SlideShare a Scribd company logo
1 of 29
Download to read offline
 
SCHOOL	
  OF	
  ARCHITECTURE,	
  BUILDING	
  &	
  DESIGN	
  	
  
Centre	
  for	
  Modern	
  Architecture	
  Studies	
  in	
  Southeast	
  Asia	
  (MASSA)	
  	
  
Bachelor	
  of	
  Science	
  (Honours)	
  (Architecture)	
  	
  
BUILDING	
  STRUCTURES	
  [ARC	
  2522/	
  2523]	
  
	
  
	
  	
  
Project	
  2	
  -­‐	
  Extension	
  of	
  a	
  R.	
  C.	
  bungalow	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
LING	
  TECK	
  ONG	
  0303127	
  
CHUNG	
  KA	
  SENG	
  0316922	
  
POH	
  WEI	
  KEAT	
  0303646	
  
LEE	
  YIANG	
  SIANG	
  0302966	
  
CELINE	
  TAN	
  JEAN	
  INN	
  0303669	
  
WONG	
  SOON	
  FOOK	
  0302953	
  
WONG	
  KIEN	
  HOU	
  0312104	
  
WONG	
  JIA	
  XIN	
  1101G13277	
  
	
  
Tutor:	
  Mr.	
  Mohd	
  Adib	
  Ramli	
   	
  
Table	
  of	
  Content	
  
	
  
1.0	
  Introduction	
  of	
  the	
  case	
  study	
  	
  
	
  
2.0	
  Measured	
  Drawings	
  
	
  
3.0	
  3D	
  Model	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  3.1	
  Perspective	
  views	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  3.2	
  Structural	
  layout	
  
	
  
4.0	
  Case	
  study:	
  Appraisal	
  of	
  structural	
  system	
  
	
   4.1	
  Structural	
  element	
  	
  
	
   4.2	
  Structural	
  system	
  of	
  case	
  study	
  	
  
	
   4.3	
  Indication	
  on	
  plans	
  	
  
	
   4.4	
  Distribution	
  in	
  the	
  structure	
  	
  
	
  
5.0	
  Conclusion	
  	
  
	
  
6.0	
  References	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
 
1.0	
  Introduction	
  
	
   In	
  this	
  project,	
  we	
  are	
  introduced	
  to	
  structural	
  theory,	
  force	
  calculation	
  and	
  basic	
  
structural	
  proposal.	
  This	
  project	
  will	
  allow	
  us	
  to	
  understand	
  the	
  building	
  structure.	
  Our	
  
case	
  study	
  is	
  a	
  two	
  storey	
  bungalow	
  house.	
  It	
  is	
  located	
  at	
  No.	
  4,	
  Jalan	
  SS1/	
  34,	
  Seksyen	
  
26,	
  Petaling	
  Jaya,	
  46300	
  Sea	
  Park,	
  Selangor.	
  This	
  bungalow	
  has	
  quite	
  a	
  large	
  garden	
  area	
  
at	
  the	
  side.	
  
	
  
	
   Observations	
  of	
  the	
  structure	
  of	
  the	
  bungalow	
  were	
  made	
  and	
  recorded.	
  We	
  are	
  
able	
  to	
  identify	
  the	
  columns	
  and	
  beams	
  from	
  our	
  site	
  visit.	
  	
  
	
  
	
   The	
  bungalow	
  has	
  5	
  bedrooms.	
  An	
  extension	
  has	
  been	
  made	
  to	
  the	
  bungalow.	
  
The	
  side	
  is	
  extended	
  by	
  2	
  terraces	
  on	
  the	
  ground	
  floor	
  while	
  the	
  back	
  is	
  extended	
  by	
  
adding	
  a	
  space	
  for	
  utility	
  and	
  wet	
  kitchen.	
  
	
  
	
   Our	
  case	
  study	
  is	
  using	
  column	
  and	
  beam	
  structural	
  system	
  and	
  the	
  orthographic	
  
drawing	
  of	
  the	
  bungalow	
  is	
  provided	
  in	
  order	
  to	
  help	
  our	
  understanding	
  of	
  the	
  building	
  
structure.	
  
	
  
	
  
	
  
Figure	
  1:	
  Front	
  facade	
  of	
  bungalow	
  
	
  
	
  
Figure	
  2:	
  Extended	
  area	
  -­‐	
  2	
  terraces	
  
	
  
	
  
Figure	
  3:	
  Extended	
  area	
  -­‐	
  wet	
  kitchen	
  and	
  utility	
  room	
  
 
Figure	
  4:	
  Land	
  area	
  available	
  for	
  extension	
  
	
  
	
  
Figure	
  5:	
  Existing	
  column	
  located	
  in	
  the	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Figure	
  6:	
  Existing	
  column	
  located	
  in	
  the	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  living	
  room	
  still	
  in	
  use	
  after	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  dry	
  kitchen	
  still	
  in	
  use	
  after	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  extension	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  extension	
  
	
  
2.0	
  Measured	
  Drawings	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
WETKITCHEN
ULTILITY
DININGROOM
DRYKITCHENROOM
LIVINGROOMTERRACE
TERRACE
ENTRANCE
ROOM
A
B
C
D
E
12341234
PRODUCEDBYANAUTODESKEDUCATIONALPRODUCT
PRODUCEDBYANAUTODESKEDUCATIONALPRODUCT
PRODUCEDBYANAUTODESKEDUCATIONALPRODUCT
PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT
FIRST	
  FLOOR	
  PLAN	
  GROUND	
  FLOOR	
  PLAN	
  
 
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
EXISTINGTERRACE
ULTILITY
ROOM
FIRSTFLOORPLAN
ENTRANCE
B
C
GROUNDFLOORPLAN
F
12
D
E
F
12
EXISTING
LIVINGROOM
EXISTING
DININGROOM
EXISTINGDRY
KITCHEN
EXISTINGWET
KITCHEN
B
C
D
E
43
543
EXISTING
MASTER
BEDROOM
EXISTING
BEDROOM1
EXISTING
BEDROOM2EXISTING
ROOM
EXISTING
BATH1
EXISTING
BATH2
A
14
2
3785
2509
A
23
134
3398
2562
3707
321030845733
3785
EXISTINGTERRACE
C1150x300
37073398
exteriorbeam
150x610
150mmthk
floorslab
interiorbeam
150x450
STIFFENER
150x150
PADFOOTING
1200x1200
5
2498
PRODUCEDBYANAUTODESKEDUCATIONALPRODUCT
PRODUCEDBYANAUTODESKEDUCATIONALPRODUCT
PRODUCEDBYANAUTODESKEDUCATIONALPRODUCT
PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT
3.0	
  3D	
  Model	
  
3.1	
  Perspective	
  Views	
  
	
  
	
  
Figure	
  7:	
  front	
  perspective	
  view	
  
	
  
	
  
Figure	
  8:	
  right	
  perspective	
  view	
  
	
  
 
Figure	
  9:	
  left	
  perspective	
  view	
  
	
  
	
  
	
  
Figure	
  10:	
  right	
  perspective	
  view	
  
	
  
	
  
	
  
	
  
 
	
  
Figure	
  11:	
  bird	
  eye	
  view	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
3.2	
  Structural	
  Layout	
  
	
  
	
  
	
  
	
  
	
  
	
  
 
	
  
4.0	
  Case	
  study:	
  Appraisal	
  of	
  structural	
  system	
  
4.1	
  Structural	
  element	
  
	
  
The	
  studied	
  bungalow	
  is	
  identified	
  to	
  be	
  using	
  shallow	
  foundation	
  and	
  pad	
  footing	
  is	
  
used.	
  
	
  
	
  
Figure	
  7:	
  section	
  of	
  pad	
  footing	
  
	
  
	
  
-­‐	
  most	
  economical	
  shallow	
  foundation	
  types	
  but	
  are	
  more	
  susceptible	
  to	
  differential	
  	
  	
  	
  	
  
	
  	
  	
  settlement.	
  
-­‐	
  usually	
  support	
  single	
  concentrated	
  loads,	
  such	
  as	
  those	
  imposed	
  by	
  columns.	
  
