SlideShare a Scribd company logo
1 of 29
STRUKTUR ATOM, SISTEM
PERIODIK, DAN IKATAN KIMIA
BAB 1
Standar Kompetensi:
 Memahami struktur atom untuk meramalkan sifat-sifat periodik unsur,
struktur molekul, dan sifat-sifat senyawa.
Kompetensi Dasar:
 Menjelaskan teori atom Bohr dan mekanika kuantum untuk menuliskan konfigurasi
elektron dan diagram orbital serta menentukan letak unsur dalam tabel periodik.
 Menjelaskan teori jumlah pasangan elektron di sekitar inti atom dan teori
hibridisasi untuk meramalkan bentuk molekul.
 Menjelaskan interaksi antarmolekul (gaya antarmolekul) dengan sifatnya.
I. TEORI ATOM BOHR DAN MEKANIKA
KUANTUM
A. Teori Kuantum Max Planck
Pada tahun 1990, Max Planck mengajukkan gagasan bahwa radiasi
elektromagnet bersifat diskret. Artinya, suatu benda hanya dapat
memancarkan atau menyerap radiasi elektromagnet dalam ukuran atau
paket-paket kecil dengan nilai tertentu. Paket energi itu disebut kuantum
(kuanta untuk bentuk jamaknya). Besarnya energi dalam suatu paket (satu
kuantum atau satu foton)
dengan, E = energi radiasi
h = tetapan Planck = 6,63  1034 J s
B. Model Atom Niels Bohr
Menurut Bohr, spektrum garis menunjukkan bahwa elektron dalam atom hanya
dapat beredar pada lintasan-lintasan dengan tingkat energi tertentu. Lintasan
eletron tersebut berupa lingkaran dengan jari-jari tertentu yang disebut sebagai
kulit atom. Setiap kulit ditandai dengan suatu bilangan yang disebut bilangan
kuantum (n).
Bohr berhasil merumuskan jari-jari lintasan dan energi elektron pada atom
hidrogen sebagai berikut.
r = n2 an 0
dengan n = 1, 2, 3, . . .
a = 0,53 Å (53 pm)
R = tetapan (2,179  1018 J)
E = n
H
n2
RH
Energi elektron pada lintasan ke- n adalah:
Bilangan kuantum (n) 1 2 3 4 dan seterusnya
Lambang kulit K L M N dan seterusnya
C. Hipotesis Louis de Broglie
Louis de Broglie, seorang ahli fisika dari Perancis, mengemukkan
gagasannya tentang gelombang materi. Kalau cahaya memliki sifat partikel,
maka partikel juga memilki sifat gelombang. Menurut dr Broglie, gerakan
partikel mempunyai ciri-ciri gelombang. Sifat gelombang dari partikel tersebut
dinyatakan dalam persamaan:
D. Azas Ketidakpastian Werner
Heisenberg
Menurut Heisenberg, tidak mungkin menentukan posisi dan
momentum elektron secara bersamaan dengan ketelitian tinggi.
Heisenberg merumuskan hubungan ketidakpastian momentum
sebagai berikut.
E. Model Atom Mekanika Kuantum
Pada tahun 1926, Shrödinger mengajukkan suatu persamaan, kini disebut
persamaan gelombang Shrödinger, untuk mendeskripsikan keberadaan
elektron dalam atom.
Dalam teori atom mekanika kuantum, posisi elektron tidak dipastikan. Hal
yang dapat dikatakan tentang posisi elektron adalah peluang menemukan
elektron pada setiap titik dalam ruang di sekitar inti.
Istilah lain untuk menyatakan peluang menemukan elektron adalah
densitas elektron.
F. Bilangan-Bilangan Kuantum
1. Bilangan Kuantum Utama (n).
Bilangan kuantum utama menentukan tingkat energi orbital atau kulit
atom. Bilangan kuantum utama dapat mempunyai nilai semua bilangan
bulat positif, yaitu 1, 2, 3, 4, dan seterusnya.
2. Bilangan Kuantum Azimut (l).
Bilangan kuantum azimut menyatakan subkulit. Bilangan kuantum azimut
dapat mempunyai nilai semua bilangan bulat mulai dari 0 sampai dengan
(n  1) untuk setiap nilai n.
3. Bilangan Kuantum Magnetik (m).
Bilangan kuantum magnetik menyatakan orientasi orbital dalam ruang.
Bilangan kuantum magnetik dapat mempunyai nilai semua bilangan bulat
mulai dari l sampai dengan +l, termasuk nil (0).
Nilai l = 0 sampai dengan (n  1)
Nilai m =  l, 0, hingga +l
1. Orbital s
G. Bentuk dan Orientasi Orbital
2. Orbital p
3. Orbital d
Urutan-urutan tingkat energi
Urutan-urutan tingkat energi subkulit, 1s2s23s4s 3d4p5s dan seterusnya
sesuai dengan arah garis berpanah
H. Atom dengan Banyak Elektron
I. Bilangan Kuantum Spin dan
