SlideShare a Scribd company logo
1 of 94
Download to read offline
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
Corso di 
COSTRUZIONI METALLICHE 
PLATE AND SHELLS: 
BUCKLING AND NON – LINEAR 
ANALYSIS 
Prof. Ing. Franco Bontempi 
Ing. Giordana Gai 
Roma, 5 Dicembre 2014 
gai.giordana@gmail.com 
giordana.gai@uniroma1.it 
Corso di Costruzioni Metalliche 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
OUTLINE 
Corso di Costruzioni Metalliche 2 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
PLATES 
• Buckling analysis 
 Compressive forces 
 Bending moment forces 
 Shearing forces 
 Shearing and compressive forces 
 Shearing and bending moment forces 
• Non – linear analysis (elastic material) 
• Non – linear analysis (elastic – plastic material) 
SHELLS 
• Thin shells (membrane theory) 
• Thick shells 
• Buckling analysis 
• Non – linear analysis (elastic material) 
1/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 2/92 
PLATES 
Buckling analysis 
Corso di Costruzioni Metalliche 3 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 3/92 
How can we calculate the critical load for a plate? 
• Analytical method: 
by solving equations of equilibrium  it can be difficult to find the solution (the 
equations are fourth order - partial differential equations) 
• Energy methods: 
by equaling the work done by acting forces with strain energy  it is useful if we are 
interested in approximate solutions. 
4 
Hipotesis 
GEOMETRY 
 No imperfections 
 Thin plate: one dimension is very small with respect on the other two 
MATERIAL (Steel) 
 Linear Elastic 
LOADS 
 Loads are applied in the middle plane of the plate 
Corso di Costruzioni Metalliche 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 4/92 
The critical value of the forces acting on a plate depends on: 
 Ratio a/b (length / width) 
 Thickness s 
 Material properties (E and ν) 
 Boundary conditions 
for each condition of loads 
Corso di Costruzioni Metalliche 5 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 5/92 
1.COMPRESSIVE FORCES 
Plate simply supported along four edges 
m = number of half – waves parallel to the 
direction of N 
n = number of half – waves perpendicular to the 
direction of N 
Deflection surface 
Critical load 
The minimum value of the critical load is 
obtained by putting n = 1 
The plate buckles in a shape that can have several half-waves in the direction of 
compression but only one half wave in the perpendicular direction. 
Corso di Costruzioni Metalliche 6 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
1.COMPRESSIVE FORCES 
Euler load for a strip of length 
“a” and unit width 
the stability of the continuous plate is 
greater than the stability of an isolated strip 
(depends on the ratio a/b and on the 
number m) 
• If a < b  the minimum is obtained by putting m = 1 
(only one half – wave ) 
• If a > b  it is used a simplified expression 
where k is a numerical factor depending on a/b 
Corso di Costruzioni Metalliche 7 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
6/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
1.COMPRESSIVE FORCES 
• Short plates buckles in only one half – wave 
• Long plates can have very large “m” 
(comparable to the ratio a/b) 
• The curve m = 1 has a minimum for square plate; before and after the ratio a/b = 1, the value k 
increases. 
• If m > 1 , the plate buckles in more half – waves and each half is in the condition of a simply 
supported plate of length a/(number of half – waves). 
• Critical value of the compressive stress 
Corso di Costruzioni Metalliche 8 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
7/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
1.COMPRESSIVE FORCES 
Plate simply supported along two edges perpendicular to 
the direction of N 
Deflection surface 
Solution depends on boundary conditions 
along the edges y = 0 and y = b 
• y = 0 simply supported; y = b free 
• y = 0  zero displacement and zero bending 
moment 
• y = b  zero shear and zero bending moment 
k Ncr 
Corso di Costruzioni Metalliche 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
8/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
1.COMPRESSIVE FORCES 
Plate simply supported along two edges perpendicular to 
the direction of N 
• y = 0 built in; y = b free 
• y = 0  zero displacement and zero rotation 
• y = b  zero shear and zero bending moment 
k Ncr 
The curve m = 1 has a minimum for 
a/b = 1.635 
Corso di Costruzioni Metalliche 10 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
9/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
1.COMPRESSIVE FORCES 
Plate simply supported along two edges perpendicular to 
the direction of N 
• y = 0 built in; y = b built in 
• y = 0  zero displacement and zero rotation 
• y = b  zero displacement and zero rotation 
k Ncr 
The smallest value of k is for 0.6 < a/b < 0.7. 
In this case, a long compressed plate buckles in comparatively short waves 
Corso di Costruzioni Metalliche 11 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
10/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
1.COMPRESSIVE FORCES 
Plate simply supported along two edges parallel to the 
direction of N 
• y = 0 and y = b  zero bending moment and shear equal to the 
action force (N w/ y) 
There are two possible forms of buckling 
•The first buckling form is antisymmetrical up to a value of 
b/a=1.316 
• then, for 1.316 < b/a < 2.632 the buckling form is symmetrical 
and then the value of k remains close to 2.31. 
Corso di Costruzioni Metalliche 12 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
11/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
1.COMPRESSIVE FORCES 
Plate simply supported along two edges parallel to the 
direction of N 
The curve of antysimmetrical buckling can be used also for the 
case of a plate simply supported along 3 sides (this plate is in 
the same conditions as the half of the antisymmetrical plate 
described before). 
To calculate k, that curve can be used , using 2b/a instead of b/a. 
13 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
12/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
2.BENDING MOMENT FORCES 
•  = 0  pure compression 
•  = 2  pure bending moment 
•  = 1  bending moment and compression 
For each case k is calculated and then the critical value of N0. 
η = 2 
Considering m=1, it has a 
minimum when a / b = 2/3. 
For cases with η > 2, the value of the ratio at which k presents a minimum increases (for pure 
compression a/b = 1). 
Corso di Costruzioni Metalliche 14 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
13/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
3.SHEARING FORCES 
In this case, buckling is caused for the compressive stresses 
acting along one of the two principal diagonals. 
The critical value of shear stresses can be calculated by using 
k, that depends on the ratio a/b. 
Corso di Costruzioni Metalliche 15 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
14/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
4.SHEARING AND COMPRESSIVE FORCES 
The axial stresses reduces the stability of the plate submitted at the action of shear stresses. 
The interaction between shear and compression is highly negative. 
Corso di Costruzioni Metalliche 16 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
15/92
5.SHEARING AND BENDING MOMENT FORCES 
α is the ratio a/b 
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
In this case we have both compressive that tension stresses. 
The diagram shows that for τ / τ cr < 0.4 the effect of shearing stress on the critical value of 
bending stress is small. 
Corso di Costruzioni Metalliche 17 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
16/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
NUMERICAL EXAMPLE 
a = b = L 50 cm 
s 1 cm 
E 2E+08 KPa 
ν 0.30 
Comparison between analytical and numerical code solutions 
 Analytical solution: by Timoshenko’s theory 
 Numerical codes: SAP 2000 and Straus 7 
LOAD CASES ANALYZED: 
1. Compressive forces 
2. Bending moment forces 
3. Shearing forces 
4. Shearing and compressive forces 
5. Shearing and bending moment forces 
Corso di Costruzioni Metalliche 18 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
17/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
1.COMPRESSIVE FORCES 
ANALYTICAL SOLUTION 
Ncr = k Nl 
Nl = π2Et3/12(1-ν2)b2 = 723KN/m 
k  from the schedule 
NUMERICAL SOLUTION 
Buckling analysis 
Mesh used = 30x30 finite elements 
ISOP4 
SAP 2000 
Straus 7 
Corso di Costruzioni Metalliche 19 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
18/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 19/92 
CASE k Buckled 
Plate 
1 1 
2 4 
3 6.5 
4 5 
5 7.7 
6 5.7 
CASE k Buckled 
Plate 
7 1.44 
8 1.7 
9 10.2 
10 2.05 
11 2.3 
12 2.3 
Corso di Costruzioni Metalliche 20 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 20/92 
CASE Analytical Pcr 
[KN/m] 
Differences Straus7- 
Analytical Solution [%] 
Differences SAP2000- 
Analytical Solution [%] 
1 723.0 -5.0% 1.8% 
7 1041.2 -2.8% 3.8% 
8 1229.2 -2.9% 3.7% 
10 1482.2 -1.0% 3.1% 
11 1663.0 2.7% 1.7% 
12 1663.0 3.8% 2.7% 
2 2892.2 -0.2% 5.0% 
4 3615.2 5.6% 5.6% 
6 4121.4 0.5% 4.5% 
3 4699.8 3.4% 3.4% 
5 5560.2 -0.4% 3.0% 
9 7375.1 -1.6% -1.7% 
CASE 1 CASE 2 CASE 5 
xy_view xz_view xy_view xz_view xy_view xz_view 
Pcr = 723 KN/m Pcr = 2892.2 KN/m Pcr = 5560.2 KN/m 
Corso di Costruzioni Metalliche 21 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
2.BENDING MOMENT FORCES 
ANALYTICAL SOLUTION 
Ncr = k Nl 
Nl = π2Et3/12(1-ν2)b2 = 723KN/m 
k  from the schedules 
NUMERICAL SOLUTION 
Buckling analysis 
Mesh used = 30x30 finite elements 
ISOP4 
SAP 2000 
Straus 7 
Corso di Costruzioni Metalliche 22 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
21/92
23 
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
2.BENDING MOMENT FORCES 
CASE k Pcr [KN/m] Buckled Plate 
Differences Straus7- 
Analytical Solution 
[%] 
Differences 
SAP2000-Analytical 
Solution [%] 
25.6 18510 1.15% 0.15% 
39.5 28530.4 -9.85% 1.73% 
7.8 5639.8 -0.17% 0.27% 
15.0 10845.7 -2.41% -1.72% 
PURE 
BENDING 
BENDING 
AND 
COMPRESSI 
ON 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
22/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
3.SHEARING FORCES 
ANALYTICAL SOLUTION 
τcr = k Nl 
Nl = π2Et3/12(1-ν2)b2 = 723KN/m 
k  from the schedule 
NUMERICAL SOLUTION 
Buckling analysis 
Mesh used = 30x30 finite elements 
ISOP4 
SAP 2000 
Straus 7 
Corso di Costruzioni Metalliche 24 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
23/92
25 
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
3.SHEARING FORCES 
CASE k Pcr 
[KN/m] Buckled Plate w[m]_ 
XY view 
Differences 
Straus7- 
Analytical 
Solution [%] 
Differences 
SAP2000- 
Analytical 
Solution [%] 
9.7 7013.6 4.3% 6.2% 
15.0 10845.7 3.1% 3.1% 
12.3 8893.5 -1.5% -0.3% 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
24/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
4.SHEARING AND COMPRESSIVE FORCES 
ANALYTICAL SOLUTION 
• by using the approximate 
expression, where N0cr and T0cr are 
those calculated before (respectivly 
compressive and shear forces only) 
• by using the schedule 
NUMERICAL SOLUTION 
Buckling analysis 
Mesh used = 30x30 finite elements 
ISOP4 
SAP 2000 
Straus 7 
Corso di Costruzioni Metalliche 26 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
25/92
4.SHEARING AND COMPRESSIVE FORCES 
27 
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
Numerical Code Solution Analytical Expression Differences% 
Tcr = Ncr [KN/m] Ncr =Ncr0[1-(Tcr/Tcr0)2] 
[KN/m] 
Numerical Code – 
Analytical Solution 
SAP 2000 2315.5 2666.1 13% 
STRAUS 7 2452.4 2887.2 2% 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
26/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
5.SHEARING AND BENDING MOMENT FORCES 
ANALYTICAL SOLUTION 
• by using the approximate 
expression, where N0cr and T0cr are 
those calculated before (respectivly 
compressive and shear forces only) 
• by using the schedule 
NUMERICAL SOLUTION 
Buckling analysis 
Mesh used = 30x30 finite elements 
ISOP4 
SAP 2000 
Straus 7 
Corso di Costruzioni Metalliche 28 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
27/92
5.SHEARING AND BENDING MOMENT FORCES 
29 
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
Numerical Code Solution Analytical Expression Differences % 
Tcr = Ncr [KN/m] Ncr = Ncr0[1-(Tcr/Tcr0)2]0.5 [KN/m] Numerical Code – Analytical 
Solution 
SAP 2000 6103.1 6906.5 12% 
STRAUS 7 6241.3 6709.6 7% 
SHEAR SHEAR+BENDING SHEAR+COMPRESSION 
λcr = 6708.5 λcr = 6241.3 λcr = 2452.4 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
28/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 29/92 
PLATES 
Non – linear analysis 
Corso di Costruzioni Metalliche 30 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
ELASTIC MATERIAL 
We run displacement control - nonlinear analysis to investigate post – critical 
behavior. 
31 
Numerical example 
Numerical code : Straus 7 
Mesh : 10x10 finite elements ISOP4 
Step : 200 increments of 0.001 m 
Boundary conditions: 2 edges simply supported 
a = b = L 50 cm 
s 1 cm 
E 2E+08 KPa 
ν 0.30 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
30/92
32 
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
ELASTIC MATERIAL 
 from Buckling analysis 
 from NL analysis (plate straight) with large 
displacement 
 from NL analysis (plate not perfectly straight) 
with large displacement 
(only geometric nonlinearity) 
POST CRITICAL BEHAVIOR = stable, with hardening 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
31/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
ELASTIC – PLASTIC MATERIAL 
(only material 
nonlinearity) 
We insert elastic-plastic diagram into material 
properties and we run again NL analysis. 
33 
σy 235 MPa 
εy 1.175*10-3 
εu 7.5*10-2 
NLM (ideal plate) NLM (real plate) 
= 235*103*0.5*0.01=1175 KN 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
32/92
34 
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
ELASTIC – PLASTIC MATERIAL 
500 
400 
300 
200 
100 
0 
0 0.05 0.1 0.15 0.2 
P [KN] 
Dx [m] 
NLM_not perfectly straight plate 
NLG_not perfectly straight plate 
450 
400 
350 
300 
250 
200 
150 
100 
50 
0 
0 0.05 0.1 0.15 0.2 
P [KN] 
Dx [m] 
Buckling Yielding_not perfectly straight plate 
If we consider the plate with an initial imperfection, the elastic-plastic limit is really near to the 
buckling curve 
NLM+NLG (real plate) 
The plate starts to reach the yelding 
limit in the lateral zone, but rapidly 
it is totally yelded (orange line) 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
33/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
ELASTIC – PLASTIC MATERIAL 
We studied two other plates: one thicker 
(s=3 cm) and one thiner (s=2mm). 
The thicker reaches the yielding limit and 
then collapse, the thiner follows the 
buckling curve: the previous plate 
with s=1cm has an intermediate 
behavior. 
We compared the three “orange curve” by 
adimensionalyzing respect on their 
yielding maximum force. 
35 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
34/92
36 
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
ELASTIC – PLASTIC MATERIAL 
65% of the yielding limit 
40% of the yielding limit 
15% of the yielding limit 
Coupled behaviour of yielding and buckling 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
35/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
ELASTIC – PLASTIC MATERIAL 
Experiments show that due to the interaction between the buckling and the yielding behaviour 
, when the compressive stress reaches the yield point of the material, the plate buckles. 
It is unusual to find a sharp corner that separates the 
elastic behavior from the plastic one. 
37 
Some permanent set usually takes place at a stress 
lower than the yield point 
Zone 1  buckling of plate when the compressive stress reach the yield point 
Zone 2  buckling of plate when the stresses remain within the elastic limit 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
36/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
ELASTIC – PLASTIC MATERIAL 
• Different behaviour of plates and struts when the stresses are beyond the proportional limit 
• The critical load for a strut is considered as the ultimate load, instead a thin buckled plate can 
carry a bigger load than the critical load at which buckling begins. 
38 
• In order to explain the post-critical behavior of plates we analyze a compressive square 
plate simply supported by using two different analytical solutions 
Approximate solution Enhanced solution 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
37/92
39 
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
ELASTIC – PLASTIC MATERIAL 
Approximate solution 
1) Definition of the boundary condition 
Simply supported plate with the lateral 
expansion in the x direction prevented by a 
rigid frame 
This approximate expression of the components of 
the displacements satisfy the boundary conditions 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
38/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
ELASTIC – PLASTIC MATERIAL 
Approximate solution 
2) Determination of the components of the strain in the middle plane and the corresponding 
strain energy of the plate 
40 
3) Determination of the energy of bending 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
39/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
ELASTIC – PLASTIC MATERIAL 
Approximate solution 
4) By using the solution method of minimum of strain energy we determinate the constant f, C1, C2 
41 
By solving 
the system 
we obtain 
We obtain a solution for “f” only if : 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
40/92
42 
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
ELASTIC – PLASTIC MATERIAL 
Approximate solution 
5) Determination of the stresses σx and σy 
By plotting the diagram of the stresses for the ultimate 
compressive force (Nr,d) we can notice: 
• The ultimate compressive force is n times bigger than 
the critical compressive force 
• The compressive stress diagram is non-uniform 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
41/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
ELASTIC – PLASTIC MATERIAL 
Approximate solution 
Why can the ultimate compressive force in a plate be n times bigger than the critical one? 
For a compressive force greater than the critical one, the vertical fibres instead of collapse ,as 
they would do if we analyzed a single strut, can absorb a further load because their deflection 
out of the plane is hindered by the flexural rigidity of the horizontal fibres. 
For the restraints of the plate that we are considering, we know that the part of the horizontal 
fibres near of the edge is more rigid because is close to the restraints( that are considering having 
an infinite rigidity). So the vertical fibres near to the vertical edge are able to absorb a greater 
post-critical load because they can count on a greater flexural rigidity of the horizontal fibres. 
43 
Why is the compressive stress diagram non-uniform ? 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
42/92
44 
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
ELASTIC – PLASTIC MATERIAL 
Approximate solution 
The total compressive force acting on the plate at a unit compression necr is 
The factor c gives the relative diminishing of the resistance of compression 
of the plate due to buckling 
A1 = A2 
We can state that this resistance is equivalent to that of a flat plate having a width equal to c. 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
43/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
ELASTIC – PLASTIC MATERIAL 
Enhanced solution 
2) We determinate the ultimate load that the plate can carry by using the Tresca yield criterion. 
45 
For thin plate the approximate solution that we calculated is not sufficiently accurate. 
1)The solution can be improved by changing the boundary conditions. 
we assume that the later bars 
of the frame keep the lateral 
edges of the plate straight but 
moving freely laterally. 
We can resolve the problem by following the steps shown in the approximate solution 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
44/92
46 
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
ELASTIC – PLASTIC MATERIAL 
Numerical example 
A square plate simply supported 
DATA 
• a = b = 500mm 
• t = 10 mm 
• E = 2E5 MPa 
• Perfect elastic-plastic constitutive law 
• σy = 235 MPa 
• εy = 1.175E-3 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
45/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
ELASTIC – PLASTIC MATERIAL 
3 
2.5 
2 
1.5 
1 
0.5 
0 
σx /σcr 
-1 -0.5 0 0.5 1 
Analytical approximate 
47 
solution 
asse y / a 
Cross section x = a 
0.2 
0 
-1 -0.5 0 0.5 1 
-0.2 
-0.4 
-0.6 
-0.8 
-1 
-1.2 
-1.4 
-1.6 
σy /σcr 
asse x /a 
Cross section y = a 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
46/92
48 
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
ELASTIC – PLASTIC MATERIAL 
1) We run the non linear static analysis by considering the non linear material 
Straus 7 approximate solution 
σy 235 MPa 
εy 1.175*10-3 
εu 7.5*10-2 
Analytical solution Numerical solution 
σy 235 Mpa 
Step 4.7 
Fcr 558 kN 
Fy 2350 kN Fy 2622.6 kN 
errore 10% 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
47/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
ELASTIC – PLASTIC MATERIAL 
2) We run the non linear static analysis by considering the non linear material and the non liner 