-­‐	
  isolated	
  or	
  independent	
  slab	
  of	
  concrete	
  foundation	
  to	
  support	
  concrete	
  columns	
  or	
  	
  
	
  	
  	
  steel	
  pillars,	
  detached	
  brick	
  or	
  masonry	
  piers.	
  
-­‐	
  the	
  pier	
  or	
  column	
  bearing	
  on	
  the	
  centre	
  point	
  of	
  the	
  slab.	
  
-­‐	
  the	
  thickness	
  is	
  govern	
  by	
  the	
  same	
  consideration	
  as	
  for	
  strip	
  footing	
  and	
  is	
  made	
  not	
  	
  
	
  	
  	
  less	
  than	
  the	
  projection	
  of	
  the	
  slab	
  beyond	
  the	
  face	
  of	
  the	
  column	
  or	
  pier,	
  or	
  the	
  edge	
  	
  
	
  	
  	
  of	
  the	
  base	
  plate	
  of	
  a	
  steel	
  stanchion.	
  
-­‐	
  in	
  whatever	
  circumstances	
  the	
  thickness	
  should	
  be	
  less	
  than	
  150mm	
  thick,	
  and	
  should	
  	
  
 	
  	
  the	
  base	
  become	
  very	
  "wide	
  and	
  thicker",	
  the	
  reduction	
  in	
  thickness	
  can	
  be	
  effected	
  by	
  	
  
	
  	
  	
  introducing	
  reinforcement	
  to	
  the	
  slab.	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  
	
  
	
  	
  
	
  
	
  
	
  
	
  
Figure	
  8:	
  pad	
  footing	
  showing	
  grade	
  beam	
  
	
  
Shallow	
  Foundations	
  
Shallow	
  foundation	
  systems	
  can	
  be	
  classified	
  as	
  spread	
  footings,	
  wall	
  and	
  continuous	
  
(strip)	
  footings,	
  and	
  mat	
  (raft)	
  foundations.	
  Variations	
  are	
  combined	
  footings,	
  
cantilevered	
  (strapped)	
  footings,	
  two-­‐way	
  strip	
  (grid)	
  footings,	
  and	
  discontinuous	
  
(punched)	
  mat	
  foundations.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Grade	
  beam	
  
	
  
A	
  grade	
  beam	
  or	
  grade	
  beam	
  
footing	
  is	
  a	
  component	
  of	
  a	
  
building's	
  foundation.	
  It	
  
consists	
  of	
  a	
  reinforced	
  
concrete	
  beam	
  that	
  transmits	
  
the	
  load	
  from	
  a	
  bearing	
  wall	
  
into	
  spaced	
  foundations	
  such	
  
as	
  pile	
  caps	
  or	
  caissons.	
  It	
  is	
  
used	
  in	
  conditions	
  where	
  the	
  
surface	
  soil’s	
  load-­‐bearing	
  
capacity	
  is	
  less	
  than	
  the	
  
anticipated	
  design	
  loads.	
  
Combined	
  footings	
  
(Fig.	
  8)	
  are	
  used	
  
where	
  the	
  bearing	
  
areas	
  of	
  closely	
  
spaced	
  columns	
  
overlap.	
  
Figure	
  8:	
  combined	
  footing	
  
	
  
Figure	
  8:	
  cantilever	
  footing	
  
	
  
	
  
	
  
	
  
Figure	
  9:	
  continuous	
  footings	
  for	
  (a)	
  a	
  wall,	
  (b)	
  several	
  columns	
  
	
  
	
  
Cantilever	
  footings	
  
(Fig.	
  9)	
  are	
  designed	
  
to	
  accommodate	
  
eccentric	
  loads.	
  
Continuous	
  wall	
  
and	
  strip	
  
footings	
  (Fig.	
  9)	
  
can	
  be	
  designed	
  
to	
  redistribute	
  
bearing-­‐stress	
  
concentrations	
  
and	
  associated	
  
differential	
  
settlements	
  in	
  
the	
  event	
  of	
  
variable	
  bearing	
  
conditions	
  or	
  
localized	
  
ground	
  loss	
  
beneath	
  
footings.	
  
	
  
 
	
  
	
  
Figure	
  10:	
  reinforced	
  concrete	
  building	
  elements	
  
To	
  distribute	
  the	
  load	
  of	
  the	
  foundation	
  on	
  the	
  soil,	
  spread	
  footings	
  are	
  installed	
  below	
  
the	
  building's	
  foundation.	
  This	
  type	
  of	
  footing	
  is	
  continous	
  below	
  the	
  perimeter	
  of	
  the	
  
house	
  walls	
  and	
  may	
  be	
  thickened	
  or	
  widened	
  at	
  the	
  points	
  where	
  concentrated	
  loads	
  
are	
  applied	
  e.g.	
  columns.	
  These	
  components	
  are	
  constructed	
  from	
  concrete	
  and	
  are	
  
often	
  reinforced	
  with	
  rebar	
  or	
  steel	
  to	
  add	
  additional	
  support.	
  Depending	
  on	
  the	
  size	
  
and	
  configuration	
  of	
  the	
  building,	
  the	
  footers	
  can	
  be	
  buried	
  just	
  below	
  ground	
  level	
  or	
  
several	
  feet	
  below	
  the	
  surface.	
  In	
  cold	
  climates,	
  they	
  are	
  always	
  placed	
  below	
  the	
  frost	
  
line	
  to	
  minimize	
  problems	
  with	
  concrete	
  heaving	
  that	
  occurs	
  during	
  freeze/thaw	
  cycles.	
  
This	
  type	
  of	
  footer	
  design	
  is	
  highly	
  beneficial	
  to	
  builders	
  and	
  homeowners.	
  Since	
  they	
  
transfer	
  the	
  weight	
  of	
  the	
  building	
  over	
  a	
  large	
  area,	
  they	
  have	
  little	
  risk	
  of	
  failure.	
  
	
  
	
  
 
	
  
Reinforced	
  Concrete	
  Column	
  
A	
  reinforced	
  concrete	
  column	
  is	
  a	
  structural	
  members	
  designed	
  to	
  carry	
  compressive	
  
loads,	
  composed	
  of	
  concrete	
  with	
  an	
  embedded	
  steel	
  frame	
  to	
  provide	
  reinforcement.	
  
For	
  design	
  purposes,	
  the	
  columns	
  are	
  separated	
  into	
  two	
  categories:	
  short	
  columns	
  and	
  
slender	
  columns.	
  
	
  
Short	
  Column	
  
A	
  short	
  column	
  is	
  a	
  structural	
  member	
  whose	
  relatively	
  short	
  length	
  virtually	
  ensures	
  it	
  
will	
  fail	
  in	
  compression	
  if	
  it	
  is	
  evenly	
  loaded	
  along	
  its	
  axis.	
  Columns	
  can	
  be	
  classified	
  as	
  
short,	
  intermediate,	
  or	
  long,	
  depending	
  on	
  their	
  lengths,	
  their	
  material	
  properties,	
  and	
  
the	
  lengths	
  of	
  other	
  columns	
  in	
  the	
  same	
  structure.	
  A	
  short	
  column	
  differs	
  from	
  a	
  
medium	
  or	
  long	
  column,	
  each	
  of	
  which	
  can	
  fail	
  by	
  bending	
  when	
  evenly	
  loaded	
  along	
  the	
  
axis.	
  
	
  
Slender	
  Column	
  
A	
  slender	
  column	
  is	
  one	
  whose	
  length	
  is	
  large	
  in	
  comparison	
  to	
  its	
  cross-­‐sectional	
  
dimensions	
  and,	
  when	
  loaded	
  to	
  its	
  extreme,	
  fails	
  by	
  buckling	
  (abruptly	
  bending)	
  out	
  of	
  
its	
  straight-­‐line	
  shape	
  and	
  suddenly	
  collapsing	
  before	
  reaching	
  the	
  compressive	
  
strength	
  of	
  its	
  material.	
  This	
  is	
  called	
  a	
  condition	
  of	
  instability.	
  An	
  intermediate	
  column	
  
falls	
  between	
  the	
  classifications	
  of	
  short	
  and	
  slender.	
  When	
  loaded	
  to	
  its	
  extreme,	
  the	
  
intermediate	
  column	
  falls	
  by	
  a	
  combination	
  of	
  compression	
  and	
  instability.	
  
