SlideShare a Scribd company logo
1 of 10
Download to read offline
International Journal of Trend in Scientific Research and Development (IJTSRD)
Volume 4 Issue 6, September-October 2020
@ IJTSRD | Unique Paper ID – IJTSRD33508
Thermal Performance
Heat Exchangers
Vishal Deshmukh
1,2Trinity Institute of Technology and Research, RGPV Bhopal, Madhya Pradesh, I
ABSTRACT
The value of compact heat exchangers (CHEs) has been recognised in
aerospace, automotive, gas turbine power station, and other industries for
the last 50 years or more. This is attributed to many reasons, for example
manufacturing restrictions, often high efficiency requirements, low cost,
and the use of air or gas as one of the fluids in the exchanger. Together with
new and improved forms of CHEs, these advances are an excellent
opportunity to bring compact heat exchangers into the process industry,
particularly where saving energy is an essential target. High energy prices
are also encouraging companies to use energy saving strategies at their
plants as much as possible. During decades, attempts to increase heat
transfer, decrease heat transfer times a
efficiency have been made. Recent advancements in nanotechnology have
facilitated the creation of a new type of liquids called nanofluids. Most
theoretical and computational experiments have shown that nanofluids
demonstrate an improved coefficient of heat transfer relative to their base
fluid. This CFD research explores the impact on the performance of
straight-square compact heat exchangers from Al2O3 / water nanofluid
flow. The Al2O3 / water nanofluids with three weight fract
nanoparticles (i.e. 0.4, 0.8, and 1.2 percent) were used.
nanofluid were measured and observed to influence the heat transfer and
flow of fluids in a straight-square compact heat exchanger.
conclusions can be drawn based on the provided results, the thermal
conductance are approximately 29% higher and the heat transfer are
approximately 35 % higher in comparison with the conventional fluid i.e.
water.
KEYWORDS: Compact heat exchanger, Nano
Thermal conductance
I. INTRODUCTION
Shell and tube or variants constitute approximately 35%
of the total of heat exchangers used in the petroleum and
process industries, becoming by far the most common
technology [1, 2]. Although these types of heat exchangers
are efficient and durable, they are not ideal for use in
certain applications because of their wide volumes and
footprint areas [1, 3]. Their main characteristic is the large
surface area for a fixed volume, which makes compact heat
exchangers very effective. These devices are modern and
effective, but still worth a lot of research worldwide, even
though they are recently significantly advanced.
Compact heat exchangers were designed for applications
1.1. Diffusion bonded compact heat exchangers
In general, the compact heat exchanger is produced from a large number of channel panels, chemically etched or water
jet machined [4, 5].
International Journal of Trend in Scientific Research and Development (IJTSRD)
October 2020 Available Online: www.ijtsrd.com
33508 | Volume – 4 | Issue – 6 | September
Thermal Performance of Diffusion-Bonded Compact
Heat Exchangers using Al2O3/Water Nanofluid
Vishal Deshmukh1, Prof. Animesh Singhai2
1Research Scholar, 2Professor,
Trinity Institute of Technology and Research, RGPV Bhopal, Madhya Pradesh, I
The value of compact heat exchangers (CHEs) has been recognised in
aerospace, automotive, gas turbine power station, and other industries for
the last 50 years or more. This is attributed to many reasons, for example
igh efficiency requirements, low cost,
and the use of air or gas as one of the fluids in the exchanger. Together with
new and improved forms of CHEs, these advances are an excellent
opportunity to bring compact heat exchangers into the process industry,
rticularly where saving energy is an essential target. High energy prices
are also encouraging companies to use energy saving strategies at their
plants as much as possible. During decades, attempts to increase heat
transfer, decrease heat transfer times and eventually improve energy
efficiency have been made. Recent advancements in nanotechnology have
facilitated the creation of a new type of liquids called nanofluids. Most
theoretical and computational experiments have shown that nanofluids
improved coefficient of heat transfer relative to their base
fluid. This CFD research explores the impact on the performance of
square compact heat exchangers from Al2O3 / water nanofluid
flow. The Al2O3 / water nanofluids with three weight fractions of
nanoparticles (i.e. 0.4, 0.8, and 1.2 percent) were used. The effect of
nanofluid were measured and observed to influence the heat transfer and
square compact heat exchanger. The following
on the provided results, the thermal
conductance are approximately 29% higher and the heat transfer are
approximately 35 % higher in comparison with the conventional fluid i.e.
Compact heat exchanger, Nano-fluids, CFD, Heat Transfer and
How to cite this paper
Deshmukh | Prof. Animesh Singhai
"Thermal Performance of Diffusion
Bonded Compact Heat Exchangers using
Al2O3/Water Nanofluid" Published in
International
Journal of Trend in
Scientific Research
and Development
(ijtsrd), ISSN:
2456-6470,
Volume-4 | Issue
October 2020,
pp.838-847, URL:
www.ijtsrd.com/papers/ijtsrd33508.pdf
Copyright © 20
International Journal of Trend in
Scientific Research and Development
Journal. This is an Open Access article
distributed under
the terms of the
Creative Commons
Attribution License (CC BY 4.0)
(http://creativecommons.org/licenses/by/4.0)
approximately 35%
of the total of heat exchangers used in the petroleum and
process industries, becoming by far the most common
technology [1, 2]. Although these types of heat exchangers
are efficient and durable, they are not ideal for use in
ications because of their wide volumes and
footprint areas [1, 3]. Their main characteristic is the large
surface area for a fixed volume, which makes compact heat
exchangers very effective. These devices are modern and
research worldwide, even
though they are recently significantly advanced.
Compact heat exchangers were designed for applications
where small weight and space requirements are
mandatory, as seen in the fields of aerospace, maritime,
and automotive. Hot and/or cold streams will flow
through non-circular cross-section ducts, i.e. triangular or
rectangular, among other geometries in many heat
exchangers particularly the compact ones. Normally, the
lengths of these ducts are short. The system can function
in several regimes, ranging from laminar to turbulent. A
compact heat exchanger (CHE)
designed to effectively convert heat from one medium to
another, characterized by a wide area
heat transfer (minimum 300 m
heat transfer (up to 5000 W / m
Diffusion bonded compact heat exchangers
In general, the compact heat exchanger is produced from a large number of channel panels, chemically etched or water
International Journal of Trend in Scientific Research and Development (IJTSRD)
www.ijtsrd.com e-ISSN: 2456 – 6470
September-October 2020 Page 838
Bonded Compact
/Water Nanofluid
Trinity Institute of Technology and Research, RGPV Bhopal, Madhya Pradesh, India
How to cite this paper: Vishal
Deshmukh | Prof. Animesh Singhai
"Thermal Performance of Diffusion-
Bonded Compact Heat Exchangers using
Al2O3/Water Nanofluid" Published in
International
of Trend in
Scientific Research
and Development
(ijtsrd), ISSN:
6470,
4 | Issue-6,
October 2020,
847, URL:
ww.ijtsrd.com/papers/ijtsrd33508.pdf
Copyright © 2020 by author(s) and
International Journal of Trend in
cientific Research and Development
Journal. This is an Open Access article
distributed under
the terms of the
Creative Commons
Attribution License (CC BY 4.0)
(http://creativecommons.org/licenses/by/4.0)
where small weight and space requirements are
mandatory, as seen in the fields of aerospace, maritime,
nd/or cold streams will flow
section ducts, i.e. triangular or
rectangular, among other geometries in many heat
exchangers particularly the compact ones. Normally, the
lengths of these ducts are short. The system can function
several regimes, ranging from laminar to turbulent. A
compact heat exchanger (CHE) is a piece of equipment
designed to effectively convert heat from one medium to
another, characterized by a wide area-to - volume ratio of
heat transfer (minimum 300 m2 / m3), high coefficients of
heat transfer (up to 5000 W / m2 K), limited flow passages.
In general, the compact heat exchanger is produced from a large number of channel panels, chemically etched or water –
IJTSRD33508
International Journal of Trend in Scientific Research and Development (IJTSRD)
@ IJTSRD | Unique Paper ID – IJTSRD33508
Figure 1 Diffusion bonded micro channel heat exchanger.
A diffusion bonding technique is applied following a stacking procedure to create the core. This technology provides
excellent mechanical strength at the interface, allowing these excha
reach 50 MPa in certain circumstances [3, 6].In addition to more common oil exploration systems, advanced high
temperature reactors, solar concentrated applications, air respiration synergetic and rocke
exchangers and diffusion bonding have been used over the years [7
In order to reduce the size and costs of the heat exchanger, improving the heat transfer by different techniques has
received great attention over the years. Different heat exchanger technologies have, as effective techniques, been
developed to increase heat transfer rate:
1. Nanofluids
2. Insert heat exchanger turbulators
3. Roughening surfaces. While the mixture of all three methods or two can be used fo
1.2. Nanofluids
Researchers have sought in recent years to minimise heat exchangers' size and weight. Some companies uses
fluids such as gasoline, water and ethylene glycol. Heat transfer fluid is weaker than solids in te
because of its poor thermal conductivity; therefore, it limits the quality and compactness of engineering goods.
Some techniques are used to increase the heat transfer performance. They are each incorporated into general heat t
fluids by small solid particles such as metallic, non
micro particles are used, they cannot be used, although the thermal efficiency improves. When problems are caused, such
as quick partitioning, flow channel blocking, lower stability and increased liquid pressure drops. These problems can be
overcome with the use of nanometer-sized particles dispersion.
same reason in base fluids instead of these particles. These suspensions, known as
industries and are one of the novel developments. Most theoretical and computational experiments have shown that
nanofluids demonstrate an improved coefficient of he
increased concentration of nanoparticles as well as number of Reynolds.
II. LITERATURE REVIEW
As the need for more effective heat transfer systems grows, researchers have been using vario
improvement techniques since the mid-1950s. The substantial growth in the number of research publications devoted to
this topic has demonstrated, to date, a substantial improvement in the importance of heat transfer technology.
A significant amount of theoretical as well as empirical and quantitative study has been carried out to improve the transfer
of heat. A brief review of the related literature is described in this chapter to show the degree of work already published i
the open literature on the development of the heat transfer by the application of nano fluids, and use of compact heat
exchanger.
2.1. Previous work
Owing to the heat transfer properties of nanoparticles, industries such as solar synthesis, gas sensing, biological sensing,
pharmaceutical, nuclear reactors, the petroleum industry, etc. have followed the idea of using nanoparticles in their
respective fields to boost the heat transfer performance of regular fluids.Thermal conductivity is increased by the
inclusion of nanoparticles as technically demonstrated by
Masuda et al. (1993) and Minsta et al. (2009)
5 per cent › has resulted in a major increase (10
Kim et al. (2007) examined the critical role of nanofluids in the field of nuclear physics. Proven nanofluids will increase
the efficiency of any water-cooled nuclear device system. Possible uses include pressuri
standby protection devices, acceleration targets, plasma diverters, and so on [14, 15].
International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com
33508 | Volume – 4 | Issue – 6 | September
Diffusion bonded micro channel heat exchanger.
A diffusion bonding technique is applied following a stacking procedure to create the core. This technology provides
excellent mechanical strength at the interface, allowing these exchangers to withstand extremely high pressures which can
reach 50 MPa in certain circumstances [3, 6].In addition to more common oil exploration systems, advanced high
temperature reactors, solar concentrated applications, air respiration synergetic and rocke
exchangers and diffusion bonding have been used over the years [7–10], among others.
In order to reduce the size and costs of the heat exchanger, improving the heat transfer by different techniques has
the years. Different heat exchanger technologies have, as effective techniques, been
Roughening surfaces. While the mixture of all three methods or two can be used for a better heat transfer.
Researchers have sought in recent years to minimise heat exchangers' size and weight. Some companies uses
fluids such as gasoline, water and ethylene glycol. Heat transfer fluid is weaker than solids in te
because of its poor thermal conductivity; therefore, it limits the quality and compactness of engineering goods.
Some techniques are used to increase the heat transfer performance. They are each incorporated into general heat t
fluids by small solid particles such as metallic, non-metallic and polymeric. In many applications, if millimetres or even
micro particles are used, they cannot be used, although the thermal efficiency improves. When problems are caused, such
ick partitioning, flow channel blocking, lower stability and increased liquid pressure drops. These problems can be
sized particles dispersion. Nanoparticles with a size of 1
luids instead of these particles. These suspensions, known as nanofluids
industries and are one of the novel developments. Most theoretical and computational experiments have shown that
nanofluids demonstrate an improved coefficient of heat transfer relative to their base fluid and increase dramatically with
increased concentration of nanoparticles as well as number of Reynolds.
As the need for more effective heat transfer systems grows, researchers have been using vario
1950s. The substantial growth in the number of research publications devoted to
this topic has demonstrated, to date, a substantial improvement in the importance of heat transfer technology.
ant amount of theoretical as well as empirical and quantitative study has been carried out to improve the transfer
of heat. A brief review of the related literature is described in this chapter to show the degree of work already published i
ature on the development of the heat transfer by the application of nano fluids, and use of compact heat