geometry 
49 
Geometric non - linearity Material non - linearity 
Numerical solution Analytical solution 
Fu 1450.8 kN Fu 554.7 kN 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
48/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
ELASTIC – PLASTIC MATERIAL 
Corso di Costruzioni Metalliche 50 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
49/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
ELASTIC – PLASTIC MATERIAL 
-1 -0.5 0 0.5 1 
51 
Cross section x = a 
4.5 
4 
3.5 
3 
2.5 
2 
1.5 
1 
0.5 
0 
σx /σcr 
asse y/a 
-1 -0.5 0 0.5 1 
Straus7 Analytical solution 
1.5 
1 
0.5 
0 
-0.5 
-1 
-1.5 
-2 
σy /σcr 
asse x/a 
Cross section y = a 
Analytical solution Straus7 
Analytical enhanced solution 
Straus7 approximate solution 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
50/92
52 
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
ELASTIC – PLASTIC MATERIAL 
In order to obtain an enhanced solution, we repeat the analysis by considering different 
boundary conditions 
Boundary condition: 
• Horizontal edges: 
uz=0 
• Right vertical edge: 
uz = 0 
• Left vertical edge: 
uz = 0 
ux = 0 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
51/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
ELASTIC – PLASTIC MATERIAL 
-1 -0.5 0 0.5 1 
53 
0.6 
0.4 
0.2 
0 
-0.2 
-0.4 
-0.6 
σy /σcr 
asse x/a 
Sezione y = a 
Analytical solution Strauss7 
Sezione x = a 
3.5 
3 
2.5 
2 
1.5 
1 
0.5 
0 
σx /σcr 
asse y/a 
-1 -0.5 0 0.5 1 
Strauss7 Analytical solution 
Analytical enhanced solution 
Straus7 approximate solution 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
52/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
ELASTIC – PLASTIC MATERIAL 
0.6 
0.4 
0.2 
0 
-1 -0.5 0 0.5 1 
-0.2 
-0.4 
-0.6 
-0.8 
-1 
-1.2 
-1.4 
-1.6 
σy/σcr 
asse x/a 
C.S. y = a analytical solutions 
P.A.S.10 A.S.10 
C.S. x = a analytical solutions 
3 
2.5 
2 
1.5 
1 
0.5 
0 
σx /σcr 
asse y/a 
-1 -0.5 0 0.5 1 
P.A.S.10 A.S.10 
54 
Comparison 
We compare the results provided by the approximate and the enhanced analysis 
Legend: 
P.A.S. Enhanced analytical solution 
A.S.Analytical solution 
P.S7.S. Enhanced Straus7 solution 
S7.S. Straus7 solution 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
53/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
ELASTIC – PLASTIC MATERIAL 
Comparison 
We compare the results provided by the approximate and the enhanced analysis 
C.S. x = a Numerical solutions 
4.5 
4 
3.5 
3 
2.5 
2 
1.5 
1 
0.5 
0 
σx /σcr 
asse y/a 
-1 -0.5 0 0.5 1 
P.S7.S.10 S7.S.10 
C.S. y = a Numerical solutions 
1.5 
1 
0.5 
0 
-1 -0.5 0 0.5 1 
-0.5 
-1 
-1.5 
σy /σcr 
asse x/a 
P.S7.S.10 S7.S.10 
Corso di Costruzioni Metalliche 55 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
54/92 
Legend: 
P.A.S. Enhanced analytical solution 
A.S.Analytical solution 
P.S7.S. Enhanced Straus7 solution 
S7.S. Straus7 solution
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 55/92 
SHELLS 
Corso di Costruzioni Metalliche 56 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
THIN SHELLS 
The membrane theory 
•We consider a shell where the thickness is small in comparison to its other dimensions 
•We assume an axial-simmetric load. 
The components of the stresses 
the component of 
the stresses 
tangent to the 
meridian 
σ1 
is Caused 
by the resultant of 
the external 
vertical forces 
the component of 
stresses tangent to 
the parallel 
σ2 
is 
by the force Z 
Caused 
by the changing 
of direction of 
the stresses σ1 
Components of the external forces: 
X Component that is tangent to the meridian of the shell 
Z  Component that is normal to the surface of the shell 
Corso di Costruzioni Metalliche 57 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
56/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
THIN SHELLS 
The membrane theory 
Hypothesis: 
very small ratio thickness / minimal 
radius 
Thesis : 
No flexural and torsional rigidity for 
the membrane 
Dimostration 
1) We subdivided the shell in elementary strips of unitary width that follow the geometry of the 
meridians and parallels 
2) Because the strips of the parallels are compressed or in traction they modify their radius but 
they remain circulars. 
3) Due to the deformation of the parallels, the strips of the meridians can deform and 
consequently change their curvature 
4) The change of the meridian curvature causes not uniformly distributed stresses along the 
thickness (σ’1). 
5) The total stress tangent to the meridians σ1tot = σ1+σ1’ 
6) σ1’<< σ1 due to the small thickness (small ymax) and the small change of meridians curvature 
Corso di Costruzioni Metalliche 58 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
57/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
THIN SHELLS 
The membrane theory 
very small ratio thickness / minimal 
No flexural and torsional rigidity for 
Conclusion 
Hypothesis: 
radius 
Thesis : 
the membrane 
For shell characterized by a very small ratio thickness / minimal-radius 
the stresses can be considered uniformly distributed along the thickness 
Consequence 
1) In each point of the membrane the stress state is plane. 
2) No bending or shear transverse stresses in any point of the shell 
Corso di Costruzioni Metalliche 59 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
58/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
THIN SHELLS 
The membrane theory 
Compatibiliy conditions 
1) Boundary condition and deformation constraints must be compatible with the requirements 
of a pure membrane field. 
2) There must not be concentrated loads. 
3) Shell geometry must not change. 
Corso di Costruzioni Metalliche 60 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
59/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
THIN SHELLS 
The membrane theory 
The membrane forces 
We determinate the membrane forces due to the axial-simmetrical load 
S1  integral of the stresses tangent to the meridians 
Q is the resultant of the vertical loads 
Corso di Costruzioni Metalliche 61 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
60/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
THIN SHELLS 
The membrane theory 
The membrane forces 
S2  integral of the stresses tangent to the parallels 
Corso di Costruzioni Metalliche 62 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
61/92 
We determinate the membrane forces due to the axial-simmetrical load
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
THIN SHELLS 
Numerical example 1 
Calculate the membrane forces of a hemisphere tank full of water 
DATA 
•R = 3 m 
•s = 0.1 m 
•γW = 10 kN/m3 
Corso di Costruzioni Metalliche 63 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
62/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
THIN SHELLS 
Numerical example 1 
• Analytical solution 
1) We calculate the volume of the hemisphere 
2) We calculate the membrane forces 
Corso di Costruzioni Metalliche 64 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
63/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
THIN SHELLS 
In order to fulfil the requirements of 
the membrane theory, we apply an 
uniform distributed load that varies 
linearly with the Z. 
We define traslational restraints for the 
edge of the structure in order to have a 
boundary condition compatible with the 
requirements of a pure membrane state. 
Corso di Costruzioni Metalliche 65 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
• Sap2000 solution 
Numerical example 1 
64/92
S1 
S2 
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
THIN SHELLS 
Corso di Costruzioni Metalliche 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
• Sap2000 solution 
Numerical example 1 
65/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
THIN SHELLS 
Numerical example 1 
SAP 2000 BELLUZZI 
Step 
z θ S1 S2 S1 S2 
Error 
S1 
Error 
S2 
m deg KN/m KN/m KN/m KN/m % % 
1 0.000 0 45.53 44.65 45.00 45.00 -1.2% 0.8% 
2 0.333 10 44.45 42.61 44.66 43.97 0.5% 3.1% 
3 0.667 20 43.04 38.94 43.66 40.92 1.4% 4.8% 
4 1.000 30 41.32 34.10 42.06 35.88 1.8% 5.0% 
5 1.333 40 39.33 27.94 39.97 28.98 1.6% 3.6% 
6 1.667 50 37.16 20.40 37.55 20.31 1.0% -0.5% 
7 2.000 60 34.91 11.52 35.00 10.00 0.3% -15.1% 
8 2.333 70 32.77 1.40 32.61 -1.83 -0.5% 176.1% 
9 2.667 80 30.99 -9.84 30.77 -15.14 -0.7% 35.0% 
10 3.000 90 29.90 -22.16 30.00 -30.00 0.3% 26.2% 
Corso di Costruzioni Metalliche 67 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
66/92
50 
40 
30 
20 
10 
0 
-10 
-20 
-30 
-40 
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
THIN SHELLS 
Numerical example 1 
0 10 20 30 40 50 60 70 80 90 
stress [KN/m] 
θ [deg] 
Comparison 
S1 _ SAP S2 _ SAP S1 _analitica S2 _analitica 
Corso di Costruzioni Metalliche 68 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
67/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
THIN SHELLS 
1) The stresses of the element depend only on the Z variable. 
2) The S1 stress is always positive  The meridians are always in traction 
3) The stress S2 is positive near the bottom of the element and negative near the top of it 
 The parallels are in compression near the top of the element and in traction near the 
bottom of it. 
Corso di Costruzioni Metalliche 69 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
• Conclusion 
Numerical example 1 
68/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
THIN SHELLS 
Numerical example 2 
Calculate the membrane forces of a toroidal tank full of water 
S1e 
S1i 
DATA 
•Re = 4.5 m 
•Ri = 3.5 m 
•Rt = 0.5 m 
•S = 0.05 m 
•γW = 10 kN/m3 
Corso di Costruzioni Metalliche 70 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
69/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
THIN SHELLS 
Numerical example 2 
1) By using the Guldino’s formulations we calculate the volume of the parts E and I. 
2) By writing the equation equilibrium we determinate the stresses S1e and S1i. 
3) By using the formula we calculate S2e and S2i 
Corso di Costruzioni Metalliche 71 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
• Analytical solution 
70/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
THIN SHELLS 
Numerical example 2 
In order to fulfil the requirements of the 
membrane theory, we apply a uniform 
distributed load that varies linearly with the Z. 
In addition we define traslational restraints 
for the edge of the structure in order to have 
boundary condition compatible with the 
requirements of a pure membrane state. 
Corso di Costruzioni Metalliche 72 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
• Sap2000 solution 
71/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
THIN SHELLS 
Numerical example 2 
SAP 2000 BELLUZZI 
S1est S1int S2est S2int S1est S1int S2est S2int 
KN/m KN/m KN/m KN/m KN/m KN/m KN/m KN/m 
1.73 2.15 -10.72 13.28 1.84 2.12 -16.54 14.87 
Error 
S1est S1int S2est S2int 
% % % % 
6% 0% 35% 11% 
The stress S2 varies between a maximum positive value that is reached in the internal 
circumference and a minimum negative value in the external circumference . 
That means that the external circumference is in traction while the internal is in compression. 
Corso di Costruzioni Metalliche 73 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
• Conclusion 
72/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
THICK SHELLS 
These type of elements have a thickness that we can’t ignore during the analytical analysis 
By considering the thickness of the shell, we must consider bending and shear stresses in 
addition to the stresses that we regarded for the thin shells 
The deformations generated from the bending and the shear stresses are caused by two factors: 
1) External forces or bending moment applied at the edge of the shell. 
In this case the stresses quickly dampen and we can notice the presence of the bending and shear 
stresses just as a local effect around the edge 
2) External forces distributed on the surface of the element. 
In this case, the distributed forces deform the shells, so the bending and shear stresses are 
distributed in all element. 
Corso di Costruzioni Metalliche 74 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
73/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
THICK SHELLS 
Differential equation 
Hypothesis 
- We consider a pressure that act on a cylindrical tube from the internal to the external of the 
volume. 
- Pressure has to be uniformly distributed on the same parallel and can vary along the 
meridian. 
- External bending moment or radial forces can be present in one or both of the cylinder edges 
Development 
1) We subdivide the elements in strips of unitary width 
2) We assume that the pressure is supported by the 
longitudinal strips 
Corso di Costruzioni Metalliche 75 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
74/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
THICK SHELLS 
Differential equation 
Development 
3) The transversal strips contrast the deformation of longitudinal strips by reacting with radial 
forces (ρ) that act on the longitudinal strips. 
Aim: 
Determinate the relation between the radial force (ρ) 
and the deformation of the parallels 
-We considerate a meridian segment 
-We determinate the deformation of a generic parallel 
-We determinate the relation ρ = f(w) 
Corso di Costruzioni Metalliche 76 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
75/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
THICK SHELLS 
Differential equation 
The differential equation of the elastic line 
We know the relations between the component of displacement w and the other factors: 
The stationary solution The general solution 
-Represent the effect of the pressure P acting 
on the tube surface. 
-The solution is stationary because depends 
on to the distributed load acting on the entire 
element. 
-Represent the effect of external forces or 
bending moment acting on the edges of the 
element. 
-The solution dissipates by going away from 
the loaded edge . 
Corso di Costruzioni Metalliche 77 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
76/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
The general solution: 
THICK SHELLS 
Differential equation 
By considering a tube that is very long in comparison with its other dimensions and assuming 
that the variable x starts where the transverse shear forces and bending moments are applied, the 
constant C1 and C2 can be considered equal to zero. 
The dissipation of the displacements is regulated by the term e-αx that rapidly decrease with the 
increasing of the variable x. 
The bending moment (M) and the transverse 
shear (H) assume relevant value just in the 
part of the element near the loaded edge and 
can be ignored in the rest of the volume. 
Corso di Costruzioni Metalliche 78 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
77/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
THICK SHELLS 
Differential equation 
The dissipation of these local effects is as fast as the wavelength is small. 
The wavelength depends on the radius and the thickness of the element by the expression: 
The dissipation of these local effects is as fast as the radius and the thickness 
of the element are small. 
Corso di Costruzioni Metalliche 79 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
The general solution: 
78/92 
By considering a tube that is very long in comparison with its other dimensions and assuming 
that the variable x starts where the transverse shear forces and bending moments are applied, the 
constant C1 and C2 can be considered equal to zero. 
The dissipation of the displacements is regulated by the term e-αx that rapidly decrease with the 
increasing of the variable x.
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
THICK SHELLS 
Numerical example 
Calculate the displacement w, the bending moment M and the transverse shear H 
associated to one longitudinal strip 
DATA: 
•R = 1 m 
•L = 5 m 
•h = 5 m 
•s = 0.01 
•Material : Steel 
•Constitutive law : linear elastic 
•E = 2*10^8 kPa 
•γt = 10 kN/m3 
Corso di Costruzioni Metalliche 80 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
79/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
THICK SHELLS 
Numerical example 
The particular solution The general solution 
We determinate the constant by using the boundary conditions: 
We determinate the parameters 
α 13.13 1/m 
v 0.3 
B 18.31 KN/m2 
β 2.0E+06 kN/m3 
a 12.85 
C3 -2.46E-05 m 
C4 -2.50E-05 m 
Corso di Costruzioni Metalliche 81 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
• Analytical solution 
80/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
THICK SHELLS 
Numerical example 
4.00 
3.00 
2.00 
1.00 
0.00 
-1.00 
-2.00 
T [KN] 
T = B w’’’ 
X [m] 
Trasverse shear - T 
0 1 2 3 4 5 
5 
4.5 
4 
3.5 
3 
2.5 
2 
1.5 
1 
0.5 
0 
X [m] 
Displacement - W 
W [m] 
0 0.00001 0.00002 
0.20 
0.15 
0.10 
0.05 
0.00 
-0.05 
M [KNm] 
0 1 2 3 4 5 
X [m] 
Bending moment- M 
The bending moment (M) and the 
transverse shear (H) can be considered 
as local effects 
M = B w’’ 
Corso di Costruzioni Metalliche 82 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
• Analytical solution 
81/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
THICK SHELLS 
Numerical example 
We run the analysis and then we export the displacements 
(w), the transverse shear (H) and the bending moment (M) 
of a single meridian in order to compare the results 
provided by the numerical and the analytical analysis 
Corso di Costruzioni Metalliche 83 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
• Sap2000 solution 
82/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 84/92 
SHELLS 
Buckling analysis 
Corso di Costruzioni Metalliche 85 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai
CYLINDRICAL SHELLS WITH CIRCULAR SECTION 
86 
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
In the case of shells, the most interesting behaviour is that out of plane. 
• LOADS: perpendicular to the middle plane, along the revolution axis. 
• MATERIAL: Linear Elastic 
• No imperfection 
Buckled Shell 
Corso di Costruzioni Metalliche Undeformed Shell 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
85/92
CYLINDRICAL SHELLS WITH CIRCULAR SECTION 
87 
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
Numerical example 
Numerical code : Straus 7 
Mesh : 10x10 finite elements ISOP4 
Boundary conditions: two edges simply supported or built in 
L 1 m 
Width 1 m 
E 2E+08 KPa 
ν 0.30 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
86/92
CYLINDRICAL SHELLS WITH CIRCULAR SECTION 
88 
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
trendline : sixth-order polynomiale 
• The shells with built in - ends presents higher buckling load 
• The shells with larger thickness presents higher buckling load 
• The curves presents a maximum for 0.3 < h/L < 0.4; then Pcr decreaeses 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
87/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 88/92 
SHELLS 
Non – linear analysis 
Corso di Costruzioni Metalliche 89 
Prof. Ing. Franco Bontempi, Ing. Giordana Gai
CYLINDRICAL SHELLS WITH CIRCULAR SECTION 
90 
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
We chose one of the analyzed shells and we run 
nonlinear analys. 
Displacement control: 
Step: 150 increments of 0.006 m 
Force control: 
Step: 150 increments of 50 KN 
Numerical example 
Numerical code : Straus 7 
Mesh : 10x10 finite elements ISOP4 
Boundary conditions: two edges simply supported 
L 1 m 
Width 1 m 
h 0.4 m 
s 0.02 m 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
89/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
CYLINDRICAL SHELLS WITH CIRCULAR SECTION 
Snap – through buckling 
Looking at the red line, we see that when the curve reaches the maximum the plate buckles 
laterally, and then flips over : the structure goes from a “arch behavior” to a “cable behavior”. 
When the structure is in the third position, the load can increase, but the resistence mechanism is 
completely changed. 
91 
1 2 3 
This is a typical non-eulerian 
buckling: the behaviour of this 
kind of structures is nonlinear 
even before the buckling limit. 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
90/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
VERY FLAT SHELLS 
In this case the axial stress, due to the action of the thrust H, becomes important: the buckled 
form is influenced by the presence of high axial stresses and is not extensionless. 
92 
Numerical example 
Numerical code : Straus 7 
Mesh : 10x10 finite elements ISOP4 
L 1 m 
Width 1 m 
h 0.05 m 
Ends hinged 
5000 
4500 
4000 
3500 
3000 
2500 
2000 
1500 
1000 
500 
0 
Force control - Nonlinear analysis 
0 0.02 0.04 0.06 0.08 0.1 
P [KN] 
Dy [m] 
s = 1 cm 
s = 2 cm 
s = 3 cm 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
91/92
93 
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
DIFFERENCES % 
VERY FLAT SHELLS 
Buckling – 
force control 
NL analysis 
s = 1 cm s = 2 cm s = 3 cm 
6.4 % 12.9 % 26.5 % 
We find always the same way of buckling (snap – through) but, by increasing the thickness, 
we goes away from ideal buckling curve (green line). 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 
92/92
UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 
BIBLIOGRAFY 
• Timoshenko, Gere, “Theory of elastic stability” 
• Belluzzi, “Scienza delle costruzioni – Volume terzo” 
• Bontempi, Sgarbi, Malerba, “Sulla robustezza strutturale dei ponti a arco molto ribassato” 
94 
Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai

More Related Content

What's hot

Seismic Design Of Structures Project
Seismic Design Of Structures ProjectSeismic Design Of Structures Project
Seismic Design Of Structures ProjectGunjan Shetye
 
Masonry Retrofit
Masonry RetrofitMasonry Retrofit
Masonry RetrofitTeja Ande
 
04-LRFD Concept (Steel Structural Design & Prof. Shehab Mourad)
04-LRFD Concept (Steel Structural Design & Prof. Shehab Mourad)04-LRFD Concept (Steel Structural Design & Prof. Shehab Mourad)
04-LRFD Concept (Steel Structural Design & Prof. Shehab Mourad)Hossam Shafiq II
 
Aci reinforcement limits
Aci reinforcement limitsAci reinforcement limits
Aci reinforcement limitsMeesum Zaidi
 
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...Hossam Shafiq II
 
IMPROVING THE STRUT AND TIE METHOD BY INCLUDING THE CONCRETE SOFTENING EFFECT
IMPROVING THE STRUT AND TIE METHOD BY INCLUDING THE CONCRETE SOFTENING EFFECTIMPROVING THE STRUT AND TIE METHOD BY INCLUDING THE CONCRETE SOFTENING EFFECT
IMPROVING THE STRUT AND TIE METHOD BY INCLUDING THE CONCRETE SOFTENING EFFECTIAEME Publication
 
Lec5-Torsion of thin walled beams
Lec5-Torsion of thin walled beamsLec5-Torsion of thin walled beams
Lec5-Torsion of thin walled beamsMahdi Damghani
 
Linear Dynamic Analysis and Seismic Evaluation of RC Building
Linear Dynamic Analysis and Seismic Evaluation of RC BuildingLinear Dynamic Analysis and Seismic Evaluation of RC Building
Linear Dynamic Analysis and Seismic Evaluation of RC BuildingQudsia Wahab, EIT
 
Buckling and tension field beam for aerospace structures
Buckling and tension field beam for aerospace structuresBuckling and tension field beam for aerospace structures
Buckling and tension field beam for aerospace structuresMahdi Damghani
 
Lecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear WallsLecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear WallsTeja Ande
 
Design methods for torsional buckling of steel structures
Design methods for torsional buckling of steel structuresDesign methods for torsional buckling of steel structures
Design methods for torsional buckling of steel structuresBegum Emte Ajom
 