Azas Larangan Pauli
Azaz Larangan Pauli:
Dalam sebuah atom, tidak boleh ada dua elektron yang mempunyai
keempat bilangan kuantum (n, l , m, dan s) yang sama.
J. Konfigurasi Elekron dan Elektron Valensi
Azas Aufbau
Azas aufbau menyatakan bahwa pengisian orbital dimulai dari tingkat energi
yang lebih rendah kemudian ke tingkat energi yang lebih tinggi.
Azas Hund
Menurut Hund, pada mengisian orbital-orbital dengan tingkat energi yang
sama, yaitu orbital-orbital dalam satu subkulit, mula-mula elektron akan
menempati orbital secara sendiri-sendiri dengan spin yang pararel, baru
kemudian berpasangan.
Menyingkat Penulisan Konfigurasi Elektron dengan Menggunakan
Konfigurasi Elektron Gas Mulia
Na (Z = 11) : 1s2 2s2 2p6 3s1
Sc (Z = 21) : 1s2 2s2 2p6 3s2 3p6 3d1 4s2
Na (Z = 11) : [Ne] 3s1
Sc (Z = 21) : [Ar] 3d1 4s2
Elekron Valensi
Elektron valensi adalah elektron yang dapat digunakan untuk pembentukan
ikatan kimia. Kulit valensi
• Golongan utama:
ns dan ps
• Golongan transisi
(n  1)d dan ns
Contoh
Kulit valensi dan jumlah elektron valensi unsur-unsur Cl (Z = 17)
Cl (Z = 17)
Konfigurasi elektron Cl (Z = 17): 1s2 2s2 2p6 3s 2 3p5 atau [Ne] 3s2 3p5
Kulit valensi: 3s dan 3p
Jumlah elektron valensi: 2 + 5 = 7
II. SISTEM PERIODIK
A.Sistem Periodik dan Konfigurasi
Elektron
Oleh karena elektron valensi khas bagi setiap unsur, maka kita
dapat menentukan letak unsur dalam sistem periodik berdasarkan
elektron valensinya, atau sebaliknya.
Golongan
Utama
Elektron
Valensi
Golongan
Tambahan
Elektron
Valensi
lA
llA
lllA
lVA
VA
VlA
VllA
VllA
ns1
ns2
ns2 np1
ns2 np1
ns2 np3
ns2 np4
ns2 np5
ns2 np6
lllB
lVB
VB
VlB
VllB
VlllB
lB
llB
(n  1) d1ns2
(n  1) d2ns2
(n  1) d3ns2
(n  1) d5ns1
(n  1) d5ns2
(n  1) d6, 7,8 ns2
(n  1) d10ns1
(n  1) d10 ns2
B. Blok s, p, d, dan f
Hubungan sistem periodik dengan konfigurasi elektron diringkaskan
pada gambar
III. IKATAN KIMIA
1. Teori Domain Elektron
Teori domain elektron adalah suatu cara meramalkan geometri molekul
berdasarkan tolak-menolak elektron-elektron pada kulit luar atom pusat.
Domain elektron berarti kedudukan elektron atau daerah keberadaan elektron.
Jumlah domain elektron ditentukan sebagai berikut.
1. Setiap elektron ikatan (apakah ikatan tunggal, rangkap, atau rangkap tiga)
merupakan satu domain.
2. Setiap pasangan elektron bebas merupakan satu domain.
A. Geometri Molekul
Prinsip-prinsip dasar teori domain elektron adalah
1. Antardomain elektron pada kulit luar atom pusat
saling tolak-menolak, sehingga domain elektron
akan mengatur diri (mengambil formasi)
sedemikian rupa sehingga tolak menolak di
antaranya menjadi minimum.
2. Pasangan elektron bebas mempunyai gaya tolak
yang sedikit lebih kuat daripada pasangan
elektron ikatan.
3. Bentuk molekul hanya ditentukan oleh pasangan
elektron terikat.
2. Merumuskan Tipe Molekul
Tipe molekul ditentukan dengan cara sebagi berikut
• atom pusat dinyatakan dengan lambang A,
• setiap domain elektron ikatan dinyatakan dengan X, dan
• setiap domain elektron bebas dinyatakan dengan E.
Tipe molekul dapat ditentukan dengan langkah-langkah
sebagai berikut.
1. Senyawa Biner Berikatan Tunggal
dengan,
2. Senyawa Biner Berikatan Rangkap atau Ikatan Kovalen
Koordinat
E =
(EV  X)
2
E =
(EV  X)
2
EV = jumlah elektron valensi atom pusat
X = jumlah domain elektron ikatan (jumlah atom yang
terikat pada atom pusat)
E = jumlah domain elektron bebas
3. Menentukan Geometri Molekul
Geometri molekul dapat ditentukan mengikuti langkah-langkah berikut ini.
1. Menentukan tipe molekul.
2. Menentukan geometri domain-domain elektron di sekitar atom pusat
yang memberi tolak minimum.
3. Menetapkan domain elektron terikat dengan menuliskan lambang atom
yang bersangkutan.
4. Menentukan geometri molekul setelah mempertimbangkan pengaruh
pasangan elektron bebas.
Contoh
Molekul IF
3
AX E3 2
I
 