Owing to the heat transfer properties of nanoparticles, industries such as solar synthesis, gas sensing, biological sensing,
pharmaceutical, nuclear reactors, the petroleum industry, etc. have followed the idea of using nanoparticles in their
respective fields to boost the heat transfer performance of regular fluids.Thermal conductivity is increased by the
cles as technically demonstrated by Choi et al. (2001) [11].
Minsta et al. (2009) have shown that the incorporation of a limited volume of nano
5 per cent › has resulted in a major increase (10-50 per cent) in the thermal conductivity of simple fluids [12,13].
examined the critical role of nanofluids in the field of nuclear physics. Proven nanofluids will increase
cooled nuclear device system. Possible uses include pressurized water reactor, main coolant,
standby protection devices, acceleration targets, plasma diverters, and so on [14, 15].
www.ijtsrd.com eISSN: 2456-6470
September-October 2020 Page 839
A diffusion bonding technique is applied following a stacking procedure to create the core. This technology provides
ngers to withstand extremely high pressures which can
reach 50 MPa in certain circumstances [3, 6].In addition to more common oil exploration systems, advanced high-
temperature reactors, solar concentrated applications, air respiration synergetic and rocket engines, compact heat
In order to reduce the size and costs of the heat exchanger, improving the heat transfer by different techniques has
the years. Different heat exchanger technologies have, as effective techniques, been
r a better heat transfer.
Researchers have sought in recent years to minimise heat exchangers' size and weight. Some companies uses conventional
fluids such as gasoline, water and ethylene glycol. Heat transfer fluid is weaker than solids in terms of thermal conductivity
because of its poor thermal conductivity; therefore, it limits the quality and compactness of engineering goods.
Some techniques are used to increase the heat transfer performance. They are each incorporated into general heat transfer
metallic and polymeric. In many applications, if millimetres or even
micro particles are used, they cannot be used, although the thermal efficiency improves. When problems are caused, such
ick partitioning, flow channel blocking, lower stability and increased liquid pressure drops. These problems can be
Nanoparticles with a size of 1–100 nm are used for this
nanofluids, are used in many
industries and are one of the novel developments. Most theoretical and computational experiments have shown that
at transfer relative to their base fluid and increase dramatically with
As the need for more effective heat transfer systems grows, researchers have been using various heat transfer
1950s. The substantial growth in the number of research publications devoted to
this topic has demonstrated, to date, a substantial improvement in the importance of heat transfer technology.
ant amount of theoretical as well as empirical and quantitative study has been carried out to improve the transfer
of heat. A brief review of the related literature is described in this chapter to show the degree of work already published in
ature on the development of the heat transfer by the application of nano fluids, and use of compact heat
Owing to the heat transfer properties of nanoparticles, industries such as solar synthesis, gas sensing, biological sensing,
pharmaceutical, nuclear reactors, the petroleum industry, etc. have followed the idea of using nanoparticles in their
respective fields to boost the heat transfer performance of regular fluids.Thermal conductivity is increased by the
have shown that the incorporation of a limited volume of nano-particles <
mal conductivity of simple fluids [12,13].
examined the critical role of nanofluids in the field of nuclear physics. Proven nanofluids will increase
zed water reactor, main coolant,
International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470
@ IJTSRD | Unique Paper ID – IJTSRD33508 | Volume – 4 | Issue – 6 | September-October 2020 Page 840
From Jackson’s (2007) point of view, the critical heat flux may be increased by producing a controlled surface from
nanofluid deposition. The use of nanofluid will increase the in-vessel retention capability of nuclear reactors by as much as
40% [16].
Chandrasekhar et al. (2017) experimentally investigated and theoretically validated the behavior of Al2O3/water
nanofluid that was prepared by chemical precipitation method. For their investigation, Al2O3/water at different volume
concentrations was studied. They concluded that the increase in viscosity of the nanofluid is higher than that of the
effective thermal conductivity. Although both viscosity and thermal conductivity increases as the volume concentration is
increased, increase in viscosity predominate the increase in thermal conductivity. Also various other theoretical models
were also proposed in their paper [17].
Hady et al. (2017) experimentally investigated the performance on the effect of alumina water (Al2O3/H2O) nanofluid in a
chilled water air conditioning unit. They made use of various concentrations ranging from 0.1-1 wt % and the nanofluid
was supplied at different flow rates. Their results showed that less time was required to achieve desired chilled fluid
temperature as compared to pure water. Also reported was a lesser consumption of power which showed an increase in
the cooling capacity of the unit. Moreover the COP of the unit was enhanced by 5 % at a volume concentration of 0.1 %,
and an increase of 17 % at a volume concentration of 1 % respectively [18].
Rohit S. Khedkar et al. (2017): Experimental experiments on double tube heat exchanger for water for heat transfer
from nanofluids to base fluids, using nanofluids as a working fluid, with different nanoparticles. For a fixed heat transfer
surface with various volume fractions of Al2O3 nanoparticles in simple fluids, the total heat transfer coefficient was
experimentally calculated and results contrasted with pure water. The findings they found 3% of nanofluids with average
heat transfer coefficients 16% higher than water show optimal efficiency [19].
Compact heat exchangers with different topologies of channels, namely: straight, zigzag, s-type, and airfoil configuration
were studied in recent years.
Mylavarapu et al. (2014) the thermal-hydraulic output with helium was assessed as working fluid by the two straight,
semicircular printed circuit heat exchangers (PCHE). A comparison between the model and the experimentation findings
indicate that the experimental Fanning friction factor was underestimated by the theoretical models. When the transition
to turbulence begins, the Nusselt number derived from their model correlate well to the experimental Nusselt number for
Reynolds up to 1700. A strong agreement for the Nusselt numbers model is found for Reynolds larger than 3000 [20].
Seo et al. (2015) the thermal transport of the straight semicircular microchannel PCHE, measured by Reynolds up to 850,
was examined and water was used for cold as well as hot surfaces as working fluid [21].
In a straight semicircular mini-channel PCHE with counterflow arrangement Kwon et al. (2018) experimentally tested
the heat transfer coefficient. The PCHE was measured at cryogenic temperatures under different heat transfer conditions:
single phase, boiling and condensation. The test number of Reynolds ranged from 8500 to 17 000 during the single-phase
trial [22]. They contrasted their results with associations between Gnielinski [23] and Peng and Peterson [24].
Chu et al. (2018) the thermohydraulic performance of PCHE as heating exchange fluids was evaluated with a direct semi-
circular channel with SCO2 and water. The first was the water and water mixture to discover water associations for the
PCHE waterside. There were two tests performed. The test shows that the association between Gnielinski [23] and the
average of Reynolds ranges between 2800 and 6700 by 13.2 and 8.6% respectively. A mixture of SCO2 and water was used
as fluids in the second test. The effects on the thermal efficiency of the PCHE were evaluated in this test for thermal
properties, strain and the pseudo-critical effects. Correlations have been indicated on the SCO2 line, which are true on
Reynolds, between 30.000 and 70.000, in order to quantify Nusselt numbers in conjunction with fluid properties [25].
A.P.C. Sarmiento et al. (2020) Presents an experimental and theoretical examination of the thermal efficiency of a
compact heat exchanger of square direct diffusion stainless steel. The thermal characteristics of the heat exchange is
predicted by a single-dimensional steady state thermal model. An experimental test apparatus was designed to verify the
model and study the thermal actions of the heat exchanger. In multiple Reynolds variations, 2600 to 7500 were tested for
the heat exchanger reflecting the transition to turbulent regimes. The temperatures ranged from 70 ˚C and 80 ˚C for water
and between 25 ˚C and 42 ˚C at heat exchanger intake. A strong consensus was established between the experimental
results and the research model [26].
The literature review strongly points to the theoretical and experimental evaluation of laminar and turbulent Reynolds
numbers worked under high temperatures and pressures (supercritical fluid) in much of the work on compact heating
exchangers coupled with diffusion bonding. Note that the effect of the working fluid on the compact heat exchanger is
ignored in most of these works. In laminar or turbulent flow conditions the researchers constantly observed high rates of
heat transfer with various kinds of nanofluids flowing in a channel. The improvement in nanofluid heat transfer depends
on the particle concentration, thermal conductivity of nanoparticles and mass flow rates. Various aspects of nanofluids and
various methods for the use of nano fluids to increase heat transfer rates were explored by the above researchers in many
heat exchangers. The study concentrates on growing the effectiveness of nanofluid in several research papers. Some
papers, however, concentrate on nanofluid and its effect, effectiveness, heat transfer and overall coefficient of heat
International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470
@ IJTSRD | Unique Paper ID – IJTSRD33508 | Volume – 4 | Issue – 6 | September-October 2020 Page 841
transfer. Research clearly show that nanofluids have higher heat transfer enhancements than normal base fluids such as
water, oil etc. No studies have been published on the use of nanofluids as a working medium in compact heat exchangers
to the best of the authors' literature surveys.
2.2. Research Objectives
In this analysis, the thermal characteristics of a nanofluid in a straight-square compact heat exchanger was investigated
using a 3-dimensional numerical (3-D) simulation where single-phase streams flow in a diffusion-bonded compact heat
exchanger in the transition to turbulent regimes. The simulation programme ANSYS 17.0 was used for study of the heat
transfer physiognomies of a compact heat exchanger with nano-fluids.
The main objectives of the present work are as follows:
To analyze the thermal characteristics of straight-square compact heat exchanger using nanofluid.
To develop compact pipe heat exchanger model and validation on CFD model will be carried out with comparison of
previous experimental model.
Effect of nanofluid in compact heat exchanger, thermal characteristics is analyzed by parameters such as the Heat
transfer rate, and Thermal conductance.
Calculating the effects of various volume concentrations of nanoparticles present in the nanofluid and their effects on
heat transfer.
III. COMPUTATIONAL MODEL
The geometry of straight-square compact heat exchanger using nanofluids performing the simulation study is taken from
the one of the research scholar’s A.P.C. Sarmiento et al. (2020) [26] with exact dimensions.
Table 1 Design parameters of the compact heat exchanger
Parameter Hot side Cold side
Channel pitch(mm),b 3 3
Channel width(mm),w 3 3
Intermediate plate thickness(mm),a 1 1
Fin thickness(mm),e 1.5 1.5
Hydraulic diameter(mm),Dh 3 3
Number of layers 9 9
Core width (mm), W 88 88
Core height (mm), H 72 72
Pure counter flow length(mm),Lcounter 210 --------
Total flow length of the plate(mm),L 363 344
Entrance Length(mm), Linlet 23 0
Exit Length(mm), Lout 23 0
Figure 2 Solid model of compact heat exchanger
The CFD analysis of the heat exchanger is performed in the ANSYS Fluent module.
The solid model of the heat exchanger is created in design modular.
In the pre-processor step of ANSYS FLUENT R17.0, a three-dimensional discretized model of compact heat exchanger was
developed. Although the styles of grids are connected to simulation performance, the entire structure is discretized in the
finite volume of Quadcore tetrahedral grids in order to reliably calculate the thermal characteristics of compact heat
exchanger using correct grids.
International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470
@ IJTSRD | Unique Paper ID – IJTSRD33508 | Volume – 4 | Issue – 6 | September-October 2020 Page 842
Table 2 Meshing details
The applied design Number of nodes and elements
Compact heat exchanger 267155 and 804078
IV. NUMERICAL PROCEDURE
The Fluent 17.0 was used to calculate computationally. In research, the approach used to differentiate the governing
equations was a finite element. For this convective term, the researchers used a simpler algorithm, and for connecting
calculations of the pressure and velocity the second order upwind method was implemented. A standard k-epsilon
equation was used with flow and energy equations to solve turbulence.
Which implies the following hypotheses:
1. There is negligence of thermal radiation and normal convection;
2. The average of fluid and solid properties is calculated
3. Flow is incompressible;
4. heat transfer steady-state;
5. Transitional fluid flow and turbulent regimes, and
6. The fluid is distributed uniformly between the channels and the inlet channels have a uniform velocity profile.
4.1. Governing equations
The numerical simulation was with a 3-Dimensional steady state turbulent flow system. In order to solve the problem,
governing equations for the flow and conjugate transfer of heat were customized according to the conditions of the
simulation setup. The governing equations for mass, momentum, energy, turbulent kinetic energy and turbulent energy
dissipation are expressed as follow,
Mass:
= 0
Momentum:
= −
Energy Equation:
=
In this project, k-	 model of renormalization group (RNG) was introduced since the estimation of near-wall flows and
flows can be enhanced with a high streamline curvature. In the enhanced RNG k- model wall thermal effect equations, the
thermal effect parameter was chosen.
Turbulent kinetic energy:
+ =
!
+ "# + $
Turbulent energy dissipation:
%
+
&
=
'
'
!
+ ()&
&
#
"# + (*&$
&+
#
Where, "# represents the generation of turbulent kinetic energy due to the mean velocity gradient and
	,-.. = , + , 	
, = ( $
#+
&
The empirical constants for the RNG k-ε model are allotted as following:
()& = 1.42
(*& = 1.68
5& = 1.39