	
  
	
  
	
  
	
  
	
  
	
  
 
Reinforced	
  Concrete	
  Beam	
  
A	
  beam	
  bends	
  under	
  bending	
  moment,	
  resulting	
  in	
  a	
  small	
  curvature.	
  At	
  the	
  outer	
  face	
  
(tensile	
  face)	
  of	
  the	
  curvature	
  the	
  concrete	
  experiences	
  tensile	
  stress,	
  while	
  at	
  the	
  inner	
  
face	
  (compressive	
  face)	
  it	
  experiences	
  compressive	
  stress.	
  	
  
	
  
	
  
	
  
Singly	
  Reinforced	
  Beam	
  
A	
  singly	
  reinforced	
  beam	
  is	
  one	
  in	
  which	
  the	
  concrete	
  element	
  is	
  only	
  reinforced	
  near	
  
the	
  tensile	
  face	
  and	
  the	
  reinforcement,	
  called	
  tension	
  steel,	
  is	
  designed	
  to	
  resist	
  the	
  
tension.	
  
	
  
Doubly	
  Reinforced	
  Beam	
  
A	
  doubly	
  reinforced	
  beam	
  is	
  one	
  in	
  which	
  besides	
  the	
  tensile	
  reinforcement	
  the	
  
concrete	
  element	
  is	
  also	
  reinforced	
  near	
  the	
  compressive	
  face	
  to	
  help	
  the	
  concrete	
  resist	
  
compression.	
  The	
  latter	
  reinforcement	
  is	
  called	
  compression	
  steel.	
  When	
  the	
  
compression	
  zone	
  of	
  a	
  concrete	
  is	
  inadequate	
  to	
  resist	
  the	
  compressive	
  moment	
  
(positive	
  moment),	
  extra	
  reinforcement	
  has	
  to	
  be	
  provided	
  if	
  the	
  architect	
  limits	
  the	
  
dimensions	
  of	
  the	
  section.	
  
	
  
Under-­‐Reinforced	
  Beam	
  
An	
  under-­‐reinforced	
  beam	
  is	
  one	
  in	
  which	
  the	
  tension	
  capacity	
  of	
  the	
  tensile	
  
reinforcement	
  is	
  smaller	
  than	
  the	
  combined	
  compression	
  capacity	
  of	
  the	
  concrete	
  and	
  
the	
  compression	
  steel	
  (under-­‐reinforced	
  at	
  tensile	
  face).	
  When	
  the	
  reinforced	
  concrete	
  
element	
  is	
  subject	
  to	
  increasing	
  bending	
  moment,	
  the	
  tension	
  steel	
  yields	
  while	
  the	
  
concrete	
  does	
  not	
  reach	
  its	
  ultimate	
  failure	
  condition.	
  As	
  the	
  tension	
  steel	
  yields	
  and	
  
stretches,	
  an	
  "under-­‐reinforced"	
  concrete	
  also	
  yields	
  in	
  a	
  ductile	
  manner,	
  exhibiting	
  a	
  
large	
  deformation	
  and	
  warning	
  before	
  its	
  ultimate	
  failure.	
  In	
  this	
  case	
  the	
  yield	
  stress	
  of	
  
the	
  steel	
  governs	
  the	
  design.	
  
 
	
  
Over-­‐Reinforced	
  Beam	
  
An	
  over-­‐reinforced	
  beam	
  is	
  one	
  in	
  which	
  the	
  tension	
  capacity	
  of	
  the	
  tension	
  steel	
  is	
  
greater	
  than	
  the	
  combined	
  compression	
  capacity	
  of	
  the	
  concrete	
  and	
  the	
  compression	
  
steel	
  (over-­‐reinforced	
  at	
  tensile	
  face).	
  So	
  the	
  "over-­‐reinforced	
  concrete"	
  beam	
  fails	
  by	
  
crushing	
  of	
  the	
  compressive-­‐zone	
  concrete	
  and	
  before	
  the	
  tension	
  zone	
  steel	
  yields,	
  
which	
  does	
  not	
  provide	
  any	
  warning	
  before	
  failure	
  as	
  the	
  failure	
  is	
  instantaneous.	
  
	
  
Balanced-­‐Reinforced	
  Beam	
  
A	
  balanced-­‐reinforced	
  beam	
  is	
  one	
  in	
  which	
  both	
  the	
  compressive	
  and	
  tensile	
  zones	
  
reach	
  yielding	
  at	
  the	
  same	
  imposed	
  load	
  on	
  the	
  beam,	
  and	
  the	
  concrete	
  will	
  crush	
  and	
  
the	
  tensile	
  steel	
  will	
  yield	
  at	
  the	
  same	
  time.	
  This	
  design	
  criterion	
  is	
  however	
  as	
  risky	
  as	
  
over-­‐reinforced	
  concrete,	
  because	
  failure	
  is	
  sudden	
  as	
  the	
  concrete	
  crushes	
  at	
  the	
  same	
  
time	
  of	
  the	
  tensile	
  steel	
  yields,	
  which	
  gives	
  a	
  very	
  little	
  warning	
  of	
  distress	
  in	
  tension	
  
failure.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
 
	
  
	
  
4.2	
  Structural	
  System	
  of	
  Case	
  Study	
  	
  
Moment	
  Resisting	
  Frames	
  	
  
Moment-­‐resisting	
  frames	
  are	
  rectilinear	
  assemblages	
  of	
  beams	
  and	
  columns,	
  with	
  the	
  
beams	
  rigidly	
  connected	
  to	
  the	
  columns.	
  It	
  is	
  use	
  to	
  resist	
  lateral	
  forces	
  by	
  the	
  
development	
  of	
  bending	
  moment	
  and	
  shear	
  force	
  in	
  the	
  frame	
  members	
  and	
  joints.	
  
By	
  virtue	
  of	
  the	
  rigid	
  beam-­‐column	
  connections,	
  a	
  moment	
  frame	
  cannot	
  displace	
  
laterally	
  without	
  bending	
  the	
  beams	
  or	
  columns	
  depending	
  on	
  the	
  geometry	
  of	
  the	
  
connection.	
  	
  
	
  
	
  
	
  
	
  
	
  
Flexural	
  yielding	
  of	
  beams	
  and	
  columns	
  and	
  shear	
  yielding	
  of	
  column	
  panel	
  zones	
  are	
  
the	
  primary	
  source	
  of	
  lateral	
  stiffness	
  and	
  strength	
  for	
  the	
  entire	
  frame.	
  Beam	
  column	
  
joints	
  in	
  a	
  reinforced	
  concrete	
  moment	
  resisting	
  frame	
  are	
  crucial	
  zones	
  for	
  transfer	
  of	
  
loads	
  effectively	
  between	
  the	
  connecting	
  in	
  the	
  structure.	
  
Types	
  of	
  joints	
  in	
  frames	
  
The	
  joint	
  defined	
  as	
  the	
  portion	
  of	
  the	
  column	
  within	
  the	
  depth	
  of	
  the	
  deepest	
  beam	
  that	
  
frames	
  into	
  the	
  column.	
  There	
  are	
  3	
  types	
  of	
  joints	
  in	
  a	
  moment	
  resisting	
  frame:	
  
1. Interior	
  joint-­‐	
  when	
  4	
  beams	
  frame	
  into	
  the	
  vertical	
  faces	
  of	
  a	
  column.	
  
2. Exterior	
  joint-­‐	
  when	
  1	
  beam	
  frames	
  into	
  vertical	
  face	
  of	
  the	
  column	
  and	
  2	
  other	
  
beams	
  frame	
  from	
  perpendicular	
  directions	
  into	
  the	
  joint.	
  
3. Corner	
  joint-­‐	
  when	
  a	
  beam	
  each	
  frames	
  into	
  two	
  adjacent	
  vertical	
  faces	
  of	
  	
  	
  a	
  
column.	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Column	
  and	
  Beams	
  Structural	
  Systems	
  
Foundation	
  utilize	
  a	
  combination	
  of	
  bearing	
  walls,	
  columns	
  and	
  piers	
  to	
  transmit	
  
building	
  loads	
  directly	
  to	
  earth.	
  These	
  structural	
  elements	
  can	
  form	
  various	
  types	
  of	
  
substructures.	
  