 

I
F
F
F
I
F
F
F
Langkah 1 Langkah 2 Langkah 3 Langkah 4
Planar bentuk T
B. Molekul Polar dan Nonpolar
Molekul dikatakan bersifat nonpolar jika distribusi rapatan dalam molekul
terbesar secara merata. Molekul dikatakan bersifat polar jika distribusi rapatan
elektron tidak merata.
Suatu molekul akan bersifat polar jika memenuhi dua syarat berikut.
a. Ikatan dalam molekul bersifat polar. Secara umum, ikatan antaratom yang
berbeda dapat dianggap polar.
b. Bentuk molekul tidak simetris, sehingga pusat muatan positif tidak berhimpit
dengan pusat muatan negatif.
C. Hibridisasi
Orbital Asal Orbital Hibrida Bentuk Orbital Hibrida Gambar
s, p sp linear
s, p, p sp2 segitiga sama sisi
s, p, p, p sp3 tetrahedron
s, p, p, p, d sp3d bipiramida trigonal
s, p, p, p, d, sp3d2 oktahedron
D. Gaya Tarik Antarmolekul
1. Gaya tarik-menarik Dipol Sesaat-Dipol Terimbas
(Gaya London = Gaya Depresi )
Gaya depresi adalah gaya tarik-menarik antara molekul-molekul dalam zat
yang nonpolar.
2. Gaya Tarik Dipol-dipol
Gaya dipol-dipol adalah gaya antarmolekul dalam zat yang polar. Gaya tarik
dipol-dipol lebih kuat dibandingkan gaya depresi (gaya London), sehingga zat
polar cenderung mempunyai titik cair dan titik didih lebih tinggi dibandingkan
zat nonpolar yang massa molekulnya kira-kira sama.
3. Gaya Tarik Dipol-dipol Terimbas
Gaya antarmolekul seperti ini terjadi antara molekul polar dengan molekul
nonpolar.
E. Ikatan Hidrogen
Ikatan hidrogen adalah gaya tarik-menarik antara atom hidrogen yang terkait
pada suatu atom berkeelektronegatifan besar dari molekul lain di sekitarnya.
Ikatan hidrogen jauh lebih kuat daripada gaya-gaya van der Waals.
F. Gaya-gaya van der waals
Gaya antarmolekul secara kolektif disebut juga gaya van der Waals. Namun
demikian, ada kebiasaan untuk melakukan pembedaan yang tujuannya untuk
memperjelas gaya antarmolekul dalam suatu zat sebagai berikut.
• Istilah gaya London atau gaya dispersi digunakan, jika gaya antarmolekul
itulah satu-satunya, yaitu untuk zat-zat yang nonpolar. Misalnya untuk gas
mulia, hidrogen, dan nitrogen.
• Istilah gaya van der Waals digunakan untuk zat yang mempunyai dipol-
dipol di samping gaya dispresi, misalnya hidrogen klorida dan aseton.

More Related Content

What's hot

Bab ii pembahasan a. persamaan schrodinger pada gerak partikel b
Bab ii pembahasan a. persamaan schrodinger pada gerak partikel bBab ii pembahasan a. persamaan schrodinger pada gerak partikel b
Bab ii pembahasan a. persamaan schrodinger pada gerak partikel bMuhammad Ali Subkhan Candra
 
Contoh Soal Persamaan Schrodinger dan penyelesaiannya
Contoh Soal Persamaan Schrodinger dan penyelesaiannyaContoh Soal Persamaan Schrodinger dan penyelesaiannya
Contoh Soal Persamaan Schrodinger dan penyelesaiannyaAyuShaleha
 
1.sistem perioe & struktur atom powerpoint
1.sistem perioe & struktur atom powerpoint1.sistem perioe & struktur atom powerpoint
1.sistem perioe & struktur atom powerpointMastudiar Daryus
 
Susunan Inti dan Sifat Inti
Susunan Inti dan Sifat IntiSusunan Inti dan Sifat Inti
Susunan Inti dan Sifat IntiFita Permata
 
Fisika Inti
Fisika IntiFisika Inti
Fisika IntiFKIP UHO
 
Laporan fisika dasar gesekan pada bidang miring
Laporan fisika dasar gesekan pada bidang miringLaporan fisika dasar gesekan pada bidang miring
Laporan fisika dasar gesekan pada bidang miringNurul Hanifah
 
Inti atom dan radioaktivitas
Inti atom dan radioaktivitasInti atom dan radioaktivitas
Inti atom dan radioaktivitasanggundiantriana
 
Laporan fisika dasar_ii_gelombang_stasio
Laporan fisika dasar_ii_gelombang_stasioLaporan fisika dasar_ii_gelombang_stasio
Laporan fisika dasar_ii_gelombang_stasioTifa Fauziah
 
Bab 5 sistem kerangka non inersia
Bab 5 sistem kerangka non inersiaBab 5 sistem kerangka non inersia
Bab 5 sistem kerangka non inersiaSyaRi EL-nahLy
 
1.struktur kristal(kuliah)
1.struktur kristal(kuliah)1.struktur kristal(kuliah)
1.struktur kristal(kuliah)rina mirda
 

