SlideShare a Scribd company logo
1 of 131
Download to read offline
Dipartimento di Ingegneria Strutturale e Geotecnica
Dottorato di Ricerca in Ingegneria delle Strutture
“Structural robustness and sustainability of structures:
concepts and case studies”
Konstantinos Gkoumas, Ph.D., P.E.
Corso di Dottorato: introduzio​ne all'ottimi​zzazione strutturale
Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas Dipartimento di Ingegneria Strutturale e Geotecnica
Konstantinos Gkoumas
06/05/2015
Sustainability of tall buildings:
structural design and intelligent technologies
Page 2
Personal profile
Appointments
2011-’14 Research Fellow (PostDoc), Department of Structural and Geotechnical Engineering - Sapienza
University of Rome.
Research on dependability and energy harvesting for structures and infrastructures.
2009-’10 Postdoctoral Fellow (German Academic Exchange Service), Institut für Numerische und
Angewandte Mathematik, Universität Göttingen, Germany.
2005-’08 Professional Engineer at Co.Re. Ingegneria Srl., Rome.
2004-’07 PhD Student, Department of Hydraulics, Transportation and Roads - Sapienza University of Rome.
1996-‘03 Laurea in Civil Engineering, Transportation Major (5-year degree, equivalent with MEng + MSc) -
Sapienza University of Rome
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
1st part
structural robustness
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Word cloud
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Black
Swan
Vulnerability
Cause
Damage
Index
Robustness
Collapse
resistance
Progressive
collapse
Photo Credit: Wikipedia Commons.
Member
consequence
factor
• Significant collapse cases
• LPHC events and Black Swans
• Structural robustness in qualitative terms
• Structural robustness in civil engineering
design
• Collapse types
• Structural robustness and progressive collapse
definitions
• Measures against progressive collapse
• Quantification of robustness
• Robustness and optimization
• Member consequence factor
• Assessment of simple structures
• Assessment of complex structures
• What now/next?
• References
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Black
Swan
Vulnerability
Cause
Damage
Index
• Significant collapse cases
• LPHC events and Black Swans
• Structural robustness in qualitative terms
• Structural robustness in civil engineering
design
• Collapse types
• Structural robustness and progressive collapse
definitions
• Measures against progressive collapse
• Quantification of robustness
• Robustness and optimization
• Member consequence factor
• Assessment of simple structures
• Assessment of complex structures
• What now/next?
• References
Robustness
Collapse
resistance
Progressive
collapse
Photo Credit: Wikipedia Commons.
Member
consequence
factor
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Ronan Point Tower Block – May 16, 1968
Description:
- apartments building;
- built between 1966 and 1968;
- 64 m tall with 22 story;
- walls, floors, and staircases was precast
concrete;
- each floor was supported directly by the walls
in the lower stories, (bearing walls system).
The event:
- May 16, 1968 a gas explosion blew out an
outer panel of the 18th floor,
- the loss of the bearing wall causes the
progressive collapse of the upper floors,
- the impact of the upper floors’ debris caused
the progressive collapse of the lower floors.
Cause Damage Pr. Collapse
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Description:
- apartments building;
- precast concrete wall and floor components
was the structural bearing system;
- ductile detailing and effective ties between
the precast components.
Cause Damage Pr. Collapse
The event:
- June 25, 1996 9 tons of
TNTeq detonated in
front of the building;
- the exterior wall was
entirely destroyed;
- collapse did not
progress beyond areas
of first damage.
Khobar Towers Bombing – June 25, 1996
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Description:
- office facility for the Deutsche Bank in
Manhattan;
- constructed in the early ‘70s in steel-framed
structure moment connected, 130 m tall, 40
story and 2 subterranean levels;
The event:
- On September 11, 2011, the WTC towers
debris impact on a building’s façade,
- heavy damage between the 9th and the 23rd
floor, the column was lost from the 9th and
the 18th floor;
- the framing system was able to support
and redistribute the loads.
Deutsche Bank Building – September 11, 2001
Cause Damage Pr. Collapse
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Probability of progressive collapse from an abnormal event
P(F) = P(D|H) P(F|DH)P(H) x x
damage is caused in
the structure
damage spreads in
the structure
occurrence of
critical event
occurrence of broad
or global collapse
STRUCTURAL INTEGRITY (ISO/FDS 2394)
COLLAPSE RESISTANCE (Starossek&Wolff 2005)
VULNERABILITY ROBUSTNESSEXPOSURE VULNERABILITY ROBUSTNESSEXPOSURE
Faber (2006)
STRUCTURALNON STRUCTURAL
MEASURES
HAZARD
References: Ellingwood, B.R. and Dusenberry, D.O. (2005), “Building design for abnormal loads and progressive
collapse”, Comput-Aided Civ. Inf., 20(3), 194-205.
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Black
Swan
Vulnerability
Cause
Damage
Index
• Significant collapse cases
• LPHC events and Black Swans
• Structural robustness in qualitative terms
• Structural robustness in civil engineering
design
• Collapse types
• Structural robustness and progressive collapse
definitions
• Measures against progressive collapse
• Quantification of robustness
• Robustness and optimization
• Member consequence factor
• Assessment of simple structures
• Assessment of complex structures
• What now/next?
• References
Robustness
Collapse
resistance
Progressive
collapse
Photo Credit: Wikipedia Commons.
Member
consequence
factor
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Reference: Bontempi, F. (2005) Frameworks for structural analysis, In: Innovation in Civil and Structural
Engineering Topping, BHV ed., pp. 1-24
HPLC
High Probability –
Low Consequences
LPHC
Low Probability –
High Consequences
Complexity
Non linear issues and
interaction mechanisms
Designapproach:
StochasticDeterministic
QUALITATIVE RISK
ANALYSIS
PROBABILISTIC
RISK ANALYSIS
PRAGMATIC
ANALYSIS OF
RISK SCENARIOS
Secondary
design
Primary
design
Low Probability – High Consequences Events
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
References: Taleb, Nassim Nicholas (April 2007). The Black Swan: The Impact of the Highly Improbable (1st ed.).
London: Penguin. p. 400. ISBN 1-84614045-5.
A Black Swan is an event with the following three attributes.
1. First, it is an outlier, as it lies outside the realm of regular expectations,
because nothing in the past can convincingly point to its possibility.
Rarity -The event is a surprise (to the observer).
2. Second, it carries an extreme 'impact'.
Extreme “impact” - the event has a major effect.
3. Third, in spite of its outlier status, human nature makes us concoct
explanations for its occurrence after the fact, making it explainable and
predictable.
Retrospective (though not prospective) predictability - After the first
recorded instance of the event, it is rationalized by hindsight, as if it could
have been expected; that is, the relevant data were available but
unaccounted for in risk mitigation programs. The same is true for the
personal perception by individuals.
Black Swans
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
References: Taleb, Nassim Nicholas (April 2007). The Black Swan: The Impact of the Highly Improbable (1st ed.).
London: Penguin. p. 400. ISBN 1-84614045-5.
Strengths of Black Swan Theory – Benefits
• Increased awareness of uncertainty in decision making
• New way to deal with risks and uncertainty
Limitations of Black Swan Theory – Disadvantages
• Black Swan is rather extreme
• Theory is not yet mainstream
Assumptions of Black Swan Theory
• Black Swans cannot be predicted because they are rare
• Overestimation of knowledge/Underestimation of randomness
and uncertainty
• Overestimation of skills/underestimation of luck in life
Black Swans
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Black
Swan
Vulnerability
Cause
Damage
Index
• Significant collapse cases
• LPHC events and Black Swans
• Structural robustness in qualitative terms
• Structural robustness in civil engineering
design
• Collapse types
• Structural robustness and progressive collapse
definitions
• Measures against progressive collapse
• Quantification of robustness
• Robustness and optimization
• Member consequence factor
• Assessment of simple structures
• Assessment of complex structures
• What now/next?
• References
Robustness
Collapse
resistance
Progressive
collapse
Photo Credit: Wikipedia Commons.
Member
consequence
factor
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
QUALITY
DAMAGE or ERROR
REQUIRED PERFORMANCE
NOMINAL
PERFORMANCE
NOMINAL SITUATION
Structural Robustness
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
• Capacity of a construction to exhibit regular
decrease of its structural quality as a consequence
of negative causes.
• It implies:
a) some smoothness of the decrease of
structural performance due to negative
events (intensive feature);
b) some limited spatial spread of the
rupture (extensive feature).
Structural Robustness
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Qualitative definitions of structural robustness
[EN 1991-1-7: 2006 ]: ability of a structure to withstand actions due
to fires, explosions, impacts or consequences
of human errors, without suffering damages
disproportionate to the triggering causes
[SEI 2007,
Beton Kalender 2008]: insensitivity of the structure to local failure
structure B
d
P
s
STRUCTURE B:
P
s
ROBUSTNESS CURVES
P (performance)
structure A
STRUCTURE A
damaged
integer
DP
damaged
more performant, less resistant
integer
(damage level)
DPDP
more performant, less robust less performant, more robust
Structural Robustness
A B
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Black
Swan
Vulnerability
Cause
Damage
Index
• Significant collapse cases
• LPHC events and Black Swans
• Structural robustness in qualitative terms
• Structural robustness in civil engineering
design
• Collapse types
• Structural robustness and progressive collapse
definitions
• Measures against progressive collapse
• Quantification of robustness
• Robustness and optimization
• Member consequence factor
• Assessment of simple structures
• Assessment of complex structures
• What now/next?
• References
Robustness
Collapse
resistance
Progressive
collapse
Photo Credit: Wikipedia Commons.
Member
consequence
factor
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
CommonULS&SLS
VerificationFormat
Structural Robustness
Assessment
1st level:
Material Point
2nd level:
Element
Section
3rd level:
Structural
Element
4th level:
Structural
System
Structural robustness in design
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
STRUCTURAL DESIGN
PRIMARY SECONDARY TERTIARY
LOADS
DEAD X
LIVE X
SNOW X
EARTHQUAKE X
FIRE X X
EXPLOSIONS X X
“BLACK SWAN” X
Member-based
structural design
Consequence-based
structural design
Black Swan event:
- unpredictable,
- large impact on community,
- easy to predict after its occurrence.
References:
Nafday, AM. (2011) Consequence-based structural
design approach for black swan events. Structural
Safety, 33(1): 108-114.
Structural robustness in design
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Uncertainty in the likelihood that
the harmful consequences of a
particular event will be realized
Uncertainty in the consequences
related to the specific event
Primary
design
Secondary
design
Tertiary
design
Structural robustness in design
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Black
Swan
Vulnerability
Cause
Damage
Index
• Significant collapse cases
• LPHC events and Black Swans
• Structural robustness in qualitative terms
• Structural robustness in civil engineering
design
• Collapse types
• Structural robustness and progressive collapse
definitions
• Measures against progressive collapse
• Quantification of robustness
• Robustness and optimization
• Member consequence factor
• Assessment of simple structures
• Assessment of complex structures
• What now/next?
• References
Robustness
Collapse
resistance
Progressive
collapse
Photo Credit: Wikipedia Commons.
Member
consequence
factor
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
STRUCTURE