	
  
	
  
	
  
	
  
	
   	
  
	
   	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
This	
  diagram	
  shows	
  the	
  
components	
  of	
  the	
  building	
  
structure	
  highlighting	
  on	
  the	
  
columns	
  and	
  beams.	
  Timber	
  
flooring	
  were	
  applied	
  on	
  the	
  
first	
  floor	
  with	
  a	
  layer	
  of	
  slab.	
  
The	
  Concrete	
  slabs-­‐on-­‐grade	
  
supported	
  directly	
  by	
  the	
  
earth	
  at	
  the	
  bottom	
  and	
  
thickened	
  to	
  carry	
  wall	
  and	
  
column	
  loads	
  which	
  is	
  
economical	
  for	
  one	
  and	
  two	
  
storey	
  building	
  in	
  climate	
  
where	
  no	
  ground	
  frost	
  occur.	
  
beam	
  
column	
  
timber	
  flooring	
  
concrete	
  slab	
  
 
Floor	
  Systems	
  
	
  
One	
  Way	
  Slab	
  
	
  
	
  
Two	
  Way	
  Slab	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
A	
  rectangular	
  reinforced	
  concrete	
  slab	
  which	
  sp
ans	
  a	
  distance	
  very	
  much	
  greater	
  in	
  one	
  
direction	
  than	
  the	
  other;	
  under	
  these	
  conditions
,	
  most	
  of	
  the	
  load	
  is	
  carried	
  on	
  the	
  shorter	
  span.	
  	
  
A	
  rectangular,	
  reinforced	
  concrete	
  slab	
  having	
  
a	
  span	
  on	
  the	
  long	
  side	
  that	
  is	
  less	
  than	
  twice	
  	
  	
  
the	
  span	
  on	
  the	
  short	
  side	
  and	
  transfer	
  their	
  
loads	
  to	
  all	
  the	
  four	
  support	
  walls.	
  
4.3	
  Indication	
  of	
  plans	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
 
Indication	
  of	
  columns	
  and	
  beams	
  in	
  structural	
  plans	
  
	
  
	
  
	
  
	
  
	
  
4.4	
  Distribution	
  in	
  the	
  Structure	
  
	
  
To	
  determine	
  whether	
  a	
  slab	
  is	
  one	
  way	
  or	
  two	
  way	
  slab,	
  divide	
  the	
  longer	
  span	
  of	
  the	
  
panel	
  (L)	
  by	
  the	
  shorter	
  span	
  panel	
  (B).	
  
	
  
If	
  L/B	
  is	
  greater	
  than	
  or	
  equal	
  to	
  2,	
  it	
  is	
  a	
  one	
  way	
  slab.	
  
	
  
If	
  L/B	
  is	
  lesser	
  than	
  2,	
  it	
  is	
  a	
  two	
  way	
  slab.	
  
	
  
	
  
	
  
Figure	
  of	
  a	
  one	
  way	
  slab	
  load	
  distribution.	
  It	
  is	
  supported	
  by	
  beams	
  in	
  only	
  2	
  sides.	
  
	
  
	
  
Figure	
  of	
  a	
  two	
  way	
  slab	
  load	
  distribution.	
  It	
  is	
  supported	
  by	
  beams	
  in	
  all	
  4	
  sides.	
  
	
  
	
  
 
	
  
 
	
  
	
  
	
  
	
  
5.0	
  Conclusion	
  
	
  
To	
  conclude	
  our	
  group	
  project,	
  we	
  have	
  gained	
  knowledge	
  which	
  involves	
  structural	
  
theory	
  and	
  basic	
  structural	
  proposal.	
  As	
  going	
  through	
  structural	
  appraisal	
  by	
  
identifying	
  the	
  structural	
  members,	
  we	
  have	
  learnt	
  of	
  basic	
  structure	
  layout	
  drawing	
  for	
  
architectural	
  drawings	
  as	
  well	
  as	
  considerations	
  on	
  beam	
  and	
  column	
  sizing	
  that	
  will	
  
affect	
  the	
  integrity	
  of	
  a	
  structure.	
  Appraisal	
  of	
  structural	
  system	
  is	
  done	
  in	
  ways	
  such	
  as	
  
using	
  assisting	
  tools,	
  thorough	
  research	
  of	
  ways	
  and	
  thanks	
  to	
  our	
  lecturer	
  who	
  has	
  
given	
  out	
  great	
  hand	
  on	
  producing	
  the	
  final	
  products.	
  The	
  report	
  produced	
  gave	
  us	
  an	
  
insight	
  from	
  structural	
  member	
  comprising	
  of	
  reinforced	
  concrete	
  material	
  throughout	
  
the	
  whole	
  building	
  started	
  from	
  the	
  roof	
  beam	
  above	
  throughout	
  the	
  basic	
  skeletal	
  
structure	
  that	
  in	
  the	
  end	
  transfer	
  the	
  load	
  to	
  ground	
  beam.	
  They	
  are	
  connected	
  through	
  
joint	
  and	
  the	
  coordination	
  of	
  structural	
  members	
  allow	
  the	
  load	
  to	
  be	
  transfer	
  uniformly	
  
and	
  effectively.	
  Difference	
  from	
  main	
  supporting	
  structural	
  system	
  such	
  as	
  column	
  to	
  
minor	
  structural	
  stiffener	
  is	
  identified	
  as	
  well	
  in	
  this	
  project.	
  
Last	
  but	
  not	
  least,	
  we	
  would	
  like	
  to	
  thank	
  Mr.	
  Mohd	
  Adib	
  Ramli	
  for	
  his	
  guidance	
  
throughout	
  this	
  project.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
6.0	
  References	
  
	
  
1. "Column	
  -­‐	
  Definition	
  and	
  More	
  from	
  the	
  Free	
  Merriam-­‐Webster	
  
Dictionary".	
  Merriam-­‐webster.com.	
  2012-­‐08-­‐31.	
  Retrieved	
  2013-­‐07-­‐04.
2.	
  Hool,	
  George	
  A.;	
  Johnson,	
  Nathan	
  Clarke	
  (1920).	
  "Elements	
  of	
  
Structural	
  Theory	
  -­‐Definitions".	
  Handbook of Building Construction
(Google	
  Books).	
  vol.	
  1	
  (1st	
  ed.).	
  New York:	
  McGraw-­‐Hill.	
  p.	
  2.	
  Retrieved	
  
2008-­‐10-­‐01.	
  "A	
  cantilever	
  beam	
  is	
  a	
  beam	
  having	
  one	
  end rigidly	
  fixed	
  
and	
  the	
  other	
  end	
  free."
3.	
  Bǎnicǎ,	
  Florinel-­‐Gabriel	
  (2012).	
  Chemical Sensors and
Biosensors:Fundamentals and Applications.	
  Chichester,	
  UK:	
  John	
  Wiley	
  &	
  
Sons.	
  p.	
  576.	
  ISBN	
  9781118354230.
4.	
  R.J.	
  Wilfinger,	
  P.	
  H.	
  Bardell	
  and	
  D.	
  S.	
  Chhabra:	
  The	
  resonistor	
  a	
  
frequency	
  selective	
  device	
  utilizing	
  the	
  mechanical	
  resonance	
  of	
  a	
  silicon	
  
substrate,	
  IBM	
  J.	
  12,	
  113-­‐118	
  (1968)
5.	
  P.	
  C.	
  Fletcher,	
  Y.	
  Xu,	
  P.	
  Gopinath,	
  J.	
  Williams,	
  B.	
  W.	
  Alphenaar,	
  R.	
  D.	
  