Design of columns axial load as per IS 456-2000
Design of columns  axial load as per IS 456-2000Design of columns  axial load as per IS 456-2000
Design of columns axial load as per IS 456-2000PraveenKumar Shanmugam
 
CE 72.52 - Lecture 7 - Strut and Tie Models
CE 72.52 - Lecture 7 - Strut and Tie ModelsCE 72.52 - Lecture 7 - Strut and Tie Models
CE 72.52 - Lecture 7 - Strut and Tie ModelsFawad Najam
 
Seminar at University of Western Sydney
Seminar at University of Western SydneySeminar at University of Western Sydney
Seminar at University of Western SydneyQuang Huy Nguyen
 
Concrete Reinforcement Algorithm
Concrete Reinforcement AlgorithmConcrete Reinforcement Algorithm
Concrete Reinforcement AlgorithmDong Li
 
Technical paper - Impact of Initial Imperfections on the Stability of Steel P...
Technical paper - Impact of Initial Imperfections on the Stability of Steel P...Technical paper - Impact of Initial Imperfections on the Stability of Steel P...
Technical paper - Impact of Initial Imperfections on the Stability of Steel P...Timur Shipilin
 
BIAXIAL COLUMN DESIGN
BIAXIAL COLUMN DESIGNBIAXIAL COLUMN DESIGN
BIAXIAL COLUMN DESIGNshawon_sb
 
vilas Nikam - Mechanics oof Structure-Column
vilas Nikam - Mechanics oof Structure-Columnvilas Nikam - Mechanics oof Structure-Column
vilas Nikam - Mechanics oof Structure-ColumnNIKAMVN
 

What's hot (20)

Seismic Design Of Structures Project
Seismic Design Of Structures ProjectSeismic Design Of Structures Project
Seismic Design Of Structures Project
 
Masonry Retrofit
Masonry RetrofitMasonry Retrofit
Masonry Retrofit
 
04-LRFD Concept (Steel Structural Design & Prof. Shehab Mourad)
04-LRFD Concept (Steel Structural Design & Prof. Shehab Mourad)04-LRFD Concept (Steel Structural Design & Prof. Shehab Mourad)
04-LRFD Concept (Steel Structural Design & Prof. Shehab Mourad)
 
Design notes for seismic design of building accordance to Eurocode 8
Design notes for seismic design of building accordance to Eurocode 8 Design notes for seismic design of building accordance to Eurocode 8
Design notes for seismic design of building accordance to Eurocode 8
 
Aci reinforcement limits
Aci reinforcement limitsAci reinforcement limits
Aci reinforcement limits
 
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
 
IMPROVING THE STRUT AND TIE METHOD BY INCLUDING THE CONCRETE SOFTENING EFFECT
IMPROVING THE STRUT AND TIE METHOD BY INCLUDING THE CONCRETE SOFTENING EFFECTIMPROVING THE STRUT AND TIE METHOD BY INCLUDING THE CONCRETE SOFTENING EFFECT
IMPROVING THE STRUT AND TIE METHOD BY INCLUDING THE CONCRETE SOFTENING EFFECT
 
Lec5-Torsion of thin walled beams
Lec5-Torsion of thin walled beamsLec5-Torsion of thin walled beams
Lec5-Torsion of thin walled beams
 
Linear Dynamic Analysis and Seismic Evaluation of RC Building
Linear Dynamic Analysis and Seismic Evaluation of RC BuildingLinear Dynamic Analysis and Seismic Evaluation of RC Building
Linear Dynamic Analysis and Seismic Evaluation of RC Building
 
Buckling and tension field beam for aerospace structures
Buckling and tension field beam for aerospace structuresBuckling and tension field beam for aerospace structures
Buckling and tension field beam for aerospace structures
 
Lecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear WallsLecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear Walls
 
Design methods for torsional buckling of steel structures
Design methods for torsional buckling of steel structuresDesign methods for torsional buckling of steel structures
Design methods for torsional buckling of steel structures
 
Design of columns axial load as per IS 456-2000
Design of columns  axial load as per IS 456-2000Design of columns  axial load as per IS 456-2000
Design of columns axial load as per IS 456-2000
 
CE 72.52 - Lecture 7 - Strut and Tie Models
CE 72.52 - Lecture 7 - Strut and Tie ModelsCE 72.52 - Lecture 7 - Strut and Tie Models
CE 72.52 - Lecture 7 - Strut and Tie Models
 
Seminar at University of Western Sydney
Seminar at University of Western SydneySeminar at University of Western Sydney
Seminar at University of Western Sydney
 
Concrete Reinforcement Algorithm
Concrete Reinforcement AlgorithmConcrete Reinforcement Algorithm
Concrete Reinforcement Algorithm
 
Technical paper - Impact of Initial Imperfections on the Stability of Steel P...
Technical paper - Impact of Initial Imperfections on the Stability of Steel P...Technical paper - Impact of Initial Imperfections on the Stability of Steel P...
Technical paper - Impact of Initial Imperfections on the Stability of Steel P...
 
BIAXIAL COLUMN DESIGN
BIAXIAL COLUMN DESIGNBIAXIAL COLUMN DESIGN
BIAXIAL COLUMN DESIGN
 
Column math
Column mathColumn math
Column math
 
vilas Nikam - Mechanics oof Structure-Column
vilas Nikam - Mechanics oof Structure-Columnvilas Nikam - Mechanics oof Structure-Column
vilas Nikam - Mechanics oof Structure-Column
 

Viewers also liked

Presentazione della Relazione sulle Opinioni degli Studenti - Facolta' di Ing...
Presentazione della Relazione sulle Opinioni degli Studenti - Facolta' di Ing...Presentazione della Relazione sulle Opinioni degli Studenti - Facolta' di Ing...
Presentazione della Relazione sulle Opinioni degli Studenti - Facolta' di Ing...Franco Bontempi Org Didattica
 
FIRE RISK in STAGED CONSTRUCTION: Safety & Security.
FIRE RISK in STAGED CONSTRUCTION: Safety & Security.FIRE RISK in STAGED CONSTRUCTION: Safety & Security.
FIRE RISK in STAGED CONSTRUCTION: Safety & Security.Franco Bontempi Org Didattica
 
Analysis of buckling behaviour of functionally graded plates
Analysis of buckling behaviour of functionally graded platesAnalysis of buckling behaviour of functionally graded plates
Analysis of buckling behaviour of functionally graded platesByju Vijayan
 
Approccio sistemico per la sicurezza delle gallerie in caso di incendio
Approccio sistemico per la sicurezza delle gallerie in caso di incendio Approccio sistemico per la sicurezza delle gallerie in caso di incendio
Approccio sistemico per la sicurezza delle gallerie in caso di incendio Franco Bontempi Org Didattica
 
L'analisi strutturale a supporto della progettazione prestazionale
L'analisi strutturale a supporto della progettazione prestazionaleL'analisi strutturale a supporto della progettazione prestazionale
L'analisi strutturale a supporto della progettazione prestazionaleFranco Bontempi Org Didattica
 
UN MESTIERE DIFFICILE: come non andare in prigione facendo l’ingegnere. - BON...
UN MESTIERE DIFFICILE: come non andare in prigione facendo l’ingegnere. - BON...UN MESTIERE DIFFICILE: come non andare in prigione facendo l’ingegnere. - BON...
UN MESTIERE DIFFICILE: come non andare in prigione facendo l’ingegnere. - BON...Franco Bontempi Org Didattica
 
Introduzione all'ottimizzazione strutturale: elaborato di Paolo Di Re
Introduzione all'ottimizzazione strutturale: elaborato di Paolo Di ReIntroduzione all'ottimizzazione strutturale: elaborato di Paolo Di Re
Introduzione all'ottimizzazione strutturale: elaborato di Paolo Di ReFranco Bontempi Org Didattica
 
CM - ASPETTI ELEMENTARI: concezione di edifici alti - Parte 2
CM - ASPETTI ELEMENTARI: concezione di edifici alti - Parte 2CM - ASPETTI ELEMENTARI: concezione di edifici alti - Parte 2
CM - ASPETTI ELEMENTARI: concezione di edifici alti - Parte 2Franco Bontempi Org Didattica
 
Facolta’ di ingegneria civile e industriale PRESENTAZIONE AL NUCLEO DI VALUTA...
Facolta’ di ingegneria civile e industriale PRESENTAZIONE AL NUCLEO DI VALUTA...Facolta’ di ingegneria civile e industriale PRESENTAZIONE AL NUCLEO DI VALUTA...
Facolta’ di ingegneria civile e industriale PRESENTAZIONE AL NUCLEO DI VALUTA...Franco Bontempi Org Didattica
 
Structural robustness and sustainability of structures:concepts and case stud...
Structural robustness and sustainability of structures:concepts and case stud...Structural robustness and sustainability of structures:concepts and case stud...
Structural robustness and sustainability of structures:concepts and case stud...Franco Bontempi Org Didattica
 
Corso di Dottorato: Ottimizzazione Strutturale Parte C - Franco Bontempi
Corso di Dottorato: Ottimizzazione Strutturale Parte C - Franco BontempiCorso di Dottorato: Ottimizzazione Strutturale Parte C - Franco Bontempi
Corso di Dottorato: Ottimizzazione Strutturale Parte C - Franco BontempiFranco Bontempi Org Didattica
 
Tecnica delle Costruzioni - Esercitazione 7 (parte 2) & 8
Tecnica delle Costruzioni - Esercitazione 7 (parte 2) & 8Tecnica delle Costruzioni - Esercitazione 7 (parte 2) & 8
Tecnica delle Costruzioni - Esercitazione 7 (parte 2) & 8Franco Bontempi Org Didattica
 
STRUCTURAL ANALYSIS AND DESIGN OF STEEL CONSTRUCTIONS
STRUCTURAL ANALYSIS AND DESIGN OF STEEL CONSTRUCTIONSSTRUCTURAL ANALYSIS AND DESIGN OF STEEL CONSTRUCTIONS
STRUCTURAL ANALYSIS AND DESIGN OF STEEL CONSTRUCTIONSFranco Bontempi Org Didattica
 

Viewers also liked (20)

Presentazione della Relazione sulle Opinioni degli Studenti - Facolta' di Ing...
Presentazione della Relazione sulle Opinioni degli Studenti - Facolta' di Ing...Presentazione della Relazione sulle Opinioni degli Studenti - Facolta' di Ing...
Presentazione della Relazione sulle Opinioni degli Studenti - Facolta' di Ing...
 
FIRE RISK in STAGED CONSTRUCTION: Safety & Security.
FIRE RISK in STAGED CONSTRUCTION: Safety & Security.FIRE RISK in STAGED CONSTRUCTION: Safety & Security.
FIRE RISK in STAGED CONSTRUCTION: Safety & Security.
 
PSA - Sicurezza delle gallerie in caso di incendio
PSA - Sicurezza delle gallerie in caso di incendioPSA - Sicurezza delle gallerie in caso di incendio
PSA - Sicurezza delle gallerie in caso di incendio
 
Analysis of buckling behaviour of functionally graded plates
Analysis of buckling behaviour of functionally graded platesAnalysis of buckling behaviour of functionally graded plates
Analysis of buckling behaviour of functionally graded plates
 
151216 fire investigation in un condominio
151216 fire investigation in un condominio151216 fire investigation in un condominio
151216 fire investigation in un condominio
 
ELEMENTI DI INGEGNERIA FORENSE IN CAMPO STRUTTURALE
ELEMENTI DI INGEGNERIA FORENSE IN CAMPO STRUTTURALEELEMENTI DI INGEGNERIA FORENSE IN CAMPO STRUTTURALE
ELEMENTI DI INGEGNERIA FORENSE IN CAMPO STRUTTURALE
 
Analisi di una pila binata.
Analisi di una pila binata.Analisi di una pila binata.
Analisi di una pila binata.
 
PSA Caratteristiche fondamentali azione incendio
PSA Caratteristiche fondamentali azione incendioPSA Caratteristiche fondamentali azione incendio
PSA Caratteristiche fondamentali azione incendio
 
Approccio sistemico per la sicurezza delle gallerie in caso di incendio
Approccio sistemico per la sicurezza delle gallerie in caso di incendio Approccio sistemico per la sicurezza delle gallerie in caso di incendio
Approccio sistemico per la sicurezza delle gallerie in caso di incendio
 
L'analisi strutturale a supporto della progettazione prestazionale
L'analisi strutturale a supporto della progettazione prestazionaleL'analisi strutturale a supporto della progettazione prestazionale
L'analisi strutturale a supporto della progettazione prestazionale
 
UN MESTIERE DIFFICILE: come non andare in prigione facendo l’ingegnere. - BON...
UN MESTIERE DIFFICILE: come non andare in prigione facendo l’ingegnere. - BON...UN MESTIERE DIFFICILE: come non andare in prigione facendo l’ingegnere. - BON...
UN MESTIERE DIFFICILE: come non andare in prigione facendo l’ingegnere. - BON...
 
Introduzione all'ottimizzazione strutturale: elaborato di Paolo Di Re
Introduzione all'ottimizzazione strutturale: elaborato di Paolo Di ReIntroduzione all'ottimizzazione strutturale: elaborato di Paolo Di Re
Introduzione all'ottimizzazione strutturale: elaborato di Paolo Di Re
 
CM - ASPETTI ELEMENTARI: concezione di edifici alti - Parte 2
CM - ASPETTI ELEMENTARI: concezione di edifici alti - Parte 2CM - ASPETTI ELEMENTARI: concezione di edifici alti - Parte 2
CM - ASPETTI ELEMENTARI: concezione di edifici alti - Parte 2
 
Facolta’ di ingegneria civile e industriale PRESENTAZIONE AL NUCLEO DI VALUTA...
Facolta’ di ingegneria civile e industriale PRESENTAZIONE AL NUCLEO DI VALUTA...Facolta’ di ingegneria civile e industriale PRESENTAZIONE AL NUCLEO DI VALUTA...
Facolta’ di ingegneria civile e industriale PRESENTAZIONE AL NUCLEO DI VALUTA...
 
