb / M0 Mcb,Rd = 663.20 [kN*m] Design resistance of the section for bending EN1993-1-1:[6.2.5] FLANGE AND WEB - COMPRESSION Mcb,Rd = 663.20 [kN*m] Design resistance of the section for bending EN1993-1-1:[6.2.5] hf = 517 [mm] Distance between the centroids of flanges [6.2.6.7.(1)] Fc,fb,Rd = Mcb,Rd / hf Fc,fb,Rd = 1283.40 [kN] Resistance of the compressed flange and web [6.2.6.7.(1)] WEB OR BRACKET FLANGE - COMPRESSION - LEVEL OF THE BEAM BOTTOM FLANGE Bearing:  = 0.0 [Deg] Angle between the front plate and the beam  = 42.5 [Deg] Inclination angle of the bracket plate beff,c,wb = 197 [mm] Effective width of the web for compression [6.2.6.2.(1)] Avb = 28.52 [cm2] Shear area EN1993-1-1:[6.2.6.(3)]  = 0.82 Reduction factor for interaction with shear [6.2.6.2.(1)] com,Ed = 119.09 [MPa] Maximum compressive stress in web [6.2.6.2.(2)] kwc = 1.00 Reduction factor conditioned by compressive stresses [6.2.6.2.(2)] As = 18.91 [cm2] Area of the web stiffener EN1993-1-1:[6.2.4] Fc,wb,Rd1 = [ kwc beff,c,wb twb fyb / M0 + As fyb / M0] cos() / sin( - ) Fc,wb,Rd1 = 868.43 [kN] Beam web resistance [6.2.6.2.(1)] Buckling: dwb = 199 [mm] Height of compressed web [6.2.6.2.(1)] p = 0.72 Plate slenderness of an element [6.2.6.2.(1)]  = 1.00 Reduction factor for element buckling [6.2.6.2.(1)] s = 2.61 Stiffener slenderness EN1993-1-1:[6.3.1.2]  = 1.00 Buckling coefficient of the stiffener EN1993-1-1:[6.3.1.2] Fc,wb,Rd2 = [ kwc  beff,c,wb twb fyb / M1 + As  fyb / M1] cos() / sin( - ) Fc,wb,Rd2 = 868.30 [kN] Beam web resistance [6.2.6.2.(1)] Resistance of the bracket flange Fc,wb,Rd3 = bb tb fyb / (0.8*M0) Fc,wb,Rd3 = 1137.50 [kN] Resistance of the bracket flange [6.2.6.7.(1)] Final resistance: Fc,wb,Rd,low = Min (Fc,wb,Rd1 , Fc,wb,Rd2 , Fc,wb,Rd3) Fc,wb,Rd,low = 868.30 [kN] Beam web resistance [6.2.6.2.(1)] COLUMN RESISTANCES Стр. 4 из 11 03.12.2015mhtml:file://C:UsersTRISTANDocumentsAutodeskOutputra_res.mht
  • 5. WEB PANEL - SHEAR Mb1,Ed = 136.65 [kN*m] Bending moment (right beam) [5.3.(3)] Mb2,Ed = 0.00 [kN*m] Bending moment (left beam) [5.3.(3)] Vc1,Ed = 0.00 [kN] Shear force (lower column) [5.3.(3)] Vc2,Ed = -29.77 [kN] Shear force (upper column) [5.3.(3)] z = 486 [mm] Lever arm [6.2.5] Vwp,Ed = (Mb1,Ed - Mb2,Ed) / z - (Vc1,Ed - Vc2,Ed) / 2 Vwp,Ed = 266.29 [kN] Shear force acting on the web panel [5.3.(3)] Avs = 17.76 [cm2] Shear area of the column web EN1993-1-1:[6.2.6.(3)] Avp = 14.40 [cm2] Area of the web stiffening plate EN1993-1-1:[6.2.6.