Table 3 Thermodynamic Properties of water, air, and nano-particles
Input Parameters Symbols Water Air Al2O3 Units
Specific heat capacity cph 4182 1006.43 750 J/kg-K
Density $ 998 1.225 3970 (kg/m3)
Thermal conductivity k 0.598 0.0242 46 W/m-K
International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470
@ IJTSRD | Unique Paper ID – IJTSRD33508 | Volume – 4 | Issue – 6 | September-October 2020 Page 843
Here the effective properties of the Al2O3/water nanofluid are defined as follows:Pak and cho [27], Patel [28] and
Ebrahmnia- Bajestan [29] suggested the below equations for determining density, thermal conductivity, specific heat and
viscosity of nanofluids.
$8. = ∅ $ + :1 − ∅ ;$<.
:$( ;8.
= 1 − ∅ $( <. + ∅ $(
=8. = =<. >
?* @ A*∅ @ A
?* @ ?∅ @ A
B
,8. = @
)A∅ +.C
Table 4 Thermodynamic Properties of Al2O3/water based nanofluid
Concentration
(% by weight)
Density
(kg/m3)
Specific heat
(J/kg-K)
Thermal Conductivity
(W/m-K)
Dynamic viscosity
(Pa-s)
0.4 1000.364 4170.10 0.598 0.00103
0.8 1002.728 4158.267 0.599 0.00102
1.2 1005.092 4146.48 0.600 0.00103
The discrete flow domain has been defined under sufficient limits. Inlets were allocated the mass flow rate requirements,
while pressure outlet limits were allocated for outlets. The surfaces of the heat exchanger is regarded as normal wall
limits. The interior walls were fitted with couplings of thermal walls. Table 5.5. Consolidates the restricting constraints on
operating heat exchanger fluids. The input data are the inlet temperatures, pressures, and flow rate. The heat exchanger
works in a counter-flow configuration.
Table 5 Details of boundary conditions
Detail Boundary Type Value Remarks
Inlet-Air Velocity inlet 4,8 and 12 m/s
Hydraulic diameter=0.03m and Turbulent
intensity=3%
Inlet-Working fluid
(water + Nanoparticles at
different concentration )
Mass flow rate inlet 0.89 kg/s
Hydraulic diameter=0.03m and Turbulent
intensity=3%
Outlet Pressure outlet 0 Pa (gauge) 3% Turbulent intensity with Hydraulic diameter
Inner surfaces, etc. Standard wall Coupled Coupled between solid and fluid
Outer surfaces Standard wall Heat flux=0 Insulated
Figure 3 Inlet and outlet of the cold fluid stream of compact heat exchanger
Figure 4 Inlet and outlet of the hot fluid stream of compact heat exchanger
International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470
@ IJTSRD | Unique Paper ID – IJTSRD33508 | Volume – 4 | Issue – 6 | September-October 2020 Page 844
The inlet temperature of the cold fluid stream 29.94, 31.93, and 44.53°C for the velocity 4, 8 and 12 m/s respectively.
While the inlet temperature of the hot fluid stream 70°C.The solution is initialized and iterated after putting the boundary
conditions in a curve line map such that the value of all parameters is visible. After the iteration gets completed final
outcome may be observed.
V. RESULTS AND DISCUSSIONS
This section is aimed at evaluating the compact heat exchanger thermal performance using nanofluids. The variations in
the Heat transfer rate, and Thermal conductance are measured at different numbers of the mass flow rate in order to
research the performance of the compact heat exchanger using nanofluids subject to flow.
6.1. Validation of numerical computations
To validate the accuracy of developed numerical approach, comparison was made with the work reported in A.P.C.
Sarmiento et al. (2020) [26]. The compact heat exchanger geometry that used for validation of numerical computations
was considered to be as same as the geometry shown in Fig. 5.1.So, to obtain the heat transfer and the overall thermal
conductance of the straight square compact heat exchanger. The hot stream and air velocity conditions are as follows:
Table 6 Shows the hot stream and cold stream test conditions
Air center line
velocity (in m/s)
Cold mass flow
rate (in kg/s)
Cold inlet
temperature (in ˚C)
Hot mass flow
rate (in kg/s)
Hot inlet temperature
(in ˚C)
4 0.0308 29.94 0.894 69.69
8 0.0551 31.93 0.893 69.52
12 0.0795 44.53 0.887 69.68
Figure 5 Static temperature contour calculated from the CFD modeling for straight square compact heat
exchanger
The values of Heat transfer rate, and Thermal conductance calculated from the CFD modeling On the basis of temperature
of hot and cold fluid obtained were compared with the values obtained from the analysis performed by A.P.C. Sarmiento
et al. (2020) [26].
Figure 6 Heat transfer rate calculated from the CFD modeling compared with the values obtained from the
analysis performed by A.P.C. Sarmiento et al. (2020) [26] for straight square compact heat exchanger
1000
1200
1400
1600
4 8 12
HeatTransferrate
(inW)
Air centreline velocity (in m/s)
Base Paper Present Study
International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470
@ IJTSRD | Unique Paper ID – IJTSRD33508 | Volume – 4 | Issue – 6 | September-October 2020 Page 845
Figure 7 Thermal conductance calculated from the CFD modeling compared with the values obtained from the
analysis performed by A.P.C. Sarmiento et al. (2020) [26] for straight square compact heat exchanger
From the above validation analysis it is found that the values of Heat transfer rate, and Thermal conductance calculated
from CFD analysis is close to the values of Heat transfer rate, and Thermal conductance obtained from the base paper. So
here we can say that the CFD model of straight square compact heat exchanger is correct.
6.2. Effect of suspension of nano-particles in the working fluid of straight square compact heat exchanger
After analyzing water as a working fluid in Straight Square compact heat exchanger, nano fluid were used as a fluid in
place of pure water. In order to analyze the effect of different concentrations of nano particles on heat transfer rate, and
thermal conductance, here in this work we have considered nano fluid that is aluminum oxide (Al2O3).Three volume
fraction of nano particles that is 0.4%, 0.8%, and 1.2% in the working fluid i.e. water is suspended. The boundary
conditions were same as considered during the analysis of water in Straight Square compact heat exchanger. The thermal
properties of nano fluids is mention in section IV, for calculating the effect of different nano particles on heat transfer rate,
and thermal conductance.
Figure 8 Heat transfer rate calculated from the CFD modeling for water/ Al2O3 nanofluid and compared with
existing work for water as working fluid in a Straight Square compact heat exchanger
Figure 9 Thermal conductance calculated from the CFD modeling for water/ Al2O3 nanofluid and compared with
existing work for water as working fluid in a Straight Square compact heat exchanger
60
80
100
120
140
160
4 8 12
Thermalconductance
(inW/K)
Air centreline velocity (in m/s)
Base Paper Present Study
1000
1200
1400
1600
4 8 12
HeatTransferrate
(inW)
Air centreline velocity (in m/s)
Water Water+Al2O3 nano-particles at 0.4%
Water+Al2O3 nano-particles at 0.8% Water+Al2O3 nano-particles at 1.2 %
60
110
160
4 8 12
Thermal
Conductance
(inW/K)
Air centreline velocity (in m/s)
Water
Water+Al2O3 nano-particles at 0.4%
Water+Al2O3 nano-particles at 0.8%
International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470
@ IJTSRD | Unique Paper ID – IJTSRD33508 | Volume – 4 | Issue – 6 | September-October 2020 Page 846
VI. CONCLUSIONS
The following conclusions can be drawn based on the
provided results:
The addition of nanoparticles to the base fluid
increased the coefficient of heat transfer due to the
increasing heat flux.
There is an important effect of the air centerline
velocity on the improvement of the heat transfer of
both the base fluid and the nanofluid.
The thermal conductivity of the Al2O3 / water
nanofluid improved with an increase in the weight
fractions of nanofluids. Al2O3 / water nanofluids had
the highest increase in thermal conductivity at wt.
proportion = 1.2 %.
From analysis it is found that the value of heat
transfer and overall thermal conductance is higher in
case of Aluminum oxide (Al2O3) nano-particles at 1.2
% volume fraction in water.
In the Straight square compact heat exchanger with
Al2O3 / water nanofluid, the thermal conductance are
approximately 29% higher in comparison with the
conventional fluid i.e. water.
In the Straight square compact heat exchanger with
Al2O3 / water nanofluid, the heat transfer are
approximately 35 % higher in comparison with the
conventional fluid i.e. water.
It is also found that as the volume fraction of nano
particles increases the heat transfer rate of heat
exchanger also increases.
So in this work we can say that compact heat
exchanger having 1.2 % volume fraction of Al2O3
nanoparticles in water at different air centerline
velocity shows maximum heat transfer and thermal
conductance.
REFERENCES
[1] R. K. Shah, D. P. Sekulic, Fundamentals of Heat
Exchanger Design, John Wiley & Sons, Hoboken, NJ,
2003.
[2] A. P. C. Sarmiento, F. H. Milanese, M. B. H. Mantelli, V.
R. Miranda, Theoretical and experimental studies on
two-phase thermosyphon shell and shell heat
exchangers, Appl. Therm. Eng. 171 (2020) 115092,
https://doi.org/10.1016/j.applthermaleng.2020.115
092.
[3] J. E. Hesselgreaves, R. Law, D. Reay, Compact Heat
Exchangers: Selection, Design, and Operation, second
ed., Butterworh-Heinemann, Amsterdam, 2017.
[4] T. Takeda, K. Kunitomi, T. Horie, K. Iwata, Feasibility
study on the applicability of a diffusion-welded
compact intermediate heat exchanger to next-
generation high temperature gas-cooled reactor,
Nucl. Eng. Des. 168 (1997) 11–21, https://doi.
org/10.1016/S0029-5493 (96)01361-1.
[5] M. V. V. Mortean, L. H. R. Cisterna, K. V. Paiva, M. B. H.
Mantelli, Development of diffusion welded compact
heat exchanger technology, Appl. Therm. Eng. 93
(2016) 995–1005,
https://doi.org/10.1016/j.applthermaleng.2015.09.0
21.
[6] M. V. V. Mortean, A. J. de A. Buschinelli, K. V. de Paiva,
M. B. H. Mantelli, J. Remmel, Soldagem por Difus~ ao
de Aços Inoxidaveis para Fabricaç~ ao de Trocadores
de Calor Compactos, Soldag. Insp. 21 (2016) 103–
114, https://doi.org/10.1590/0104- 9224/SI2101.
[7] M. V. V. Mortean, K. V. Paiva, M. B. H. Mantelli,
Diffusion bonded cross-flow compact heat
exchangers: theoretical predictions and experiments,
Int. J. Therm. Sci. 110 (2016) 285–298,
https://doi.org/10.1016/j.ijthermalsci.2016.07.010.
[8] N. Bartel, M. Chen, V. P. Utgikar, X. Sun, I.-H. Kim, R.
Christensen, P. Sabharwall, Comparative analysis of
compact heat exchangers for application as the
intermediate heat exchanger for advanced nuclear
reactors, Ann. Nucl. Energy 81 (2015) 143–149,
https://doi.org/10.1016/j.anucene.2015.03.029.
[9] Y. Hou, G. Tang, Thermal-hydraulic-structural
analysis and design optimization for micron-sized
printed circuit heat exchanger, J. Therm. Sci. 28
(2019) 252–261, https://doi.org/10.1007/s11630-
018-1062-8.
[10] C. Huang, W. Cai, Y. Wang, Y. Liu, Q. Li, B. Li, Review
on the characteristics of flow and heat transfer in
printed circuit heat exchangers, Appl. Therm. Eng.
153 (2019) 190–205,
https://doi.org/10.1016/j.applthermaleng.2019.02.1.
[11] S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, E. A.
Grulke, Anomalously thermal conductivity
enhancement in nano-tube suspensions, Appl. Phys.
Lett. 79 (2001) 2252e2254.
[12] H. Masuda, A. Ebata, K. Teramea, N. Hishinuma,
Altering the thermal conductivity and viscosity of
liquid by dispersing ultra-fine particles, Netsu Bussei
7 (4) (1993) 227e233.
[13] H. A. Minsta, G. Roy, C. T. Nguyen, D. Doucet, New
temperature dependent thermal conductivity data for
water-based nanofluids, Int. J. Therm. Sci. 48 (2009)
363e371.
[14] S. J. Kim, I. C. Bang, J. Buongiorno, L. W. Hu, Study of
pool boiling and critical heat flux enhancement in
nanofluids, Bull. Pol. Acad. Sci. Tech. Sci. 55 (2)
(2007) 211e216. bulletin.pan.pl/(55-2)211.pdf.
[15] S. J. Kim, I. C. Bang, J. Buongiorno, L. W. Hu, Surface
wettability change during pool boiling of nanofluids
and its effect on critical heat flux, Int. J. Heat Mass
Transf. 50 (19e20) (2007) 4105e4116.
[16] E. Jackson, Investigation into the Pool-Boiling
Characteristics of Gold Nanofluids, M.S. thesis,
University ofMissouri-Columbia, Columbia, Mo, USA,
2007.
[17] M. Chandrasekar, S. Suresh, A. Chandra Bose,
“Experimental investigations and theoretical
determination of thermal conductivity and viscosity
of Al2O3/water nanofluid”, Experimental Thermal
and Fluid Science, 34 (2017) 210–216
[18] Hadi Dogacan Kocaa, Serkan Doganayb, Alpaslan
Turgutc, Ismail Hakki Tavmanc, R. Saidurd, Islam
Mohammed Mahbubulf, “Effect of particle size on the
viscosity of nanofluids: A review”, Renewable and
Sustainable Energy Reviews, j.rser.2017.07.016.
[19] Shriram S. Sonawane, Rohit S. Khedkar, Kailas L.
Wasewar, ”Study on concentric tube exchanger heat
International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470
@ IJTSRD | Unique Paper ID – IJTSRD33508 | Volume – 4 | Issue – 6 | September-October 2020 Page 847
transfer performance usingAl2O3 – water based
nanofluids”, International Communications in Heat
and Mass Transfer 49 (2013) 60–68@ 2013 Elsevier
Ltd.
[20] S. K. Mylavarapu, X. Sun, R. E. Glosup, R. N.
Christensen, M. W. Patterson, Thermal hydraulic
performance testing of printed circuit heat
exchangers in a high temperature helium test facility,
Appl. Therm. Eng. 65 (2014) 605–614, https://
doi.org/10.1016/j.applthermaleng.2014.01.0.
[21] J.-W. Seo, Y.-H. Kim, D. Kim, Y.-D. Choi, K.-J. Lee, Heat
transfer and pressure drop characteristics in straight
micro channel of printed circuit heat exchangers,
Entropy 17 (2015) 3438–3457,
https://doi.org/10.3390/e17053438.
[22] D. Kwon, L. Jin, W. Jung, S. Jeong, Experimental
investigation of heat transfer coefficient of mini-
channel PCHE (printed circuit heat exchanger),
Cryogenics 92 (2018) 41–49,
https://doi.org/10.1016/j.cryogenics.2018.03.011.
[23] V. Gnielinski, on heat transfer in tubes, Int. J. Heat
Mass Transf. 63 (2013) 134–140,
https://doi.org/10.1016/j.ijheatmasstransfer.2013.0
4.015.
[24] X. F. Peng, G. P. Peterson, Convective heat transfer
and flow friction for water flow in micro channel
structures, Int. J. Heat Mass Transf. 39 (1996) 2599–
2608, https://doi.org/10.1016/0017-
9310(95)00327.
[25] W. Chu, X. Li, T. Ma, Y. Chen, Q. Wang, Experimental
investigation on SCO 2 -water heat transfer
characteristics in a printed circuit heat exchanger
with straight channels, Int. J. Heat Mass Transf. 113
(2018) 184–194, https://doi.org/10.1016/
j.ijheatmasstransfer.2018.05.
[26] A. P. C. Sarmiento, V. H. T. Soares, G. G. Carqueja, J.V.C.
Batista, F.H. Milanese, M.B. H. Mantelli. Thermal
performance of diffusion-bonded compact heat
exchangers, International Journal of Thermal
Sciences 153 (2020) 106384.
[27] B. C. Pak, Y. L. Cho, Hydrodynamic and heat transfer
study of Dispersed fluids with submicron metallic
oxide particles, Exp. Heat Transf. 11 (1998) 151–170.
[28] H. E. Patel, K. B. Anoop, T. Sundararajan, Sarit K. Das,
Model for thermal conductivity of CNT – nanofluids,
Bull. Mater. Sci. 31 (3) (2008) 387–390.
[29] E. Ebrahimnia-Bajestan, H. Niazmand, Convective
heat transfer of nanofluidsflows through an
isothermally heated curved pipe, Iran. J. Chem. Eng. 8
(2) (2011) 81–97.
http://www.ijche.com/article_10292_108f06076ed8
ee6ef6dcb552f71f7af 3.pdf.