& LOADS
Collapse
Mechanism
NO SWAY
“IMPLOSION”
OF THE
STRUCTURE
“EXPLOSION”
OF THE
STRUCTURE
is a process in which
objects are destroyed by
collapsing on themselves
is a process
NOT CONFINED
SWAY
Bad VS Good collapse
design requirements for ductile performance
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Initial load-bearing element failure that
triggers the rigid fall of a part of the
structure onto another and leads to a
sequential impacts on the rest of the
structure, that collapses on itself.
Characteristic feature is the force
redistribution into alternative paths,
impulsive loading due to sudden element
failure and force concentration in elements
to fail next.
Zipper Domino
Section Instability Mixed
Pancake
Initial cross-section cut and stress
concentration that cause the rupture of
further cross-sectional parts (fast fracture)
and failure progression throughout the
entire section.
Initial element rigid overturning and
falling over another element, that, by
means of transformation of potential into
kinetic energy, trigger the overturning of
the following element.
The destabilization of some load-carrying
elements in compression due to an initial
failure of stabilizing elements can trigger a
failure progression throughout the
structure.
Some collapses are less amenable to
generalization because the relative
importance of the contributing basic
categories of collapse can vary and
combine in progression of failures.
- DOMINO + PANCAKE
(e.g. A.P.Murrah Building, Building
during Izmit Earquake)
- ZIPPER + INSTABILITY
(e.g. cable-stayed bridges)
Reference: Betoncalendar, 2008 (adapted from “Structural integrity: robustness assessment and progressive collapse
susceptibility”, Luisa Giuliani, PhD Thesis, Sapienza University of Rome, Dipartimento di Ingegneria Strutturale e Geotecnica)
Collapse types
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Initial load-bearing element failure that
triggers the rigid fall of a part of the
structure onto another and leads to a
sequential impacts on the rest of the
structure, that collapses on itself.
Characteristic feature is the force
redistribution into alternative paths,
impulsive loading due to sudden element
failure and force concentration in elements
to fail next.
Zipper Domino
Section Instability Mixed
Pancake
Initial cross-section cut and stress
concentration that cause the rupture of
further cross-sectional parts (fast fracture)
and failure progression throughout the
entire section.
Initial element rigid overturning and
falling over another element, that, by
means of transformation of potential into
kinetic energy, trigger the overturning of
the following element.
The destabilization of some load-carrying
elements in compression due to an initial
failure of stabilizing elements can trigger a
failure progression throughout the
structure.
Some collapses are less amenable to
generalization because the relative
importance of the contributing basic
categories of collapse can vary and
combine in progression of failures.
- DOMINO + PANCAKE
(e.g. A.P.Murrah Building, Building
during Izmit Earquake)
- ZIPPER + INSTABILITY
(e.g. cable-stayed bridges)
Reference: Betoncalendar, 2008 (adapted from “Structural integrity: robustness assessment and progressive collapse
susceptibility”, Luisa Giuliani, PhD Thesis, Sapienza University of Rome, Dipartimento di Ingegneria Strutturale e Geotecnica)
Collapse types
Islamabad Earthquake 2005
Münsterland, 2005
Viaduct after earthquake
Izmit Earthquake
1999
Tanker S.S. Schenectady, 1941
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
The Boeing B-17 Flying Fortress collided with another aircraft during World War II and, although
sustaining large amount of structural damage, landed safely, due to the high redundancy of the
fuselage connections.
Design Strategy #1: Continuity (robust behavior-redundancy)
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
On July 1945 a B-25 bomber crashed into the Empire State Building, The impact of the plane
created a 5.5x6 m hole in the side of the tower. This crash caused extensive damage to the
masonry exterior and the interior steel structure of the building.
The 278 m building was rocked by the impact but resist the impact in consequence of the
intrinsic redundancy of its framed system.
Plane crash on the Empire
State Building, 1945
Design Strategy #1: Continuity (robust behavior-redundancy)
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Design Strategy #2: Segmentation (Compartmentalization)
A service-induced damage led to explosive decompression and loss of large portion of fuselage
skin when small fatigue crack suddenly linked together. The subsequent fracture was eventually
arrested by fuselage frame structure and the craft landed safely.
Aloha Boeing 737, April 1988
(compartmentalization by strengthening)
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Design Strategy #2: Segmentation (Compartmentalization)
The partial collapse, started in the roof and due design and execution errors, stoped at the two joints
which separated the collapsing section from the adjacent structures.
A higher continuity could have unlikely sustained the forces during collapse, since the construction
deficiencies affected also adjacent sections.
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Black
Swan
Vulnerability
Cause
Damage
Index
• Significant collapse cases
• LPHC events and Black Swans
• Structural robustness in qualitative terms
• Structural robustness in civil engineering
design
• Collapse types
• Structural robustness and progressive collapse
definitions
• Measures against progressive collapse
• Quantification of robustness
• Robustness and optimization
• Member consequence factor
• Assessment of simple structures
• Assessment of complex structures
• What now/next?
• References
Robustness
Collapse
resistance
Progressive
collapse
Photo Credit: Wikipedia Commons.
Member
consequence
factor
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
References:
(EN 1991-1-7 2006): "Eurocode 1 – Actions on structures, Part 1-7: General actions – accidental actions." Comité
European de Normalization (CEN).
(Bontempi F, Giuliani L, Gkoumas K, 2007): "Handling the exceptions: robustness assessment of a complex structural
system.“, Invited Lecture, Structural Engineering, Mechanics and Computation (SEMC) 3, 1747-1752.
(Starossek U, 2009): “Progressive collapse of structures.” London: Thomas Telford Publishing, 2009.
Definitions:
1- "The ability of a structure to withstand events like fire, explosions,
impact or the consequences of human error without being damaged to an
extent disproportionate to the original cause." (EN 1991-1-7 2006)
2- "The robustness of a structure, intended as its ability not to suffer
disproportionate damages as a result of limited initial failure, is an
intrinsic requirement, inherent to the structural system organization."
(Bontempi F, Giuliani L, Gkoumas K, 2007)
3- “Robustness is defined as insensitivity to local failure." (Starossek U,
2009)
Structural Robustness
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
References:
(ASCE 7-05 2005): "Minimum design loads for buildings and other structures." American Society of Civil Engineers
(ASCE).
(GSA 2003): "Progressive collapse analysis and design guidelines for new federal office buildings and major
modernization projects." General Services Administration (GSA).
(UFC 4-010-01 2003): "DoD minimum antiterrorism standards for buildings." Department of Defense (DoD).
Progressive Collapse
Definitions:
1-"Progressive collapse is defined as the spread of an initial local failure
from element to element resulting, eventually, in the collapse of an entire
structure or a disproportionate large part of it." (ASCE 7-05 2005)
2- "A progressive collapse is a situation where local failure of a primary
structural component leads to the collapse of adjoining members which, in
turn, leads to additional collapse. Hence, the total collapse is
disproportionate to the original cause." (GSA 2003)
3-"Progressive collapse: a chain reaction failure of building members to an
extent disproportionate to the original localized damage." (UFC 4-010-01
2003)
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
References:
Arup (2011), Review of international research on structural robustness and disproportionate collapse, London,
Department for Communities and Local Government.
Starossek, U. and Haberland, M. (2010), “Disproportionate Collapse: Terminology and Procedures”, J. Perf. Constr.
Fac., 24(6), 519-528.
Observations:
− A progressive collapse is one which develops in a progressive manner akin to the collapse
of a row of dominos.
− A disproportionate collapse is one which is judged (by some measure defined by the
observer) to be disproportionate to the initial cause. This is merely a judgement made on
observations of the consequences of the damage which results from the initiating events.
− A collapse may be progressive in nature but not necessarily disproportionate in its extents,
for example if arrested after it progresses through a number of structural bays. Vice versa, a
collapse may be disproportionate but not necessarily progressive if, for example, the
collapse is limited in its extents to a single structural bay but the structural bays are large.
− The terms of disproportionate collapse and progressive collapse are often used
interchangeably because disproportionate collapse often occurs in a progressive manner
and progressive collapse can be disproportionate.
Progressive Collapse VS Disproportionate Collapse
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Robustness and collapse resistance in a dependability framework
Sgambi, L., Gkoumas, K. and Bontempi, F. (2012), “Genetic
algorithms for the dependability assurance in the design of a long-
span suspension bridge”, Comput-Aided Civ. Inf., 27(9), 655-675.
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Black
Swan
Vulnerability
Cause
Damage
Index
• Significant collapse cases
• LPHC events and Black Swans
• Structural robustness in qualitative terms
• Structural robustness in civil engineering
design
• Collapse types
• Structural robustness and progressive collapse
definitions
• Measures against progressive collapse
• Quantification of robustness
• Robustness and optimization
• Member consequence factor
• Assessment of simple structures
• Assessment of complex structures
• What now/next?
• References
Robustness
Collapse
resistance
Progressive
collapse
Photo Credit: Wikipedia Commons.
Member
consequence
factor
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
The currently available design strategies and methods to
prevent disproportionate collapse are as follows:
− Prevent local failure of key elements (direct design)
− Specific local resistance
− Non-structural protective measures
− Presume local failure (direct design)
− Alternative load paths
− Isolation by segmentation
− Prescriptive design rules (indirect design)
Reference:
Starossek, U. 2008. Collapse resistance and robustness of bridges. IABMAS’08: 4th International Conference on
Bridge Maintenance, Safety, and Management Seoul, Korea, July 13-17, 2008
Measures against disproportionate collapse
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Reference:
Giuliani, L., 2012. Structural safety in case of extreme actions. International Journal of Lifecycle Performance Engineering
IJLCPE Special Issue on: "Performance and Robustness of Complex Structural Systems", Guest Editor Franco Bontempi, ISSN
(Online): 2043-8656 - ISSN (Print): 2043-8648.
Design strategies against progressive collapse
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Black
Swan
Vulnerability
Cause
Damage
Index
• Significant collapse cases
• LPHC events and Black Swans
• Structural robustness in qualitative terms
• Structural robustness in civil engineering
design
• Collapse types
• Structural robustness and progressive collapse
definitions
• Measures against progressive collapse
• Quantification of robustness
• Robustness and optimization
• Member consequence factor
• Assessment of simple structures
• Assessment of complex structures
• What now/next?
• References
Robustness
Collapse
resistance
Progressive
collapse
Photo Credit: Wikipedia Commons.
Member
consequence
factor
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
RISK-BASED
[Faber, 2005]
R
I
inddir
dir
rob
R
R