(3)] Avc = 32.16 [cm2] Shear area EN1993-1-1:[6.2.6.(3)] ds = 523 [mm] Distance between the centroids of stiffeners [6.2.6.1.(4)] Mpl,fc,Rd = 2.24 [kN*m] Plastic resistance of the column flange for bending [6.2.6.1.(4)] Mpl,stu,Rd = 1.49 [kN*m] Plastic resistance of the upper transverse stiffener for bending [6.2.6.1.(4)] Mpl,stl,Rd = 1.49 [kN*m] Plastic resistance of the lower transverse stiffener for bending [6.2.6.1.(4)] Vwp,Rd = 0.9 ( Avs*fy,wc+Avp*fya ) / (3 M0) + Min(4 Mpl,fc,Rd / ds , (2 Mpl,fc,Rd + Mpl,stu,Rd + Mpl,stl,Rd) / ds) Vwp,Rd = 424.57 [kN] Resistance of the column web panel for shear [6.2.6.1] Vwp,Ed / Vwp,Rd ≤ 1,0 0.63 < 1.00 verified (0.63) WEB - TRANSVERSE COMPRESSION - LEVEL OF THE BEAM BOTTOM FLANGE Bearing: twc = 12 [mm] Effective thickness of the column web [6.2.6.2.(6)] beff,c,wc = 187 [mm] Effective width of the web for compression [6.2.6.2.(1)] Avc = 32.16 [cm2] Shear area EN1993-1-1:[6.2.6.(3)]  = 0.78 Reduction factor for interaction with shear [6.2.6.2.(1)] com,Ed = 90.79 [MPa] Maximum compressive stress in web [6.2.6.2.(2)] kwc = 1.00 Reduction factor conditioned by compressive stresses [6.2.6.2.(2)] As = 24.10 [cm2] Area of the web stiffener EN1993-1-1:[6.2.4] Fc,wc,Rd1 =  kwc beff,c,wc twc fyc / M0 + As fys / M0 Fc,wc,Rd1 = 1017.23 [kN] Column web resistance [6.2.6.2.(1)] Buckling: dwc = 206 [mm] Height of compressed web [6.2.6.2.(1)] p = 0.54 Plate slenderness of an element [6.2.6.2.(1)]  = 1.00 Reduction factor for element buckling [6.2.6.2.(1)] s = 2.82 Stiffener slenderness EN1993-1-1:[6.3.1.2] s = 1.00 Buckling coefficient of the stiffener EN1993-1-1:[6.3.1.2] Fc,wc,Rd2 =  kwc  beff,c,wc twc fyc / M1 + As s fys / M1 Fc,wc,Rd2 = 1017.23 [kN] Column web resistance [6.2.6.2.(1)] Final resistance: Fc,wc,Rd,low = Min (Fc,wc,Rd1 , Fc,wc,Rd2) Fc,wc,Rd = 1017.23 [kN] Column web resistance [6.2.6.2.(1)] WEB - TRANSVERSE COMPRESSION - LEVEL OF THE BEAM TOP FLANGE Bearing: twc = 12 [mm] Effective thickness of the column web [6.2.6.2.(6)] Стр. 5 из 11 03.12.2015mhtml:file://C:UsersTRISTANDocumentsAutodeskOutputra_res.mht
  • 6. beff,c,wc = 181 [mm] Effective width of the web for compression [6.2.6.2.(1)] Avc = 32.16 [cm2] Shear area EN1993-1-1:[6.2.6.(3)]  = 0.79 Reduction factor for interaction with shear [6.2.6.2.(1)] com,Ed = 90.79 [MPa] Maximum compressive stress in web [6.2.6.2.(2)] kwc = 1.00 Reduction factor conditioned by compressive stresses [6.2.6.2.