Bradshaw,	
  R.	
  S	
  Keynton,	
  "Piezoresistive	
  Geometry	
  for	
  Maximizing	
  
Microcantilever	
  Array	
  Sensitivity,"presented	
  at	
  the	
  IEEE	
  Sensors,	
  Lecce,	
  
Italy,	
  2008.
6.	
  The	
  Architects'	
  Journal	
  Existing	
  stadiums:	
  St	
  James'	
  Park,	
  Newcastle.	
  1	
  
July	
  2005	
  9.
7. G.	
  Noselli,	
  F.	
  Dal	
  Corso	
  and	
  D.	
  Bigoni,	
  The	
  stress	
  intensity	
  near	
  a	
  
stiffener	
  disclosed	
  by photoelasticity.	
  International	
  Journal	
  of	
  Fracture,	
  
2010,	
  166,	
  91–103. Koiter,	
  W.T.,	
  On	
  the	
  diffusion	
  of	
  load	
  from	
  a	
  stiffener	
  
into	
  a	
  sheet.	
  Q.	
  J.	
  Mech.	
  Appl.	
  Math. 1955,	
  VIII,	
  164–178.
8.	
  Nilson,	
  Darwin	
  ,	
  Dolan.	
  Design of Concrete Structures.	
  the	
  MacGraw-­‐
Hill	
  Education,	
  2003. p.	
  80-­‐90.
9.	
  ASCE/SEI 7-05 Minimum Design Loads for Buildings and Other
Structures.	
  American Society	
  of	
  Civil	
  Engineers.	
  2006.	
  p.	
  1.	
  ISBN	
  0-­‐7844-­‐
0809-­‐2.
10.	
  Avallone,	
  E.A.,	
  and	
  Baumeister,	
  T.	
  (ed.).	
  Mark's Standard Handbook
for Mechanical
	
  
	
  
	
  

More Related Content

What's hot

What's hot (20)

Slab (By Engg.Mohammad Asim Nosherwani BUET khuzdar)
Slab  (By Engg.Mohammad Asim Nosherwani BUET khuzdar)Slab  (By Engg.Mohammad Asim Nosherwani BUET khuzdar)
Slab (By Engg.Mohammad Asim Nosherwani BUET khuzdar)
 
10.01.03.049-One Way Slab
10.01.03.049-One Way Slab10.01.03.049-One Way Slab
10.01.03.049-One Way Slab
 
Development Length Hook Splice Of Reinforcements
Development Length Hook Splice Of ReinforcementsDevelopment Length Hook Splice Of Reinforcements
Development Length Hook Splice Of Reinforcements
 
Stepped footing
Stepped footingStepped footing
Stepped footing
 
Design of reinforced concrete beam
Design of reinforced concrete beamDesign of reinforced concrete beam
Design of reinforced concrete beam
 
Two way slab by Rashedul kabir
Two way slab by Rashedul kabirTwo way slab by Rashedul kabir
Two way slab by Rashedul kabir
 
Flat slab
Flat slabFlat slab
Flat slab
 
Pelat pondasi
Pelat pondasiPelat pondasi
Pelat pondasi
 
Rc design ii
Rc design iiRc design ii
Rc design ii
 
Design and detailing of flat slabs
Design and detailing of flat slabs Design and detailing of flat slabs
Design and detailing of flat slabs
 
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
 
Two way slab
Two way slabTwo way slab
Two way slab
 
Design of floor slab
Design of floor slabDesign of floor slab
Design of floor slab
 
Onewayslab
OnewayslabOnewayslab
Onewayslab
 
Flexural design of Beam...PRC-I
Flexural design of Beam...PRC-IFlexural design of Beam...PRC-I
Flexural design of Beam...PRC-I
 
Ahsanullah university ppt 1
Ahsanullah university  ppt 1Ahsanullah university  ppt 1
Ahsanullah university ppt 1
 
DESIGN OF STEEL STRUCTURE
DESIGN OF STEEL STRUCTUREDESIGN OF STEEL STRUCTURE
DESIGN OF STEEL STRUCTURE
 
Concrete beam design
Concrete beam designConcrete beam design
Concrete beam design
 
Design project
Design projectDesign project
Design project
 
One-Way Slab Design
One-Way Slab DesignOne-Way Slab Design
One-Way Slab Design
 

Viewers also liked

Viewers also liked (15)

Design of two way slab
Design of two way slabDesign of two way slab
Design of two way slab
 
Lecture 12 equivalent frame method
Lecture 12 equivalent frame methodLecture 12 equivalent frame method
Lecture 12 equivalent frame method
 
ONE WAY SLAB DESIGN
ONE WAY SLAB DESIGNONE WAY SLAB DESIGN
ONE WAY SLAB DESIGN
 
Beam and slab design
Beam and slab designBeam and slab design
Beam and slab design
 
Presentation on Slab, Beam & Column
Presentation on Slab, Beam & ColumnPresentation on Slab, Beam & Column
Presentation on Slab, Beam & Column
 
Calculation of dead load
Calculation of dead loadCalculation of dead load
Calculation of dead load
 
Building structure real
Building structure realBuilding structure real
Building structure real
 
Dead load of structure
Dead load of structureDead load of structure
Dead load of structure
 
Module 4 module 2 structural layout & details
Module 4   module 2 structural layout & detailsModule 4   module 2 structural layout & details
Module 4 module 2 structural layout & details
 
NSCP 2010 , Volume 1
NSCP 2010 , Volume 1NSCP 2010 , Volume 1
NSCP 2010 , Volume 1
 
DESIGN OF FLAT SLABS
DESIGN OF FLAT SLABSDESIGN OF FLAT SLABS
DESIGN OF FLAT SLABS
 
Engineering formula sheet
Engineering formula sheetEngineering formula sheet
Engineering formula sheet
 
Architectural structures
Architectural structuresArchitectural structures
Architectural structures
 
Design and analasys of a g+2 residential building
Design and analasys of a g+2 residential building Design and analasys of a g+2 residential building
Design and analasys of a g+2 residential building
 
Civil Engineering (Beams,Columns)
Civil Engineering (Beams,Columns)Civil Engineering (Beams,Columns)
Civil Engineering (Beams,Columns)
 

Similar to B.structures report-project2 done

Extension report b
Extension report bExtension report b
Extension report bBaddy Peigun
 
IBS design proposal of apartment
IBS design proposal of apartmentIBS design proposal of apartment
IBS design proposal of apartmentJy Chong
 
Building Technology I
Building Technology IBuilding Technology I
Building Technology IOng Shi Hui
 
Building Technology 1 (Project 1)
Building Technology 1 (Project 1)Building Technology 1 (Project 1)
Building Technology 1 (Project 1)Soh Shing
 
Project 1: Structural Design Post Mortem
Project 1: Structural Design Post MortemProject 1: Structural Design Post Mortem
Project 1: Structural Design Post MortemDavidJPCChai
 
Building Technology 1
Building Technology 1Building Technology 1
Building Technology 1Gertrude Lee
 
Building Technology 1 Construction Solutions Report
Building Technology 1 Construction Solutions ReportBuilding Technology 1 Construction Solutions Report
Building Technology 1 Construction Solutions Reportdouglasloon
 
Structural Design Post Mortem
Structural Design Post MortemStructural Design Post Mortem
Structural Design Post MortemJing Fan Koh
 
BUILDING CONSTRUCTION REPORT
BUILDING CONSTRUCTION REPORT BUILDING CONSTRUCTION REPORT
BUILDING CONSTRUCTION REPORT Eric Lo
 
Arch.CE Portfolio
Arch.CE PortfolioArch.CE Portfolio
Arch.CE PortfolioAngela Su
 
Bcon bus shelter skeletal construction P1
Bcon bus shelter skeletal construction P1Bcon bus shelter skeletal construction P1
Bcon bus shelter skeletal construction P1Ow Cong
 
Building Structure Project 2
Building Structure Project 2Building Structure Project 2
Building Structure Project 2En Huey
 
SITE VISIT REPORT
SITE VISIT REPORTSITE VISIT REPORT
SITE VISIT REPORTWan Nee
 
A technical seminar bubble deck slab.pptx
A technical seminar bubble deck slab.pptxA technical seminar bubble deck slab.pptx
A technical seminar bubble deck slab.pptxhkhemanth564
 
A technical seminar bubble deck slab.pptx
A technical seminar bubble deck slab.pptxA technical seminar bubble deck slab.pptx
A technical seminar bubble deck slab.pptxhkhemanth564
 
Angeline Kon_Kee Hooi_0302068_BTech1-P1-Alternative Construction Solution and...
Angeline Kon_Kee Hooi_0302068_BTech1-P1-Alternative Construction Solution and...Angeline Kon_Kee Hooi_0302068_BTech1-P1-Alternative Construction Solution and...
Angeline Kon_Kee Hooi_0302068_BTech1-P1-Alternative Construction Solution and...Angeline KH
 
B tech final report pdf
 B tech final report pdf B tech final report pdf
B tech final report pdfyenweizheng
 