direct risk
indirect riskDAMAGE-BASED



n
1i
'
i
i
)K(tr
)K(tr
.Deg.Stiff
ithelement stiffness matrix
(integer state)
damaged
elements
ithelement stiffness
matrix (damaged state)
[Yan&Chang, 2006] [Biondini &
Frangopol, 2008]
1
0


 
 energy between intact
and damaged system
(backward pseudo-loads)
 energy between intact
and damaged system
(forward pseudo-loads)
 Indirect
Risk
 Direct
Risk
 Indirect
Risk
 Direct
Risk
Reference:
Olmati, P., Brando, F., Gkoumas, K. “Robustness assessment of a Steel Truss Bridge”, ASCE/SEI Structures Congress,
Pittsburgh, Pennsylvania, May 2-4, 2013.
B
A Withstand actions, events
Withstand damages
Structural Robustness assessment
TOPOLOGY-BASEDOther:
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
[Baker et al. 2008]
R
I
inddir
dir
rob
R
R


direct risk
indirect risk
Reference:
Baker J.W., Schubert M., Faber M.H., (2008). On the Assessment of Robustness, Journal of Structural Safety, Volume
30, Issue 3, pp. 253-267, DOI:10.1016/j.strusafe.2006.11.004
“A robust system is considered to be one where indirect
risks do not contribute significantly to the total system
risk”
Rdir˃˃Rind
Rdir: related to initial damage
Rind: related to additional damage
EXBD: Exposure before damage
D : Damage
D : No Damage
F : Probability of system failure
Cdir : Direct consequences
Cind: Indirect consequences
Risk Based Structural Robustness assessment
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
𝑅 𝑑
𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑
− 𝐸 𝑑
𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑
≥ 0
member-based design
𝑅 − 𝐸 ≥ 0limit state design
Resistance (probabilistic) Solicitation (probabilistic)
Resistance (design values) Solicitation (design values)
(1 − 𝐶𝑓
𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜
)𝑅 𝑑
𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑
−𝐸 𝑑
𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑
≥ 0
Member consequence factor based design
0 ≤ 𝐶 𝑓 ≤ 1
• Cf quantifies the influence that a loss of a structural element has on the load carrying capacity.
• Cf provides to the single structural member an additional load carrying capacity, in function of the
nominal design (not extreme) loads that can be used for contrasting unexpected and extreme loads.
• Essentially, if Cf tends to 1, the member is more likely to be important to the structural system;
instead if Cf tends to 0, the member is more likely to be unimportant to the structural system.
Member consequence factor and robustness assessment
0EγγRγγ kEMEk
1
Rd
1
MR  
0E)R(*)C1( kEdMEk
1
Rd
1
MRf  
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
• The structure is subjected to a set of damage scenarios and the consequence of the
damages is evaluated by the member consequence factor (𝐶𝑓
𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜
) that for
convenience can be easily expressed in percentage.
• For damage scenario is intended the failure of one or more structural elements.
• Robustness can be expressed as the complement to 100 of 𝐶𝑓
𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜
, intended as the
effective coefficient that affects directly the resistance.
• 𝐶𝑓
𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜
is evaluated by the maximum percentage difference of the structural stiffness
matrix eigenvalues of the damaged and undamaged configurations of the structure.
𝐶𝑓
𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜
= 𝑚𝑎𝑥
𝜆𝑖
𝑢𝑛
− 𝜆𝑖
𝑑𝑎𝑚
𝜆𝑖
𝑢𝑛 100
𝑖=1−𝑁
where, 𝜆𝑖
𝑢𝑛
and 𝜆𝑖
𝑑𝑎𝑚
are respectively the i-th eigenvalue of the structural stiffness
matrix in the undamaged and damaged configuration, and N is the total number of the
eigenvalues.
Member consequence factor and robustness assessment
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
• The corresponding robustness index (𝑅 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜
) is therefore defined as:
𝑅 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜=1 - 𝐶𝑓
𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜
• Values of Cf close to 100% mean that the failure of the structural member most
likely causes a global structural collapse.
• Low values of Cf do not necessarily mean that the structure survives after the failure
of the structural member: this is something that must be established by additional
analysis that considers the loss of the specific structural member.
• A value of Cf close to 0% means that the structure has a good structural
robustness.
The proposed method for computing the consequence factors, for different reasons,
should not be used for:
1. Structures that have high concentrated masses (especially non-structural masses) in
a particular zone; and,
2. Structures that have cable structural system (e.g., tensile structures, suspension
bridges).
Member consequence factor and robustness assessment
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Black
Swan
Vulnerability
Cause
Damage
Index
• Significant collapse cases
• LPHC events and Black Swans
• Structural robustness in qualitative terms
• Structural robustness in civil engineering
design
• Collapse types
• Structural robustness and progressive collapse
definitions
• Measures against progressive collapse
• Quantification of robustness
• Robustness and optimization
• Member consequence factor
• Assessment of simple structures
• Assessment of complex structures
• What now/next?
• References
Robustness
Collapse
resistance
Progressive
collapse
Photo Credit: Wikipedia Commons.
Member
consequence
factor
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Cost of robustness measures ≤ Reduction of failure consequences
• The objective function for optimization may be very complex
and depend on the type of the structural system, robustness
measures, characteristics of failure consequences and
probabilities of occurrence and intensities of various hazards.
• If the total cost of robustness measures exceeds the reduction
in failure consequences, then the system may be considered as
robust but uneconomic. In such a situation, probabilistic
methods of risk assessment may be effectively used
Reference:
COST Action TU0601 Robustness of Structures STRUCTURAL ROBUSTNESS DESIGN FOR PRACTISING
ENGINEERS. EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY, Editor T. D. Gerard Canisius.
Robustness and Optimization
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Reference:
Casciati, S. and Faravelli, L. (2008) Building a Robustness Index. Robustness of Structures COST Action TU0601,
1st Workshop, February 4-5, ETH Zurich, Switzerland.
Robustness and Optimization
Example: Hierarchy of the failure modes (“weak beam/strong column”)
...develop the less catastrophic failure
modes first.
...ranking the failure modes in terms of
a hierarchy in such a way that the less
harmful ones are generated at lower
loading levels
Objective function:
Robustness term:
Pfi: probability of the i-th failure mode
m: number of failure modes
A robust structure requires the plastic moment of the column, MPc, being larger than the
one of the beam, MPb; that is, Z = MPc– MPb≥ 0
µc, σc, µb, σb: means and the standard deviations of the plastic moments of the columns and
of the beam, respectively.
To ensure robustness, the index I needs to be kept positive. The objective is, therefore, to
minimize FI=-I.
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Black
Swan
Vulnerability
Cause
Damage
Index
• Significant collapse cases
• LPHC events and Black Swans
• Structural robustness in qualitative terms
• Structural robustness in civil engineering
design
• Collapse types
• Structural robustness and progressive collapse
definitions
• Measures against progressive collapse
• Quantification of robustness
• Robustness and optimization
• Member consequence factor
• Assessment of simple structures
• Assessment of complex structures
• What now/next?
• References
Robustness
Collapse
resistance
Progressive
collapse
Photo Credit: Wikipedia Commons.
Member
consequence
factor
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Stiffness matrix
Kun λi
un
Eigenvalues
Kdam λi
dam
Consequence factor
Robustness indexRscenario= 100 - Cf
scenario
N1i
un
i
dam
i
un
iscenario
f 100
)(
maxC










Structural Robustness assessment - overview
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
ka
kb
x
y
Kun
=
10 0
0 10
Cf1
1 = 0% Cf2
1 = 30%
R1 = 70%
R1 = 100 − Cf
1N: total eigenvalues number
i: single eigenvalue number
a and b: elements
a
b
N1i
un
i
dam
i
un
iscenario
f 100
)(
maxC