More Related Content

What's hot

REVIEW OF THERMAL ENERGY STORAGE SYSTEMS AND THEIR APPLICATIONS
REVIEW OF THERMAL ENERGY STORAGE SYSTEMS AND THEIR APPLICATIONSREVIEW OF THERMAL ENERGY STORAGE SYSTEMS AND THEIR APPLICATIONS
REVIEW OF THERMAL ENERGY STORAGE SYSTEMS AND THEIR APPLICATIONSijiert bestjournal
 
IRJET- Experimental Study on Winsum Climatisation
IRJET- Experimental Study on Winsum ClimatisationIRJET- Experimental Study on Winsum Climatisation
IRJET- Experimental Study on Winsum ClimatisationIRJET Journal
 
PERFORMANCE ANALYSIS OF HYDROGEN FUELED INTERNAL COMBUSTION ENGINE
PERFORMANCE ANALYSIS OF HYDROGEN FUELED INTERNAL COMBUSTION ENGINEPERFORMANCE ANALYSIS OF HYDROGEN FUELED INTERNAL COMBUSTION ENGINE
PERFORMANCE ANALYSIS OF HYDROGEN FUELED INTERNAL COMBUSTION ENGINEijsrd.com
 
CFD Analysis on Forced Convection Heat Transfer of KNO3–Ca NO3 2 TiO2 Molten ...
CFD Analysis on Forced Convection Heat Transfer of KNO3–Ca NO3 2 TiO2 Molten ...CFD Analysis on Forced Convection Heat Transfer of KNO3–Ca NO3 2 TiO2 Molten ...
CFD Analysis on Forced Convection Heat Transfer of KNO3–Ca NO3 2 TiO2 Molten ...YogeshIJTSRD
 
Comparative Analysis of Forced Draft Cooling Tower Using Two Design Methods A...
Comparative Analysis of Forced Draft Cooling Tower Using Two Design Methods A...Comparative Analysis of Forced Draft Cooling Tower Using Two Design Methods A...
Comparative Analysis of Forced Draft Cooling Tower Using Two Design Methods A...YogeshIJTSRD
 
Paper id 27201445
Paper id 27201445Paper id 27201445
Paper id 27201445IJRAT
 
IRJET- CFD Analysis of Double Pipe Heat Exchanger with and with out Dimples
IRJET- CFD Analysis of Double Pipe Heat Exchanger with and with out DimplesIRJET- CFD Analysis of Double Pipe Heat Exchanger with and with out Dimples
IRJET- CFD Analysis of Double Pipe Heat Exchanger with and with out DimplesIRJET Journal
 
Heat Sink for Underground Pipe Line
Heat Sink for Underground Pipe LineHeat Sink for Underground Pipe Line
Heat Sink for Underground Pipe LineYogeshIJTSRD
 
Comparison of the Performances of NH3-H20 and Libr-H2O Vapour Absorption Refr...
Comparison of the Performances of NH3-H20 and Libr-H2O Vapour Absorption Refr...Comparison of the Performances of NH3-H20 and Libr-H2O Vapour Absorption Refr...
Comparison of the Performances of NH3-H20 and Libr-H2O Vapour Absorption Refr...IJERA Editor
 
ESTIMATION AND ANALYSIS OF CYCLE EFFICIENCY FOR SHELL AND TUBE HEAT EXCHANGER...
ESTIMATION AND ANALYSIS OF CYCLE EFFICIENCY FOR SHELL AND TUBE HEAT EXCHANGER...ESTIMATION AND ANALYSIS OF CYCLE EFFICIENCY FOR SHELL AND TUBE HEAT EXCHANGER...
ESTIMATION AND ANALYSIS OF CYCLE EFFICIENCY FOR SHELL AND TUBE HEAT EXCHANGER...IAEME Publication
 
Study & Review of Heat Recovery Systems for SO2 Gas Generation Process in Sug...
Study & Review of Heat Recovery Systems for SO2 Gas Generation Process in Sug...Study & Review of Heat Recovery Systems for SO2 Gas Generation Process in Sug...
Study & Review of Heat Recovery Systems for SO2 Gas Generation Process in Sug...IRJET Journal
 
A Comparison and Sustainability Analysis of Solar Thermal Receivers
A Comparison and Sustainability Analysis of Solar Thermal ReceiversA Comparison and Sustainability Analysis of Solar Thermal Receivers
A Comparison and Sustainability Analysis of Solar Thermal ReceiversPratish Rawat
 
Comparative Study of ECONOMISER Using the CFD Analysis
Comparative Study of ECONOMISER Using the CFD Analysis Comparative Study of ECONOMISER Using the CFD Analysis
Comparative Study of ECONOMISER Using the CFD Analysis IJMER
 
Investigation and analysis of air pollution emitted from thermal power plants
Investigation and analysis of air pollution emitted from thermal power plantsInvestigation and analysis of air pollution emitted from thermal power plants
Investigation and analysis of air pollution emitted from thermal power plantsIAEME Publication
 

What's hot (20)

W04405127131
W04405127131W04405127131
W04405127131
 
REVIEW OF THERMAL ENERGY STORAGE SYSTEMS AND THEIR APPLICATIONS
REVIEW OF THERMAL ENERGY STORAGE SYSTEMS AND THEIR APPLICATIONSREVIEW OF THERMAL ENERGY STORAGE SYSTEMS AND THEIR APPLICATIONS
REVIEW OF THERMAL ENERGY STORAGE SYSTEMS AND THEIR APPLICATIONS
 
IRJET- Experimental Study on Winsum Climatisation
IRJET- Experimental Study on Winsum ClimatisationIRJET- Experimental Study on Winsum Climatisation
IRJET- Experimental Study on Winsum Climatisation
 
PERFORMANCE ANALYSIS OF HYDROGEN FUELED INTERNAL COMBUSTION ENGINE
PERFORMANCE ANALYSIS OF HYDROGEN FUELED INTERNAL COMBUSTION ENGINEPERFORMANCE ANALYSIS OF HYDROGEN FUELED INTERNAL COMBUSTION ENGINE
PERFORMANCE ANALYSIS OF HYDROGEN FUELED INTERNAL COMBUSTION ENGINE
 
CFD Analysis on Forced Convection Heat Transfer of KNO3–Ca NO3 2 TiO2 Molten ...
CFD Analysis on Forced Convection Heat Transfer of KNO3–Ca NO3 2 TiO2 Molten ...CFD Analysis on Forced Convection Heat Transfer of KNO3–Ca NO3 2 TiO2 Molten ...
CFD Analysis on Forced Convection Heat Transfer of KNO3–Ca NO3 2 TiO2 Molten ...
 
Comparative Analysis of Forced Draft Cooling Tower Using Two Design Methods A...
Comparative Analysis of Forced Draft Cooling Tower Using Two Design Methods A...Comparative Analysis of Forced Draft Cooling Tower Using Two Design Methods A...
Comparative Analysis of Forced Draft Cooling Tower Using Two Design Methods A...
 
Paper id 27201445
Paper id 27201445Paper id 27201445
Paper id 27201445
 
IRJET- CFD Analysis of Double Pipe Heat Exchanger with and with out Dimples
IRJET- CFD Analysis of Double Pipe Heat Exchanger with and with out DimplesIRJET- CFD Analysis of Double Pipe Heat Exchanger with and with out Dimples
IRJET- CFD Analysis of Double Pipe Heat Exchanger with and with out Dimples
 
274 iitb 274 corrected
274 iitb 274 corrected274 iitb 274 corrected
274 iitb 274 corrected
 
Review on Exergy and Energy Analysis of Solar Air Heater
Review on Exergy and Energy Analysis of Solar Air HeaterReview on Exergy and Energy Analysis of Solar Air Heater
Review on Exergy and Energy Analysis of Solar Air Heater
 
Heat Sink for Underground Pipe Line
Heat Sink for Underground Pipe LineHeat Sink for Underground Pipe Line
Heat Sink for Underground Pipe Line
 
pankaj sharma
 pankaj sharma pankaj sharma
pankaj sharma
 
Comparison of the Performances of NH3-H20 and Libr-H2O Vapour Absorption Refr...
Comparison of the Performances of NH3-H20 and Libr-H2O Vapour Absorption Refr...Comparison of the Performances of NH3-H20 and Libr-H2O Vapour Absorption Refr...
Comparison of the Performances of NH3-H20 and Libr-H2O Vapour Absorption Refr...
 
ESTIMATION AND ANALYSIS OF CYCLE EFFICIENCY FOR SHELL AND TUBE HEAT EXCHANGER...
ESTIMATION AND ANALYSIS OF CYCLE EFFICIENCY FOR SHELL AND TUBE HEAT EXCHANGER...ESTIMATION AND ANALYSIS OF CYCLE EFFICIENCY FOR SHELL AND TUBE HEAT EXCHANGER...
ESTIMATION AND ANALYSIS OF CYCLE EFFICIENCY FOR SHELL AND TUBE HEAT EXCHANGER...
 
Study & Review of Heat Recovery Systems for SO2 Gas Generation Process in Sug...
Study & Review of Heat Recovery Systems for SO2 Gas Generation Process in Sug...Study & Review of Heat Recovery Systems for SO2 Gas Generation Process in Sug...
Study & Review of Heat Recovery Systems for SO2 Gas Generation Process in Sug...
 
A Comparison and Sustainability Analysis of Solar Thermal Receivers
A Comparison and Sustainability Analysis of Solar Thermal ReceiversA Comparison and Sustainability Analysis of Solar Thermal Receivers
A Comparison and Sustainability Analysis of Solar Thermal Receivers
 
Helixchanger
HelixchangerHelixchanger
Helixchanger
 
Comparative Study of ECONOMISER Using the CFD Analysis
Comparative Study of ECONOMISER Using the CFD Analysis Comparative Study of ECONOMISER Using the CFD Analysis
Comparative Study of ECONOMISER Using the CFD Analysis
 
Investigation and analysis of air pollution emitted from thermal power plants
Investigation and analysis of air pollution emitted from thermal power plantsInvestigation and analysis of air pollution emitted from thermal power plants
Investigation and analysis of air pollution emitted from thermal power plants
 
Energies 12-01079
Energies 12-01079Energies 12-01079
Energies 12-01079
 

Similar to Thermal Performance of Diffusion Bonded Compact Heat Exchangers using Al2O3 Water Nanofluid

CFD investigation on heat transfer enhancement in shell and tube heat exchang...
CFD investigation on heat transfer enhancement in shell and tube heat exchang...CFD investigation on heat transfer enhancement in shell and tube heat exchang...
CFD investigation on heat transfer enhancement in shell and tube heat exchang...IRJET Journal
 
CFD Investigation of Compact Heat Exchanger Having Different Fins with Nanofl...
CFD Investigation of Compact Heat Exchanger Having Different Fins with Nanofl...CFD Investigation of Compact Heat Exchanger Having Different Fins with Nanofl...
CFD Investigation of Compact Heat Exchanger Having Different Fins with Nanofl...IRJET Journal
 
IRJET- A Review on Basics of Heat Exchanger
IRJET-  	  A Review on Basics of Heat ExchangerIRJET-  	  A Review on Basics of Heat Exchanger
IRJET- A Review on Basics of Heat ExchangerIRJET Journal
 
Heat Transfer Analysis of a Plate Heat Exchanger with a Combination of Ribs a...
Heat Transfer Analysis of a Plate Heat Exchanger with a Combination of Ribs a...Heat Transfer Analysis of a Plate Heat Exchanger with a Combination of Ribs a...
Heat Transfer Analysis of a Plate Heat Exchanger with a Combination of Ribs a...ijtsrd
 
Advancements in Compact Heat Exchangers: A Comprehensive Review
Advancements in Compact Heat Exchangers: A Comprehensive ReviewAdvancements in Compact Heat Exchangers: A Comprehensive Review
Advancements in Compact Heat Exchangers: A Comprehensive ReviewIRJET Journal
 
Performance Analysis of a Shell Tube Condenser for a Model Organic Rankine Cy...
Performance Analysis of a Shell Tube Condenser for a Model Organic Rankine Cy...Performance Analysis of a Shell Tube Condenser for a Model Organic Rankine Cy...
Performance Analysis of a Shell Tube Condenser for a Model Organic Rankine Cy...IJERA Editor
 
First law thermal performance improvement of vapour compression refrigeration...
First law thermal performance improvement of vapour compression refrigeration...First law thermal performance improvement of vapour compression refrigeration...
First law thermal performance improvement of vapour compression refrigeration...editorijrei
 
IRJET- Thermal Analysis of Corrugated Plate Heat Exchanger by using Ansys...
IRJET-  	  Thermal Analysis of Corrugated Plate Heat Exchanger by using Ansys...IRJET-  	  Thermal Analysis of Corrugated Plate Heat Exchanger by using Ansys...
IRJET- Thermal Analysis of Corrugated Plate Heat Exchanger by using Ansys...IRJET Journal
 
IRJET- Review of Convection and Magnetohydrodynamic Mixed Convection Heat Tra...
IRJET- Review of Convection and Magnetohydrodynamic Mixed Convection Heat Tra...IRJET- Review of Convection and Magnetohydrodynamic Mixed Convection Heat Tra...
IRJET- Review of Convection and Magnetohydrodynamic Mixed Convection Heat Tra...IRJET Journal
 
DESIGN AND FABRICATION OF THERMO ACOUSTIC REFRIGERATOR
DESIGN AND FABRICATION OF THERMO ACOUSTIC REFRIGERATORDESIGN AND FABRICATION OF THERMO ACOUSTIC REFRIGERATOR
DESIGN AND FABRICATION OF THERMO ACOUSTIC REFRIGERATORP singh
 
IRJET- Effect of Nano Fluid in Multi-Cylinder Four Stroke Petrol Engine: ...
IRJET-  	  Effect of Nano Fluid in Multi-Cylinder Four Stroke Petrol Engine: ...IRJET-  	  Effect of Nano Fluid in Multi-Cylinder Four Stroke Petrol Engine: ...
IRJET- Effect of Nano Fluid in Multi-Cylinder Four Stroke Petrol Engine: ...IRJET Journal
 
Modeling and Fluid Flow Analysis of Wavy Fin Based Automotive Radiator
Modeling and Fluid Flow Analysis of Wavy Fin Based Automotive RadiatorModeling and Fluid Flow Analysis of Wavy Fin Based Automotive Radiator
Modeling and Fluid Flow Analysis of Wavy Fin Based Automotive RadiatorIJERA Editor
 
Review Paper on Enhancement of Heat Transfer by Using Binary Nanofluids
Review Paper on Enhancement of Heat Transfer by Using Binary NanofluidsReview Paper on Enhancement of Heat Transfer by Using Binary Nanofluids
Review Paper on Enhancement of Heat Transfer by Using Binary NanofluidsIRJET Journal
 