Similar to B.structures report-project2 done (20)

Extension report b
Extension report bExtension report b
Extension report b
 
IBS design proposal of apartment
IBS design proposal of apartmentIBS design proposal of apartment
IBS design proposal of apartment
 
Building Technology I
Building Technology IBuilding Technology I
Building Technology I
 
Building Technology 1 (Project 1)
Building Technology 1 (Project 1)Building Technology 1 (Project 1)
Building Technology 1 (Project 1)
 
Project 1: Structural Design Post Mortem
Project 1: Structural Design Post MortemProject 1: Structural Design Post Mortem
Project 1: Structural Design Post Mortem
 
Building Technology 1
Building Technology 1Building Technology 1
Building Technology 1
 
Building Technology 1 Construction Solutions Report
Building Technology 1 Construction Solutions ReportBuilding Technology 1 Construction Solutions Report
Building Technology 1 Construction Solutions Report
 
Structural Design Post Mortem
Structural Design Post MortemStructural Design Post Mortem
Structural Design Post Mortem
 
Bconreport
BconreportBconreport
Bconreport
 
BUILDING CONSTRUCTION REPORT
BUILDING CONSTRUCTION REPORT BUILDING CONSTRUCTION REPORT
BUILDING CONSTRUCTION REPORT
 
Arch.CE Portfolio
Arch.CE PortfolioArch.CE Portfolio
Arch.CE Portfolio
 
Bcon
BconBcon
Bcon
 
Bcon bus shelter skeletal construction P1
Bcon bus shelter skeletal construction P1Bcon bus shelter skeletal construction P1
Bcon bus shelter skeletal construction P1
 
Building Structure Project 2
Building Structure Project 2Building Structure Project 2
Building Structure Project 2
 
SITE VISIT REPORT
SITE VISIT REPORTSITE VISIT REPORT
SITE VISIT REPORT
 
Mod. 1.pptx
Mod. 1.pptxMod. 1.pptx
Mod. 1.pptx
 
A technical seminar bubble deck slab.pptx
A technical seminar bubble deck slab.pptxA technical seminar bubble deck slab.pptx
A technical seminar bubble deck slab.pptx
 
A technical seminar bubble deck slab.pptx
A technical seminar bubble deck slab.pptxA technical seminar bubble deck slab.pptx
A technical seminar bubble deck slab.pptx
 
Angeline Kon_Kee Hooi_0302068_BTech1-P1-Alternative Construction Solution and...
Angeline Kon_Kee Hooi_0302068_BTech1-P1-Alternative Construction Solution and...Angeline Kon_Kee Hooi_0302068_BTech1-P1-Alternative Construction Solution and...
Angeline Kon_Kee Hooi_0302068_BTech1-P1-Alternative Construction Solution and...
 
B tech final report pdf
 B tech final report pdf B tech final report pdf
B tech final report pdf
 

More from lee yiang siang

A study of how sustainable building materials benefit belum rainforest resort
A study of how sustainable building materials benefit belum rainforest resortA study of how sustainable building materials benefit belum rainforest resort
A study of how sustainable building materials benefit belum rainforest resortlee yiang siang
 
Oscar individual b structure report
Oscar individual b structure reportOscar individual b structure report
Oscar individual b structure reportlee yiang siang
 

More from lee yiang siang (7)

A study of how sustainable building materials benefit belum rainforest resort
A study of how sustainable building materials benefit belum rainforest resortA study of how sustainable building materials benefit belum rainforest resort
A study of how sustainable building materials benefit belum rainforest resort
 
Subang parade b.service
Subang parade b.serviceSubang parade b.service
Subang parade b.service
 
Oscar individual b structure report
Oscar individual b structure reportOscar individual b structure report
Oscar individual b structure report
 
Fettucine recipe
Fettucine recipeFettucine recipe
Fettucine recipe
 
Fettucine recipe
Fettucine recipeFettucine recipe
Fettucine recipe
 
Fettucine truss bridge
Fettucine truss bridgeFettucine truss bridge
Fettucine truss bridge
 
Subang parade b.service
Subang parade b.serviceSubang parade b.service
Subang parade b.service
 

Recently uploaded

ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701bronxfugly43
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxNikitaBankoti2
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxAreebaZafar22
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
 

Recently uploaded (20)

ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptx
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 