Kdam
=
10 0
0 7
Scenario 1
Single damage – analytic calculation
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
• Single bay frame structure with a diagonal beam brace, composed in total of 5
members
• IPE 300, S235 steel, one meter length, pinned boundary conditions.
The evaluated scenarios consist in the removal of elements 1, 2 and 3 sequentially, so the
damage is cumulative: this means that the each scenario includes the damage from the
previous one.
Cumulative damage – numerical assessment
DSj = Σi=(1-j) di
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Cumulative damage – numerical assessment
• star-shaped structure – 8 members - pipe cross section - 20 centimeters outside
diameter - 20 millimeters thickness - S235 steel.
• members 1, 3, 5, and 7 are 0.5 meters long and members 2, 4, 6, and 8 are 0.7
meters long.
All the members are connected to each other by a fixed type connection. Also the boundary
conditions are of the fixed type and the structure is plane.
DSj = Σi=(1-j) di
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Black
Swan
Vulnerability
Cause
Damage
Index
• Significant collapse cases
• LPHC events and Black Swans
• Structural robustness in qualitative terms
• Structural robustness in civil engineering
design
• Collapse types
• Structural robustness and progressive collapse
definitions
• Measures against progressive collapse
• Quantification of robustness
• Robustness and optimization
• Member consequence factor
• Assessment of simple structures
• Assessment of complex structures
• What now/next?
• References
Robustness
Collapse
resistance
Progressive
collapse
Photo Credit: Wikipedia Commons.
Member
consequence
factor
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
I-35 West Bridge, Minneapolis, MN
COLLAPSE OF THE BRIDGE ON I 35-W MINNESOTA, AUGUST 1ST 2007
The I-35W Mississippi River Bridge (officially known as Bridge 9340) was an eight-lane, deck
truss bridge, designed by the engineering consulting firm of Sverdrup & Parcel and Associates.
The design plans were approved by the Minnesota Department of Transportation (Mn DOT) on
1965 and opened to traffic on 1967.
http://www.dot.state.mn.us/i35wbridge/ntsb/finalreport.pdf
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
I-35 West Bridge, Minneapolis, MN
http://www.dot.state.mn.us/i35wbridge/ntsb/finalreport.pdf
• The deck truss comprised in two parallel Warren
trusses (east and west) with verticals.
• The east and west main trusses were spaced 22 m
and were connected by 27 transverse welded floor
trusses spaced 11.6 m on centers and by two floor
beams at the north and south ends.
• Steel gusset plates were used on all the 112
connections of the two main trusses. All nodes had
two gusset plates on either side of the connection.
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
I-35 West Bridge, Minneapolis, MN
After this tragedy, the Federal Highway Administration (FHWA) focused its attention on all the 465 steel
deck truss bridges present in the National Bridge Inventory [NTSB, 2008].
“The term “fracture critical” indicates that if one main component of a bridge fails, the entire
structure could collapse. Therefore, a fracture critical bridge is a steel structure that is designed
with little or no load path redundancy. Load path redundancy is a characteristic of the design
that allows the bridge to redistribute load to other structural members on the bridge if any one
member loses capacity. “
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
I-35 West Bridge, Minneapolis, MN
National Transportation Safety Board, NTSB,
2008
“Collapse of I-35 W Highway Bridge,
Minneapolis, Minnesota, August 1, 2007”
Accident Report, NTSB/HAR 08/03 PB 2008-
916213, Washington D.C. 20594..
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
I-35 West Bridge, Minneapolis, MN
The primary cause of the collapse was the under-sized gusset plates, with a
thickness of 0.5 inches (13 mm);
U10-W
[*] National Transportation Safety Board, “Collapse of I-35 W Highway Bridge, Minneapolis, Minnesota, August 1,
2007” Accident Report, NTSB/HAR 08/03 PB 2008-916213, Washington D.C. 20594. 2008.
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
I-35 West Bridge, Minneapolis, MN
FINITE ELEMENT MODEL FOR OUTSIDE WEST GUSSET PLATE AT U10W
[*] National Transportation Safety Board, “Collapse of I-35 W Highway Bridge, Minneapolis, Minnesota, August 1, 2007”
Accident Report, NTSB/HAR 08/03 PB 2008-916213, Washington D.C. 20594. 2008.
Stress contours for outside (west) gusset plate at U10W at time of bridge opening in 1967
Yield stress
of 51.5 ksi
South North
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
I-35 West Bridge, Minneapolis, MN
2 inches (51 mm) of concrete were added to the road surface over the years, increasing
the dead load by 20%;
[*] National Transportation Safety Board, “Collapse of I-35 W Highway Bridge, Minneapolis, Minnesota, August 1, 2007”
Accident Report, NTSB/HAR 08/03 PB 2008-916213, Washington D.C. 20594. 2008.
1977, Renovation:
Increased Deck Thickness
1998, Renovation:
Median Barrier, Traffic Railings,
and Anti-Icing System
2007, Repair and Renovation:
Repaving
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
I-35 West Bridge, Minneapolis, MN
FINITE ELEMENT MODEL FOR OUTSIDE WEST GUSSET PLATE AT U10W
[*] National Transportation Safety Board, “Collapse of I-35 W Highway Bridge, Minneapolis, Minnesota, August 1, 2007”
Accident Report, NTSB/HAR 08/03 PB 2008-916213, Washington D.C. 20594. 2008.
Stress contours for outside (west) gusset plate at U10W after 1977 and 1998 renovation projects
Yield stress
of 51.5 ksi
South North
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
I-35 West Bridge, Minneapolis, MN
The extraordinary weight of construction equipment and material resting on the bridge just
above its weakest point at the time of the collapse
[*] National Transportation Safety Board, “Collapse of I-35 W Highway Bridge, Minneapolis, Minnesota, August 1, 2007”
Accident Report, NTSB/HAR 08/03 PB 2008-916213, Washington D.C. 20594. 2008.
[*]
U10-WNorth South
184 380 lbf (820 kN) of gravel
198 820 lbf (884 kN) of sand
195 535 lbf (870 kN) of parked construction vehicles and personnel
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
I-35 West Bridge, Minneapolis, MN
The extraordinary weight of construction equipment and material resting on the bridge just
above its weakest point at the time of the collapse
[*] National Transportation Safety Board, “Collapse of I-35 W Highway Bridge, Minneapolis, Minnesota, August 1, 2007”
Accident Report, NTSB/HAR 08/03 PB 2008-916213, Washington D.C. 20594. 2008.
[*]
U10-WNorth South
Pier 6
184 380 lbf (820 kN) of gravel
198 820 lbf (884 kN) of sand
195 535 lbf (870 kN) of parked construction vehicles and personnel
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
I-35 West Bridge, Minneapolis, MN
[*] National Transportation Safety Board, “Collapse of I-35 W Highway Bridge, Minneapolis, Minnesota, August 1, 2007”
Accident Report, NTSB/HAR 08/03 PB 2008-916213, Washington D.C. 20594. 2008.
Stress contours for outside (west) gusset plate at U10W on August 1, 2007
Yield stress
of 51.5 ksi
South North
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
I-35 West Bridge, Minneapolis, MN
FINITE ELEMENT MODEL FOR OUTSIDE WEST GUSSET PLATE AT U10W
Stress contours for outside (west) gusset plate at U10W on August 1, 2007
Yield stress
of 51.5 ksi
8/31
12/44 BRIDGE COLLAPSE
8/31
13/44 BRIDGE COLLAPSE
8/31
14/44 BRIDGE COLLAPSE
8/31
15/44 BRIDGE COLLAPSE
8/31
16/44 BRIDGE COLLAPSE
8/31
17/44 BRIDGE COLLAPSE
8/31
18/44 BRIDGE COLLAPSE
8/31
19/44 BRIDGE COLLAPSE
8/31
20/44 BRIDGE COLLAPSE
8/31
21/44 BRIDGE COLLAPSE
8/31
21/44 BRIDGE COLLAPSE
8/31
22/44 BRIDGE COLLAPSE
8/31
23/44 BRIDGE COLLAPSE
8/31
24/44 BRIDGE COLLAPSE
/31
25/44 BRIDGE COLLAPSE
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
I-35 West Bridge, Minneapolis, MN
INSPECTION REPORT FOR I-35W BRIDGE, 1983-2007
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
GUSSET PLATE???
I-35 West Bridge, Minneapolis, MN
INSPECTION REPORT FOR I-35W BRIDGE, 1983-2007
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
I-35 West Bridge, Minneapolis, MN
BOWED GUSSET PLATE AT NODE U10
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
I-35 West Bridge, Minneapolis, MN
INSPECTION REPORT FOR I-35W BRIDGE, 1983-2007
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
I-35 West Bridge, Minneapolis, MN
RESISTANCE OF GUSSET PLATES:
GUSSET PLATES IN TENSION
GUSSET PLATES SUBJECT TO SHEAR
GUSSET PLATES IN COMPRESSION
RESISTANCE OF FASTENERS
SHEAR RESISTANCE OF FASTENERS
PLATE BEARING RESISTANCE AT FASTENERS
http://bridges.transportation.org/Documents/FHWA-IF-09
014LoadRatingGuidanceandExamplesforGussetsFebruary2009rev3.pdf
FHWA GUIDELINES, (2009)
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
I-35 West Bridge, Collapse Initiation
Pier 7
Pier 6
Failure Initiation North of Pier 6
N
U10-E
U10-W
L9
L11
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Pier 7
Pier 6
N
U10-E
U10-W
L9
L11
L11
L9
U10
I-35 West Bridge, Collapse Initiation
Failure Initiation North of Pier 6
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
I-35 West Bridge, Collapse Initiation
Weight
Temp. &
Const.
Weight
Temp. &
Const.
Construction loads increase forces by 3%
Forces due to weight of bridge and traffic
Additional forces due to temperature
(corroded bearings) and construction load
L11
L9
L11
L9
L11
L9
U10
• Additional forces due to temperature
(corroded bearings) and construction load
Failure Initiation North of Pier 6
• Forces due to weight of bridge and traffic
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
I-35 West Bridge, Collapse Initiation
Gusset hinges, tears at top and buckles at bottom
L11
L9
L11
L9
L11
L9
U10
Lower chord fails in buckling
• Additional forces due to temperature