Thermal Characteristics of Different Shaped Fin Protracted Heat Exchanger in ...
Thermal Characteristics of Different Shaped Fin Protracted Heat Exchanger in ...Thermal Characteristics of Different Shaped Fin Protracted Heat Exchanger in ...
Thermal Characteristics of Different Shaped Fin Protracted Heat Exchanger in ...YogeshIJTSRD
 
combustion thermo-acoustic
combustion thermo-acousticcombustion thermo-acoustic
combustion thermo-acousticMahmoud Mohmmed
 
Experimental Investigations on Solid Desiccant Cooling System
Experimental Investigations on Solid Desiccant Cooling SystemExperimental Investigations on Solid Desiccant Cooling System
Experimental Investigations on Solid Desiccant Cooling Systemijtsrd
 
Numerical and CFD Analysis of Heat Transfer Enhancement Technique in Shell an...
Numerical and CFD Analysis of Heat Transfer Enhancement Technique in Shell an...Numerical and CFD Analysis of Heat Transfer Enhancement Technique in Shell an...
Numerical and CFD Analysis of Heat Transfer Enhancement Technique in Shell an...IRJET Journal
 
Parametric and Quantitative Analysis on the Development of Shell and Tube Hea...
Parametric and Quantitative Analysis on the Development of Shell and Tube Hea...Parametric and Quantitative Analysis on the Development of Shell and Tube Hea...
Parametric and Quantitative Analysis on the Development of Shell and Tube Hea...IJAEMSJORNAL
 
Transient Thermal Analysis for Heat Dissipation from Engine Cylinder Block wi...
Transient Thermal Analysis for Heat Dissipation from Engine Cylinder Block wi...Transient Thermal Analysis for Heat Dissipation from Engine Cylinder Block wi...
Transient Thermal Analysis for Heat Dissipation from Engine Cylinder Block wi...ijtsrd
 
CFD Analysis to Analyze Thermal Characteristics of a Heat Exchanger Handling ...
CFD Analysis to Analyze Thermal Characteristics of a Heat Exchanger Handling ...CFD Analysis to Analyze Thermal Characteristics of a Heat Exchanger Handling ...
CFD Analysis to Analyze Thermal Characteristics of a Heat Exchanger Handling ...ijtsrd
 

Similar to Thermal Performance of Diffusion Bonded Compact Heat Exchangers using Al2O3 Water Nanofluid (20)

CFD investigation on heat transfer enhancement in shell and tube heat exchang...
CFD investigation on heat transfer enhancement in shell and tube heat exchang...CFD investigation on heat transfer enhancement in shell and tube heat exchang...
CFD investigation on heat transfer enhancement in shell and tube heat exchang...
 
CFD Investigation of Compact Heat Exchanger Having Different Fins with Nanofl...
CFD Investigation of Compact Heat Exchanger Having Different Fins with Nanofl...CFD Investigation of Compact Heat Exchanger Having Different Fins with Nanofl...
CFD Investigation of Compact Heat Exchanger Having Different Fins with Nanofl...
 
IRJET- A Review on Basics of Heat Exchanger
IRJET-  	  A Review on Basics of Heat ExchangerIRJET-  	  A Review on Basics of Heat Exchanger
IRJET- A Review on Basics of Heat Exchanger
 
Heat Transfer Analysis of a Plate Heat Exchanger with a Combination of Ribs a...
Heat Transfer Analysis of a Plate Heat Exchanger with a Combination of Ribs a...Heat Transfer Analysis of a Plate Heat Exchanger with a Combination of Ribs a...
Heat Transfer Analysis of a Plate Heat Exchanger with a Combination of Ribs a...
 
Advancements in Compact Heat Exchangers: A Comprehensive Review
Advancements in Compact Heat Exchangers: A Comprehensive ReviewAdvancements in Compact Heat Exchangers: A Comprehensive Review
Advancements in Compact Heat Exchangers: A Comprehensive Review
 
Performance Analysis of a Shell Tube Condenser for a Model Organic Rankine Cy...
Performance Analysis of a Shell Tube Condenser for a Model Organic Rankine Cy...Performance Analysis of a Shell Tube Condenser for a Model Organic Rankine Cy...
Performance Analysis of a Shell Tube Condenser for a Model Organic Rankine Cy...
 
First law thermal performance improvement of vapour compression refrigeration...
First law thermal performance improvement of vapour compression refrigeration...First law thermal performance improvement of vapour compression refrigeration...
First law thermal performance improvement of vapour compression refrigeration...
 
IRJET- Thermal Analysis of Corrugated Plate Heat Exchanger by using Ansys...
IRJET-  	  Thermal Analysis of Corrugated Plate Heat Exchanger by using Ansys...IRJET-  	  Thermal Analysis of Corrugated Plate Heat Exchanger by using Ansys...
IRJET- Thermal Analysis of Corrugated Plate Heat Exchanger by using Ansys...
 
IRJET- Review of Convection and Magnetohydrodynamic Mixed Convection Heat Tra...
IRJET- Review of Convection and Magnetohydrodynamic Mixed Convection Heat Tra...IRJET- Review of Convection and Magnetohydrodynamic Mixed Convection Heat Tra...
IRJET- Review of Convection and Magnetohydrodynamic Mixed Convection Heat Tra...
 
DESIGN AND FABRICATION OF THERMO ACOUSTIC REFRIGERATOR
DESIGN AND FABRICATION OF THERMO ACOUSTIC REFRIGERATORDESIGN AND FABRICATION OF THERMO ACOUSTIC REFRIGERATOR
DESIGN AND FABRICATION OF THERMO ACOUSTIC REFRIGERATOR
 
IRJET- Effect of Nano Fluid in Multi-Cylinder Four Stroke Petrol Engine: ...
IRJET-  	  Effect of Nano Fluid in Multi-Cylinder Four Stroke Petrol Engine: ...IRJET-  	  Effect of Nano Fluid in Multi-Cylinder Four Stroke Petrol Engine: ...
IRJET- Effect of Nano Fluid in Multi-Cylinder Four Stroke Petrol Engine: ...
 
Modeling and Fluid Flow Analysis of Wavy Fin Based Automotive Radiator
Modeling and Fluid Flow Analysis of Wavy Fin Based Automotive RadiatorModeling and Fluid Flow Analysis of Wavy Fin Based Automotive Radiator
Modeling and Fluid Flow Analysis of Wavy Fin Based Automotive Radiator
 
Review Paper on Enhancement of Heat Transfer by Using Binary Nanofluids
Review Paper on Enhancement of Heat Transfer by Using Binary NanofluidsReview Paper on Enhancement of Heat Transfer by Using Binary Nanofluids
Review Paper on Enhancement of Heat Transfer by Using Binary Nanofluids
 
Thermal Characteristics of Different Shaped Fin Protracted Heat Exchanger in ...
Thermal Characteristics of Different Shaped Fin Protracted Heat Exchanger in ...Thermal Characteristics of Different Shaped Fin Protracted Heat Exchanger in ...
Thermal Characteristics of Different Shaped Fin Protracted Heat Exchanger in ...
 
combustion thermo-acoustic
combustion thermo-acousticcombustion thermo-acoustic
combustion thermo-acoustic
 
Experimental Investigations on Solid Desiccant Cooling System
Experimental Investigations on Solid Desiccant Cooling SystemExperimental Investigations on Solid Desiccant Cooling System
Experimental Investigations on Solid Desiccant Cooling System
 
Numerical and CFD Analysis of Heat Transfer Enhancement Technique in Shell an...
Numerical and CFD Analysis of Heat Transfer Enhancement Technique in Shell an...Numerical and CFD Analysis of Heat Transfer Enhancement Technique in Shell an...
Numerical and CFD Analysis of Heat Transfer Enhancement Technique in Shell an...
 
Parametric and Quantitative Analysis on the Development of Shell and Tube Hea...
Parametric and Quantitative Analysis on the Development of Shell and Tube Hea...Parametric and Quantitative Analysis on the Development of Shell and Tube Hea...
Parametric and Quantitative Analysis on the Development of Shell and Tube Hea...
 
Transient Thermal Analysis for Heat Dissipation from Engine Cylinder Block wi...
Transient Thermal Analysis for Heat Dissipation from Engine Cylinder Block wi...Transient Thermal Analysis for Heat Dissipation from Engine Cylinder Block wi...
Transient Thermal Analysis for Heat Dissipation from Engine Cylinder Block wi...
 
CFD Analysis to Analyze Thermal Characteristics of a Heat Exchanger Handling ...
CFD Analysis to Analyze Thermal Characteristics of a Heat Exchanger Handling ...CFD Analysis to Analyze Thermal Characteristics of a Heat Exchanger Handling ...
CFD Analysis to Analyze Thermal Characteristics of a Heat Exchanger Handling ...
 

More from ijtsrd

‘Six Sigma Technique’ A Journey Through its Implementation
‘Six Sigma Technique’ A Journey Through its Implementation‘Six Sigma Technique’ A Journey Through its Implementation
‘Six Sigma Technique’ A Journey Through its Implementationijtsrd
 
Edge Computing in Space Enhancing Data Processing and Communication for Space...
Edge Computing in Space Enhancing Data Processing and Communication for Space...Edge Computing in Space Enhancing Data Processing and Communication for Space...
Edge Computing in Space Enhancing Data Processing and Communication for Space...ijtsrd
 
Dynamics of Communal Politics in 21st Century India Challenges and Prospects
Dynamics of Communal Politics in 21st Century India Challenges and ProspectsDynamics of Communal Politics in 21st Century India Challenges and Prospects
Dynamics of Communal Politics in 21st Century India Challenges and Prospectsijtsrd
 
Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...
Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...
Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...ijtsrd
 
The Impact of Digital Media on the Decentralization of Power and the Erosion ...
The Impact of Digital Media on the Decentralization of Power and the Erosion ...The Impact of Digital Media on the Decentralization of Power and the Erosion ...
The Impact of Digital Media on the Decentralization of Power and the Erosion ...ijtsrd
 
Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...
Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...
Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...ijtsrd
 
Problems and Challenges of Agro Entreprenurship A Study
Problems and Challenges of Agro Entreprenurship A StudyProblems and Challenges of Agro Entreprenurship A Study
Problems and Challenges of Agro Entreprenurship A Studyijtsrd
 
Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...
Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...
Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...ijtsrd
 
The Impact of Educational Background and Professional Training on Human Right...
The Impact of Educational Background and Professional Training on Human Right...The Impact of Educational Background and Professional Training on Human Right...
The Impact of Educational Background and Professional Training on Human Right...ijtsrd
 
A Study on the Effective Teaching Learning Process in English Curriculum at t...
A Study on the Effective Teaching Learning Process in English Curriculum at t...A Study on the Effective Teaching Learning Process in English Curriculum at t...
A Study on the Effective Teaching Learning Process in English Curriculum at t...ijtsrd
 
The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...
The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...
The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...ijtsrd
 
Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...
Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...
Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...ijtsrd
 
Sustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. Sadiku
Sustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. SadikuSustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. Sadiku
Sustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. Sadikuijtsrd
 
Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...
Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...
Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...ijtsrd
 
Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...
Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...
Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...ijtsrd
 
Activating Geospatial Information for Sudans Sustainable Investment Map
Activating Geospatial Information for Sudans Sustainable Investment MapActivating Geospatial Information for Sudans Sustainable Investment Map
Activating Geospatial Information for Sudans Sustainable Investment Mapijtsrd
 
Educational Unity Embracing Diversity for a Stronger Society
Educational Unity Embracing Diversity for a Stronger SocietyEducational Unity Embracing Diversity for a Stronger Society
Educational Unity Embracing Diversity for a Stronger Societyijtsrd
 
Integration of Indian Indigenous Knowledge System in Management Prospects and...
Integration of Indian Indigenous Knowledge System in Management Prospects and...Integration of Indian Indigenous Knowledge System in Management Prospects and...
Integration of Indian Indigenous Knowledge System in Management Prospects and...ijtsrd
 
DeepMask Transforming Face Mask Identification for Better Pandemic Control in...
DeepMask Transforming Face Mask Identification for Better Pandemic Control in...DeepMask Transforming Face Mask Identification for Better Pandemic Control in...
DeepMask Transforming Face Mask Identification for Better Pandemic Control in...ijtsrd
 
Streamlining Data Collection eCRF Design and Machine Learning
Streamlining Data Collection eCRF Design and Machine LearningStreamlining Data Collection eCRF Design and Machine Learning
Streamlining Data Collection eCRF Design and Machine Learningijtsrd
 

More from ijtsrd (20)

‘Six Sigma Technique’ A Journey Through its Implementation
‘Six Sigma Technique’ A Journey Through its Implementation‘Six Sigma Technique’ A Journey Through its Implementation
‘Six Sigma Technique’ A Journey Through its Implementation
 
Edge Computing in Space Enhancing Data Processing and Communication for Space...
Edge Computing in Space Enhancing Data Processing and Communication for Space...Edge Computing in Space Enhancing Data Processing and Communication for Space...
Edge Computing in Space Enhancing Data Processing and Communication for Space...
 
Dynamics of Communal Politics in 21st Century India Challenges and Prospects
Dynamics of Communal Politics in 21st Century India Challenges and ProspectsDynamics of Communal Politics in 21st Century India Challenges and Prospects
Dynamics of Communal Politics in 21st Century India Challenges and Prospects
 
Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...
Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...
Assess Perspective and Knowledge of Healthcare Providers Towards Elehealth in...
 
The Impact of Digital Media on the Decentralization of Power and the Erosion ...
The Impact of Digital Media on the Decentralization of Power and the Erosion ...The Impact of Digital Media on the Decentralization of Power and the Erosion ...
The Impact of Digital Media on the Decentralization of Power and the Erosion ...
 
Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...
Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...
Online Voices, Offline Impact Ambedkars Ideals and Socio Political Inclusion ...
 
Problems and Challenges of Agro Entreprenurship A Study
Problems and Challenges of Agro Entreprenurship A StudyProblems and Challenges of Agro Entreprenurship A Study
Problems and Challenges of Agro Entreprenurship A Study
 
Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...
Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...
Comparative Analysis of Total Corporate Disclosure of Selected IT Companies o...
 
The Impact of Educational Background and Professional Training on Human Right...
The Impact of Educational Background and Professional Training on Human Right...The Impact of Educational Background and Professional Training on Human Right...
The Impact of Educational Background and Professional Training on Human Right...
 