What's hot (20)

Bab ii pembahasan a. persamaan schrodinger pada gerak partikel b
Bab ii pembahasan a. persamaan schrodinger pada gerak partikel bBab ii pembahasan a. persamaan schrodinger pada gerak partikel b
Bab ii pembahasan a. persamaan schrodinger pada gerak partikel b
 
Dinamika Gerak
Dinamika GerakDinamika Gerak
Dinamika Gerak
 
Contoh Soal Persamaan Schrodinger dan penyelesaiannya
Contoh Soal Persamaan Schrodinger dan penyelesaiannyaContoh Soal Persamaan Schrodinger dan penyelesaiannya
Contoh Soal Persamaan Schrodinger dan penyelesaiannya
 
1.sistem perioe & struktur atom powerpoint
1.sistem perioe & struktur atom powerpoint1.sistem perioe & struktur atom powerpoint
1.sistem perioe & struktur atom powerpoint
 
Susunan Inti dan Sifat Inti
Susunan Inti dan Sifat IntiSusunan Inti dan Sifat Inti
Susunan Inti dan Sifat Inti
 
Fisika Inti
Fisika IntiFisika Inti
Fisika Inti
 
Laporan praktikum Efek Fotolistrik
Laporan praktikum Efek FotolistrikLaporan praktikum Efek Fotolistrik
Laporan praktikum Efek Fotolistrik
 
Laporan fisika dasar gesekan pada bidang miring
Laporan fisika dasar gesekan pada bidang miringLaporan fisika dasar gesekan pada bidang miring
Laporan fisika dasar gesekan pada bidang miring
 
Inti atom dan radioaktivitas
Inti atom dan radioaktivitasInti atom dan radioaktivitas
Inti atom dan radioaktivitas
 
Fisika Inti dan Radioaktivitas
Fisika Inti dan RadioaktivitasFisika Inti dan Radioaktivitas
Fisika Inti dan Radioaktivitas
 
Atom berelektron banyak
Atom berelektron banyakAtom berelektron banyak
Atom berelektron banyak
 
Fisika inti diktat
Fisika inti diktatFisika inti diktat
Fisika inti diktat
 
Gelombang berjalan
Gelombang berjalanGelombang berjalan
Gelombang berjalan
 
Laporan fisika dasar_ii_gelombang_stasio
Laporan fisika dasar_ii_gelombang_stasioLaporan fisika dasar_ii_gelombang_stasio
Laporan fisika dasar_ii_gelombang_stasio
 
Percobaan titik berat
Percobaan titik beratPercobaan titik berat
Percobaan titik berat
 
Bab 5 sistem kerangka non inersia
Bab 5 sistem kerangka non inersiaBab 5 sistem kerangka non inersia
Bab 5 sistem kerangka non inersia
 
Struktur atom
Struktur atomStruktur atom
Struktur atom
 
Model atom bohr
Model atom bohrModel atom bohr
Model atom bohr
 
1.struktur kristal(kuliah)
1.struktur kristal(kuliah)1.struktur kristal(kuliah)
1.struktur kristal(kuliah)
 
indeks miller
indeks millerindeks miller
indeks miller
 

Similar to STRUKTUR ATOM

Bab 1 struktur atom, tabel periodik, dan ikatan kimia
Bab 1 struktur atom, tabel periodik, dan ikatan kimia Bab 1 struktur atom, tabel periodik, dan ikatan kimia
Bab 1 struktur atom, tabel periodik, dan ikatan kimia wafiqasfari
 
Bab 1 struktur atom,sistem periodik, ikatan kimia kelas xi
Bab 1 struktur atom,sistem periodik, ikatan kimia kelas xiBab 1 struktur atom,sistem periodik, ikatan kimia kelas xi
Bab 1 struktur atom,sistem periodik, ikatan kimia kelas xiSinta Sry
 
Bab1strukturatomsistemperiodikikatankimiakelasxi 141109045814-conversion-gate01
Bab1strukturatomsistemperiodikikatankimiakelasxi 141109045814-conversion-gate01Bab1strukturatomsistemperiodikikatankimiakelasxi 141109045814-conversion-gate01
Bab1strukturatomsistemperiodikikatankimiakelasxi 141109045814-conversion-gate01sanoptri
 
Bab1 struktur atom, sistem periodik dan ikatan kimia | Kimia Kelas XI
Bab1 struktur atom, sistem periodik dan ikatan kimia | Kimia Kelas XIBab1 struktur atom, sistem periodik dan ikatan kimia | Kimia Kelas XI
Bab1 struktur atom, sistem periodik dan ikatan kimia | Kimia Kelas XIBayu Ariantika Irsan
 
Teori atom modern (Teori Mekanika Kuantum)
Teori atom modern (Teori Mekanika Kuantum)Teori atom modern (Teori Mekanika Kuantum)
Teori atom modern (Teori Mekanika Kuantum)Kalderizer
 
tugas Fisika man
tugas Fisika mantugas Fisika man
tugas Fisika mangooner29
 
Struktur atom dan sistem periodik
Struktur atom dan sistem periodikStruktur atom dan sistem periodik
Struktur atom dan sistem periodikujangsupiandi
 