Structural robustness and sustainability of structures:concepts and case stud...
Structural robustness and sustainability of structures:concepts and case stud...Structural robustness and sustainability of structures:concepts and case stud...
Structural robustness and sustainability of structures:concepts and case stud...
 
Corso di Dottorato: Ottimizzazione Strutturale Parte C - Franco Bontempi
Corso di Dottorato: Ottimizzazione Strutturale Parte C - Franco BontempiCorso di Dottorato: Ottimizzazione Strutturale Parte C - Franco Bontempi
Corso di Dottorato: Ottimizzazione Strutturale Parte C - Franco Bontempi
 
Costruzioni Metalliche. Concezione di edifici alti.
Costruzioni Metalliche. Concezione di edifici alti.Costruzioni Metalliche. Concezione di edifici alti.
Costruzioni Metalliche. Concezione di edifici alti.
 
Tecnica delle Costruzioni - Esercitazione 7 (parte 2) & 8
Tecnica delle Costruzioni - Esercitazione 7 (parte 2) & 8Tecnica delle Costruzioni - Esercitazione 7 (parte 2) & 8
Tecnica delle Costruzioni - Esercitazione 7 (parte 2) & 8
 
Costruzioni Metalliche - Antonelli Giorgi Motta
Costruzioni Metalliche - Antonelli Giorgi MottaCostruzioni Metalliche - Antonelli Giorgi Motta
Costruzioni Metalliche - Antonelli Giorgi Motta
 
STRUCTURAL ANALYSIS AND DESIGN OF STEEL CONSTRUCTIONS
STRUCTURAL ANALYSIS AND DESIGN OF STEEL CONSTRUCTIONSSTRUCTURAL ANALYSIS AND DESIGN OF STEEL CONSTRUCTIONS
STRUCTURAL ANALYSIS AND DESIGN OF STEEL CONSTRUCTIONS
 

Similar to CM 2014_GG_Plates and shells

MSc thesis presentation - Aerospace Structures - July 2015
MSc thesis presentation - Aerospace Structures - July 2015MSc thesis presentation - Aerospace Structures - July 2015
MSc thesis presentation - Aerospace Structures - July 2015Alessandro Rosati
 
Fire Resistance of Materials & Structures - Analysing the Steel Structure
Fire Resistance of Materials & Structures - Analysing the Steel StructureFire Resistance of Materials & Structures - Analysing the Steel Structure
Fire Resistance of Materials & Structures - Analysing the Steel StructureArshia Mousavi
 
Determination of load transfer in reinforced concrete solid slabs by finite e...
Determination of load transfer in reinforced concrete solid slabs by finite e...Determination of load transfer in reinforced concrete solid slabs by finite e...
Determination of load transfer in reinforced concrete solid slabs by finite e...IOSR Journals
 
Fire Resistance of Materials & Structures - Analysing the Concrete Structure
Fire Resistance of Materials & Structures - Analysing the Concrete StructureFire Resistance of Materials & Structures - Analysing the Concrete Structure
Fire Resistance of Materials & Structures - Analysing the Concrete StructureArshia Mousavi
 
Analysis of Stress Distribution in a Curved Structure Using Photoelastic and ...
Analysis of Stress Distribution in a Curved Structure Using Photoelastic and ...Analysis of Stress Distribution in a Curved Structure Using Photoelastic and ...
Analysis of Stress Distribution in a Curved Structure Using Photoelastic and ...IOSR Journals
 
Analysis of Stress Distribution in a Curved Structure Using Photoelastic and ...
Analysis of Stress Distribution in a Curved Structure Using Photoelastic and ...Analysis of Stress Distribution in a Curved Structure Using Photoelastic and ...
Analysis of Stress Distribution in a Curved Structure Using Photoelastic and ...IOSR Journals
 
Comparative Study on Anchorage in Reinforced Concrete Using Codes of Practice...
Comparative Study on Anchorage in Reinforced Concrete Using Codes of Practice...Comparative Study on Anchorage in Reinforced Concrete Using Codes of Practice...
Comparative Study on Anchorage in Reinforced Concrete Using Codes of Practice...IJERA Editor
 
Fracture mechanics-based method for prediction of cracking
Fracture mechanics-based method for prediction of crackingFracture mechanics-based method for prediction of cracking
Fracture mechanics-based method for prediction of crackingTamonash Jana
 
Perhitungan sturktur kolom baja 6162 (4).ppt
Perhitungan sturktur kolom baja 6162 (4).pptPerhitungan sturktur kolom baja 6162 (4).ppt
Perhitungan sturktur kolom baja 6162 (4).pptGidion Turuallo
 
The Experimental Behavior Researches of the Reinforced Concrete Beams Bending...
The Experimental Behavior Researches of the Reinforced Concrete Beams Bending...The Experimental Behavior Researches of the Reinforced Concrete Beams Bending...
The Experimental Behavior Researches of the Reinforced Concrete Beams Bending...IJERA Editor
 
Analytical Study of Steel Fibre Reinforced Rigid Pavements Under Moving Loads
Analytical Study of Steel Fibre Reinforced Rigid Pavements Under Moving LoadsAnalytical Study of Steel Fibre Reinforced Rigid Pavements Under Moving Loads
Analytical Study of Steel Fibre Reinforced Rigid Pavements Under Moving Loadsijsrd.com
 
Design and Preparation of Aluminium Nozzle Using Metal Spinning Process
Design and Preparation of Aluminium Nozzle Using Metal Spinning ProcessDesign and Preparation of Aluminium Nozzle Using Metal Spinning Process
Design and Preparation of Aluminium Nozzle Using Metal Spinning ProcessNitesh Sharma
 
Effective Use of Shelves in Cantilever Retaining Walls
Effective Use of Shelves in Cantilever Retaining WallsEffective Use of Shelves in Cantilever Retaining Walls
Effective Use of Shelves in Cantilever Retaining WallsIRJET Journal
 
Analytical Study of Steel Fibre Reinforced Rigid Pavements under Static Load
Analytical Study of Steel Fibre Reinforced Rigid Pavements under Static LoadAnalytical Study of Steel Fibre Reinforced Rigid Pavements under Static Load
Analytical Study of Steel Fibre Reinforced Rigid Pavements under Static Loadijsrd.com
 
Concrete technology ndt methods
Concrete technology   ndt methodsConcrete technology   ndt methods
Concrete technology ndt methodsnilesh rajput
 
Lecture 9_Joint strength 2021.pdf
Lecture 9_Joint strength 2021.pdfLecture 9_Joint strength 2021.pdf
Lecture 9_Joint strength 2021.pdfmichelepalermo6
 
STRESS REDUCTION USING SEMI ELLIPTICAL SLOTS IN AXIALLY LOADED PLATE HAVING C...
STRESS REDUCTION USING SEMI ELLIPTICAL SLOTS IN AXIALLY LOADED PLATE HAVING C...STRESS REDUCTION USING SEMI ELLIPTICAL SLOTS IN AXIALLY LOADED PLATE HAVING C...
STRESS REDUCTION USING SEMI ELLIPTICAL SLOTS IN AXIALLY LOADED PLATE HAVING C...IAEME Publication
 

Similar to CM 2014_GG_Plates and shells (20)

CE 6306 STRENGTH OF MATERIALS
CE 6306 STRENGTH OF MATERIALSCE 6306 STRENGTH OF MATERIALS
CE 6306 STRENGTH OF MATERIALS
 
MSc thesis presentation - Aerospace Structures - July 2015
MSc thesis presentation - Aerospace Structures - July 2015MSc thesis presentation - Aerospace Structures - July 2015
MSc thesis presentation - Aerospace Structures - July 2015
 
5-Bending.pdf
5-Bending.pdf5-Bending.pdf
5-Bending.pdf
 
Fire Resistance of Materials & Structures - Analysing the Steel Structure
Fire Resistance of Materials & Structures - Analysing the Steel StructureFire Resistance of Materials & Structures - Analysing the Steel Structure
Fire Resistance of Materials & Structures - Analysing the Steel Structure
 
Determination of load transfer in reinforced concrete solid slabs by finite e...
Determination of load transfer in reinforced concrete solid slabs by finite e...Determination of load transfer in reinforced concrete solid slabs by finite e...
Determination of load transfer in reinforced concrete solid slabs by finite e...
 
Fire Resistance of Materials & Structures - Analysing the Concrete Structure
Fire Resistance of Materials & Structures - Analysing the Concrete StructureFire Resistance of Materials & Structures - Analysing the Concrete Structure
Fire Resistance of Materials & Structures - Analysing the Concrete Structure
 
P01213112116
P01213112116P01213112116
P01213112116
 
Analysis of Stress Distribution in a Curved Structure Using Photoelastic and ...
Analysis of Stress Distribution in a Curved Structure Using Photoelastic and ...Analysis of Stress Distribution in a Curved Structure Using Photoelastic and ...
Analysis of Stress Distribution in a Curved Structure Using Photoelastic and ...
 
Analysis of Stress Distribution in a Curved Structure Using Photoelastic and ...
Analysis of Stress Distribution in a Curved Structure Using Photoelastic and ...Analysis of Stress Distribution in a Curved Structure Using Photoelastic and ...
Analysis of Stress Distribution in a Curved Structure Using Photoelastic and ...
 
Comparative Study on Anchorage in Reinforced Concrete Using Codes of Practice...
Comparative Study on Anchorage in Reinforced Concrete Using Codes of Practice...Comparative Study on Anchorage in Reinforced Concrete Using Codes of Practice...
Comparative Study on Anchorage in Reinforced Concrete Using Codes of Practice...
 
Fracture mechanics-based method for prediction of cracking
Fracture mechanics-based method for prediction of crackingFracture mechanics-based method for prediction of cracking
Fracture mechanics-based method for prediction of cracking
 
Perhitungan sturktur kolom baja 6162 (4).ppt
Perhitungan sturktur kolom baja 6162 (4).pptPerhitungan sturktur kolom baja 6162 (4).ppt
Perhitungan sturktur kolom baja 6162 (4).ppt
 
The Experimental Behavior Researches of the Reinforced Concrete Beams Bending...
The Experimental Behavior Researches of the Reinforced Concrete Beams Bending...The Experimental Behavior Researches of the Reinforced Concrete Beams Bending...
The Experimental Behavior Researches of the Reinforced Concrete Beams Bending...
 
Analytical Study of Steel Fibre Reinforced Rigid Pavements Under Moving Loads
Analytical Study of Steel Fibre Reinforced Rigid Pavements Under Moving LoadsAnalytical Study of Steel Fibre Reinforced Rigid Pavements Under Moving Loads
Analytical Study of Steel Fibre Reinforced Rigid Pavements Under Moving Loads
 
Design and Preparation of Aluminium Nozzle Using Metal Spinning Process
Design and Preparation of Aluminium Nozzle Using Metal Spinning ProcessDesign and Preparation of Aluminium Nozzle Using Metal Spinning Process
Design and Preparation of Aluminium Nozzle Using Metal Spinning Process
 
Effective Use of Shelves in Cantilever Retaining Walls
Effective Use of Shelves in Cantilever Retaining WallsEffective Use of Shelves in Cantilever Retaining Walls
Effective Use of Shelves in Cantilever Retaining Walls
 
Analytical Study of Steel Fibre Reinforced Rigid Pavements under Static Load
Analytical Study of Steel Fibre Reinforced Rigid Pavements under Static LoadAnalytical Study of Steel Fibre Reinforced Rigid Pavements under Static Load
Analytical Study of Steel Fibre Reinforced Rigid Pavements under Static Load
 
Concrete technology ndt methods
Concrete technology   ndt methodsConcrete technology   ndt methods
Concrete technology ndt methods
 
Lecture 9_Joint strength 2021.pdf
Lecture 9_Joint strength 2021.pdfLecture 9_Joint strength 2021.pdf
Lecture 9_Joint strength 2021.pdf
 
STRESS REDUCTION USING SEMI ELLIPTICAL SLOTS IN AXIALLY LOADED PLATE HAVING C...
STRESS REDUCTION USING SEMI ELLIPTICAL SLOTS IN AXIALLY LOADED PLATE HAVING C...STRESS REDUCTION USING SEMI ELLIPTICAL SLOTS IN AXIALLY LOADED PLATE HAVING C...
STRESS REDUCTION USING SEMI ELLIPTICAL SLOTS IN AXIALLY LOADED PLATE HAVING C...
 

More from Franco Bontempi Org Didattica

II evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdf
II evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdfII evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdf
II evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdfFranco Bontempi Org Didattica
 
ICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdf
ICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdfICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdf
ICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdfFranco Bontempi Org Didattica
 
Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...
Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...
Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...Franco Bontempi Org Didattica
 
Soft computing based multilevel strategy for bridge integrity monitoring
Soft computing based multilevel strategy for bridge integrity monitoringSoft computing based multilevel strategy for bridge integrity monitoring
Soft computing based multilevel strategy for bridge integrity monitoringFranco Bontempi Org Didattica
 
Systemic approach for the maintenance of complex structural systems
Systemic approach for the maintenance of complex structural systemsSystemic approach for the maintenance of complex structural systems
Systemic approach for the maintenance of complex structural systemsFranco Bontempi Org Didattica
 
The role of softening in the numerical analysis of R.C. framed structures
The role of softening in the numerical analysis of R.C. framed structuresThe role of softening in the numerical analysis of R.C. framed structures
The role of softening in the numerical analysis of R.C. framed structuresFranco Bontempi Org Didattica
 
Reliability of material and geometrically non-linear reinforced and prestress...
Reliability of material and geometrically non-linear reinforced and prestress...Reliability of material and geometrically non-linear reinforced and prestress...
Reliability of material and geometrically non-linear reinforced and prestress...Franco Bontempi Org Didattica
 
Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...
Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...
Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...Franco Bontempi Org Didattica
 
Cellular Automata Approach to Durability Analysis of Concrete Structures in A...
Cellular Automata Approach to Durability Analysis of Concrete Structures in A...Cellular Automata Approach to Durability Analysis of Concrete Structures in A...
Cellular Automata Approach to Durability Analysis of Concrete Structures in A...Franco Bontempi Org Didattica
 
UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...
UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...
UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...Franco Bontempi Org Didattica
 

More from Franco Bontempi Org Didattica (20)

50 anni.Image.Marked.pdf
50 anni.Image.Marked.pdf50 anni.Image.Marked.pdf
50 anni.Image.Marked.pdf
 
4. Comportamento di elementi inflessi.pdf
4. Comportamento di elementi inflessi.pdf4. Comportamento di elementi inflessi.pdf
4. Comportamento di elementi inflessi.pdf
 
Calcolo della precompressione: DOMINI e STRAUS7
Calcolo della precompressione: DOMINI e STRAUS7Calcolo della precompressione: DOMINI e STRAUS7
Calcolo della precompressione: DOMINI e STRAUS7
 
II evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdf
II evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdfII evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdf
II evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdf
 
ICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdf
ICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdfICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdf
ICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdf
 
Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...
Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...
Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...
 