A Study on the Effective Teaching Learning Process in English Curriculum at t...
A Study on the Effective Teaching Learning Process in English Curriculum at t...A Study on the Effective Teaching Learning Process in English Curriculum at t...
A Study on the Effective Teaching Learning Process in English Curriculum at t...
 
The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...
The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...
The Role of Mentoring and Its Influence on the Effectiveness of the Teaching ...
 
Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...
Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...
Design Simulation and Hardware Construction of an Arduino Microcontroller Bas...
 
Sustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. Sadiku
Sustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. SadikuSustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. Sadiku
Sustainable Energy by Paul A. Adekunte | Matthew N. O. Sadiku | Janet O. Sadiku
 
Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...
Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...
Concepts for Sudan Survey Act Implementations Executive Regulations and Stand...
 
Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...
Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...
Towards the Implementation of the Sudan Interpolated Geoid Model Khartoum Sta...
 
Activating Geospatial Information for Sudans Sustainable Investment Map
Activating Geospatial Information for Sudans Sustainable Investment MapActivating Geospatial Information for Sudans Sustainable Investment Map
Activating Geospatial Information for Sudans Sustainable Investment Map
 
Educational Unity Embracing Diversity for a Stronger Society
Educational Unity Embracing Diversity for a Stronger SocietyEducational Unity Embracing Diversity for a Stronger Society
Educational Unity Embracing Diversity for a Stronger Society
 
Integration of Indian Indigenous Knowledge System in Management Prospects and...
Integration of Indian Indigenous Knowledge System in Management Prospects and...Integration of Indian Indigenous Knowledge System in Management Prospects and...
Integration of Indian Indigenous Knowledge System in Management Prospects and...
 
DeepMask Transforming Face Mask Identification for Better Pandemic Control in...
DeepMask Transforming Face Mask Identification for Better Pandemic Control in...DeepMask Transforming Face Mask Identification for Better Pandemic Control in...
DeepMask Transforming Face Mask Identification for Better Pandemic Control in...
 
Streamlining Data Collection eCRF Design and Machine Learning
Streamlining Data Collection eCRF Design and Machine LearningStreamlining Data Collection eCRF Design and Machine Learning
Streamlining Data Collection eCRF Design and Machine Learning
 

Recently uploaded

What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........LeaCamillePacle
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.arsicmarija21
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
ROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationAadityaSharma884161
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 

Recently uploaded (20)

What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
ROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint Presentation
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 

Thermal Performance of Diffusion Bonded Compact Heat Exchangers using Al2O3 Water Nanofluid