(2)] As = 24.10 [cm2] Area of the web stiffener EN1993-1-1:[6.2.4] Fc,wc,Rd1 =  kwc beff,c,wc twc fyc / M0 + As fys / M0 Fc,wc,Rd1 = 1009.20 [kN] Column web resistance [6.2.6.2.(1)] Buckling: dwc = 206 [mm] Height of compressed web [6.2.6.2.(1)] p = 0.53 Plate slenderness of an element [6.2.6.2.(1)]  = 1.00 Reduction factor for element buckling [6.2.6.2.(1)] s = 2.82 Stiffener slenderness EN1993-1-1:[6.3.1.2] s = 1.00 Buckling coefficient of the stiffener EN1993-1-1:[6.3.1.2] Fc,wc,Rd2 =  kwc  beff,c,wc twc fyc / M1 + As s fys / M1 Fc,wc,Rd2 = 1009.20 [kN] Column web resistance [6.2.6.2.(1)] Final resistance: Fc,wc,Rd,upp = Min (Fc,wc,Rd1 , Fc,wc,Rd2) Fc,wc,Rd,upp = 1009.20 [kN] Column web resistance [6.2.6.2.(1)] GEOMETRICAL PARAMETERS OF A CONNECTION EFFECTIVE LENGTHS AND PARAMETERS - COLUMN FLANGE Nr m mx e ex p leff,cp leff,nc leff,1 leff,2 leff,cp,g leff,nc,g leff,1,g leff,2,g 1 49 - 62 - 74 255 308 255 308 0 0 0 0 2 49 - 62 - 55 311 284 284 284 210 174 174 174 3 49 - 62 - 53 311 275 275 275 106 53 53 53 4 49 - 62 - 88 311 275 275 275 176 88 88 88 5 49 - 62 - 90 311 275 275 275 180 90 90 90 6 49 - 62 - 63 311 275 275 275 125 63 63 63 7 49 - 62 - 70 311 318 311 318 225 215 215 215 EFFECTIVE LENGTHS AND PARAMETERS - FRONT PLATE Nr m mx e ex p leff,cp leff,nc leff,1 leff,2 leff,cp,g leff,nc,g leff,1,g leff,2,g 1 45 - 62 - 74 286 364 286 364 216 271 216 271 2 49 - 62 - 55 308 282 282 282 209 173 173 173 3 49 - 62 - 53 308 273 273 273 106 53 53 53 4 49 - 62 - 88 308 273 273 273 176 88 88 88 5 49 - 62 - 90 308 273 273 273 180 90 90 90 6 49 - 62 - 63 308 273 273 273 125 63 63 63 7 49 - 62 - 70 308 273 273 273 224 172 172 172 m – Bolt distance from the web mx – Bolt distance from the beam flange e – Bolt distance from the outer edge ex – Bolt distance from the horizontal outer edge p – Distance between bolts leff,cp – Effective length for a single bolt in the circular failure mode leff,nc – Effective length for a single bolt in the non-circular failure mode Стр. 6 из 11 03.12.2015mhtml:file://C:UsersTRISTANDocumentsAutodeskOutputra_res.mht
  • 7. leff,1 – Effective length for a single bolt for mode 1 leff,2 – Effective length for a single bolt for mode 2 leff,cp,g – Effective length for a group of bolts in the circular failure mode leff,nc,g – Effective length for a group of bolts in the non-circular failure mode leff,1,g – Effective length for a group of bolts for mode 1 leff,2,g – Effective length for a group of bolts for mode 2 CONNECTION RESISTANCE FOR COMPRESSION Nj,Rd = Min ( Ncb,Rd2 Fc,wb,Rd,low , 2 Fc,wc,Rd,low , 2 Fc,wc,Rd,upp ) Nj,Rd = 1736.60 [kN] Connection resistance for compression [6.2] Nb1,Ed / Nj,Rd ≤ 1,0 0.02 < 1.00 verified (0.02) CONNECTION RESISTANCE FOR BENDING Ft,Rd = 141.12 [kN] Bolt resistance for tension [Table 3.4] Bp,Rd = 200.86 [kN] Punching shear resistance of a bolt [Table 3.4] Ft,fc,Rd – column flange resistance due to bending Ft,wc,Rd – column web resistance due to tension Ft,ep,Rd – resistance of the front plate due to bending Ft,wb,Rd – resistance of the web in tension Ft,fc,Rd = Min (FT,1,fc,Rd , FT,2,fc,Rd , FT,3,fc,Rd) [6.2.6.4] , [Tab.6.2] Ft,wc,Rd =  beff,t,wc twc fyc / M0 [6.2.6.3.(1)] Ft,ep,Rd = Min (FT,1,ep,Rd , FT,2,ep,Rd , FT,3,ep,Rd) [6.2.6.5] , [Tab.6.2] Ft,wb,Rd = beff,t,wb twb fyb / M0 [6.2.6.8.(1)] RESISTANCE OF THE BOLT ROW NO. 1 Ft1,Rd,comp - Formula Ft1,Rd,comp Component Ft,fc,Rd(1) = 185.90 185.90 Column flange - tension Ft,wc,Rd(1) = 579.06 579.06 Column web - tension Ft,ep,Rd(1) = 282.24 282.24 Front plate - tension Bp,Rd = 401.72 401.72 Bolts due to shear punching Vwp,Rd/ = 424.57 424.57 Web panel - shear Fc,wc,Rd = 1017.23 1017.23 Column web - compression Fc,fb,Rd = 1283.40 1283.40 Beam flange - compression Fc,wb,Rd = 868.30 868.30 Beam web - compression Ft1,Rd = Min (Ft1,Rd,comp) 185.90 Bolt row resistance RESISTANCE OF THE BOLT ROW NO. 2 Ft2,Rd,comp - Formula Ft2,Rd,comp Component Ft,fc,Rd(2) = 202.82 202.82 Column flange - tension Ft,wc,Rd(2) = 619.91 619.91 Column web - tension Ft,ep,Rd(2) = 282.24 282.24 Front plate - tension Ft,wb,Rd(2) = 635.39 635.39 Beam web - tension Стр. 7 из 11 03.12.2015mhtml:file://C:UsersTRISTANDocumentsAutodeskOutputra_res.mht
  • 8. Bp,Rd = 401.72 401.72 Bolts due to shear punching Vwp,Rd/ - ∑1 1 Fti,Rd = 424.57 - 185.90 238.67 Web panel - shear Fc,wc,Rd - ∑1 1 Ftj,Rd = 1017.23 - 185.90 831.33 Column web - compression Fc,fb,Rd - ∑1 1 Ftj,Rd = 1283.40 - 185.90 1097.50 Beam flange - compression Fc,wb,Rd - ∑1 1 Ftj,Rd = 868.30 - 185.90 682.40 Beam web - compression Ft2,Rd = Min (Ft2,Rd,comp) 202.82 Bolt row resistance RESISTANCE OF THE BOLT ROW NO. 3 Ft3,Rd,comp - Formula Ft3,Rd,comp Component Ft,fc,Rd(3) = 200.42 200.42 Column flange - tension Ft,wc,Rd(3) = 607.56 607.56 Column web - tension Ft,ep,Rd(3) = 282.24 282.24 Front plate - tension Ft,wb,Rd(3) = 614.92 614.92 Beam web - tension Bp,Rd = 401.72 401.72 Bolts due to shear punching Vwp,Rd/ - ∑1 2 Fti,Rd = 424.57 - 388.72 35.85 Web panel - shear Fc,wc,Rd - ∑1 2 