B.structures report-project2 done

  • 1.   SCHOOL  OF  ARCHITECTURE,  BUILDING  &  DESIGN     Centre  for  Modern  Architecture  Studies  in  Southeast  Asia  (MASSA)     Bachelor  of  Science  (Honours)  (Architecture)     BUILDING  STRUCTURES  [ARC  2522/  2523]         Project  2  -­‐  Extension  of  a  R.  C.  bungalow                                       LING  TECK  ONG  0303127   CHUNG  KA  SENG  0316922   POH  WEI  KEAT  0303646   LEE  YIANG  SIANG  0302966   CELINE  TAN  JEAN  INN  0303669   WONG  SOON  FOOK  0302953   WONG  KIEN  HOU  0312104   WONG  JIA  XIN  1101G13277     Tutor:  Mr.  Mohd  Adib  Ramli    
  • 2. Table  of  Content     1.0  Introduction  of  the  case  study       2.0  Measured  Drawings     3.0  3D  Model                              3.1  Perspective  views                              3.2  Structural  layout     4.0  Case  study:  Appraisal  of  structural  system     4.1  Structural  element       4.2  Structural  system  of  case  study       4.3  Indication  on  plans       4.4  Distribution  in  the  structure       5.0  Conclusion       6.0  References                          
  • 3.   1.0  Introduction     In  this  project,  we  are  introduced  to  structural  theory,  force  calculation  and  basic   structural  proposal.  This  project  will  allow  us  to  understand  the  building  structure.  Our   case  study  is  a  two  storey  bungalow  house.  It  is  located  at  No.  4,  Jalan  SS1/  34,  Seksyen   26,  Petaling  Jaya,  46300  Sea  Park,  Selangor.  This  bungalow  has  quite  a  large  garden  area   at  the  side.       Observations  of  the  structure  of  the  bungalow  were  made  and  recorded.  We  are   able  to  identify  the  columns  and  beams  from  our  site  visit.         The  bungalow  has  5  bedrooms.  An  extension  has  been  made  to  the  bungalow.   The  side  is  extended  by  2  terraces  on  the  ground  floor  while  the  back  is  extended  by   adding  a  space  for  utility  and  wet  kitchen.       Our  case  study  is  using  column  and  beam  structural  system  and  the  orthographic   drawing  of  the  bungalow  is  provided  in  order  to  help  our  understanding  of  the  building   structure.        
  • 4. Figure  1:  Front  facade  of  bungalow       Figure  2:  Extended  area  -­‐  2  terraces       Figure  3:  Extended  area  -­‐  wet  kitchen  and  utility  room  
  • 5.   Figure  4:  Land  area  available  for  extension       Figure  5:  Existing  column  located  in  the                                Figure  6:  Existing  column  located  in  the                                          living  room  still  in  use  after                                                                              dry  kitchen  still  in  use  after                                          extension                                                                                                                                                    extension    
  • 6. 2.0  Measured  Drawings                                                         WETKITCHEN ULTILITY DININGROOM DRYKITCHENROOM LIVINGROOMTERRACE TERRACE ENTRANCE ROOM A B C D E 12341234 PRODUCEDBYANAUTODESKEDUCATIONALPRODUCT PRODUCEDBYANAUTODESKEDUCATIONALPRODUCT PRODUCEDBYANAUTODESKEDUCATIONALPRODUCT PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT FIRST  FLOOR  PLAN  GROUND  FLOOR  PLAN  
  • 7.                                                         EXISTINGTERRACE ULTILITY ROOM FIRSTFLOORPLAN ENTRANCE B C GROUNDFLOORPLAN F 12 D E F 12 EXISTING LIVINGROOM EXISTING DININGROOM EXISTINGDRY KITCHEN EXISTINGWET KITCHEN B C D E 43 543 EXISTING MASTER BEDROOM EXISTING BEDROOM1 EXISTING BEDROOM2EXISTING ROOM EXISTING BATH1 EXISTING BATH2 A 14 2 3785 2509 A 23 134 3398 2562 3707 321030845733 3785 EXISTINGTERRACE C1150x300 37073398 exteriorbeam 150x610 150mmthk floorslab interiorbeam 150x450 STIFFENER 150x150 PADFOOTING 1200x1200 5 2498 PRODUCEDBYANAUTODESKEDUCATIONALPRODUCT PRODUCEDBYANAUTODESKEDUCATIONALPRODUCT PRODUCEDBYANAUTODESKEDUCATIONALPRODUCT PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT
  • 8. 3.0  3D  Model   3.1  Perspective  Views       Figure  7:  front  perspective  view       Figure  8:  right  perspective  view    
  • 9.   Figure  9:  left  perspective  view         Figure  10:  right  perspective  view          
  • 10.     Figure  11:  bird  eye  view                          
  • 11. 3.2  Structural  Layout              
  • 12.     4.0  Case  study:  Appraisal  of  structural  system   4.1  Structural  element     The  studied  bungalow  is  identified  to  be  using  shallow  foundation  and  pad  footing  is   used.       Figure  7:  section  of  pad  footing       -­‐  most  economical  shallow  foundation  types  but  are  more  susceptible  to  differential                settlement.   -­‐  usually  support  single  concentrated  loads,  such  as  those  imposed  by  columns.   -­‐  isolated  or  independent  slab  of  concrete  foundation  to  support  concrete  columns  or          steel  pillars,  detached  brick  or  masonry  piers.   -­‐  the  pier  or  column  bearing  on  the  centre  point  of  the  slab.   -­‐  the  thickness  is  govern  by  the  same  consideration  as  for  strip  footing  and  is  made  not          less  than  the  projection  of  the  slab  beyond  the  face  of  the  column  or  pier,  or  the  edge          of  the  base  plate  of  a  steel  stanchion.   -­‐  in  whatever  circumstances  the  thickness  should  be  less  than  150mm  thick,  and  should    
  • 13.      the  base  become  very  "wide  and  thicker",  the  reduction  in  thickness  can  be  effected  by          introducing  reinforcement  to  the  slab.                                                                 Figure  8:  pad  footing  showing  grade  beam     Shallow  Foundations   Shallow  foundation  systems  can  be  classified  as  spread  footings,  wall  and  continuous   (strip)  footings,  and  mat  (raft)  foundations.  Variations  are  combined  footings,   cantilevered  (strapped)  footings,  two-­‐way  strip  (grid)  footings,  and  discontinuous   (punched)  mat  foundations.                   Grade  beam     A  grade  beam  or  grade  beam   footing  is  a  component  of  a   building's  foundation.  It   consists  of  a  reinforced   concrete  beam  that  transmits   the  load  from  a  bearing  wall   into  spaced  foundations  such   as  pile  caps  or  caissons.  It  is   used  in  conditions  where  the   surface  soil’s  load-­‐bearing   capacity  is  less  than  the   anticipated  design  loads.   Combined  footings   (Fig.  8)  are  used   where  the  bearing   areas  of  closely   spaced  columns   overlap.  
  • 14. Figure  8:  combined  footing     Figure  8:  cantilever  footing           Figure  9:  continuous  footings  for  (a)  a  wall,  (b)  several  columns       Cantilever  footings   (Fig.  9)  are  designed   to  accommodate   eccentric  loads.   Continuous  wall   and  strip   footings  (Fig.  9)   can  be  designed   to  redistribute   bearing-­‐stress   concentrations   and  associated   differential   settlements  in   the  event  of   variable  bearing   conditions  or   localized   ground  loss   beneath   footings.    
  • 15.       Figure  10:  reinforced  concrete  building  elements   To  distribute  the  load  of  the  foundation  on  the  soil,  spread  footings  are  installed  below   the  building's  foundation.  This  type  of  footing  is  continous  below  the  perimeter  of  the   house  walls  and  may  be  thickened  or  widened  at  the  points  where  concentrated  loads   are  applied  e.g.  columns.  These  components  are  constructed  from  concrete  and  are   often  reinforced  with  rebar  or  steel  to  add  additional  support.  Depending  on  the  size   and  configuration  of  the  building,  the  footers  can  be  buried  just  below  ground  level  or   several  feet  below  the  surface.  In  cold  climates,  they  are  always  placed  below  the  frost   line  to  minimize  problems  with  concrete  heaving  that  occurs  during  freeze/thaw  cycles.   This  type  of  footer  design  is  highly  beneficial  to  builders  and  homeowners.  Since  they   transfer  the  weight  of  the  building  over  a  large  area,  they  have  little  risk  of  failure.      
  • 16.     Reinforced  Concrete  Column   A  reinforced  concrete  column  is  a  structural  members  designed  to  carry  compressive   loads,  composed  of  concrete  with  an  embedded  steel  frame  to  provide  reinforcement.   For  design  purposes,  the  columns  are  separated  into  two  categories:  short  columns  and   slender  columns.     Short  Column   A  short  column  is  a  structural  member  whose  relatively  short  length  virtually  ensures  it   will  fail  in  compression  if  it  is  evenly  loaded  along  its  axis.  Columns  can  be  classified  as   short,  intermediate,  or  long,  depending  on  their  lengths,  their  material  properties,  and   the  lengths  of  other  columns  in  the  same  structure.  A  short  column  differs  from  a   medium  or  long  column,  each  of  which  can  fail  by  bending  when  evenly  loaded  along  the   axis.     Slender  Column   A  slender  column  is  one  whose  length  is  large  in  comparison  to  its  cross-­‐sectional   dimensions  and,  when  loaded  to  its  extreme,  fails  by  buckling  (abruptly  bending)  out  of   its  straight-­‐line  shape  and  suddenly  collapsing  before  reaching  the  compressive   strength  of  its  material.  This  is  called  a  condition  of  instability.  An  intermediate  column   falls  between  the  classifications  of  short  and  slender.  When  loaded  to  its  extreme,  the   intermediate  column  falls  by  a  combination  of  compression  and  instability.              