Soft computing based multilevel strategy for bridge integrity monitoring
Soft computing based multilevel strategy for bridge integrity monitoringSoft computing based multilevel strategy for bridge integrity monitoring
Soft computing based multilevel strategy for bridge integrity monitoring
 
Systemic approach for the maintenance of complex structural systems
Systemic approach for the maintenance of complex structural systemsSystemic approach for the maintenance of complex structural systems
Systemic approach for the maintenance of complex structural systems
 
Elenco studenti esaminandi
Elenco studenti esaminandiElenco studenti esaminandi
Elenco studenti esaminandi
 
Costruzione di ponti in cemento armato.
Costruzione di ponti in cemento armato.Costruzione di ponti in cemento armato.
Costruzione di ponti in cemento armato.
 
Costruzione di ponti in acciaio
Costruzione di ponti in acciaioCostruzione di ponti in acciaio
Costruzione di ponti in acciaio
 
Costruzione di Ponti - Ceradini
Costruzione di Ponti - CeradiniCostruzione di Ponti - Ceradini
Costruzione di Ponti - Ceradini
 
The role of softening in the numerical analysis of R.C. framed structures
The role of softening in the numerical analysis of R.C. framed structuresThe role of softening in the numerical analysis of R.C. framed structures
The role of softening in the numerical analysis of R.C. framed structures
 
Reliability of material and geometrically non-linear reinforced and prestress...
Reliability of material and geometrically non-linear reinforced and prestress...Reliability of material and geometrically non-linear reinforced and prestress...
Reliability of material and geometrically non-linear reinforced and prestress...
 
Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...
Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...
Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...
 
Cellular Automata Approach to Durability Analysis of Concrete Structures in A...
Cellular Automata Approach to Durability Analysis of Concrete Structures in A...Cellular Automata Approach to Durability Analysis of Concrete Structures in A...
Cellular Automata Approach to Durability Analysis of Concrete Structures in A...
 
UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...
UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...
UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...
 
Esami a distanza. Severgnini. Corriere della sera.
Esami a distanza. Severgnini. Corriere della sera.Esami a distanza. Severgnini. Corriere della sera.
Esami a distanza. Severgnini. Corriere della sera.
 
Tdc prova 2022 01-26
Tdc prova 2022 01-26Tdc prova 2022 01-26
Tdc prova 2022 01-26
 
Risultati
RisultatiRisultati
Risultati
 

Recently uploaded

Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoordharasingh5698
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdfSuman Jyoti
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringmulugeta48
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfKamal Acharya
 
Intro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdfIntro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdfrs7054576148
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptMsecMca
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756dollysharma2066
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxJuliansyahHarahap1
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 

Recently uploaded (20)

Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoorTop Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
Top Rated Call Girls In chittoor 📱 {7001035870} VIP Escorts chittoor
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar  ≼🔝 Delhi door step de...
Call Now ≽ 9953056974 ≼🔝 Call Girls In New Ashok Nagar ≼🔝 Delhi door step de...
 
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank  Design by Working Stress - IS Method.pdfIntze Overhead Water Tank  Design by Working Stress - IS Method.pdf
Intze Overhead Water Tank Design by Working Stress - IS Method.pdf
 
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Walvekar Nagar Call Me 7737669865 Budget Friendly No Advance Booking
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
 
Intro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdfIntro To Electric Vehicles PDF Notes.pdf
Intro To Electric Vehicles PDF Notes.pdf
 
notes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.pptnotes on Evolution Of Analytic Scalability.ppt
notes on Evolution Of Analytic Scalability.ppt
 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 