Kimia struktur elektron atom
Kimia   struktur elektron atomKimia   struktur elektron atom
Kimia struktur elektron atomaralailiyah
 
Struktur atom,sistem periodik unsur dan ikatan kimia XI IPA
Struktur atom,sistem periodik unsur dan ikatan kimia XI IPAStruktur atom,sistem periodik unsur dan ikatan kimia XI IPA
Struktur atom,sistem periodik unsur dan ikatan kimia XI IPADian Ningrum
 
Makalah fisika atom dan fisika inti SMA
Makalah fisika atom dan fisika inti SMA Makalah fisika atom dan fisika inti SMA
Makalah fisika atom dan fisika inti SMA Ajeng Rizki Rahmawati
 

Similar to STRUKTUR ATOM (20)

Bab 1 struktur atom, tabel periodik, dan ikatan kimia
Bab 1 struktur atom, tabel periodik, dan ikatan kimia Bab 1 struktur atom, tabel periodik, dan ikatan kimia
Bab 1 struktur atom, tabel periodik, dan ikatan kimia
 
Bab 1 struktur atom,sistem periodik, ikatan kimia kelas xi
Bab 1 struktur atom,sistem periodik, ikatan kimia kelas xiBab 1 struktur atom,sistem periodik, ikatan kimia kelas xi
Bab 1 struktur atom,sistem periodik, ikatan kimia kelas xi
 
Bab1strukturatomsistemperiodikikatankimiakelasxi 141109045814-conversion-gate01
Bab1strukturatomsistemperiodikikatankimiakelasxi 141109045814-conversion-gate01Bab1strukturatomsistemperiodikikatankimiakelasxi 141109045814-conversion-gate01
Bab1strukturatomsistemperiodikikatankimiakelasxi 141109045814-conversion-gate01
 
Bab1 stru
Bab1 struBab1 stru
Bab1 stru
 
Bab1 struktur atom, sistem periodik dan ikatan kimia | Kimia Kelas XI
Bab1 struktur atom, sistem periodik dan ikatan kimia | Kimia Kelas XIBab1 struktur atom, sistem periodik dan ikatan kimia | Kimia Kelas XI
Bab1 struktur atom, sistem periodik dan ikatan kimia | Kimia Kelas XI
 
Bahan ajar kimia xi
Bahan ajar kimia xiBahan ajar kimia xi
Bahan ajar kimia xi
 
PP STRUKTUR ATOM HIDROGEN
PP STRUKTUR ATOM HIDROGENPP STRUKTUR ATOM HIDROGEN
PP STRUKTUR ATOM HIDROGEN
 
Teori atom modern (Teori Mekanika Kuantum)
Teori atom modern (Teori Mekanika Kuantum)Teori atom modern (Teori Mekanika Kuantum)
Teori atom modern (Teori Mekanika Kuantum)
 
tugas Fisika man
tugas Fisika mantugas Fisika man
tugas Fisika man
 
Struktur atom dan sistem periodik
Struktur atom dan sistem periodikStruktur atom dan sistem periodik
Struktur atom dan sistem periodik
 
Fisika atom
Fisika atomFisika atom
Fisika atom
 
Kimia struktur elektron atom
Kimia   struktur elektron atomKimia   struktur elektron atom
Kimia struktur elektron atom
 
Atom Berelektron Banyak
Atom Berelektron BanyakAtom Berelektron Banyak
Atom Berelektron Banyak
 
Struktur atom,sistem periodik unsur dan ikatan kimia XI IPA
Struktur atom,sistem periodik unsur dan ikatan kimia XI IPAStruktur atom,sistem periodik unsur dan ikatan kimia XI IPA
Struktur atom,sistem periodik unsur dan ikatan kimia XI IPA
 
Fisika tumpak
Fisika tumpakFisika tumpak
Fisika tumpak
 
kimia
kimia kimia
kimia
 
Makalah fisika atom dan fisika inti SMA
Makalah fisika atom dan fisika inti SMA Makalah fisika atom dan fisika inti SMA
Makalah fisika atom dan fisika inti SMA
 
2. ATOM.pptx
2. ATOM.pptx2. ATOM.pptx
2. ATOM.pptx
 
Fsk atom lengkap
Fsk atom lengkapFsk atom lengkap
Fsk atom lengkap
 
Bab 1 struktur atom
Bab 1 struktur atomBab 1 struktur atom
Bab 1 struktur atom
 

More from mfebri26

eksponen dan logaritma
eksponen dan logaritmaeksponen dan logaritma
eksponen dan logaritmamfebri26
 
barisan dan deret
 barisan dan deret barisan dan deret
barisan dan deretmfebri26
 
transformasi
transformasitransformasi
transformasimfebri26
 
program linier
program linierprogram linier
program liniermfebri26
 
limit fungsi
limit fungsilimit fungsi
limit fungsimfebri26
 
komposisi dua fungsi dan fungsi invers
komposisi dua fungsi dan fungsi inverskomposisi dua fungsi dan fungsi invers
komposisi dua fungsi dan fungsi inversmfebri26
 