  • 1. International Journal of Trend in Scientific Research and Development (IJTSRD) Volume 4 Issue 6, September-October 2020 @ IJTSRD | Unique Paper ID – IJTSRD33508 Thermal Performance Heat Exchangers Vishal Deshmukh 1,2Trinity Institute of Technology and Research, RGPV Bhopal, Madhya Pradesh, I ABSTRACT The value of compact heat exchangers (CHEs) has been recognised in aerospace, automotive, gas turbine power station, and other industries for the last 50 years or more. This is attributed to many reasons, for example manufacturing restrictions, often high efficiency requirements, low cost, and the use of air or gas as one of the fluids in the exchanger. Together with new and improved forms of CHEs, these advances are an excellent opportunity to bring compact heat exchangers into the process industry, particularly where saving energy is an essential target. High energy prices are also encouraging companies to use energy saving strategies at their plants as much as possible. During decades, attempts to increase heat transfer, decrease heat transfer times a efficiency have been made. Recent advancements in nanotechnology have facilitated the creation of a new type of liquids called nanofluids. Most theoretical and computational experiments have shown that nanofluids demonstrate an improved coefficient of heat transfer relative to their base fluid. This CFD research explores the impact on the performance of straight-square compact heat exchangers from Al2O3 / water nanofluid flow. The Al2O3 / water nanofluids with three weight fract nanoparticles (i.e. 0.4, 0.8, and 1.2 percent) were used. nanofluid were measured and observed to influence the heat transfer and flow of fluids in a straight-square compact heat exchanger. conclusions can be drawn based on the provided results, the thermal conductance are approximately 29% higher and the heat transfer are approximately 35 % higher in comparison with the conventional fluid i.e. water. KEYWORDS: Compact heat exchanger, Nano Thermal conductance I. INTRODUCTION Shell and tube or variants constitute approximately 35% of the total of heat exchangers used in the petroleum and process industries, becoming by far the most common technology [1, 2]. Although these types of heat exchangers are efficient and durable, they are not ideal for use in certain applications because of their wide volumes and footprint areas [1, 3]. Their main characteristic is the large surface area for a fixed volume, which makes compact heat exchangers very effective. These devices are modern and effective, but still worth a lot of research worldwide, even though they are recently significantly advanced. Compact heat exchangers were designed for applications 1.1. Diffusion bonded compact heat exchangers In general, the compact heat exchanger is produced from a large number of channel panels, chemically etched or water jet machined [4, 5]. International Journal of Trend in Scientific Research and Development (IJTSRD) October 2020 Available Online: www.ijtsrd.com 33508 | Volume – 4 | Issue – 6 | September Thermal Performance of Diffusion-Bonded Compact Heat Exchangers using Al2O3/Water Nanofluid Vishal Deshmukh1, Prof. Animesh Singhai2 1Research Scholar, 2Professor, Trinity Institute of Technology and Research, RGPV Bhopal, Madhya Pradesh, I The value of compact heat exchangers (CHEs) has been recognised in aerospace, automotive, gas turbine power station, and other industries for the last 50 years or more. This is attributed to many reasons, for example igh efficiency requirements, low cost, and the use of air or gas as one of the fluids in the exchanger. Together with new and improved forms of CHEs, these advances are an excellent opportunity to bring compact heat exchangers into the process industry, rticularly where saving energy is an essential target. High energy prices are also encouraging companies to use energy saving strategies at their plants as much as possible. During decades, attempts to increase heat transfer, decrease heat transfer times and eventually improve energy efficiency have been made. Recent advancements in nanotechnology have facilitated the creation of a new type of liquids called nanofluids. Most theoretical and computational experiments have shown that nanofluids improved coefficient of heat transfer relative to their base fluid. This CFD research explores the impact on the performance of square compact heat exchangers from Al2O3 / water nanofluid flow. The Al2O3 / water nanofluids with three weight fractions of nanoparticles (i.e. 0.4, 0.8, and 1.2 percent) were used. The effect of nanofluid were measured and observed to influence the heat transfer and square compact heat exchanger. The following on the provided results, the thermal conductance are approximately 29% higher and the heat transfer are approximately 35 % higher in comparison with the conventional fluid i.e. Compact heat exchanger, Nano-fluids, CFD, Heat Transfer and How to cite this paper Deshmukh | Prof. Animesh Singhai "Thermal Performance of Diffusion Bonded Compact Heat Exchangers using Al2O3/Water Nanofluid" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-4 | Issue October 2020, pp.838-847, URL: www.ijtsrd.com/papers/ijtsrd33508.pdf Copyright © 20 International Journal of Trend in Scientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0) approximately 35% of the total of heat exchangers used in the petroleum and process industries, becoming by far the most common technology [1, 2]. Although these types of heat exchangers are efficient and durable, they are not ideal for use in ications because of their wide volumes and footprint areas [1, 3]. Their main characteristic is the large surface area for a fixed volume, which makes compact heat exchangers very effective. These devices are modern and research worldwide, even though they are recently significantly advanced. Compact heat exchangers were designed for applications where small weight and space requirements are mandatory, as seen in the fields of aerospace, maritime, and automotive. Hot and/or cold streams will flow through non-circular cross-section ducts, i.e. triangular or rectangular, among other geometries in many heat exchangers particularly the compact ones. Normally, the lengths of these ducts are short. The system can function in several regimes, ranging from laminar to turbulent. A compact heat exchanger (CHE) designed to effectively convert heat from one medium to another, characterized by a wide area heat transfer (minimum 300 m heat transfer (up to 5000 W / m Diffusion bonded compact heat exchangers In general, the compact heat exchanger is produced from a large number of channel panels, chemically etched or water International Journal of Trend in Scientific Research and Development (IJTSRD) www.ijtsrd.com e-ISSN: 2456 – 6470 September-October 2020 Page 838 Bonded Compact /Water Nanofluid Trinity Institute of Technology and Research, RGPV Bhopal, Madhya Pradesh, India How to cite this paper: Vishal Deshmukh | Prof. Animesh Singhai "Thermal Performance of Diffusion- Bonded Compact Heat Exchangers using Al2O3/Water Nanofluid" Published in International of Trend in Scientific Research and Development (ijtsrd), ISSN: 6470, 4 | Issue-6, October 2020, 847, URL: ww.ijtsrd.com/papers/ijtsrd33508.pdf Copyright © 2020 by author(s) and International Journal of Trend in cientific Research and Development Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0) (http://creativecommons.org/licenses/by/4.0) where small weight and space requirements are mandatory, as seen in the fields of aerospace, maritime, nd/or cold streams will flow section ducts, i.e. triangular or rectangular, among other geometries in many heat exchangers particularly the compact ones. Normally, the lengths of these ducts are short. The system can function several regimes, ranging from laminar to turbulent. A compact heat exchanger (CHE) is a piece of equipment designed to effectively convert heat from one medium to another, characterized by a wide area-to - volume ratio of heat transfer (minimum 300 m2 / m3), high coefficients of heat transfer (up to 5000 W / m2 K), limited flow passages. In general, the compact heat exchanger is produced from a large number of channel panels, chemically etched or water – IJTSRD33508
  • 2. International Journal of Trend in Scientific Research and Development (IJTSRD) @ IJTSRD | Unique Paper ID – IJTSRD33508 Figure 1 Diffusion bonded micro channel heat exchanger. A diffusion bonding technique is applied following a stacking procedure to create the core. This technology provides excellent mechanical strength at the interface, allowing these excha reach 50 MPa in certain circumstances [3, 6].In addition to more common oil exploration systems, advanced high temperature reactors, solar concentrated applications, air respiration synergetic and rocke exchangers and diffusion bonding have been used over the years [7 In order to reduce the size and costs of the heat exchanger, improving the heat transfer by different techniques has received great attention over the years. Different heat exchanger technologies have, as effective techniques, been developed to increase heat transfer rate: 1. Nanofluids 2. Insert heat exchanger turbulators 3. Roughening surfaces. While the mixture of all three methods or two can be used fo 1.2. Nanofluids Researchers have sought in recent years to minimise heat exchangers' size and weight. Some companies uses fluids such as gasoline, water and ethylene glycol. Heat transfer fluid is weaker than solids in te because of its poor thermal conductivity; therefore, it limits the quality and compactness of engineering goods. Some techniques are used to increase the heat transfer performance. They are each incorporated into general heat t fluids by small solid particles such as metallic, non micro particles are used, they cannot be used, although the thermal efficiency improves. When problems are caused, such as quick partitioning, flow channel blocking, lower stability and increased liquid pressure drops. These problems can be overcome with the use of nanometer-sized particles dispersion. same reason in base fluids instead of these particles. These suspensions, known as industries and are one of the novel developments. Most theoretical and computational experiments have shown that nanofluids demonstrate an improved coefficient of he increased concentration of nanoparticles as well as number of Reynolds. II. LITERATURE REVIEW As the need for more effective heat transfer systems grows, researchers have been using vario improvement techniques since the mid-1950s. The substantial growth in the number of research publications devoted to this topic has demonstrated, to date, a substantial improvement in the importance of heat transfer technology. A significant amount of theoretical as well as empirical and quantitative study has been carried out to improve the transfer of heat. A brief review of the related literature is described in this chapter to show the degree of work already published i the open literature on the development of the heat transfer by the application of nano fluids, and use of compact heat exchanger. 2.1. Previous work Owing to the heat transfer properties of nanoparticles, industries such as solar synthesis, gas sensing, biological sensing, pharmaceutical, nuclear reactors, the petroleum industry, etc. have followed the idea of using nanoparticles in their respective fields to boost the heat transfer performance of regular fluids.Thermal conductivity is increased by the inclusion of nanoparticles as technically demonstrated by Masuda et al. (1993) and Minsta et al. (2009) 5 per cent › has resulted in a major increase (10 Kim et al. (2007) examined the critical role of nanofluids in the field of nuclear physics. Proven nanofluids will increase the efficiency of any water-cooled nuclear device system. Possible uses include pressuri standby protection devices, acceleration targets, plasma diverters, and so on [14, 15]. International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com 33508 | Volume – 4 | Issue – 6 | September Diffusion bonded micro channel heat exchanger. A diffusion bonding technique is applied following a stacking procedure to create the core. This technology provides excellent mechanical strength at the interface, allowing these exchangers to withstand extremely high pressures which can reach 50 MPa in certain circumstances [3, 6].In addition to more common oil exploration systems, advanced high temperature reactors, solar concentrated applications, air respiration synergetic and rocke exchangers and diffusion bonding have been used over the years [7–10], among others. In order to reduce the size and costs of the heat exchanger, improving the heat transfer by different techniques has the years. Different heat exchanger technologies have, as effective techniques, been Roughening surfaces. While the mixture of all three methods or two can be used for a better heat transfer. Researchers have sought in recent years to minimise heat exchangers' size and weight. Some companies uses fluids such as gasoline, water and ethylene glycol. Heat transfer fluid is weaker than solids in te because of its poor thermal conductivity; therefore, it limits the quality and compactness of engineering goods. Some techniques are used to increase the heat transfer performance. They are each incorporated into general heat t fluids by small solid particles such as metallic, non-metallic and polymeric. In many applications, if millimetres or even micro particles are used, they cannot be used, although the thermal efficiency improves. When problems are caused, such ick partitioning, flow channel blocking, lower stability and increased liquid pressure drops. These problems can be sized particles dispersion. Nanoparticles with a size of 1 luids instead of these particles. These suspensions, known as nanofluids industries and are one of the novel developments. Most theoretical and computational experiments have shown that nanofluids demonstrate an improved coefficient of heat transfer relative to their base fluid and increase dramatically with increased concentration of nanoparticles as well as number of Reynolds. As the need for more effective heat transfer systems grows, researchers have been using vario 1950s. The substantial growth in the number of research publications devoted to this topic has demonstrated, to date, a substantial improvement in the importance of heat transfer technology. ant amount of theoretical as well as empirical and quantitative study has been carried out to improve the transfer of heat. A brief review of the related literature is described in this chapter to show the degree of work already published i ature on the development of the heat transfer by the application of nano fluids, and use of compact heat Owing to the heat transfer properties of nanoparticles, industries such as solar synthesis, gas sensing, biological sensing, pharmaceutical, nuclear reactors, the petroleum industry, etc. have followed the idea of using nanoparticles in their respective fields to boost the heat transfer performance of regular fluids.Thermal conductivity is increased by the cles as technically demonstrated by Choi et al. (2001) [11]. Minsta et al. (2009) have shown that the incorporation of a limited volume of nano 5 per cent › has resulted in a major increase (10-50 per cent) in the thermal conductivity of simple fluids [12,13]. examined the critical role of nanofluids in the field of nuclear physics. Proven nanofluids will increase cooled nuclear device system. Possible uses include pressurized water reactor, main coolant, standby protection devices, acceleration targets, plasma diverters, and so on [14, 15]. www.ijtsrd.com eISSN: 2456-6470 September-October 2020 Page 839 A diffusion bonding technique is applied following a stacking procedure to create the core. This technology provides ngers to withstand extremely high pressures which can reach 50 MPa in certain circumstances [3, 6].In addition to more common oil exploration systems, advanced high- temperature reactors, solar concentrated applications, air respiration synergetic and rocket engines, compact heat In order to reduce the size and costs of the heat exchanger, improving the heat transfer by different techniques has the years. Different heat exchanger technologies have, as effective techniques, been r a better heat transfer. Researchers have sought in recent years to minimise heat exchangers' size and weight. Some companies uses conventional fluids such as gasoline, water and ethylene glycol. Heat transfer fluid is weaker than solids in terms of thermal conductivity because of its poor thermal conductivity; therefore, it limits the quality and compactness of engineering goods. Some techniques are used to increase the heat transfer performance. They are each incorporated into general heat transfer metallic and polymeric. In many applications, if millimetres or even micro particles are used, they cannot be used, although the thermal efficiency improves. When problems are caused, such ick partitioning, flow channel blocking, lower stability and increased liquid pressure drops. These problems can be Nanoparticles with a size of 1–100 nm are used for this nanofluids, are used in many industries and are one of the novel developments. Most theoretical and computational experiments have shown that at transfer relative to their base fluid and increase dramatically with As the need for more effective heat transfer systems grows, researchers have been using various heat transfer 1950s. The substantial growth in the number of research publications devoted to this topic has demonstrated, to date, a substantial improvement in the importance of heat transfer technology. ant amount of theoretical as well as empirical and quantitative study has been carried out to improve the transfer of heat. A brief review of the related literature is described in this chapter to show the degree of work already published in ature on the development of the heat transfer by the application of nano fluids, and use of compact heat Owing to the heat transfer properties of nanoparticles, industries such as solar synthesis, gas sensing, biological sensing, pharmaceutical, nuclear reactors, the petroleum industry, etc. have followed the idea of using nanoparticles in their respective fields to boost the heat transfer performance of regular fluids.Thermal conductivity is increased by the have shown that the incorporation of a limited volume of nano-particles < mal conductivity of simple fluids [12,13]. examined the critical role of nanofluids in the field of nuclear physics. Proven nanofluids will increase zed water reactor, main coolant,
  • 3. International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470 @ IJTSRD | Unique Paper ID – IJTSRD33508 | Volume – 4 | Issue – 6 | September-October 2020 Page 840 From Jackson’s (2007) point of view, the critical heat flux may be increased by producing a controlled surface from nanofluid deposition. The use of nanofluid will increase the in-vessel retention capability of nuclear reactors by as much as 40% [16]. Chandrasekhar et al. (2017) experimentally investigated and theoretically validated the behavior of Al2O3/water nanofluid that was prepared by chemical precipitation method. For their investigation, Al2O3/water at different volume concentrations was studied. They concluded that the increase in viscosity of the nanofluid is higher than that of the effective thermal conductivity. Although both viscosity and thermal conductivity increases as the volume concentration is increased, increase in viscosity predominate the increase in thermal conductivity. Also various other theoretical models were also proposed in their paper [17]. Hady et al. (2017) experimentally investigated the performance on the effect of alumina water (Al2O3/H2O) nanofluid in a chilled water air conditioning unit. They made use of various concentrations ranging from 0.1-1 wt % and the nanofluid was supplied at different flow rates. Their results showed that less time was required to achieve desired chilled fluid temperature as compared to pure water. Also reported was a lesser consumption of power which showed an increase in the cooling capacity of the unit. Moreover the COP of the unit was enhanced by 5 % at a volume concentration of 0.1 %, and an increase of 17 % at a volume concentration of 1 % respectively [18]. Rohit S. Khedkar et al. (2017): Experimental experiments on double tube heat exchanger for water for heat transfer from nanofluids to base fluids, using nanofluids as a working fluid, with different nanoparticles. For a fixed heat transfer surface with various volume fractions of Al2O3 nanoparticles in simple fluids, the total heat transfer coefficient was experimentally calculated and results contrasted with pure water. The findings they found 3% of nanofluids with average heat transfer coefficients 16% higher than water show optimal efficiency [19]. Compact heat exchangers with different topologies of channels, namely: straight, zigzag, s-type, and airfoil configuration were studied in recent years. Mylavarapu et al. (2014) the thermal-hydraulic output with helium was assessed as working fluid by the two straight, semicircular printed circuit heat exchangers (PCHE). A comparison between the model and the experimentation findings indicate that the experimental Fanning friction factor was underestimated by the theoretical models. When the transition to turbulence begins, the Nusselt number derived from their model correlate well to the experimental Nusselt number for Reynolds up to 1700. A strong agreement for the Nusselt numbers model is found for Reynolds larger than 3000 [20]. Seo et al. (2015) the thermal transport of the straight semicircular microchannel PCHE, measured by Reynolds up to 850, was examined and water was used for cold as well as hot surfaces as working fluid [21]. In a straight semicircular mini-channel PCHE with counterflow arrangement Kwon et al. (2018) experimentally tested the heat transfer coefficient. The PCHE was measured at cryogenic temperatures under different heat transfer conditions: single phase, boiling and condensation. The test number of Reynolds ranged from 8500 to 17 000 during the single-phase trial [22]. They contrasted their results with associations between Gnielinski [23] and Peng and Peterson [24]. Chu et al. (2018) the thermohydraulic performance of PCHE as heating exchange fluids was evaluated with a direct semi- circular channel with SCO2 and water. The first was the water and water mixture to discover water associations for the PCHE waterside. There were two tests performed. The test shows that the association between Gnielinski [23] and the average of Reynolds ranges between 2800 and 6700 by 13.2 and 8.6% respectively. A mixture of SCO2 and water was used as fluids in the second test. The effects on the thermal efficiency of the PCHE were evaluated in this test for thermal properties, strain and the pseudo-critical effects. Correlations have been indicated on the SCO2 line, which are true on Reynolds, between 30.000 and 70.000, in order to quantify Nusselt numbers in conjunction with fluid properties [25]. A.P.C. Sarmiento et al. (2020) Presents an experimental and theoretical examination of the thermal efficiency of a compact heat exchanger of square direct diffusion stainless steel. The thermal characteristics of the heat exchange is predicted by a single-dimensional steady state thermal model. An experimental test apparatus was designed to verify the model and study the thermal actions of the heat exchanger. In multiple Reynolds variations, 2600 to 7500 were tested for the heat exchanger reflecting the transition to turbulent regimes. The temperatures ranged from 70 ˚C and 80 ˚C for water and between 25 ˚C and 42 ˚C at heat exchanger intake. A strong consensus was established between the experimental results and the research model [26]. The literature review strongly points to the theoretical and experimental evaluation of laminar and turbulent Reynolds numbers worked under high temperatures and pressures (supercritical fluid) in much of the work on compact heating exchangers coupled with diffusion bonding. Note that the effect of the working fluid on the compact heat exchanger is ignored in most of these works. In laminar or turbulent flow conditions the researchers constantly observed high rates of heat transfer with various kinds of nanofluids flowing in a channel. The improvement in nanofluid heat transfer depends on the particle concentration, thermal conductivity of nanoparticles and mass flow rates. Various aspects of nanofluids and various methods for the use of nano fluids to increase heat transfer rates were explored by the above researchers in many heat exchangers. The study concentrates on growing the effectiveness of nanofluid in several research papers. Some papers, however, concentrate on nanofluid and its effect, effectiveness, heat transfer and overall coefficient of heat