  • 17.   Reinforced  Concrete  Beam   A  beam  bends  under  bending  moment,  resulting  in  a  small  curvature.  At  the  outer  face   (tensile  face)  of  the  curvature  the  concrete  experiences  tensile  stress,  while  at  the  inner   face  (compressive  face)  it  experiences  compressive  stress.           Singly  Reinforced  Beam   A  singly  reinforced  beam  is  one  in  which  the  concrete  element  is  only  reinforced  near   the  tensile  face  and  the  reinforcement,  called  tension  steel,  is  designed  to  resist  the   tension.     Doubly  Reinforced  Beam   A  doubly  reinforced  beam  is  one  in  which  besides  the  tensile  reinforcement  the   concrete  element  is  also  reinforced  near  the  compressive  face  to  help  the  concrete  resist   compression.  The  latter  reinforcement  is  called  compression  steel.  When  the   compression  zone  of  a  concrete  is  inadequate  to  resist  the  compressive  moment   (positive  moment),  extra  reinforcement  has  to  be  provided  if  the  architect  limits  the   dimensions  of  the  section.     Under-­‐Reinforced  Beam   An  under-­‐reinforced  beam  is  one  in  which  the  tension  capacity  of  the  tensile   reinforcement  is  smaller  than  the  combined  compression  capacity  of  the  concrete  and   the  compression  steel  (under-­‐reinforced  at  tensile  face).  When  the  reinforced  concrete   element  is  subject  to  increasing  bending  moment,  the  tension  steel  yields  while  the   concrete  does  not  reach  its  ultimate  failure  condition.  As  the  tension  steel  yields  and   stretches,  an  "under-­‐reinforced"  concrete  also  yields  in  a  ductile  manner,  exhibiting  a   large  deformation  and  warning  before  its  ultimate  failure.  In  this  case  the  yield  stress  of   the  steel  governs  the  design.  
  • 18.     Over-­‐Reinforced  Beam   An  over-­‐reinforced  beam  is  one  in  which  the  tension  capacity  of  the  tension  steel  is   greater  than  the  combined  compression  capacity  of  the  concrete  and  the  compression   steel  (over-­‐reinforced  at  tensile  face).  So  the  "over-­‐reinforced  concrete"  beam  fails  by   crushing  of  the  compressive-­‐zone  concrete  and  before  the  tension  zone  steel  yields,   which  does  not  provide  any  warning  before  failure  as  the  failure  is  instantaneous.     Balanced-­‐Reinforced  Beam   A  balanced-­‐reinforced  beam  is  one  in  which  both  the  compressive  and  tensile  zones   reach  yielding  at  the  same  imposed  load  on  the  beam,  and  the  concrete  will  crush  and   the  tensile  steel  will  yield  at  the  same  time.  This  design  criterion  is  however  as  risky  as   over-­‐reinforced  concrete,  because  failure  is  sudden  as  the  concrete  crushes  at  the  same   time  of  the  tensile  steel  yields,  which  gives  a  very  little  warning  of  distress  in  tension   failure.                                  
  • 19.       4.2  Structural  System  of  Case  Study     Moment  Resisting  Frames     Moment-­‐resisting  frames  are  rectilinear  assemblages  of  beams  and  columns,  with  the   beams  rigidly  connected  to  the  columns.  It  is  use  to  resist  lateral  forces  by  the   development  of  bending  moment  and  shear  force  in  the  frame  members  and  joints.   By  virtue  of  the  rigid  beam-­‐column  connections,  a  moment  frame  cannot  displace   laterally  without  bending  the  beams  or  columns  depending  on  the  geometry  of  the   connection.               Flexural  yielding  of  beams  and  columns  and  shear  yielding  of  column  panel  zones  are   the  primary  source  of  lateral  stiffness  and  strength  for  the  entire  frame.  Beam  column   joints  in  a  reinforced  concrete  moment  resisting  frame  are  crucial  zones  for  transfer  of   loads  effectively  between  the  connecting  in  the  structure.   Types  of  joints  in  frames   The  joint  defined  as  the  portion  of  the  column  within  the  depth  of  the  deepest  beam  that   frames  into  the  column.  There  are  3  types  of  joints  in  a  moment  resisting  frame:   1. Interior  joint-­‐  when  4  beams  frame  into  the  vertical  faces  of  a  column.   2. Exterior  joint-­‐  when  1  beam  frames  into  vertical  face  of  the  column  and  2  other   beams  frame  from  perpendicular  directions  into  the  joint.  
  • 20. 3. Corner  joint-­‐  when  a  beam  each  frames  into  two  adjacent  vertical  faces  of      a   column.                     Column  and  Beams  Structural  Systems   Foundation  utilize  a  combination  of  bearing  walls,  columns  and  piers  to  transmit   building  loads  directly  to  earth.  These  structural  elements  can  form  various  types  of   substructures.                                 This  diagram  shows  the   components  of  the  building   structure  highlighting  on  the   columns  and  beams.  Timber   flooring  were  applied  on  the   first  floor  with  a  layer  of  slab.   The  Concrete  slabs-­‐on-­‐grade   supported  directly  by  the   earth  at  the  bottom  and   thickened  to  carry  wall  and   column  loads  which  is   economical  for  one  and  two   storey  building  in  climate   where  no  ground  frost  occur.   beam   column   timber  flooring   concrete  slab  
  • 21.   Floor  Systems     One  Way  Slab       Two  Way  Slab                                 A  rectangular  reinforced  concrete  slab  which  sp ans  a  distance  very  much  greater  in  one   direction  than  the  other;  under  these  conditions ,  most  of  the  load  is  carried  on  the  shorter  span.     A  rectangular,  reinforced  concrete  slab  having   a  span  on  the  long  side  that  is  less  than  twice       the  span  on  the  short  side  and  transfer  their   loads  to  all  the  four  support  walls.  
  • 22. 4.3  Indication  of  plans                                      
  • 23.   Indication  of  columns  and  beams  in  structural  plans            
  • 24. 4.4  Distribution  in  the  Structure     To  determine  whether  a  slab  is  one  way  or  two  way  slab,  divide  the  longer  span  of  the   panel  (L)  by  the  shorter  span  panel  (B).     If  L/B  is  greater  than  or  equal  to  2,  it  is  a  one  way  slab.     If  L/B  is  lesser  than  2,  it  is  a  two  way  slab.         Figure  of  a  one  way  slab  load  distribution.  It  is  supported  by  beams  in  only  2  sides.       Figure  of  a  two  way  slab  load  distribution.  It  is  supported  by  beams  in  all  4  sides.      
  • 25.    
  • 26.          
  • 27. 5.0  Conclusion     To  conclude  our  group  project,  we  have  gained  knowledge  which  involves  structural   theory  and  basic  structural  proposal.  As  going  through  structural  appraisal  by   identifying  the  structural  members,  we  have  learnt  of  basic  structure  layout  drawing  for   architectural  drawings  as  well  as  considerations  on  beam  and  column  sizing  that  will   affect  the  integrity  of  a  structure.  Appraisal  of  structural  system  is  done  in  ways  such  as   using  assisting  tools,  thorough  research  of  ways  and  thanks  to  our  lecturer  who  has   given  out  great  hand  on  producing  the  final  products.  The  report  produced  gave  us  an   insight  from  structural  member  comprising  of  reinforced  concrete  material  throughout   the  whole  building  started  from  the  roof  beam  above  throughout  the  basic  skeletal   structure  that  in  the  end  transfer  the  load  to  ground  beam.  They  are  connected  through   joint  and  the  coordination  of  structural  members  allow  the  load  to  be  transfer  uniformly   and  effectively.  Difference  from  main  supporting  structural  system  such  as  column  to   minor  structural  stiffener  is  identified  as  well  in  this  project.   Last  but  not  least,  we  would  like  to  thank  Mr.  Mohd  Adib  Ramli  for  his  guidance   throughout  this  project.                                
  • 28. 6.0  References     1. "Column  -­‐  Definition  and  More  from  the  Free  Merriam-­‐Webster   Dictionary".  Merriam-­‐webster.com.  2012-­‐08-­‐31.  Retrieved  2013-­‐07-­‐04. 2.  Hool,  George  A.;  Johnson,  Nathan  Clarke  (1920).  "Elements  of   Structural  Theory  -­‐Definitions".  Handbook of Building Construction (Google  Books).  vol.  1  (1st  ed.).  New York:  McGraw-­‐Hill.  p.  2.  Retrieved   2008-­‐10-­‐01.  "A  cantilever  beam  is  a  beam  having  one  end rigidly  fixed   and  the  other  end  free." 3.  Bǎnicǎ,  Florinel-­‐Gabriel  (2012).  Chemical Sensors and Biosensors:Fundamentals and Applications.  Chichester,  UK:  John  Wiley  &   Sons.  p.  576.  ISBN  9781118354230. 4.  R.J.  Wilfinger,  P.  H.  Bardell  and  D.  S.  Chhabra:  The  resonistor  a   frequency  selective  device  utilizing  the  mechanical  resonance  of  a  silicon   substrate,  IBM  J.  12,  113-­‐118  (1968) 5.  P.  C.  Fletcher,  Y.  Xu,  P.  Gopinath,  J.  Williams,  B.  W.  Alphenaar,  R.  D.   Bradshaw,  R.  S  Keynton,  "Piezoresistive  Geometry  for  Maximizing   Microcantilever  Array  Sensitivity,"presented  at  the  IEEE  Sensors,  Lecce,   Italy,  2008. 6.  The  Architects'  Journal  Existing  stadiums:  St  James'  Park,  Newcastle.  1   July  2005  9. 7. G.  Noselli,  F.  Dal  Corso  and  D.  Bigoni,  The  stress  intensity  near  a   stiffener  disclosed  by photoelasticity.  International  Journal  of  Fracture,   2010,  166,  91–103. Koiter,  W.T.,  On  the  diffusion  of  load  from  a  stiffener   into  a  sheet.  Q.  J.  Mech.  Appl.  Math. 1955,  VIII,  164–178. 8.  Nilson,  Darwin  ,  Dolan.  Design of Concrete Structures.  the  MacGraw-­‐ Hill  Education,  2003. p.  80-­‐90.
  • 29. 9.  ASCE/SEI 7-05 Minimum Design Loads for Buildings and Other Structures.  American Society  of  Civil  Engineers.  2006.  p.  1.  ISBN  0-­‐7844-­‐ 0809-­‐2. 10.  Avallone,  E.A.,  and  Baumeister,  T.  (ed.).  Mark's Standard Handbook for Mechanical