sukubanyak
sukubanyaksukubanyak
sukubanyakmfebri26
 
persamaan lingkaran dan garis singgung
persamaan lingkaran dan garis singgungpersamaan lingkaran dan garis singgung
persamaan lingkaran dan garis singgungmfebri26
 
rumus rumus trigonometri
rumus rumus trigonometrirumus rumus trigonometri
rumus rumus trigonometrimfebri26
 
statistika
statistikastatistika
statistikamfebri26
 
Bab 1 statistika
Bab 1 statistikaBab 1 statistika
Bab 1 statistikamfebri26
 
trigonometri
 trigonometri trigonometri
trigonometrimfebri26
 
logika matematika
logika matematikalogika matematika
logika matematikamfebri26
 
sistem persamaan linear
sistem persamaan linearsistem persamaan linear
sistem persamaan linearmfebri26
 

More from mfebri26 (20)

eksponen dan logaritma
eksponen dan logaritmaeksponen dan logaritma
eksponen dan logaritma
 
barisan dan deret
 barisan dan deret barisan dan deret
barisan dan deret
 
transformasi
transformasitransformasi
transformasi
 
vektor
vektorvektor
vektor
 
matriks
matriksmatriks
matriks
 
program linier
program linierprogram linier
program linier
 
integral
 integral integral
integral
 
turunan
turunanturunan
turunan
 
limit fungsi
limit fungsilimit fungsi
limit fungsi
 
komposisi dua fungsi dan fungsi invers
komposisi dua fungsi dan fungsi inverskomposisi dua fungsi dan fungsi invers
komposisi dua fungsi dan fungsi invers
 
sukubanyak
sukubanyaksukubanyak
sukubanyak
 
persamaan lingkaran dan garis singgung
persamaan lingkaran dan garis singgungpersamaan lingkaran dan garis singgung
persamaan lingkaran dan garis singgung
 
rumus rumus trigonometri
rumus rumus trigonometrirumus rumus trigonometri
rumus rumus trigonometri
 
peluang
peluangpeluang
peluang
 
statistika
statistikastatistika
statistika
 
Bab 1 statistika
Bab 1 statistikaBab 1 statistika
Bab 1 statistika
 
geometri
geometrigeometri
geometri
 
trigonometri
 trigonometri trigonometri
trigonometri
 
logika matematika
logika matematikalogika matematika
logika matematika
 
sistem persamaan linear
sistem persamaan linearsistem persamaan linear
sistem persamaan linear
 