Ftj,Rd = 1017.23 - 388.72 628.51 Column web - compression Fc,fb,Rd - ∑1 2 Ftj,Rd = 1283.40 - 388.72 894.68 Beam flange - compression Fc,wb,Rd - ∑1 2 Ftj,Rd = 868.30 - 388.72 479.58 Beam web - compression Ft,fc,Rd(3 + 2) - ∑2 2 Ftj,Rd = 165.50 - 202.82 -37.32 Column flange - tension - group Ft,wc,Rd(3 + 2) - ∑2 2 Ftj,Rd = 534.96 - 202.82 332.14 Column web - tension - group Ft,fc,Rd(3 + 2) - ∑2 2 Ftj,Rd = 165.50 - 202.82 -37.32 Column flange - tension - group Ft,wc,Rd(3 + 2) - ∑2 2 Ftj,Rd = 534.96 - 202.82 332.14 Column web - tension - group Ft,ep,Rd(3 + 2) - ∑2 2 Ftj,Rd = 445.07 - 202.82 242.25 Front plate - tension - group Ft,wb,Rd(3 + 2) - ∑2 2 Ftj,Rd = 509.05 - 202.82 306.23 Beam web - tension - group Ft,ep,Rd(3 + 2) - ∑2 2 Ftj,Rd = 445.07 - 202.82 242.25 Front plate - tension - group Ft,wb,Rd(3 + 2) - ∑2 2 Ftj,Rd = 509.05 - 202.82 306.23 Beam web - tension - group Ft3,Rd = Min (Ft3,Rd,comp) 35.85 Bolt row resistance RESISTANCE OF THE BOLT ROW NO. 4 Ft4,Rd,comp - Formula Ft4,Rd,comp Component Ft,fc,Rd(4) = 200.42 200.42 Column flange - tension Ft,wc,Rd(4) = 607.56 607.56 Column web - tension Ft,ep,Rd(4) = 282.24 282.24 Front plate - tension Ft,wb,Rd(4) = 614.92 614.92 Beam web - tension Bp,Rd = 401.72 401.72 Bolts due to shear punching Vwp,Rd/ - ∑1 3 Fti,Rd = 424.57 - 424.57 0.00 Web panel - shear Fc,wc,Rd - ∑1 3 Ftj,Rd = 1017.23 - 424.57 592.66 Column web - compression Fc,fb,Rd - ∑1 3 Ftj,Rd = 1283.40 - 424.57 858.83 Beam flange - compression Fc,wb,Rd - ∑1 3 Ftj,Rd = 868.30 - 424.57 443.73 Beam web - compression Ft,fc,Rd(4 + 3) - ∑3 3 Ftj,Rd = 102.65 - 35.85 66.80 Column flange - tension - group Ft,wc,Rd(4 + 3) - ∑3 3 Ftj,Rd = 366.57 - 35.85 330.73 Column web - tension - group Ft,fc,Rd(4 + 3 + 2) - ∑3 2 Ftj,Rd = 229.57 - 238.67 -9.10 Column flange - tension - group Стр. 8 из 11 03.12.2015mhtml:file://C:UsersTRISTANDocumentsAutodeskOutputra_res.mht
  • 9. Ft,wc,Rd(4 + 3 + 2) - ∑3 2 Ftj,Rd = 658.11 - 238.67 419.44 Column web - tension - group Ft,fc,Rd(4 + 3 + 2) - ∑3 2 Ftj,Rd = 229.57 - 238.67 -9.10 Column flange - tension - group Ft,wc,Rd(4 + 3 + 2) - ∑3 2 Ftj,Rd = 658.11 - 238.67 419.44 Column web - tension - group Ft,ep,Rd(4 + 3) - ∑3 3 Ftj,Rd = 368.71 - 35.85 332.86 Front plate - tension - group Ft,wb,Rd(4 + 3) - ∑3 3 Ftj,Rd = 317.25 - 35.85 281.40 Beam web - tension - group Ft,ep,Rd(4 + 3 + 2) - ∑3 2 Ftj,Rd = 653.01 - 238.67 414.34 Front plate - tension - group Ft,wb,Rd(4 + 3 + 2) - ∑3 2 Ftj,Rd = 707.05 - 238.67 468.38 Beam