CM 2014_GG_Plates and shells

  • 1. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” Corso di COSTRUZIONI METALLICHE PLATE AND SHELLS: BUCKLING AND NON – LINEAR ANALYSIS Prof. Ing. Franco Bontempi Ing. Giordana Gai Roma, 5 Dicembre 2014 gai.giordana@gmail.com giordana.gai@uniroma1.it Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai
  • 2. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” OUTLINE Corso di Costruzioni Metalliche 2 Prof. Ing. Franco Bontempi, Ing. Giordana Gai PLATES • Buckling analysis  Compressive forces  Bending moment forces  Shearing forces  Shearing and compressive forces  Shearing and bending moment forces • Non – linear analysis (elastic material) • Non – linear analysis (elastic – plastic material) SHELLS • Thin shells (membrane theory) • Thick shells • Buckling analysis • Non – linear analysis (elastic material) 1/92
  • 3. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 2/92 PLATES Buckling analysis Corso di Costruzioni Metalliche 3 Prof. Ing. Franco Bontempi, Ing. Giordana Gai
  • 4. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 3/92 How can we calculate the critical load for a plate? • Analytical method: by solving equations of equilibrium  it can be difficult to find the solution (the equations are fourth order - partial differential equations) • Energy methods: by equaling the work done by acting forces with strain energy  it is useful if we are interested in approximate solutions. 4 Hipotesis GEOMETRY  No imperfections  Thin plate: one dimension is very small with respect on the other two MATERIAL (Steel)  Linear Elastic LOADS  Loads are applied in the middle plane of the plate Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai
  • 5. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 4/92 The critical value of the forces acting on a plate depends on:  Ratio a/b (length / width)  Thickness s  Material properties (E and ν)  Boundary conditions for each condition of loads Corso di Costruzioni Metalliche 5 Prof. Ing. Franco Bontempi, Ing. Giordana Gai
  • 6. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 5/92 1.COMPRESSIVE FORCES Plate simply supported along four edges m = number of half – waves parallel to the direction of N n = number of half – waves perpendicular to the direction of N Deflection surface Critical load The minimum value of the critical load is obtained by putting n = 1 The plate buckles in a shape that can have several half-waves in the direction of compression but only one half wave in the perpendicular direction. Corso di Costruzioni Metalliche 6 Prof. Ing. Franco Bontempi, Ing. Giordana Gai
  • 7. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 1.COMPRESSIVE FORCES Euler load for a strip of length “a” and unit width the stability of the continuous plate is greater than the stability of an isolated strip (depends on the ratio a/b and on the number m) • If a < b  the minimum is obtained by putting m = 1 (only one half – wave ) • If a > b  it is used a simplified expression where k is a numerical factor depending on a/b Corso di Costruzioni Metalliche 7 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 6/92
  • 8. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 1.COMPRESSIVE FORCES • Short plates buckles in only one half – wave • Long plates can have very large “m” (comparable to the ratio a/b) • The curve m = 1 has a minimum for square plate; before and after the ratio a/b = 1, the value k increases. • If m > 1 , the plate buckles in more half – waves and each half is in the condition of a simply supported plate of length a/(number of half – waves). • Critical value of the compressive stress Corso di Costruzioni Metalliche 8 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 7/92
  • 9. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 1.COMPRESSIVE FORCES Plate simply supported along two edges perpendicular to the direction of N Deflection surface Solution depends on boundary conditions along the edges y = 0 and y = b • y = 0 simply supported; y = b free • y = 0  zero displacement and zero bending moment • y = b  zero shear and zero bending moment k Ncr Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 8/92
  • 10. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 1.COMPRESSIVE FORCES Plate simply supported along two edges perpendicular to the direction of N • y = 0 built in; y = b free • y = 0  zero displacement and zero rotation • y = b  zero shear and zero bending moment k Ncr The curve m = 1 has a minimum for a/b = 1.635 Corso di Costruzioni Metalliche 10 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 9/92
  • 11. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 1.COMPRESSIVE FORCES Plate simply supported along two edges perpendicular to the direction of N • y = 0 built in; y = b built in • y = 0  zero displacement and zero rotation • y = b  zero displacement and zero rotation k Ncr The smallest value of k is for 0.6 < a/b < 0.7. In this case, a long compressed plate buckles in comparatively short waves Corso di Costruzioni Metalliche 11 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 10/92
  • 12. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 1.COMPRESSIVE FORCES Plate simply supported along two edges parallel to the direction of N • y = 0 and y = b  zero bending moment and shear equal to the action force (N w/ y) There are two possible forms of buckling •The first buckling form is antisymmetrical up to a value of b/a=1.316 • then, for 1.316 < b/a < 2.632 the buckling form is symmetrical and then the value of k remains close to 2.31. Corso di Costruzioni Metalliche 12 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 11/92
  • 13. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 1.COMPRESSIVE FORCES Plate simply supported along two edges parallel to the direction of N The curve of antysimmetrical buckling can be used also for the case of a plate simply supported along 3 sides (this plate is in the same conditions as the half of the antisymmetrical plate described before). To calculate k, that curve can be used , using 2b/a instead of b/a. 13 Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 12/92
  • 14. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 2.BENDING MOMENT FORCES •  = 0  pure compression •  = 2  pure bending moment •  = 1  bending moment and compression For each case k is calculated and then the critical value of N0. η = 2 Considering m=1, it has a minimum when a / b = 2/3. For cases with η > 2, the value of the ratio at which k presents a minimum increases (for pure compression a/b = 1). Corso di Costruzioni Metalliche 14 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 13/92
  • 15. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 3.SHEARING FORCES In this case, buckling is caused for the compressive stresses acting along one of the two principal diagonals. The critical value of shear stresses can be calculated by using k, that depends on the ratio a/b. Corso di Costruzioni Metalliche 15 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 14/92
  • 16. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 4.SHEARING AND COMPRESSIVE FORCES The axial stresses reduces the stability of the plate submitted at the action of shear stresses. The interaction between shear and compression is highly negative. Corso di Costruzioni Metalliche 16 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 15/92
  • 17. 5.SHEARING AND BENDING MOMENT FORCES α is the ratio a/b UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” In this case we have both compressive that tension stresses. The diagram shows that for τ / τ cr < 0.4 the effect of shearing stress on the critical value of bending stress is small. Corso di Costruzioni Metalliche 17 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 16/92
  • 18. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” NUMERICAL EXAMPLE a = b = L 50 cm s 1 cm E 2E+08 KPa ν 0.30 Comparison between analytical and numerical code solutions  Analytical solution: by Timoshenko’s theory  Numerical codes: SAP 2000 and Straus 7 LOAD CASES ANALYZED: 1. Compressive forces 2. Bending moment forces 3. Shearing forces 4. Shearing and compressive forces 5. Shearing and bending moment forces Corso di Costruzioni Metalliche 18 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 17/92
  • 19. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 1.COMPRESSIVE FORCES ANALYTICAL SOLUTION Ncr = k Nl Nl = π2Et3/12(1-ν2)b2 = 723KN/m k  from the schedule NUMERICAL SOLUTION Buckling analysis Mesh used = 30x30 finite elements ISOP4 SAP 2000 Straus 7 Corso di Costruzioni Metalliche 19 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 18/92
  • 20. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 19/92 CASE k Buckled Plate 1 1 2 4 3 6.5 4 5 5 7.7 6 5.7 CASE k Buckled Plate 7 1.44 8 1.7 9 10.2 10 2.05 11 2.3 12 2.3 Corso di Costruzioni Metalliche 20 Prof. Ing. Franco Bontempi, Ing. Giordana Gai
  • 21. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 20/92 CASE Analytical Pcr [KN/m] Differences Straus7- Analytical Solution [%] Differences SAP2000- Analytical Solution [%] 1 723.0 -5.0% 1.8% 7 1041.2 -2.8% 3.8% 8 1229.2 -2.9% 3.7% 10 1482.2 -1.0% 3.1% 11 1663.0 2.7% 1.7% 12 1663.0 3.8% 2.7% 2 2892.2 -0.2% 5.0% 4 3615.2 5.6% 5.6% 6 4121.4 0.5% 4.5% 3 4699.8 3.4% 3.4% 5 5560.2 -0.4% 3.0% 9 7375.1 -1.6% -1.7% CASE 1 CASE 2 CASE 5 xy_view xz_view xy_view xz_view xy_view xz_view Pcr = 723 KN/m Pcr = 2892.2 KN/m Pcr = 5560.2 KN/m Corso di Costruzioni Metalliche 21 Prof. Ing. Franco Bontempi, Ing. Giordana Gai
  • 22. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 2.BENDING MOMENT FORCES ANALYTICAL SOLUTION Ncr = k Nl Nl = π2Et3/12(1-ν2)b2 = 723KN/m k  from the schedules NUMERICAL SOLUTION Buckling analysis Mesh used = 30x30 finite elements ISOP4 SAP 2000 Straus 7 Corso di Costruzioni Metalliche 22 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 21/92
  • 23. 23 UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 2.BENDING MOMENT FORCES CASE k Pcr [KN/m] Buckled Plate Differences Straus7- Analytical Solution [%] Differences SAP2000-Analytical Solution [%] 25.6 18510 1.15% 0.15% 39.5 28530.4 -9.85% 1.73% 7.8 5639.8 -0.17% 0.27% 15.0 10845.7 -2.41% -1.72% PURE BENDING BENDING AND COMPRESSI ON Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 22/92
  • 24. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 3.SHEARING FORCES ANALYTICAL SOLUTION τcr = k Nl Nl = π2Et3/12(1-ν2)b2 = 723KN/m k  from the schedule NUMERICAL SOLUTION Buckling analysis Mesh used = 30x30 finite elements ISOP4 SAP 2000 Straus 7 Corso di Costruzioni Metalliche 24 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 23/92
  • 25. 25 UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 3.SHEARING FORCES CASE k Pcr [KN/m] Buckled Plate w[m]_ XY view Differences Straus7- Analytical Solution [%] Differences SAP2000- Analytical Solution [%] 9.7 7013.6 4.3% 6.2% 15.0 10845.7 3.1% 3.1% 12.3 8893.5 -1.5% -0.3% Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 24/92
  • 26. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 4.SHEARING AND COMPRESSIVE FORCES ANALYTICAL SOLUTION • by using the approximate expression, where N0cr and T0cr are those calculated before (respectivly compressive and shear forces only) • by using the schedule NUMERICAL SOLUTION Buckling analysis Mesh used = 30x30 finite elements ISOP4 SAP 2000 Straus 7 Corso di Costruzioni Metalliche 26 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 25/92
  • 27. 4.SHEARING AND COMPRESSIVE FORCES 27 UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” Numerical Code Solution Analytical Expression Differences% Tcr = Ncr [KN/m] Ncr =Ncr0[1-(Tcr/Tcr0)2] [KN/m] Numerical Code – Analytical Solution SAP 2000 2315.5 2666.1 13% STRAUS 7 2452.4 2887.2 2% Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 26/92
  • 28. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 5.SHEARING AND BENDING MOMENT FORCES ANALYTICAL SOLUTION • by using the approximate expression, where N0cr and T0cr are those calculated before (respectivly compressive and shear forces only) • by using the schedule NUMERICAL SOLUTION Buckling analysis Mesh used = 30x30 finite elements ISOP4 SAP 2000 Straus 7 Corso di Costruzioni Metalliche 28 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 27/92
  • 29. 5.SHEARING AND BENDING MOMENT FORCES 29 UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” Numerical Code Solution Analytical Expression Differences % Tcr = Ncr [KN/m] Ncr = Ncr0[1-(Tcr/Tcr0)2]0.5 [KN/m] Numerical Code – Analytical Solution SAP 2000 6103.1 6906.5 12% STRAUS 7 6241.3 6709.6 7% SHEAR SHEAR+BENDING SHEAR+COMPRESSION λcr = 6708.5 λcr = 6241.3 λcr = 2452.4 Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 28/92
  • 30. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 29/92 PLATES Non – linear analysis Corso di Costruzioni Metalliche 30 Prof. Ing. Franco Bontempi, Ing. Giordana Gai
  • 31. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” ELASTIC MATERIAL We run displacement control - nonlinear analysis to investigate post – critical behavior. 31 Numerical example Numerical code : Straus 7 Mesh : 10x10 finite elements ISOP4 Step : 200 increments of 0.001 m Boundary conditions: 2 edges simply supported a = b = L 50 cm s 1 cm E 2E+08 KPa ν 0.30 Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 30/92
  • 32. 32 UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” ELASTIC MATERIAL  from Buckling analysis  from NL analysis (plate straight) with large displacement  from NL analysis (plate not perfectly straight) with large displacement (only geometric nonlinearity) POST CRITICAL BEHAVIOR = stable, with hardening Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 31/92
  • 33. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” ELASTIC – PLASTIC MATERIAL (only material nonlinearity) We insert elastic-plastic diagram into material properties and we run again NL analysis. 33 σy 235 MPa εy 1.175*10-3 εu 7.5*10-2 NLM (ideal plate) NLM (real plate) = 235*103*0.5*0.01=1175 KN Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 32/92
  • 34. 34 UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” ELASTIC – PLASTIC MATERIAL 500 400 300 200 100 0 0 0.05 0.1 0.15 0.2 P [KN] Dx [m] NLM_not perfectly straight plate NLG_not perfectly straight plate 450 400 350 300 250 200 150 100 50 0 0 0.05 0.1 0.15 0.2 P [KN] Dx [m] Buckling Yielding_not perfectly straight plate If we consider the plate with an initial imperfection, the elastic-plastic limit is really near to the buckling curve NLM+NLG (real plate) The plate starts to reach the yelding limit in the lateral zone, but rapidly it is totally yelded (orange line) Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 33/92
  • 35. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” ELASTIC – PLASTIC MATERIAL We studied two other plates: one thicker (s=3 cm) and one thiner (s=2mm). The thicker reaches the yielding limit and then collapse, the thiner follows the buckling curve: the previous plate with s=1cm has an intermediate behavior. We compared the three “orange curve” by adimensionalyzing respect on their yielding maximum force. 35 Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 34/92
  • 36. 36 UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” ELASTIC – PLASTIC MATERIAL 65% of the yielding limit 40% of the yielding limit 15% of the yielding limit Coupled behaviour of yielding and buckling Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 35/92
  • 37. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” ELASTIC – PLASTIC MATERIAL Experiments show that due to the interaction between the buckling and the yielding behaviour , when the compressive stress reaches the yield point of the material, the plate buckles. It is unusual to find a sharp corner that separates the elastic behavior from the plastic one. 37 Some permanent set usually takes place at a stress lower than the yield point Zone 1  buckling of plate when the compressive stress reach the yield point Zone 2  buckling of plate when the stresses remain within the elastic limit Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 36/92
  • 38. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” ELASTIC – PLASTIC MATERIAL • Different behaviour of plates and struts when the stresses are beyond the proportional limit • The critical load for a strut is considered as the ultimate load, instead a thin buckled plate can carry a bigger load than the critical load at which buckling begins. 38 • In order to explain the post-critical behavior of plates we analyze a compressive square plate simply supported by using two different analytical solutions Approximate solution Enhanced solution Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 37/92
  • 39. 39 UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” ELASTIC – PLASTIC MATERIAL Approximate solution 1) Definition of the boundary condition Simply supported plate with the lateral expansion in the x direction prevented by a rigid frame This approximate expression of the components of the displacements satisfy the boundary conditions Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 38/92
  • 40. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” ELASTIC – PLASTIC MATERIAL Approximate solution 2) Determination of the components of the strain in the middle plane and the corresponding strain energy of the plate 40 3) Determination of the energy of bending Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 39/92
  • 41. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” ELASTIC – PLASTIC MATERIAL Approximate solution 4) By using the solution method of minimum of strain energy we determinate the constant f, C1, C2 41 By solving the system we obtain We obtain a solution for “f” only if : Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 40/92
  • 42. 42 UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” ELASTIC – PLASTIC MATERIAL Approximate solution 5) Determination of the stresses σx and σy By plotting the diagram of the stresses for the ultimate compressive force (Nr,d) we can notice: • The ultimate compressive force is n times bigger than the critical compressive force • The compressive stress diagram is non-uniform Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 41/92
  • 43. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” ELASTIC – PLASTIC MATERIAL Approximate solution Why can the ultimate compressive force in a plate be n times bigger than the critical one? For a compressive force greater than the critical one, the vertical fibres instead of collapse ,as they would do if we analyzed a single strut, can absorb a further load because their deflection out of the plane is hindered by the flexural rigidity of the horizontal fibres. For the restraints of the plate that we are considering, we know that the part of the horizontal fibres near of the edge is more rigid because is close to the restraints( that are considering having an infinite rigidity). So the vertical fibres near to the vertical edge are able to absorb a greater post-critical load because they can count on a greater flexural rigidity of the horizontal fibres. 43 Why is the compressive stress diagram non-uniform ? Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 42/92
  • 44. 44 UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” ELASTIC – PLASTIC MATERIAL Approximate solution The total compressive force acting on the plate at a unit compression necr is The factor c gives the relative diminishing of the resistance of compression of the plate due to buckling A1 = A2 We can state that this resistance is equivalent to that of a flat plate having a width equal to c. Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 43/92
  • 45. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” ELASTIC – PLASTIC MATERIAL Enhanced solution 2) We determinate the ultimate load that the plate can carry by using the Tresca yield criterion. 45 For thin plate the approximate solution that we calculated is not sufficiently accurate. 1)The solution can be improved by changing the boundary conditions. we assume that the later bars of the frame keep the lateral edges of the plate straight but moving freely laterally. We can resolve the problem by following the steps shown in the approximate solution Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 44/92
  • 46. 46 UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” ELASTIC – PLASTIC MATERIAL Numerical example A square plate simply supported DATA • a = b = 500mm • t = 10 mm • E = 2E5 MPa • Perfect elastic-plastic constitutive law • σy = 235 MPa • εy = 1.175E-3 Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 45/92
  • 47. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” ELASTIC – PLASTIC MATERIAL 3 2.5 2 1.5 1 0.5 0 σx /σcr -1 -0.5 0 0.5 1 Analytical approximate 47 solution asse y / a Cross section x = a 0.2 0 -1 -0.5 0 0.5 1 -0.2 -0.4 -0.6 -0.8 -1 -1.2 -1.4 -1.6 σy /σcr asse x /a Cross section y = a Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 46/92
  • 48. 48 UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” ELASTIC – PLASTIC MATERIAL 1) We run the non linear static analysis by considering the non linear material Straus 7 approximate solution σy 235 MPa εy 1.175*10-3 εu 7.5*10-2 Analytical solution Numerical solution σy 235 Mpa Step 4.7 Fcr 558 kN Fy 2350 kN Fy 2622.6 kN errore 10% Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 47/92