STRUKTUR ATOM

  • 1. STRUKTUR ATOM, SISTEM PERIODIK, DAN IKATAN KIMIA BAB 1 Standar Kompetensi:  Memahami struktur atom untuk meramalkan sifat-sifat periodik unsur, struktur molekul, dan sifat-sifat senyawa. Kompetensi Dasar:  Menjelaskan teori atom Bohr dan mekanika kuantum untuk menuliskan konfigurasi elektron dan diagram orbital serta menentukan letak unsur dalam tabel periodik.  Menjelaskan teori jumlah pasangan elektron di sekitar inti atom dan teori hibridisasi untuk meramalkan bentuk molekul.  Menjelaskan interaksi antarmolekul (gaya antarmolekul) dengan sifatnya.
  • 2. I. TEORI ATOM BOHR DAN MEKANIKA KUANTUM
  • 3. A. Teori Kuantum Max Planck Pada tahun 1990, Max Planck mengajukkan gagasan bahwa radiasi elektromagnet bersifat diskret. Artinya, suatu benda hanya dapat memancarkan atau menyerap radiasi elektromagnet dalam ukuran atau paket-paket kecil dengan nilai tertentu. Paket energi itu disebut kuantum (kuanta untuk bentuk jamaknya). Besarnya energi dalam suatu paket (satu kuantum atau satu foton) dengan, E = energi radiasi h = tetapan Planck = 6,63  1034 J s
  • 4. B. Model Atom Niels Bohr Menurut Bohr, spektrum garis menunjukkan bahwa elektron dalam atom hanya dapat beredar pada lintasan-lintasan dengan tingkat energi tertentu. Lintasan eletron tersebut berupa lingkaran dengan jari-jari tertentu yang disebut sebagai kulit atom. Setiap kulit ditandai dengan suatu bilangan yang disebut bilangan kuantum (n). Bohr berhasil merumuskan jari-jari lintasan dan energi elektron pada atom hidrogen sebagai berikut. r = n2 an 0 dengan n = 1, 2, 3, . . . a = 0,53 Å (53 pm) R = tetapan (2,179  1018 J) E = n H n2 RH Energi elektron pada lintasan ke- n adalah: Bilangan kuantum (n) 1 2 3 4 dan seterusnya Lambang kulit K L M N dan seterusnya
  • 5. C. Hipotesis Louis de Broglie Louis de Broglie, seorang ahli fisika dari Perancis, mengemukkan gagasannya tentang gelombang materi. Kalau cahaya memliki sifat partikel, maka partikel juga memilki sifat gelombang. Menurut dr Broglie, gerakan partikel mempunyai ciri-ciri gelombang. Sifat gelombang dari partikel tersebut dinyatakan dalam persamaan:
  • 6. D. Azas Ketidakpastian Werner Heisenberg Menurut Heisenberg, tidak mungkin menentukan posisi dan momentum elektron secara bersamaan dengan ketelitian tinggi. Heisenberg merumuskan hubungan ketidakpastian momentum sebagai berikut.
  • 7. E. Model Atom Mekanika Kuantum Pada tahun 1926, Shrödinger mengajukkan suatu persamaan, kini disebut persamaan gelombang Shrödinger, untuk mendeskripsikan keberadaan elektron dalam atom. Dalam teori atom mekanika kuantum, posisi elektron tidak dipastikan. Hal yang dapat dikatakan tentang posisi elektron adalah peluang menemukan elektron pada setiap titik dalam ruang di sekitar inti. Istilah lain untuk menyatakan peluang menemukan elektron adalah densitas elektron.
  • 8. F. Bilangan-Bilangan Kuantum 1. Bilangan Kuantum Utama (n). Bilangan kuantum utama menentukan tingkat energi orbital atau kulit atom. Bilangan kuantum utama dapat mempunyai nilai semua bilangan bulat positif, yaitu 1, 2, 3, 4, dan seterusnya. 2. Bilangan Kuantum Azimut (l). Bilangan kuantum azimut menyatakan subkulit. Bilangan kuantum azimut dapat mempunyai nilai semua bilangan bulat mulai dari 0 sampai dengan (n  1) untuk setiap nilai n. 3. Bilangan Kuantum Magnetik (m). Bilangan kuantum magnetik menyatakan orientasi orbital dalam ruang. Bilangan kuantum magnetik dapat mempunyai nilai semua bilangan bulat mulai dari l sampai dengan +l, termasuk nil (0). Nilai l = 0 sampai dengan (n  1) Nilai m =  l, 0, hingga +l
  • 9. 1. Orbital s G. Bentuk dan Orientasi Orbital
  • 12. Urutan-urutan tingkat energi Urutan-urutan tingkat energi subkulit, 1s2s23s4s 3d4p5s dan seterusnya sesuai dengan arah garis berpanah H. Atom dengan Banyak Elektron
  • 13. I. Bilangan Kuantum Spin dan Azas Larangan Pauli Azaz Larangan Pauli: Dalam sebuah atom, tidak boleh ada dua elektron yang mempunyai keempat bilangan kuantum (n, l , m, dan s) yang sama.
  • 14. J. Konfigurasi Elekron dan Elektron Valensi Azas Aufbau Azas aufbau menyatakan bahwa pengisian orbital dimulai dari tingkat energi yang lebih rendah kemudian ke tingkat energi yang lebih tinggi. Azas Hund Menurut Hund, pada mengisian orbital-orbital dengan tingkat energi yang sama, yaitu orbital-orbital dalam satu subkulit, mula-mula elektron akan menempati orbital secara sendiri-sendiri dengan spin yang pararel, baru kemudian berpasangan. Menyingkat Penulisan Konfigurasi Elektron dengan Menggunakan Konfigurasi Elektron Gas Mulia Na (Z = 11) : 1s2 2s2 2p6 3s1 Sc (Z = 21) : 1s2 2s2 2p6 3s2 3p6 3d1 4s2 Na (Z = 11) : [Ne] 3s1 Sc (Z = 21) : [Ar] 3d1 4s2
  • 15. Elekron Valensi Elektron valensi adalah elektron yang dapat digunakan untuk pembentukan ikatan kimia. Kulit valensi • Golongan utama: ns dan ps • Golongan transisi (n  1)d dan ns Contoh Kulit valensi dan jumlah elektron valensi unsur-unsur Cl (Z = 17) Cl (Z = 17) Konfigurasi elektron Cl (Z = 17): 1s2 2s2 2p6 3s 2 3p5 atau [Ne] 3s2 3p5 Kulit valensi: 3s dan 3p Jumlah elektron valensi: 2 + 5 = 7