(corroded bearings) and construction load
• Lower chord fails in buckling
• Gusset hinges, tears at top and buckles at
bottom
Failure Initiation North of Pier 6
• Forces due to weight of bridge and traffic
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
I-35 West Bridge, Collapse Initiation
BUCKLED
TORN
Rivet hole elongation
U
L11
L9
U10
• Additional forces due to temperature
(corroded bearings) and construction load
• Lower chord fails in buckling
• Gusset hinges, tears at top and buckles at
bottom
Failure Initiation North of Pier 6
• Forces due to weight of bridge and traffic
• Rivet hole elongation
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
I-35 W bridge
I-35 West Bridge, Minneapolis, MN
NTSB 2007
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Undamaged
Damaged
scenario
I-35 West Bridge, Minneapolis, MN – damage scenarios
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
I-35 West Bridge, Minneapolis, MN – damage scenarios
3D
2D
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
d1
d2d3
d4
d5
d7
d6
37
59
42 45
35 38
23
63
41
58 55
65 62
77
0
20
40
60
80
100
1 2 3 4 5 6 7
Robustness%
Scenario
Cf max Robustness
42 45
35 38
23
58 55
65 62
77
3 4 5 6 7
Scenario
Cf max Robustness
83 87 88
53
60
86
64
17 13 12
47
40
14
36
0
20
40
60
80
100
1 2 3 4 5 6 7
Robustness%
Scenario
Cf max Robustness
Damage scenario Damage scenario
d3 d4 d5 d6 d7 d1 d2 d3 d4 d5 d6 d7
DSj = di
I-35 West Bridge, Minneapolis, MN – single damage
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
d1
d2d3
d4
d5
d7
d6
42 45
35 38
23
58 55
65 62
77
3 4 5 6 7
Scenario
Cf max Robustness
83 87 88
53
60
86
64
17 13 12
47
40
14
36
0
20
40
60
80
100
1 2 3 4 5 6 7
Robustness%
Scenario
Cf max Robustness
Damage scenario Damage scenario
d3 d4 d5 d6 d7 d1 d2 d3 d4 d5 d6 d7
I-35 West Bridge, Minneapolis, MN/ enhanced– single damage
DSj = di
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
I-35W SAINT ANTHONY FALLS BRIDGE (September 2008)
There are 323 sensors that regularly measure bridge conditions
such as deck movement, stress, and temperature
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
•100-year life span
•10 lanes of traffic, five in each direction—two lanes wider than the former bridge
•189 feet wide—the previous bridge was 113 feet wide
•13 foot wide right shoulders and 14 foot wide left shoulders, the previous bridge had no
shoulders
•Light Rail Transport-ready which may help accommodate future transportation needs
•Design-build project complete in 339 days.
•Designed to be aesthetically pleasing and fit in with its environment
•There are 323 sensors that regularly measure bridge conditions such as deck
movement, stress, and temperature
•The bridge is equipped with anti-icing sprayers and was constructed with high-strength
concrete.
I-35W SAINT ANTHONY FALLS BRIDGE (September 2008)
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Black
Swan
Vulnerability
Cause
Damage
Index
• Significant collapse cases
• LPHC events and Black Swans
• Structural robustness in qualitative terms
• Structural robustness in civil engineering
design
• Collapse types
• Structural robustness and progressive
collapse definitions
• Measures against progressive collapse
• Quantification of robustness
• Robustness and optimization
• Member consequence factor
• Assessment of simple structures
• Assessment of complex structures
• What now/next?
• References
Robustness
Collapse
resistance
Progressive
collapse
Photo Credit: Wikipedia Commons.
Member
consequence
factor
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
(disaster) resilience
Definition (not univocal):
A resilient community is defined as the one having the ability to absorb disaster
impacts and rapidly return to normal socioeconomic activity.
MCEER (Multidisciplinary Center for Earthquake Engineering Research), (2006). “MCEER’s Resilience Framework”. Available at
http://mceer.buffalo.edu/research/resilience/Resilience_10-24-06.pdf
NEHRP (National Earthquake Hazards Reduction Program), 2010. “Comments on the Meaning of Resilience”. NEHRP Technical
report. Available at http://www.nehrp.gov/pdf/ACEHRCommentsJan2010.pdf
MCEER framework for resilience evaluation:
Initial losses Recovery time, depending on:
• Resourcefulness
• Rapidity
Disaster strikes
Systemic
Robustness
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
(disaster) resilience
Definition (not univocal):
A resilient community is defined as the one having the ability to absorb disaster
impacts and rapidly return to normal socioeconomic activity.
MCEER (Multidisciplinary Center for Earthquake Engineering Research), (2006). “MCEER’s Resilience Framework”. Available at
http://mceer.buffalo.edu/research/resilience/Resilience_10-24-06.pdf
NEHRP (National Earthquake Hazards Reduction Program), 2010. “Comments on the Meaning of Resilience”. NEHRP Technical
report. Available at http://www.nehrp.gov/pdf/ACEHRCommentsJan2010.pdf
MCEER framework for resilience evaluation:
Resilience is inversely proportional to the area A.
(dQ/dt)
L0
TR
(dQ/dt)0
A
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
References: Taleb, Nassim Nicholas (November 2012). Antifragile: Things That Gain from Disorder(1st ed.). London:
Penguin. p. 519. ISBN 1-400-06782-0.
People/systems/organizations/things/ideas can be described in one
of three ways:
- fragile
- resilient, or
- antifragile
"Some things benefit from shocks; they thrive and grow when
exposed to volatility, randomness, disorder, and stressors and love
adventure, risk, and uncertainty. Yet, in spite of the ubiquity of the
phenomenon, there is no word for the exact opposite of fragile.
Let us call it anti-fragile. Anti-fragility is beyond resilience or
robustness. The resilient resists shocks and stays the same; the
anti-fragile gets better".
“anti-fragility”
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
References: Taleb, Nassim Nicholas (November 2012). Antifragile: Things That Gain from Disorder(1st ed.). London:
Penguin. p. 519. ISBN 1-400-06782-0 .
-----
----
“anti-fragility”
References: Beyond “Sissy” Resilience: On Becoming Antifragile. Available online at
http://www.artofmanliness.com/2013/12/03/beyond-sissy-resilience-on-becoming-antifragile/
Things that are fragile
break or suffer from
chaos and randomness.
The resilient, or
robust, don’t care if
circumstances become
volatile or disruptive
(up to a point).
Things that are anti-
fragile grow and
strengthen from
volatility and stress (to
a point).
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
“anti-fragility”
Fragile people/ systems/
organizations are concave.
As fluctuations increase (x-axis) you
experience more loss.
Anti-fragile things are convex.
As variability increases (x-axis),
gains increase.
References: Beyond “Sissy” Resilience: On Becoming Antifragile. Available online at
http://www.artofmanliness.com/2013/12/03/beyond-sissy-resilience-on-becoming-antifragile/
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Black
Swan
Vulnerability
Cause
Damage
Index
• Significant collapse cases
• LPHC events and Black Swans
• Structural robustness in qualitative terms
• Structural robustness in civil engineering
design
• Collapse types
• Structural robustness and progressive
collapse definitions
• Measures against progressive collapse
• Quantification of robustness
• Robustness and optimization
• Member consequence factor
• Assessment of simple structures
• Assessment of complex structures
• What now/next?
• References
Robustness
Collapse
resistance
Progressive
collapse
Photo Credit: Wikipedia Commons.
Member
consequence
factor
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
References
Alashker, Y., Li, H. and El-Tawil, S. (2011), “Approximations in Progressive Collapse Modeling”, J. Struct. Eng.- ASCE, 137(9), 914-924.
Arup (2011), Review of international research on structural robustness and disproportionate collapse, London: Department for
Communities and Local Government.
ASCE 7-05 (2005), Minimum design loads for buildings and other structures, American Society of Civil Engineers (ASCE).
Biondini, F. and Frangopol, D. (2009), “Lifetime reliability-based optimization of reinforced concrete cross-sections under corrosion”,
Struct. Saf., 31(6), 483-489.
Biondini, F., Frangopol, D.M. and Restelli, S. (2008), “On structural robustness, redundancy and static indeterminancy”, Proceedings of
the 2008 Structures Congress, April 24-26, 2008, Vancouver, BC, Canada.
Bontempi, F. and Giuliani, L. (2008), “Nonlinear dynamic analysis for the structural robustness assessment of a complex structural
system”, Proceedings of the 2008 Structures Congress, April 24-26, 2008, Vancouver, BC, Canada.
Bontempi, F., Giuliani, L. and Gkoumas, K. (2007), “Handling the exceptions: dependability of systems and structural robustness”, Invited
Lecture, Proceedings of the 3rd International Conference on Structural Engineering, Mechanics and Computation (SEMC), Cape Town,
South Africa, September 10-12.
Brando, F., Testa, R.B. and Bontempi, F. (2010), “Multilevel structural analysis for robustness assessment of a steel truss bridge”, Bridge
Maintenance, Safety, Management and Life-Cycle Optimization - Frangopol, Sause and Kusko (eds), Taylor & Francis Group, London,
ISBN 978-0-415-87786-2.
Canisius, T.D.G., Sorensen, J.D. and Baker, J.W. (2007), “Robustness of structural systems - A new focus for the Joint Committee on
Structural Safety (JCSS)”, Proceedings of the 10th Int. Conf. on Applications of Statistics and Probability in Civil Engineering
(ICASP10), Taylor and Francis, London.
Casciati, S. and Faravelli, L. (2008) Building a Robustness Index. Robustness of Structures COST Action TU0601, 1st Workshop,
February 4-5, 2008, ETH Zurich, Zurich, Switzerland.
Cha, E. J. and Ellingwood, B. R. (2012), “Risk-averse decision-making for civil infrastructure exposed to low-probability, high-