web - tension - group Ft,ep,Rd(4 + 3 + 2) - ∑3 2 Ftj,Rd = 653.01 - 238.67 414.34 Front plate - tension - group Ft,wb,Rd(4 + 3 + 2) - ∑3 2 Ftj,Rd = 707.05 - 238.67 468.38 Beam web - tension - group Ft4,Rd = Min (Ft4,Rd,comp) 0.00 Bolt row resistance The remaining bolts are inactive (they do not carry loads) because resistance of one of the connection components has been used up or these bolts are positioned below the center of rotation. SUMMARY TABLE OF FORCES Nr hj Ftj,Rd Ft,fc,Rd Ft,wc,Rd Ft,ep,Rd Ft,wb,Rd Ft,Rd Bp,Rd 1 554 185.90 185.90 579.06 282.24 - 282.24 401.72 2 419 202.82 202.82 619.91 282.24 635.39 282.24 401.72 3 364 35.85 200.42 607.56 282.24 614.92 282.24 401.72 4 313 - 200.42 607.56 282.24 614.92 282.24 401.72 5 188 - 200.42 607.56 282.24 614.92 282.24 401.72 6 133 - 200.42 607.56 282.24 614.92 282.24 401.72 7 63 - 208.25 652.69 282.24 614.92 282.24 401.72 CONNECTION RESISTANCE FOR BENDING Mj,Rd Mj,Rd = ∑ hj Ftj,Rd Mj,Rd = 200.81 [kN*m] Connection resistance for bending [6.2] Mb1,Ed / Mj,Rd ≤ 1,0 0.68 < 1.00 verified (0.68) CONNECTION RESISTANCE FOR SHEAR v = 0.60 Coefficient for calculation of Fv,Rd [Table 3.4] Lf = 0.95 Reduction factor for long connections [3.8] Fv,Rd = 114.88 [kN] Shear resistance of a single bolt [Table 3.4] Ft,Rd,max = 141.12 [kN] Tensile resistance of a single bolt [Table 3.4] Fb,Rd,int = 92.84 [kN] Bearing resistance of an intermediate bolt [Table 3.4] Fb,Rd,ext = 177.60 [kN] Bearing resistance of an outermost bolt [Table 3.4] Nr Ftj,Rd,N Ftj,Ed,N Ftj,Rd,M Ftj,Ed,M Ftj,Ed Fvj,Rd 1 282.24 -3.83 185.90 126.50 122.68 158.42 2 282.24 -3.83 202.82 138.02 134.19 151.73 3 282.24 -3.83 35.85 24.39 20.57 185.67 4 282.24 -3.83 0.00 0.00 -3.83 185.67 5 282.24 -3.83 0.00 0.00 -3.83 185.67 6 282.24 -3.83 0.00 0.00 -3.83 185.67 7 282.24 -3.83 0.00 0.00 -3.83 185.67 Стр. 9 из 11 03.12.2015mhtml:file://C:UsersTRISTANDocumentsAutodeskOutputra_res.mht
  • 10. Ftj,Rd,N – Bolt row resistance for simple tension Ftj,Ed,N – Force due to axial force in a bolt row Ftj,Rd,M – Bolt row resistance for simple bending Ftj,Ed,M – Force due to moment in a bolt row Ftj,Ed – Maximum tensile force in a bolt row Fvj,Rd – Reduced bolt row resistance Ftj,Ed,N = Nj,Ed Ftj,Rd,N / Nj,Rd Ftj,Ed,M = Mj,Ed Ftj,Rd,M / Mj,Rd Ftj,Ed = Ftj,Ed,N + Ftj,Ed,M Fvj,Rd = Min (nh Fv,Ed (1 - Ftj,Ed/ (1.4 nh Ft,Rd,max), nh Fv,Rd , nh Fb,Rd)) Vj,Rd = nh ∑1 n Fvj,Rd [Table 3.4] Vj,Rd = 1238.51 [kN] Connection resistance for shear [Table 3.4] Vb1,Ed / Vj,Rd ≤ 1,0 0.12 < 1.00 verified (0.12) WELD RESISTANCE Aw = 213.60 [cm2] Area of all welds [4.5.3.2(2)] Awy = 132.80 [cm2] Area of horizontal welds [4.5.3.2(2)] Awz = 80.80 [cm2] Area of vertical welds [4.5.3.2(2)] Iwy = 82311.12 [cm4] Moment of inertia of the weld arrangement with respect to the hor. axis [4.5.3.2(5)] max=max = 36.10 [MPa] Normal stress in a weld [4.5.3.2(5)] = = 36.10 [MPa] Stress in a vertical weld [4.5.3.2(5)] II = 18.38 [MPa] Tangent stress [4.5.3.2(5)] w = 0.85 Correlation coefficient [4.5.3.2(7)] [max 2 + 3*(max 2)] ≤ fu/(w*M2) 72.21 < 348.24 verified (0.21) [ 2 + 3*( 2+II 2)] ≤ fu/(w*M2) 78.91 < 348.24 verified (0.23)  ≤ 0.9*fu/M2 36.10 < 266.40 verified (0.14) CONNECTION STIFFNESS twash = 4 [mm] Washer thickness [6.2.6.3.(2)] hhead = 14 [mm] Bolt head height [6.2.6.3.(2)] hnut = 20 [mm] Bolt nut height [6.2.6.3.(2)] Lb = 57 [mm] Bolt length [6.2.6.3.(2)] k10 = 7 [mm] Stiffness coefficient of bolts [6.3.2.(1)] STIFFNESSES OF BOLT ROWS Nr hj k3 k4 k5 keff,j keff,j hj keff,j hj 2 1 554 0 0 17 0 0.00 0.00 2 419 4 2 11 1 4.58 191.87 3 364 1 1 3 0 1.36 49.53 4 313 2 1 5 1 1.88 58.67 5 188 2 1 6 1 1.15 21.56 6 133 2 1 4 0 0.58 7.69 7 63 5 3 11 1 0.80 4.97 Sum 10.35 334.30 Стр. 10 из 11 03.12.2015mhtml:file://C:UsersTRISTANDocumentsAutodeskOutputra_res.mht
  • 11. keff,j = 1 / (∑3 5 (1 / ki,j)) [6.3.3.1.(2)] zeq = ∑j keff,j hj 2 / ∑j keff,j hj zeq = 323 [mm] Equivalent force arm [6.3.3.1.(3)] keq = ∑j keff,j hj / zeq keq = 3 [mm] Equivalent stiffness coefficient of a bolt arrangement [6.3.3.1.(1)] Avc = 32.16 [cm2] Shear area EN1993-1-1:[6.2.6.(3)]  = 1.00 Transformation parameter [5.3.(7)] z = 323 [mm] Lever arm [6.2.5] k1 = 4 [mm] Stiffness coefficient of the column web panel subjected to shear [6.3.2.(1)] k2 = Stiffness coefficient of the compressed column web [6.3.2.(1)] Sj,ini = E zeq 2 / ∑i (1 / k1 + 1 / k2 + 1 / keq) [6.3.1.(4)] Sj,ini = 36199.63 [kN*m] Initial rotational stiffness [6.3.1.(4)]  = 1.06 Stiffness coefficient of a connection [6.3.1.(6)] Sj = Sj,ini /  [6.3.1.(4)] Sj = 34247.54 [kN*m] Final rotational stiffness [6.3.1.(4)] Connection classification due to stiffness. Sj,rig = 31357.65 [kN*m] Stiffness of a rigid connection [5.2.2.5] Sj,pin = 1959.85 [kN*m] Stiffness of a pinned connection [5.2.2.5] Sj,ini  Sj,rig RIGID WEAKEST COMPONENT: COLUMN WEB PANEL - SHEAR Connection conforms to the code Ratio 0.68 Стр. 11 из 11 03.12.2015mhtml:file://C:UsersTRISTANDocumentsAutodeskOutputra_res.mht