  • 17. A.Sistem Periodik dan Konfigurasi Elektron Oleh karena elektron valensi khas bagi setiap unsur, maka kita dapat menentukan letak unsur dalam sistem periodik berdasarkan elektron valensinya, atau sebaliknya. Golongan Utama Elektron Valensi Golongan Tambahan Elektron Valensi lA llA lllA lVA VA VlA VllA VllA ns1 ns2 ns2 np1 ns2 np1 ns2 np3 ns2 np4 ns2 np5 ns2 np6 lllB lVB VB VlB VllB VlllB lB llB (n  1) d1ns2 (n  1) d2ns2 (n  1) d3ns2 (n  1) d5ns1 (n  1) d5ns2 (n  1) d6, 7,8 ns2 (n  1) d10ns1 (n  1) d10 ns2
  • 18. B. Blok s, p, d, dan f Hubungan sistem periodik dengan konfigurasi elektron diringkaskan pada gambar
  • 20. 1. Teori Domain Elektron Teori domain elektron adalah suatu cara meramalkan geometri molekul berdasarkan tolak-menolak elektron-elektron pada kulit luar atom pusat. Domain elektron berarti kedudukan elektron atau daerah keberadaan elektron. Jumlah domain elektron ditentukan sebagai berikut. 1. Setiap elektron ikatan (apakah ikatan tunggal, rangkap, atau rangkap tiga) merupakan satu domain. 2. Setiap pasangan elektron bebas merupakan satu domain. A. Geometri Molekul
  • 21. Prinsip-prinsip dasar teori domain elektron adalah 1. Antardomain elektron pada kulit luar atom pusat saling tolak-menolak, sehingga domain elektron akan mengatur diri (mengambil formasi) sedemikian rupa sehingga tolak menolak di antaranya menjadi minimum. 2. Pasangan elektron bebas mempunyai gaya tolak yang sedikit lebih kuat daripada pasangan elektron ikatan. 3. Bentuk molekul hanya ditentukan oleh pasangan elektron terikat.
  • 22. 2. Merumuskan Tipe Molekul Tipe molekul ditentukan dengan cara sebagi berikut • atom pusat dinyatakan dengan lambang A, • setiap domain elektron ikatan dinyatakan dengan X, dan • setiap domain elektron bebas dinyatakan dengan E.
  • 23. Tipe molekul dapat ditentukan dengan langkah-langkah sebagai berikut. 1. Senyawa Biner Berikatan Tunggal dengan, 2. Senyawa Biner Berikatan Rangkap atau Ikatan Kovalen Koordinat E = (EV  X) 2 E = (EV  X) 2 EV = jumlah elektron valensi atom pusat X = jumlah domain elektron ikatan (jumlah atom yang terikat pada atom pusat) E = jumlah domain elektron bebas
  • 24. 3. Menentukan Geometri Molekul Geometri molekul dapat ditentukan mengikuti langkah-langkah berikut ini. 1. Menentukan tipe molekul. 2. Menentukan geometri domain-domain elektron di sekitar atom pusat yang memberi tolak minimum. 3. Menetapkan domain elektron terikat dengan menuliskan lambang atom yang bersangkutan. 4. Menentukan geometri molekul setelah mempertimbangkan pengaruh pasangan elektron bebas. Contoh Molekul IF 3 AX E3 2 I      I F F F I F F F Langkah 1 Langkah 2 Langkah 3 Langkah 4 Planar bentuk T
  • 25. B. Molekul Polar dan Nonpolar Molekul dikatakan bersifat nonpolar jika distribusi rapatan dalam molekul terbesar secara merata. Molekul dikatakan bersifat polar jika distribusi rapatan elektron tidak merata. Suatu molekul akan bersifat polar jika memenuhi dua syarat berikut. a. Ikatan dalam molekul bersifat polar. Secara umum, ikatan antaratom yang berbeda dapat dianggap polar. b. Bentuk molekul tidak simetris, sehingga pusat muatan positif tidak berhimpit dengan pusat muatan negatif.
  • 26. C. Hibridisasi Orbital Asal Orbital Hibrida Bentuk Orbital Hibrida Gambar s, p sp linear s, p, p sp2 segitiga sama sisi s, p, p, p sp3 tetrahedron s, p, p, p, d sp3d bipiramida trigonal s, p, p, p, d, sp3d2 oktahedron
  • 27. D. Gaya Tarik Antarmolekul 1. Gaya tarik-menarik Dipol Sesaat-Dipol Terimbas (Gaya London = Gaya Depresi ) Gaya depresi adalah gaya tarik-menarik antara molekul-molekul dalam zat yang nonpolar. 2. Gaya Tarik Dipol-dipol Gaya dipol-dipol adalah gaya antarmolekul dalam zat yang polar. Gaya tarik dipol-dipol lebih kuat dibandingkan gaya depresi (gaya London), sehingga zat polar cenderung mempunyai titik cair dan titik didih lebih tinggi dibandingkan zat nonpolar yang massa molekulnya kira-kira sama. 3. Gaya Tarik Dipol-dipol Terimbas Gaya antarmolekul seperti ini terjadi antara molekul polar dengan molekul nonpolar.
  • 28. E. Ikatan Hidrogen Ikatan hidrogen adalah gaya tarik-menarik antara atom hidrogen yang terkait pada suatu atom berkeelektronegatifan besar dari molekul lain di sekitarnya. Ikatan hidrogen jauh lebih kuat daripada gaya-gaya van der Waals.
  • 29. F. Gaya-gaya van der waals Gaya antarmolekul secara kolektif disebut juga gaya van der Waals. Namun demikian, ada kebiasaan untuk melakukan pembedaan yang tujuannya untuk memperjelas gaya antarmolekul dalam suatu zat sebagai berikut. • Istilah gaya London atau gaya dispersi digunakan, jika gaya antarmolekul itulah satu-satunya, yaitu untuk zat-zat yang nonpolar. Misalnya untuk gas mulia, hidrogen, dan nitrogen. • Istilah gaya van der Waals digunakan untuk zat yang mempunyai dipol- dipol di samping gaya dispresi, misalnya hidrogen klorida dan aseton.