consequence events”, Reliab. Eng. Syst. Safe., 104(1), 27-35.
Choi, J-h. and Chang, D-k. (2009), “Prevention of progressive collapse for building structures to member disappearance by accidental
actions”, J. Loss Prevent. Proc., 22(6), 1016-1019.
COST (2011), TU0601 - Structural Robustness Design for Practising Engineers, Canisius, T.D.G. (Editor).
Crosti, C. and Duthinh, D. (2012), “Simplified gusset plate model for failure prediction of truss bridges”, Bridge Maintenance, Safety,
Management, Resilience and Sustainability - Proceedings of the 6th International Conference on Bridge Maintenance, Safety and
Management, IABMAS 2012, Italy, Stresa, 8-12 July 2012.
Crosti, C., Duthinh, D. and Simiu, E. (2011), “Risk consistency and synergy in multihazard design”, J. Struct. Eng.- ASCE, 137(8), 844-
849.
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
References
DoD - Department of Defense (2009), Unified Facilities Criteria (UFC). Report No. UFC 4-023-03: Design of buildings to resist
progressive collapse. Washington DC: National Institute of Building Sciences.
Ellingwood, B. (2002), “Load and resistance factor criteria for progressive collapse design”, Proceedings of Workshop on Prevention of
Progressive Collapse, National Institute of Building Sciences, Washington, D.C
Ellingwood, B.R. and Dusenberry, D.O. (2005), “Building design for abnormal loads and progressive collapse”, Comput-Aided Civ. Inf.,
20(3), 194-205.
Ellingwood, B.R., Smilowitz, R., Dusenberry, D.O., Duthinh, D. and Carino, N.J. (2007), Report No. NISTIR 7396: Best practices for
reducing the potential for progressive collapse in buildings. Washington DC: National Institute of Standards and Technology (NIST)
EN 1990 (2002), Eurocode - Basis of structural design.
Faber, M.H. and Stewart, M.G. (2003), “Risk assessment for civil engineering facilities: critical overview and discussion”, Reliab. Eng.
Syst. Safe., 80(2), 173-184.
FHWA (2011), Framework for Improving Resilience of Bridge Design, Publication No IF-11-016.
Galal, K. and El-Sawy, T. (2010), “Effect of retrofit strategies on mitigating progressive collapse of steel frame structures”, J. Constr. Steel
Res., 66(4), 520-531.
Ghosn, M. and Moses, F. (1998), NCHRP Report 406: Redundancy in Highway Bridge Superstructures, TRB, National Research Council,
Washington, D.C.
Giuliani, L. (2012), “Structural safety in case of extreme actions”, Special Issue on: “Performance and Robustness of Complex Structural
Systems”, Int. J. of Lifecycle Performance Engineering (IJLCPE), 1(1), 22-40.
GSA - General Service Administration (2003), Progressive collapse analysis and design guidelines for new federal office buildings and
major modernization project, Washington DC: GSA.
Hoffman, S. T. and Fahnestock, L. A. (2011), “Behavior of multi-story steel buildings under dynamic column loss scenarios”, Steel
Compos. Struc., 11(2), 149-168.
HSE - Health and Safety Executive (2001), Reducing risks, protecting people, HSE’s decision-making process, United King: Crown
copyright.
Izzuddin, B. A., Vlassis, A. G., Elghazouli, A. Y. and Nethercot, D. A. (2008a), “Progressive collapse of multi-storey buildings due to
sudden column loss - Part I: Simplified assessment framework”, Eng. Struct., 30(5), 1308-1318.
Izzuddin, B. A., Vlassis, A. G., Elghazouli, A. Y. and Nethercot, D. A. (2008b), “Progressive collapse of multi-storey buildings due to
sudden column loss - Part II: Application”, Eng. Struct., 30(5), 1424-1438.
Kim, J. and Kim, T. (2009), “Assessment of progressive collapse-resisting capacity of steel moment frames”, J. Constr. Steel Res., 65(1),
169-179.
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
References
Kwasniewski, L. (2010), “Nonlinear dynamic simulations of progressive collapse for a multistory building”, Eng. Struct., 32(5), 1223-
1235.
Malla, R.B., Agarwal, P. and Ahmad, R. (2011), “Dynamic analysis methodology for progressive failure of truss structures considering
inelastic postbuckling cyclic member behavior”, Eng. Struct., 33(5), 1503-1513.
Miyachi, K., Nakamura, S. and Manda, A. (2012), “Progressive collapse analysis of steel truss bridges and evaluation of ductility”, J.
Constr. Steel Res., 78, 192-200.
Nafday, A.M. (2008), “System Safety Performance Metrics for Skeletal Structures”, J. Struct. Eng.- ASCE, 134(3), 499-504.
Nafday, A.M. (2011), “Consequence-based structural design approach for black swan events”, Struct. Saf., 33(1), 108-114.
Olmati, P., Gkoumas, K., Brando, F., Cao, L. (2013) “Consequence-based robustness assessment of a steel truss bridge”, Steel and
Composite Structures, An International Journal, 14(4), 379-395.
Rezvani, F. H. and Asgarian, B. (2012), “Element loss analysis of concentrically braced frames considering structural performance
criteria”, Steel Compos. Struc., 12(3), 231-248.
Saydam, D. and Frangopol, D. M. (2011), “Time-dependent performance indicators of damaged bridge superstructures”, Eng. Struct.,
33(9), 2458-2471.
Starossek, U. (2009), Progressive collapse of structures, London: Thomas Telford Publishing.
Starossek, U. and Haberland, M. (2010), “Disproportionate Collapse: Terminology and Procedures”, J. Perf. Constr. Fac. 24(6), 519-528.
Starossek, U. and Haberland, M. (2012), “Robustness of structures”, Special Issue on: “Performance and Robustness of Complex
Structural Systems”, Int. J. of Lifecycle Performance Engineering (IJLCPE), 1(1), 3-21.
Taleb, Nassim Nicholas (April 2007). The Black Swan: The Impact of the Highly Improbable (1st ed.). London: Penguin. p. 400. ISBN 1-
84614045-5.
Yuan, W. and Tan, K. H. (2011), “Modeling of progressive collapse of a multi-storey structure using a spring-mass-damper system”,
Struct. Eng. Mech., 37(1), 79-93.
Taleb, Nassim Nicholas (November 2012). Antifragile: Things That Gain from Disorder(1st ed.). London: Penguin. p. 519. ISBN 1-400-
06782-0
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
2nd part
sustainability of structures
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Sustainability: overview
SUSTAINABILITY
SOCIAL
ENVIRONMENTAL
ECONOMIC
SUSTAINABLE DEVELOPMENT:
“Development that meets the needs of the
present without compromising the ability of
future generations to meet their own needs.”
(Brundtland Commission, 1987)
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Sustainability: use of steel and structural form
Steel Material
• 40% of resources
from recycling
• Manufacturing
process with
controlled
environmental
impact
• Material durability
• High recycling rate
Construction
Phase
• prefabrication/
offsite manufacture
Design and Service Life
• Weight reduction of structure
• Creation of versatile spaces
• Longevity and robustness of
steel components
• Simple incorporation of
renewable energy generation
systems
End of Life
• Easy dismantling
• Reusability/Reciclability
Source: Foster + Partners Hearst Tower USA, 2000 - 2006
SUSTAINABILITY
IN
STRUCTURES
Material
Used
Resource
Efficient
Site
Planning
Non
Pollution
Energy
Efficiency
Structural
Form
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Sustainability: building automation and energy harvesting
SUSTAINABILITY
IN
STRUCTURES
Material
Used
Resource
Efficient
Site
Planning
Non
Pollution
Energy
Efficiency
Structural
Form
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Sustainability: integration
SUSTAINABILITY
IN
STRUCTURES
Material
Used
Resource
Efficient
Site
Planning
Non
Pollution
Energy
Efficiency
Structural
Form
Diagrid: double façade - chimney effect
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Sustainability: tall buildings
Ali, M. M., Moon, K. S. (2007). Structural Development in Tall Buildings: Current Trends and Future Prospects.
Architectural Science Review, Vol. 50, pp. 205-223.
Interior structuresExterior structures
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Diagrid structure: diagrid module
Mele, E., Toreno, M., Brandonisio, G. and Del Luca, A. (2014). Diagrid structures for tall buildings: case studies and design
considerations. The Structural Design of Tall and Special Buildings. Wiley Online Library, Vol. 23, No. 2, pp. 124-145.
effect of gravity load
effect of overturning moment
effect of shear force
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Diagrid structure: Initial configuration and diagrid schemes
Outrigger Structure Diagrid Structures
42° 60° 75°
160m
36 m
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Diagrid structure: structural configuration
Original Structure:
Outrigger
Improved Structure:
Diagrid
Perimetral
Structure
Internal
Structure
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Diagrid structure: analyses and comparisons
SLS Dead Gk Tamp Qk Qn W+X W-X W+Y W-Y
COMB5 1 1 1 0,7 0,5 1 - - -
COMB6 1 1 1 0,7 0,5 - 1 - -
COMB7 1 1 1 0,7 0,5 - - 1 -
COMB8 1 1 1 0,7 0,5 - - - 1
ULS Dead Gk Tamp Qk Qn W+X W-X W+Y W-Y
COMB5 1,3 1,3 1,3 1,05 0,75 1,5 - - -
COMB6 1,3 1,3 1,3 1,05 0,75 - 1,5 - -
COMB7 1,3 1,3 1,3 1,05 0,75 - - 1,5 -
COMB8 1,3 1,3 1,3 1,05 0,75 - - - 1,5
Acronym Description Color
Outrigger Outrigger Structure
Diagrid 42°
Diagrid Structure with inclination
of diagonal members of 42°
Diagrid 60°
Diagrid Structure with inclination
of diagonal members of 60°
Diagrid 75°
Diagrid Structure with inclination
of diagonal members of 75°
Outrigger 42° 60° 75°
P
(ton)
8052 6523 5931 5389
Saving
(%)
- 19 26 33
0
1000
2000
3000
4000
5000
6000
7000
8000
9000
P(ton)
Weight
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Diagrid structure: modal analysis
T1 T2 T3 T4 T5 T6
Outrigger 3.7 3.6 2.5 1.2 1.1 0.8
Diagrid 42° 3.1 3.1 1.7 1.0 1.0 0.8
Diagrid 60° 3.3 3.3 1.9 1.0 1.0 0.9
Diagrid 75° 3.7 3.6 2.8 1.3 1.2 1.2
0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
T(s)
First six periods
Traslational
in Y
direction
Traslational
in X
direction
Rotational
around Z
axis
Traslational
in Y
direction
Traslational
in X
direction