  • 49. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” ELASTIC – PLASTIC MATERIAL 2) We run the non linear static analysis by considering the non linear material and the non liner geometry 49 Geometric non - linearity Material non - linearity Numerical solution Analytical solution Fu 1450.8 kN Fu 554.7 kN Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 48/92
  • 50. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” ELASTIC – PLASTIC MATERIAL Corso di Costruzioni Metalliche 50 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 49/92
  • 51. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” ELASTIC – PLASTIC MATERIAL -1 -0.5 0 0.5 1 51 Cross section x = a 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 σx /σcr asse y/a -1 -0.5 0 0.5 1 Straus7 Analytical solution 1.5 1 0.5 0 -0.5 -1 -1.5 -2 σy /σcr asse x/a Cross section y = a Analytical solution Straus7 Analytical enhanced solution Straus7 approximate solution Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 50/92
  • 52. 52 UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” ELASTIC – PLASTIC MATERIAL In order to obtain an enhanced solution, we repeat the analysis by considering different boundary conditions Boundary condition: • Horizontal edges: uz=0 • Right vertical edge: uz = 0 • Left vertical edge: uz = 0 ux = 0 Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 51/92
  • 53. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” ELASTIC – PLASTIC MATERIAL -1 -0.5 0 0.5 1 53 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 σy /σcr asse x/a Sezione y = a Analytical solution Strauss7 Sezione x = a 3.5 3 2.5 2 1.5 1 0.5 0 σx /σcr asse y/a -1 -0.5 0 0.5 1 Strauss7 Analytical solution Analytical enhanced solution Straus7 approximate solution Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 52/92
  • 54. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” ELASTIC – PLASTIC MATERIAL 0.6 0.4 0.2 0 -1 -0.5 0 0.5 1 -0.2 -0.4 -0.6 -0.8 -1 -1.2 -1.4 -1.6 σy/σcr asse x/a C.S. y = a analytical solutions P.A.S.10 A.S.10 C.S. x = a analytical solutions 3 2.5 2 1.5 1 0.5 0 σx /σcr asse y/a -1 -0.5 0 0.5 1 P.A.S.10 A.S.10 54 Comparison We compare the results provided by the approximate and the enhanced analysis Legend: P.A.S. Enhanced analytical solution A.S.Analytical solution P.S7.S. Enhanced Straus7 solution S7.S. Straus7 solution Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 53/92
  • 55. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” ELASTIC – PLASTIC MATERIAL Comparison We compare the results provided by the approximate and the enhanced analysis C.S. x = a Numerical solutions 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 σx /σcr asse y/a -1 -0.5 0 0.5 1 P.S7.S.10 S7.S.10 C.S. y = a Numerical solutions 1.5 1 0.5 0 -1 -0.5 0 0.5 1 -0.5 -1 -1.5 σy /σcr asse x/a P.S7.S.10 S7.S.10 Corso di Costruzioni Metalliche 55 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 54/92 Legend: P.A.S. Enhanced analytical solution A.S.Analytical solution P.S7.S. Enhanced Straus7 solution S7.S. Straus7 solution
  • 56. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 55/92 SHELLS Corso di Costruzioni Metalliche 56 Prof. Ing. Franco Bontempi, Ing. Giordana Gai
  • 57. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” THIN SHELLS The membrane theory •We consider a shell where the thickness is small in comparison to its other dimensions •We assume an axial-simmetric load. The components of the stresses the component of the stresses tangent to the meridian σ1 is Caused by the resultant of the external vertical forces the component of stresses tangent to the parallel σ2 is by the force Z Caused by the changing of direction of the stresses σ1 Components of the external forces: X Component that is tangent to the meridian of the shell Z  Component that is normal to the surface of the shell Corso di Costruzioni Metalliche 57 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 56/92
  • 58. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” THIN SHELLS The membrane theory Hypothesis: very small ratio thickness / minimal radius Thesis : No flexural and torsional rigidity for the membrane Dimostration 1) We subdivided the shell in elementary strips of unitary width that follow the geometry of the meridians and parallels 2) Because the strips of the parallels are compressed or in traction they modify their radius but they remain circulars. 3) Due to the deformation of the parallels, the strips of the meridians can deform and consequently change their curvature 4) The change of the meridian curvature causes not uniformly distributed stresses along the thickness (σ’1). 5) The total stress tangent to the meridians σ1tot = σ1+σ1’ 6) σ1’<< σ1 due to the small thickness (small ymax) and the small change of meridians curvature Corso di Costruzioni Metalliche 58 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 57/92
  • 59. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” THIN SHELLS The membrane theory very small ratio thickness / minimal No flexural and torsional rigidity for Conclusion Hypothesis: radius Thesis : the membrane For shell characterized by a very small ratio thickness / minimal-radius the stresses can be considered uniformly distributed along the thickness Consequence 1) In each point of the membrane the stress state is plane. 2) No bending or shear transverse stresses in any point of the shell Corso di Costruzioni Metalliche 59 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 58/92
  • 60. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” THIN SHELLS The membrane theory Compatibiliy conditions 1) Boundary condition and deformation constraints must be compatible with the requirements of a pure membrane field. 2) There must not be concentrated loads. 3) Shell geometry must not change. Corso di Costruzioni Metalliche 60 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 59/92
  • 61. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” THIN SHELLS The membrane theory The membrane forces We determinate the membrane forces due to the axial-simmetrical load S1  integral of the stresses tangent to the meridians Q is the resultant of the vertical loads Corso di Costruzioni Metalliche 61 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 60/92
  • 62. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” THIN SHELLS The membrane theory The membrane forces S2  integral of the stresses tangent to the parallels Corso di Costruzioni Metalliche 62 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 61/92 We determinate the membrane forces due to the axial-simmetrical load
  • 63. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” THIN SHELLS Numerical example 1 Calculate the membrane forces of a hemisphere tank full of water DATA •R = 3 m •s = 0.1 m •γW = 10 kN/m3 Corso di Costruzioni Metalliche 63 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 62/92
  • 64. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” THIN SHELLS Numerical example 1 • Analytical solution 1) We calculate the volume of the hemisphere 2) We calculate the membrane forces Corso di Costruzioni Metalliche 64 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 63/92
  • 65. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” THIN SHELLS In order to fulfil the requirements of the membrane theory, we apply an uniform distributed load that varies linearly with the Z. We define traslational restraints for the edge of the structure in order to have a boundary condition compatible with the requirements of a pure membrane state. Corso di Costruzioni Metalliche 65 Prof. Ing. Franco Bontempi, Ing. Giordana Gai • Sap2000 solution Numerical example 1 64/92
  • 66. S1 S2 UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” THIN SHELLS Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai • Sap2000 solution Numerical example 1 65/92
  • 67. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” THIN SHELLS Numerical example 1 SAP 2000 BELLUZZI Step z θ S1 S2 S1 S2 Error S1 Error S2 m deg KN/m KN/m KN/m KN/m % % 1 0.000 0 45.53 44.65 45.00 45.00 -1.2% 0.8% 2 0.333 10 44.45 42.61 44.66 43.97 0.5% 3.1% 3 0.667 20 43.04 38.94 43.66 40.92 1.4% 4.8% 4 1.000 30 41.32 34.10 42.06 35.88 1.8% 5.0% 5 1.333 40 39.33 27.94 39.97 28.98 1.6% 3.6% 6 1.667 50 37.16 20.40 37.55 20.31 1.0% -0.5% 7 2.000 60 34.91 11.52 35.00 10.00 0.3% -15.1% 8 2.333 70 32.77 1.40 32.61 -1.83 -0.5% 176.1% 9 2.667 80 30.99 -9.84 30.77 -15.14 -0.7% 35.0% 10 3.000 90 29.90 -22.16 30.00 -30.00 0.3% 26.2% Corso di Costruzioni Metalliche 67 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 66/92
  • 68. 50 40 30 20 10 0 -10 -20 -30 -40 UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” THIN SHELLS Numerical example 1 0 10 20 30 40 50 60 70 80 90 stress [KN/m] θ [deg] Comparison S1 _ SAP S2 _ SAP S1 _analitica S2 _analitica Corso di Costruzioni Metalliche 68 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 67/92
  • 69. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” THIN SHELLS 1) The stresses of the element depend only on the Z variable. 2) The S1 stress is always positive  The meridians are always in traction 3) The stress S2 is positive near the bottom of the element and negative near the top of it  The parallels are in compression near the top of the element and in traction near the bottom of it. Corso di Costruzioni Metalliche 69 Prof. Ing. Franco Bontempi, Ing. Giordana Gai • Conclusion Numerical example 1 68/92
  • 70. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” THIN SHELLS Numerical example 2 Calculate the membrane forces of a toroidal tank full of water S1e S1i DATA •Re = 4.5 m •Ri = 3.5 m •Rt = 0.5 m •S = 0.05 m •γW = 10 kN/m3 Corso di Costruzioni Metalliche 70 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 69/92
  • 71. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” THIN SHELLS Numerical example 2 1) By using the Guldino’s formulations we calculate the volume of the parts E and I. 2) By writing the equation equilibrium we determinate the stresses S1e and S1i. 3) By using the formula we calculate S2e and S2i Corso di Costruzioni Metalliche 71 Prof. Ing. Franco Bontempi, Ing. Giordana Gai • Analytical solution 70/92
  • 72. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” THIN SHELLS Numerical example 2 In order to fulfil the requirements of the membrane theory, we apply a uniform distributed load that varies linearly with the Z. In addition we define traslational restraints for the edge of the structure in order to have boundary condition compatible with the requirements of a pure membrane state. Corso di Costruzioni Metalliche 72 Prof. Ing. Franco Bontempi, Ing. Giordana Gai • Sap2000 solution 71/92
  • 73. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” THIN SHELLS Numerical example 2 SAP 2000 BELLUZZI S1est S1int S2est S2int S1est S1int S2est S2int KN/m KN/m KN/m KN/m KN/m KN/m KN/m KN/m 1.73 2.15 -10.72 13.28 1.84 2.12 -16.54 14.87 Error S1est S1int S2est S2int % % % % 6% 0% 35% 11% The stress S2 varies between a maximum positive value that is reached in the internal circumference and a minimum negative value in the external circumference . That means that the external circumference is in traction while the internal is in compression. Corso di Costruzioni Metalliche 73 Prof. Ing. Franco Bontempi, Ing. Giordana Gai • Conclusion 72/92
  • 74. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” THICK SHELLS These type of elements have a thickness that we can’t ignore during the analytical analysis By considering the thickness of the shell, we must consider bending and shear stresses in addition to the stresses that we regarded for the thin shells The deformations generated from the bending and the shear stresses are caused by two factors: 1) External forces or bending moment applied at the edge of the shell. In this case the stresses quickly dampen and we can notice the presence of the bending and shear stresses just as a local effect around the edge 2) External forces distributed on the surface of the element. In this case, the distributed forces deform the shells, so the bending and shear stresses are distributed in all element. Corso di Costruzioni Metalliche 74 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 73/92
  • 75. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” THICK SHELLS Differential equation Hypothesis - We consider a pressure that act on a cylindrical tube from the internal to the external of the volume. - Pressure has to be uniformly distributed on the same parallel and can vary along the meridian. - External bending moment or radial forces can be present in one or both of the cylinder edges Development 1) We subdivide the elements in strips of unitary width 2) We assume that the pressure is supported by the longitudinal strips Corso di Costruzioni Metalliche 75 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 74/92
  • 76. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” THICK SHELLS Differential equation Development 3) The transversal strips contrast the deformation of longitudinal strips by reacting with radial forces (ρ) that act on the longitudinal strips. Aim: Determinate the relation between the radial force (ρ) and the deformation of the parallels -We considerate a meridian segment -We determinate the deformation of a generic parallel -We determinate the relation ρ = f(w) Corso di Costruzioni Metalliche 76 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 75/92
  • 77. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” THICK SHELLS Differential equation The differential equation of the elastic line We know the relations between the component of displacement w and the other factors: The stationary solution The general solution -Represent the effect of the pressure P acting on the tube surface. -The solution is stationary because depends on to the distributed load acting on the entire element. -Represent the effect of external forces or bending moment acting on the edges of the element. -The solution dissipates by going away from the loaded edge . Corso di Costruzioni Metalliche 77 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 76/92
  • 78. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” The general solution: THICK SHELLS Differential equation By considering a tube that is very long in comparison with its other dimensions and assuming that the variable x starts where the transverse shear forces and bending moments are applied, the constant C1 and C2 can be considered equal to zero. The dissipation of the displacements is regulated by the term e-αx that rapidly decrease with the increasing of the variable x. The bending moment (M) and the transverse shear (H) assume relevant value just in the part of the element near the loaded edge and can be ignored in the rest of the volume. Corso di Costruzioni Metalliche 78 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 77/92
  • 79. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” THICK SHELLS Differential equation The dissipation of these local effects is as fast as the wavelength is small. The wavelength depends on the radius and the thickness of the element by the expression: The dissipation of these local effects is as fast as the radius and the thickness of the element are small. Corso di Costruzioni Metalliche 79 Prof. Ing. Franco Bontempi, Ing. Giordana Gai The general solution: 78/92 By considering a tube that is very long in comparison with its other dimensions and assuming that the variable x starts where the transverse shear forces and bending moments are applied, the constant C1 and C2 can be considered equal to zero. The dissipation of the displacements is regulated by the term e-αx that rapidly decrease with the increasing of the variable x.
  • 80. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” THICK SHELLS Numerical example Calculate the displacement w, the bending moment M and the transverse shear H associated to one longitudinal strip DATA: •R = 1 m •L = 5 m •h = 5 m •s = 0.01 •Material : Steel •Constitutive law : linear elastic •E = 2*10^8 kPa •γt = 10 kN/m3 Corso di Costruzioni Metalliche 80 Prof. Ing. Franco Bontempi, Ing. Giordana Gai 79/92
  • 81. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” THICK SHELLS Numerical example The particular solution The general solution We determinate the constant by using the boundary conditions: We determinate the parameters α 13.13 1/m v 0.3 B 18.31 KN/m2 β 2.0E+06 kN/m3 a 12.85 C3 -2.46E-05 m C4 -2.50E-05 m Corso di Costruzioni Metalliche 81 Prof. Ing. Franco Bontempi, Ing. Giordana Gai • Analytical solution 80/92
  • 82. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” THICK SHELLS Numerical example 4.00 3.00 2.00 1.00 0.00 -1.00 -2.00 T [KN] T = B w’’’ X [m] Trasverse shear - T 0 1 2 3 4 5 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 X [m] Displacement - W W [m] 0 0.00001 0.00002 0.20 0.15 0.10 0.05 0.00 -0.05 M [KNm] 0 1 2 3 4 5 X [m] Bending moment- M The bending moment (M) and the transverse shear (H) can be considered as local effects M = B w’’ Corso di Costruzioni Metalliche 82 Prof. Ing. Franco Bontempi, Ing. Giordana Gai • Analytical solution 81/92
  • 83. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” THICK SHELLS Numerical example We run the analysis and then we export the displacements (w), the transverse shear (H) and the bending moment (M) of a single meridian in order to compare the results provided by the numerical and the analytical analysis Corso di Costruzioni Metalliche 83 Prof. Ing. Franco Bontempi, Ing. Giordana Gai • Sap2000 solution 82/92
  • 84.
  • 85. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 84/92 SHELLS Buckling analysis Corso di Costruzioni Metalliche 85 Prof. Ing. Franco Bontempi, Ing. Giordana Gai
  • 86. CYLINDRICAL SHELLS WITH CIRCULAR SECTION 86 UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” In the case of shells, the most interesting behaviour is that out of plane. • LOADS: perpendicular to the middle plane, along the revolution axis. • MATERIAL: Linear Elastic • No imperfection Buckled Shell Corso di Costruzioni Metalliche Undeformed Shell Prof. Ing. Franco Bontempi, Ing. Giordana Gai 85/92
  • 87. CYLINDRICAL SHELLS WITH CIRCULAR SECTION 87 UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” Numerical example Numerical code : Straus 7 Mesh : 10x10 finite elements ISOP4 Boundary conditions: two edges simply supported or built in L 1 m Width 1 m E 2E+08 KPa ν 0.30 Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 86/92
  • 88. CYLINDRICAL SHELLS WITH CIRCULAR SECTION 88 UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” trendline : sixth-order polynomiale • The shells with built in - ends presents higher buckling load • The shells with larger thickness presents higher buckling load • The curves presents a maximum for 0.3 < h/L < 0.4; then Pcr decreaeses Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 87/92
  • 89. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” 88/92 SHELLS Non – linear analysis Corso di Costruzioni Metalliche 89 Prof. Ing. Franco Bontempi, Ing. Giordana Gai
  • 90. CYLINDRICAL SHELLS WITH CIRCULAR SECTION 90 UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” We chose one of the analyzed shells and we run nonlinear analys. Displacement control: Step: 150 increments of 0.006 m Force control: Step: 150 increments of 50 KN Numerical example Numerical code : Straus 7 Mesh : 10x10 finite elements ISOP4 Boundary conditions: two edges simply supported L 1 m Width 1 m h 0.4 m s 0.02 m Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 89/92
  • 91. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” CYLINDRICAL SHELLS WITH CIRCULAR SECTION Snap – through buckling Looking at the red line, we see that when the curve reaches the maximum the plate buckles laterally, and then flips over : the structure goes from a “arch behavior” to a “cable behavior”. When the structure is in the third position, the load can increase, but the resistence mechanism is completely changed. 91 1 2 3 This is a typical non-eulerian buckling: the behaviour of this kind of structures is nonlinear even before the buckling limit. Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 90/92
  • 92. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” VERY FLAT SHELLS In this case the axial stress, due to the action of the thrust H, becomes important: the buckled form is influenced by the presence of high axial stresses and is not extensionless. 92 Numerical example Numerical code : Straus 7 Mesh : 10x10 finite elements ISOP4 L 1 m Width 1 m h 0.05 m Ends hinged 5000 4500 4000 3500 3000 2500 2000 1500 1000 500 0 Force control - Nonlinear analysis 0 0.02 0.04 0.06 0.08 0.1 P [KN] Dy [m] s = 1 cm s = 2 cm s = 3 cm Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 91/92
  • 93. 93 UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” DIFFERENCES % VERY FLAT SHELLS Buckling – force control NL analysis s = 1 cm s = 2 cm s = 3 cm 6.4 % 12.9 % 26.5 % We find always the same way of buckling (snap – through) but, by increasing the thickness, we goes away from ideal buckling curve (green line). Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai 92/92
  • 94. UNIVERSITA’ DEGLI STUDI DI ROMA “SAPIENZA” BIBLIOGRAFY • Timoshenko, Gere, “Theory of elastic stability” • Belluzzi, “Scienza delle costruzioni – Volume terzo” • Bontempi, Sgarbi, Malerba, “Sulla robustezza strutturale dei ponti a arco molto ribassato” 94 Corso di Costruzioni Metalliche Prof. Ing. Franco Bontempi, Ing. Giordana Gai