  • 4. International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470 @ IJTSRD | Unique Paper ID – IJTSRD33508 | Volume – 4 | Issue – 6 | September-October 2020 Page 841 transfer. Research clearly show that nanofluids have higher heat transfer enhancements than normal base fluids such as water, oil etc. No studies have been published on the use of nanofluids as a working medium in compact heat exchangers to the best of the authors' literature surveys. 2.2. Research Objectives In this analysis, the thermal characteristics of a nanofluid in a straight-square compact heat exchanger was investigated using a 3-dimensional numerical (3-D) simulation where single-phase streams flow in a diffusion-bonded compact heat exchanger in the transition to turbulent regimes. The simulation programme ANSYS 17.0 was used for study of the heat transfer physiognomies of a compact heat exchanger with nano-fluids. The main objectives of the present work are as follows: To analyze the thermal characteristics of straight-square compact heat exchanger using nanofluid. To develop compact pipe heat exchanger model and validation on CFD model will be carried out with comparison of previous experimental model. Effect of nanofluid in compact heat exchanger, thermal characteristics is analyzed by parameters such as the Heat transfer rate, and Thermal conductance. Calculating the effects of various volume concentrations of nanoparticles present in the nanofluid and their effects on heat transfer. III. COMPUTATIONAL MODEL The geometry of straight-square compact heat exchanger using nanofluids performing the simulation study is taken from the one of the research scholar’s A.P.C. Sarmiento et al. (2020) [26] with exact dimensions. Table 1 Design parameters of the compact heat exchanger Parameter Hot side Cold side Channel pitch(mm),b 3 3 Channel width(mm),w 3 3 Intermediate plate thickness(mm),a 1 1 Fin thickness(mm),e 1.5 1.5 Hydraulic diameter(mm),Dh 3 3 Number of layers 9 9 Core width (mm), W 88 88 Core height (mm), H 72 72 Pure counter flow length(mm),Lcounter 210 -------- Total flow length of the plate(mm),L 363 344 Entrance Length(mm), Linlet 23 0 Exit Length(mm), Lout 23 0 Figure 2 Solid model of compact heat exchanger The CFD analysis of the heat exchanger is performed in the ANSYS Fluent module. The solid model of the heat exchanger is created in design modular. In the pre-processor step of ANSYS FLUENT R17.0, a three-dimensional discretized model of compact heat exchanger was developed. Although the styles of grids are connected to simulation performance, the entire structure is discretized in the finite volume of Quadcore tetrahedral grids in order to reliably calculate the thermal characteristics of compact heat exchanger using correct grids.
  • 5. International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470 @ IJTSRD | Unique Paper ID – IJTSRD33508 | Volume – 4 | Issue – 6 | September-October 2020 Page 842 Table 2 Meshing details The applied design Number of nodes and elements Compact heat exchanger 267155 and 804078 IV. NUMERICAL PROCEDURE The Fluent 17.0 was used to calculate computationally. In research, the approach used to differentiate the governing equations was a finite element. For this convective term, the researchers used a simpler algorithm, and for connecting calculations of the pressure and velocity the second order upwind method was implemented. A standard k-epsilon equation was used with flow and energy equations to solve turbulence. Which implies the following hypotheses: 1. There is negligence of thermal radiation and normal convection; 2. The average of fluid and solid properties is calculated 3. Flow is incompressible; 4. heat transfer steady-state; 5. Transitional fluid flow and turbulent regimes, and 6. The fluid is distributed uniformly between the channels and the inlet channels have a uniform velocity profile. 4.1. Governing equations The numerical simulation was with a 3-Dimensional steady state turbulent flow system. In order to solve the problem, governing equations for the flow and conjugate transfer of heat were customized according to the conditions of the simulation setup. The governing equations for mass, momentum, energy, turbulent kinetic energy and turbulent energy dissipation are expressed as follow, Mass: = 0 Momentum: = − Energy Equation: = In this project, k- model of renormalization group (RNG) was introduced since the estimation of near-wall flows and flows can be enhanced with a high streamline curvature. In the enhanced RNG k- model wall thermal effect equations, the thermal effect parameter was chosen. Turbulent kinetic energy: + = ! + "# + $ Turbulent energy dissipation: % + & = ' ' ! + ()& & # "# + (*&$ &+ # Where, "# represents the generation of turbulent kinetic energy due to the mean velocity gradient and ,-.. = , + , , = ( $ #+ & The empirical constants for the RNG k-ε model are allotted as following: ()& = 1.42 (*& = 1.68 5& = 1.39 Table 3 Thermodynamic Properties of water, air, and nano-particles Input Parameters Symbols Water Air Al2O3 Units Specific heat capacity cph 4182 1006.43 750 J/kg-K Density $ 998 1.225 3970 (kg/m3) Thermal conductivity k 0.598 0.0242 46 W/m-K
  • 6. International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470 @ IJTSRD | Unique Paper ID – IJTSRD33508 | Volume – 4 | Issue – 6 | September-October 2020 Page 843 Here the effective properties of the Al2O3/water nanofluid are defined as follows:Pak and cho [27], Patel [28] and Ebrahmnia- Bajestan [29] suggested the below equations for determining density, thermal conductivity, specific heat and viscosity of nanofluids. $8. = ∅ $ + :1 − ∅ ;$<. :$( ;8. = 1 − ∅ $( <. + ∅ $( =8. = =<. > ?* @ A*∅ @ A ?* @ ?∅ @ A B ,8. = @ )A∅ +.C Table 4 Thermodynamic Properties of Al2O3/water based nanofluid Concentration (% by weight) Density (kg/m3) Specific heat (J/kg-K) Thermal Conductivity (W/m-K) Dynamic viscosity (Pa-s) 0.4 1000.364 4170.10 0.598 0.00103 0.8 1002.728 4158.267 0.599 0.00102 1.2 1005.092 4146.48 0.600 0.00103 The discrete flow domain has been defined under sufficient limits. Inlets were allocated the mass flow rate requirements, while pressure outlet limits were allocated for outlets. The surfaces of the heat exchanger is regarded as normal wall limits. The interior walls were fitted with couplings of thermal walls. Table 5.5. Consolidates the restricting constraints on operating heat exchanger fluids. The input data are the inlet temperatures, pressures, and flow rate. The heat exchanger works in a counter-flow configuration. Table 5 Details of boundary conditions Detail Boundary Type Value Remarks Inlet-Air Velocity inlet 4,8 and 12 m/s Hydraulic diameter=0.03m and Turbulent intensity=3% Inlet-Working fluid (water + Nanoparticles at different concentration ) Mass flow rate inlet 0.89 kg/s Hydraulic diameter=0.03m and Turbulent intensity=3% Outlet Pressure outlet 0 Pa (gauge) 3% Turbulent intensity with Hydraulic diameter Inner surfaces, etc. Standard wall Coupled Coupled between solid and fluid Outer surfaces Standard wall Heat flux=0 Insulated Figure 3 Inlet and outlet of the cold fluid stream of compact heat exchanger Figure 4 Inlet and outlet of the hot fluid stream of compact heat exchanger
  • 7. International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470 @ IJTSRD | Unique Paper ID – IJTSRD33508 | Volume – 4 | Issue – 6 | September-October 2020 Page 844 The inlet temperature of the cold fluid stream 29.94, 31.93, and 44.53°C for the velocity 4, 8 and 12 m/s respectively. While the inlet temperature of the hot fluid stream 70°C.The solution is initialized and iterated after putting the boundary conditions in a curve line map such that the value of all parameters is visible. After the iteration gets completed final outcome may be observed. V. RESULTS AND DISCUSSIONS This section is aimed at evaluating the compact heat exchanger thermal performance using nanofluids. The variations in the Heat transfer rate, and Thermal conductance are measured at different numbers of the mass flow rate in order to research the performance of the compact heat exchanger using nanofluids subject to flow. 6.1. Validation of numerical computations To validate the accuracy of developed numerical approach, comparison was made with the work reported in A.P.C. Sarmiento et al. (2020) [26]. The compact heat exchanger geometry that used for validation of numerical computations was considered to be as same as the geometry shown in Fig. 5.1.So, to obtain the heat transfer and the overall thermal conductance of the straight square compact heat exchanger. The hot stream and air velocity conditions are as follows: Table 6 Shows the hot stream and cold stream test conditions Air center line velocity (in m/s) Cold mass flow rate (in kg/s) Cold inlet temperature (in ˚C) Hot mass flow rate (in kg/s) Hot inlet temperature (in ˚C) 4 0.0308 29.94 0.894 69.69 8 0.0551 31.93 0.893 69.52 12 0.0795 44.53 0.887 69.68 Figure 5 Static temperature contour calculated from the CFD modeling for straight square compact heat exchanger The values of Heat transfer rate, and Thermal conductance calculated from the CFD modeling On the basis of temperature of hot and cold fluid obtained were compared with the values obtained from the analysis performed by A.P.C. Sarmiento et al. (2020) [26]. Figure 6 Heat transfer rate calculated from the CFD modeling compared with the values obtained from the analysis performed by A.P.C. Sarmiento et al. (2020) [26] for straight square compact heat exchanger 1000 1200 1400 1600 4 8 12 HeatTransferrate (inW) Air centreline velocity (in m/s) Base Paper Present Study
  • 8. International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470 @ IJTSRD | Unique Paper ID – IJTSRD33508 | Volume – 4 | Issue – 6 | September-October 2020 Page 845 Figure 7 Thermal conductance calculated from the CFD modeling compared with the values obtained from the analysis performed by A.P.C. Sarmiento et al. (2020) [26] for straight square compact heat exchanger From the above validation analysis it is found that the values of Heat transfer rate, and Thermal conductance calculated from CFD analysis is close to the values of Heat transfer rate, and Thermal conductance obtained from the base paper. So here we can say that the CFD model of straight square compact heat exchanger is correct. 6.2. Effect of suspension of nano-particles in the working fluid of straight square compact heat exchanger After analyzing water as a working fluid in Straight Square compact heat exchanger, nano fluid were used as a fluid in place of pure water. In order to analyze the effect of different concentrations of nano particles on heat transfer rate, and thermal conductance, here in this work we have considered nano fluid that is aluminum oxide (Al2O3).Three volume fraction of nano particles that is 0.4%, 0.8%, and 1.2% in the working fluid i.e. water is suspended. The boundary conditions were same as considered during the analysis of water in Straight Square compact heat exchanger. The thermal properties of nano fluids is mention in section IV, for calculating the effect of different nano particles on heat transfer rate, and thermal conductance. Figure 8 Heat transfer rate calculated from the CFD modeling for water/ Al2O3 nanofluid and compared with existing work for water as working fluid in a Straight Square compact heat exchanger Figure 9 Thermal conductance calculated from the CFD modeling for water/ Al2O3 nanofluid and compared with existing work for water as working fluid in a Straight Square compact heat exchanger 60 80 100 120 140 160 4 8 12 Thermalconductance (inW/K) Air centreline velocity (in m/s) Base Paper Present Study 1000 1200 1400 1600 4 8 12 HeatTransferrate (inW) Air centreline velocity (in m/s) Water Water+Al2O3 nano-particles at 0.4% Water+Al2O3 nano-particles at 0.8% Water+Al2O3 nano-particles at 1.2 % 60 110 160 4 8 12 Thermal Conductance (inW/K) Air centreline velocity (in m/s) Water Water+Al2O3 nano-particles at 0.4% Water+Al2O3 nano-particles at 0.8%
  • 9. International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470 @ IJTSRD | Unique Paper ID – IJTSRD33508 | Volume – 4 | Issue – 6 | September-October 2020 Page 846 VI. CONCLUSIONS The following conclusions can be drawn based on the provided results: The addition of nanoparticles to the base fluid increased the coefficient of heat transfer due to the increasing heat flux. There is an important effect of the air centerline velocity on the improvement of the heat transfer of both the base fluid and the nanofluid. The thermal conductivity of the Al2O3 / water nanofluid improved with an increase in the weight fractions of nanofluids. Al2O3 / water nanofluids had the highest increase in thermal conductivity at wt. proportion = 1.2 %. From analysis it is found that the value of heat transfer and overall thermal conductance is higher in case of Aluminum oxide (Al2O3) nano-particles at 1.2 % volume fraction in water. In the Straight square compact heat exchanger with Al2O3 / water nanofluid, the thermal conductance are approximately 29% higher in comparison with the conventional fluid i.e. water. In the Straight square compact heat exchanger with Al2O3 / water nanofluid, the heat transfer are approximately 35 % higher in comparison with the conventional fluid i.e. water. It is also found that as the volume fraction of nano particles increases the heat transfer rate of heat exchanger also increases. So in this work we can say that compact heat exchanger having 1.2 % volume fraction of Al2O3 nanoparticles in water at different air centerline velocity shows maximum heat transfer and thermal conductance. REFERENCES [1] R. K. Shah, D. P. Sekulic, Fundamentals of Heat Exchanger Design, John Wiley & Sons, Hoboken, NJ, 2003. [2] A. P. C. Sarmiento, F. H. Milanese, M. B. H. Mantelli, V. R. Miranda, Theoretical and experimental studies on two-phase thermosyphon shell and shell heat exchangers, Appl. Therm. Eng. 171 (2020) 115092, https://doi.org/10.1016/j.applthermaleng.2020.115 092. [3] J. E. Hesselgreaves, R. Law, D. Reay, Compact Heat Exchangers: Selection, Design, and Operation, second ed., Butterworh-Heinemann, Amsterdam, 2017. [4] T. Takeda, K. Kunitomi, T. Horie, K. Iwata, Feasibility study on the applicability of a diffusion-welded compact intermediate heat exchanger to next- generation high temperature gas-cooled reactor, Nucl. Eng. Des. 168 (1997) 11–21, https://doi. org/10.1016/S0029-5493 (96)01361-1. [5] M. V. V. Mortean, L. H. R. Cisterna, K. V. Paiva, M. B. H. Mantelli, Development of diffusion welded compact heat exchanger technology, Appl. Therm. Eng. 93 (2016) 995–1005, https://doi.org/10.1016/j.applthermaleng.2015.09.0 21. [6] M. V. V. Mortean, A. J. de A. Buschinelli, K. V. de Paiva, M. B. H. Mantelli, J. Remmel, Soldagem por Difus~ ao de Aços Inoxidaveis para Fabricaç~ ao de Trocadores de Calor Compactos, Soldag. Insp. 21 (2016) 103– 114, https://doi.org/10.1590/0104- 9224/SI2101. [7] M. V. V. Mortean, K. V. Paiva, M. B. H. Mantelli, Diffusion bonded cross-flow compact heat exchangers: theoretical predictions and experiments, Int. J. Therm. Sci. 110 (2016) 285–298, https://doi.org/10.1016/j.ijthermalsci.2016.07.010. [8] N. Bartel, M. Chen, V. P. Utgikar, X. Sun, I.-H. Kim, R. Christensen, P. Sabharwall, Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors, Ann. Nucl. Energy 81 (2015) 143–149, https://doi.org/10.1016/j.anucene.2015.03.029. [9] Y. Hou, G. Tang, Thermal-hydraulic-structural analysis and design optimization for micron-sized printed circuit heat exchanger, J. Therm. Sci. 28 (2019) 252–261, https://doi.org/10.1007/s11630- 018-1062-8. [10] C. Huang, W. Cai, Y. Wang, Y. Liu, Q. Li, B. Li, Review on the characteristics of flow and heat transfer in printed circuit heat exchangers, Appl. Therm. Eng. 153 (2019) 190–205, https://doi.org/10.1016/j.applthermaleng.2019.02.1. [11] S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, E. A. Grulke, Anomalously thermal conductivity enhancement in nano-tube suspensions, Appl. Phys. Lett. 79 (2001) 2252e2254. [12] H. Masuda, A. Ebata, K. Teramea, N. Hishinuma, Altering the thermal conductivity and viscosity of liquid by dispersing ultra-fine particles, Netsu Bussei 7 (4) (1993) 227e233. [13] H. A. Minsta, G. Roy, C. T. Nguyen, D. Doucet, New temperature dependent thermal conductivity data for water-based nanofluids, Int. J. Therm. Sci. 48 (2009) 363e371. [14] S. J. Kim, I. C. Bang, J. Buongiorno, L. W. Hu, Study of pool boiling and critical heat flux enhancement in nanofluids, Bull. Pol. Acad. Sci. Tech. Sci. 55 (2) (2007) 211e216. bulletin.pan.pl/(55-2)211.pdf. [15] S. J. Kim, I. C. Bang, J. Buongiorno, L. W. Hu, Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux, Int. J. Heat Mass Transf. 50 (19e20) (2007) 4105e4116. [16] E. Jackson, Investigation into the Pool-Boiling Characteristics of Gold Nanofluids, M.S. thesis, University ofMissouri-Columbia, Columbia, Mo, USA, 2007. [17] M. Chandrasekar, S. Suresh, A. Chandra Bose, “Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid”, Experimental Thermal and Fluid Science, 34 (2017) 210–216 [18] Hadi Dogacan Kocaa, Serkan Doganayb, Alpaslan Turgutc, Ismail Hakki Tavmanc, R. Saidurd, Islam Mohammed Mahbubulf, “Effect of particle size on the viscosity of nanofluids: A review”, Renewable and Sustainable Energy Reviews, j.rser.2017.07.016. [19] Shriram S. Sonawane, Rohit S. Khedkar, Kailas L. Wasewar, ”Study on concentric tube exchanger heat
  • 10. International Journal of Trend in Scientific Research and Development (IJTSRD) @ www.ijtsrd.com eISSN: 2456-6470 @ IJTSRD | Unique Paper ID – IJTSRD33508 | Volume – 4 | Issue – 6 | September-October 2020 Page 847 transfer performance usingAl2O3 – water based nanofluids”, International Communications in Heat and Mass Transfer 49 (2013) 60–68@ 2013 Elsevier Ltd. [20] S. K. Mylavarapu, X. Sun, R. E. Glosup, R. N. Christensen, M. W. Patterson, Thermal hydraulic performance testing of printed circuit heat exchangers in a high temperature helium test facility, Appl. Therm. Eng. 65 (2014) 605–614, https:// doi.org/10.1016/j.applthermaleng.2014.01.0. [21] J.-W. Seo, Y.-H. Kim, D. Kim, Y.-D. Choi, K.-J. Lee, Heat transfer and pressure drop characteristics in straight micro channel of printed circuit heat exchangers, Entropy 17 (2015) 3438–3457, https://doi.org/10.3390/e17053438. [22] D. Kwon, L. Jin, W. Jung, S. Jeong, Experimental investigation of heat transfer coefficient of mini- channel PCHE (printed circuit heat exchanger), Cryogenics 92 (2018) 41–49, https://doi.org/10.1016/j.cryogenics.2018.03.011. [23] V. Gnielinski, on heat transfer in tubes, Int. J. Heat Mass Transf. 63 (2013) 134–140, https://doi.org/10.1016/j.ijheatmasstransfer.2013.0 4.015. [24] X. F. Peng, G. P. Peterson, Convective heat transfer and flow friction for water flow in micro channel structures, Int. J. Heat Mass Transf. 39 (1996) 2599– 2608, https://doi.org/10.1016/0017- 9310(95)00327. [25] W. Chu, X. Li, T. Ma, Y. Chen, Q. Wang, Experimental investigation on SCO 2 -water heat transfer characteristics in a printed circuit heat exchanger with straight channels, Int. J. Heat Mass Transf. 113 (2018) 184–194, https://doi.org/10.1016/ j.ijheatmasstransfer.2018.05. [26] A. P. C. Sarmiento, V. H. T. Soares, G. G. Carqueja, J.V.C. Batista, F.H. Milanese, M.B. H. Mantelli. Thermal performance of diffusion-bonded compact heat exchangers, International Journal of Thermal Sciences 153 (2020) 106384. [27] B. C. Pak, Y. L. Cho, Hydrodynamic and heat transfer study of Dispersed fluids with submicron metallic oxide particles, Exp. Heat Transf. 11 (1998) 151–170. [28] H. E. Patel, K. B. Anoop, T. Sundararajan, Sarit K. Das, Model for thermal conductivity of CNT – nanofluids, Bull. Mater. Sci. 31 (3) (2008) 387–390. [29] E. Ebrahimnia-Bajestan, H. Niazmand, Convective heat transfer of nanofluidsflows through an isothermally heated curved pipe, Iran. J. Chem. Eng. 8 (2) (2011) 81–97. http://www.ijche.com/article_10292_108f06076ed8 ee6ef6dcb552f71f7af 3.pdf.