Rotational
around Z
axis
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Diagrid structure: SLS - load combinations
SLS Dead Gk Tamp Qk Qn W+X W-X W+Y W-Y
COMB5 1 1 1 0,7 0,5 1 - - -
COMB6 1 1 1 0,7 0,5 - 1 - -
COMB7 1 1 1 0,7 0,5 - - 1 -
COMB8 1 1 1 0,7 0,5 - - - 1
HORIZONTAL
DISPLACEMENTS
COMB
Outrigger
Diagrid42°
Diagrid60°
Diagrid75°
Acronym Description Color
Outrigger Outrigger Structure
Diagrid
42°
Diagrid Structure with inclination of
diagonal members of
42°
Diagrid
60°
Diagrid Structure with inclination of
diagonal members of
60°
Diagrid
75°
Diagrid Structure with inclination of
diagonal members of
75°
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Diagrid structure: Horizontal displacements
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0
16
32
48
64
80
96
112
128
144
160
U1 (m)
Z(m)
Diagrid 42° Diagrid 60° Outrigger Diagrid 75° SLS limit
Outrigger
Diagrid42°
Diagrid60°
Diagrid75°
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Diagrid structure: ULS - load combinations, pushover
Outrigger
Diagrid42°
Diagrid60°
Diagrid75°
Acronym Description Color
Outrigger Outrigger Structure
Diagrid
42°
Diagrid Structure with inclination of
diagonal members of
42°
Diagrid
60°
Diagrid Structure with inclination of
diagonal members of
60°
Diagrid
75°
Diagrid Structure with inclination of
diagonal members of
75°
ULS Dead Gk Tamp Qk Qn W+X W-X W+Y W-Y
DEAD 1 - - - - - - - -
VERT 1 1 1 - - - - - -
+STATIC PUSHOVER FORCES
PUSHOVER
DEAD VERT
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Diagrid structure: Diagrid 60°, Pushover (YZ Sections)
0
20000
40000
60000
80000
100000
120000
140000
160000
180000
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
F(kN)
U1 (m)
Pushover
Step25
Step28
Step37
Step44
Step51
Step67
Step 67Step 51Step 44Step 37Step 25
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Diagrid structure: Diagrid 60°, Pushover+Vert (YZ Sections)
0
20000
40000
60000
80000
100000
120000
140000
160000
180000
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
F(kN)
U1 (m)
Pushover+Vert
Step11
Step16
Step39
Step47
Step55
Step 47 Step 55Step 39Step 11
VERT
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Diagrid structure: comparison of capacity curves
0
20000
40000
60000
80000
100000
120000
140000
160000
180000
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
F(kN)
U1 (m)
Pushover
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
U1 (m)
Pushover+Vert
Outrigger
Diagrid
42°
Diagrid
60°
Diagrid
75°
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
U1 (m)
Pushover+Dead
DEAD VERT
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Diagrid structure: definition of significant properties
R=Fmax
(Strength)
K=Fy/Dy
(Stiffness)
m=Dmax/Dy
(Ductility)
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Diagrid structure: comparison of significant properties
Outrigger Diagrid 42° Diagrid 60° Diagrid 75°
Pushover+Vert Pushover+Vert Pushover+Vert Pushover+Vert
Strength
(R) – kN
94775 110185 104972 97131
Stiffness
(K) – kN/m
77143 80615 71306 60897
Ductility
(m)
1,535 3,587 5,681 2,564
Weight
(P) - Ton
8052 6523 5931 5389
Weighted average (W.A.) of significant properties
Outrigger Diagrid 42° Diagrid 60° Diagrid 75°
Pushover+Vert Pushover+Vert Pushover+Vert Pushover+Vert
Strength
(R) – kN
94775 110185 104972 97131
Stiffness
(K) – kN/m
77143 80615 71306 60897
Ductility
(m)
1,535 3,587 5,681 2,564
Weight
(P) - Ton
8052 6523 5931 5389
W.A. 4,20 5,97 7,25 5,08
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Diagrid structure: comparison of mechanical properties
0
0.5
1
1.5
2
2.5
3
3.5
4
R/R0
K/K0
m/m0
1,2 ((P0-
P)/P0+1)
Pushover+Vert
Outrigger Diagrid 42° Diagrid 60° Diagrid 75°
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
Diagrid structure: robustness checks
D1,L1
D1,L2
D2,L1
D2,L2
D3,L1
D3,L2
0
20000
40000
60000
80000
100000
120000
140000
0 0.5 1 1.5 2 2.5 3
F(kN)
U1 (m)
Pushover
D1,L1
D1,L2
D2,L1
D2,L2
D3,L1
D3,L2
INTATTA
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
References
Adams, W.M. (2006) The Future of Sustainability: Re-thinking Environment and Development in the Twenty-first Century. Report of the
IUCN Renowned Thinkers Meeting, 29-31 January.
Ali, M. M., Moon, K. S. (2007) Structural Development in Tall Buildings: Current Trends and Future Prospects. Architectural Science
Review, Vol. 50, pp. 205-223.
Berardi, U. (2013) Clarifying the new interpretations of the concept of sustainable building. Sustainable Cities and Society, Vol. 8, pp. 72-
78.
Cowlard, A., Bittern, A., Abeccassis-Empis, C., Torero, J. (2013) Fire safety design for tall buildings. Procedia Engineering, Vol. 62, pp.
169-181.
Gkoumas, K., Petrini, F., Arangio, S. and Crosti, C. (2013) Energy harvesting for the sustainability of structures and infrastructures.
Research and Applications in Structural Engineering, Mechanics and Computation Alphose Zingoni (ed.), CRC Press, pp. 2457-2462.
ISE - Institution of Structural Engineers (1999) Building for a sustainable future: Construction without depletion, ISE/SETO, London, UK.
Khan F. R. (1973) Evolution of Structural Systems for High-Rise Buildings in Steel and Concrete, Proceedings of the 10th regional
conference on tall buildigs-planning, design and construction, Bratislava.
Landolfo, R., Cascini, L. and Portioli F. (2011) Sustainability of steel structures: towards an integrated approach to life-time engineering
design. Frontiers of Architecture and Civil Engineering in China, Vol. 5, No. 3, pp. 304-314.
Leonard, J. (2007) Investigation of Shear Lag Effect in High-rise Buildings with Diagrid System, Master's thesis, Department of Civil and
Environmental Engineering, MIT.
Maunsel, F. (2002) Tall Buildings and Sustainability, Corporation of London.
Mele, E., Toreno, M., Brandonisio, G. and Del Luca, A. (2014) Diagrid structures for tall buildings: case studies and design considerations.
The Structural Design of Tall and Special Buildings. Wiley Online Library, Vol. 23, No. 2, pp. 124-145.
Milana, G., Gkoumas, K., Bontempi, F. “Sustainability Concepts in the Design of High-Rise buildings: the case of Diagrid Systems”,
Proceedings of the 3rd International Workshop on Design in Civil and Environmental Engineering, Technical University of Denmark,
Denmark, August 21-23, 2014 Lotte Bjerregaard Jensen & Mary Kathryn Thompson Editors, pp. 170-179, ISBN 978-0-9894658-3-0
Milana, G., Olmati, P., Gkoumas, K. Scenario Based Structural Robustness Assessment of Tall Diagrid Structures, IF CRASC ’15, Third
Congress on, Forensic Engineering - Sixth Congress on Collapses, Reliability and Retrofit of Structures, Rome (Italy), 14-16 May 2015.
Milana, G., Olmati, P., Gkoumas, K., Bontempi, F. (2015) “Ultimate capacity of diagrid systems for tall buildings in the nominal
configuration and the damaged state”, Periodica Polytechnica Civil Engineering, accepted.
Moon, K. S. (2008) Sustainable Structural Engineering Strategies for Tall Buildings. The Structural Design of Tall and Special Buildings,
Vol. 17, No. 5, pp. 895-914.
Moon, K. S. (2011) Diagrid Structures for Complex-Shaped Tall Buildings. Procedia Engineering, Vol. 14, pp. 1343-1350.
Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne
all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas, PhD, PE
References
Moon, K.S., Connor, J.J., Fernandez, J.E. (2007) Diagrid structural system for tall buildings: characteristics and methodology for
preliminary design. The Structural Design of Tall and Special Buildings, Vol. 16, No. 2, pp. 205-230.
Nguyen, B. K. and Altan H. (2011) Comparative Review of Five Sustainable Rating Systems. Procedia Engineering, Vol. 21, pp. 376-386.
NTC - Norme Tecniche per le Costruzioni/Italian Building Code (2008) Decreto Ministeriale del 14/1/2008, Suppl. ord. n. 30 alla G.U. n.
29 del 4/2/2008 (in Italian).
Pank, W., Girardet, H. and Cox, G. (2002) Tall Buildings and Sustainability, The Corporation of London, London. Retrieved May 29, 2014
from: http://www.cityoflondon.gov.uk/services/environment-and-planning/sustainability/Documents/pdfs/tall-buildings-
sustainability.pdf
Ramesha, T., Prakasha, R. and Shuklab, K.K. (2010) Life cycle energy analysis of buildings: An overview. Energy and Buildings, Vol. 42,
pp. 1592-1600.
Robin, C. P. Y. and Poon, C. S. (2009) Cultural shift towards sustainability in the construction industry of Hong Kong. Journal of
Environmental Management, Vol. 90, pp. 3616–3628.
Sarja, A., Bamforth, P., Caccavelli, D., Chevalier, J., Durucan, S. (2005) Lifetime Engineering of Buildings and Civil Infrastructures.
Retrieved May 9, 2003 from: http://lifetime.vtt.fi/lifetime_deliverable_3_1.pdf
Srinivasan, R. S., Brahamb, W. W., Campbell, D. E. and Curcija, C. D. (2011) Re(De)fining Net Zero Energy: Renewable Energy Balance
in environmental building design. Building and Environment, Vol. 47, pp. 300-315.
Tae, S. and Shin, S. (2009) Current work and future trends for sustainable buildings in South Korea. Renewable and Sustainable Energy
Reviews, Vol 13, pp. 1910-1921.
UN - United Nations. (1987) Report of the World Commission on Environment and Development. General Assembly Resolution 42/187,
11 December. Retrieved May 29, 2014 from: http://www.un.org/documents/ga/res/42/ares42-187.htm
USGBC - United States Green Building Council. (2009) LEED for New Construction and Major Renovations, version 3.0. Green Building
Council, Washington, D.C.
Vezzoli, C. and Manzini, E. (2008) Design for Environmental Sustainability. Springer-Verlag London.
Dipartimento di Ingegneria Strutturale e Geotecnica
Dottorato di Ricerca in Ingegneria delle Strutture
“Sustainability of structures and structural robustness:
concepts and case studies”
Konstantinos Gkoumas, Ph.D., P.E.
Corso di Dottorato: introduzio​ne all'ottimi​zzazione strutturale
Prof.-Ing. Franco Bontempi
Konstantinos Gkoumas Dipartimento di Ingegneria Strutturale e Geotecnica

More Related Content

Viewers also liked

Facolta’ di ingegneria civile e industriale PRESENTAZIONE AL NUCLEO DI VALUTA...
Facolta’ di ingegneria civile e industriale PRESENTAZIONE AL NUCLEO DI VALUTA...Facolta’ di ingegneria civile e industriale PRESENTAZIONE AL NUCLEO DI VALUTA...
Facolta’ di ingegneria civile e industriale PRESENTAZIONE AL NUCLEO DI VALUTA...Franco Bontempi Org Didattica
 
Corso di Dottorato: Ottimizzazione Strutturale Parte C - Franco Bontempi
Corso di Dottorato: Ottimizzazione Strutturale Parte C - Franco BontempiCorso di Dottorato: Ottimizzazione Strutturale Parte C - Franco Bontempi
Corso di Dottorato: Ottimizzazione Strutturale Parte C - Franco BontempiFranco Bontempi Org Didattica
 
ANALISI STRUTTURALE IN CASO DI INCENDIO MODELLAZIONE CON CODICI DI CALCOLO E ...
ANALISI STRUTTURALE IN CASO DI INCENDIO MODELLAZIONE CON CODICI DI CALCOLO E ...ANALISI STRUTTURALE IN CASO DI INCENDIO MODELLAZIONE CON CODICI DI CALCOLO E ...
ANALISI STRUTTURALE IN CASO DI INCENDIO MODELLAZIONE CON CODICI DI CALCOLO E ...Franco Bontempi Org Didattica
 
Presentazione della Relazione sulle Opinioni degli Studenti - Facolta' di Ing...
Presentazione della Relazione sulle Opinioni degli Studenti - Facolta' di Ing...Presentazione della Relazione sulle Opinioni degli Studenti - Facolta' di Ing...
Presentazione della Relazione sulle Opinioni degli Studenti - Facolta' di Ing...Franco Bontempi Org Didattica
 
FIRE RISK in STAGED CONSTRUCTION: Safety & Security.
FIRE RISK in STAGED CONSTRUCTION: Safety & Security.FIRE RISK in STAGED CONSTRUCTION: Safety & Security.
FIRE RISK in STAGED CONSTRUCTION: Safety & Security.Franco Bontempi Org Didattica
 
Progetto e analisi di ospedali come costruzioni strategiche - Bontempi Rieti ...
Progetto e analisi di ospedali come costruzioni strategiche - Bontempi Rieti ...Progetto e analisi di ospedali come costruzioni strategiche - Bontempi Rieti ...
Progetto e analisi di ospedali come costruzioni strategiche - Bontempi Rieti ...Franco Bontempi
 
Presentazione della validazione di sistemi di continuità per strutture prefab...
Presentazione della validazione di sistemi di continuità per strutture prefab...Presentazione della validazione di sistemi di continuità per strutture prefab...
Presentazione della validazione di sistemi di continuità per strutture prefab...Franco Bontempi
 
BONTEMPI_IABMAS-ITALY
BONTEMPI_IABMAS-ITALYBONTEMPI_IABMAS-ITALY
BONTEMPI_IABMAS-ITALYStroNGER2012
 
Corso RESISTENZA AL FUOCO DELLE STRUTTURE - Ordine degli Ingegneri della Prov...
Corso RESISTENZA AL FUOCO DELLE STRUTTURE - Ordine degli Ingegneri della Prov...Corso RESISTENZA AL FUOCO DELLE STRUTTURE - Ordine degli Ingegneri della Prov...
Corso RESISTENZA AL FUOCO DELLE STRUTTURE - Ordine degli Ingegneri della Prov...StroNGER2012
 
Concetti e metodi del Performance- Based Wind Engineering (PBWE) - Francesco ...
Concetti e metodi del Performance- Based Wind Engineering (PBWE) - Francesco ...Concetti e metodi del Performance- Based Wind Engineering (PBWE) - Francesco ...
Concetti e metodi del Performance- Based Wind Engineering (PBWE) - Francesco ...Franco Bontempi Org Didattica
 
2015 corso dottorato OTTIMIZZAZIONE STRUTTURALE franco bontempi - parte B
2015 corso dottorato OTTIMIZZAZIONE STRUTTURALE franco bontempi - parte B2015 corso dottorato OTTIMIZZAZIONE STRUTTURALE franco bontempi - parte B
2015 corso dottorato OTTIMIZZAZIONE STRUTTURALE franco bontempi - parte BFranco Bontempi Org Didattica
 
Multi-physics modelling for the safety assessment of complex structural syste...
Multi-physics modelling for the safety assessment of complex structural syste...Multi-physics modelling for the safety assessment of complex structural syste...
Multi-physics modelling for the safety assessment of complex structural syste...Franco Bontempi Org Didattica
 

Viewers also liked (20)

Facolta’ di ingegneria civile e industriale PRESENTAZIONE AL NUCLEO DI VALUTA...
Facolta’ di ingegneria civile e industriale PRESENTAZIONE AL NUCLEO DI VALUTA...Facolta’ di ingegneria civile e industriale PRESENTAZIONE AL NUCLEO DI VALUTA...
Facolta’ di ingegneria civile e industriale PRESENTAZIONE AL NUCLEO DI VALUTA...
 
Corso di Dottorato: Ottimizzazione Strutturale Parte C - Franco Bontempi
Corso di Dottorato: Ottimizzazione Strutturale Parte C - Franco BontempiCorso di Dottorato: Ottimizzazione Strutturale Parte C - Franco Bontempi
Corso di Dottorato: Ottimizzazione Strutturale Parte C - Franco Bontempi
 
Costruzioni Metalliche. Concezione di edifici alti.
Costruzioni Metalliche. Concezione di edifici alti.Costruzioni Metalliche. Concezione di edifici alti.
Costruzioni Metalliche. Concezione di edifici alti.
 
Costruzioni Metalliche - Antonelli Giorgi Motta
Costruzioni Metalliche - Antonelli Giorgi MottaCostruzioni Metalliche - Antonelli Giorgi Motta
Costruzioni Metalliche - Antonelli Giorgi Motta
 
Costruzioni Metalliche - Necci Valleriani Schwartz
Costruzioni Metalliche - Necci Valleriani SchwartzCostruzioni Metalliche - Necci Valleriani Schwartz
Costruzioni Metalliche - Necci Valleriani Schwartz
 
TdC ex_7_2013_acciaio
TdC ex_7_2013_acciaioTdC ex_7_2013_acciaio
TdC ex_7_2013_acciaio
 
ANALISI STRUTTURALE IN CASO DI INCENDIO MODELLAZIONE CON CODICI DI CALCOLO E ...
ANALISI STRUTTURALE IN CASO DI INCENDIO MODELLAZIONE CON CODICI DI CALCOLO E ...ANALISI STRUTTURALE IN CASO DI INCENDIO MODELLAZIONE CON CODICI DI CALCOLO E ...
ANALISI STRUTTURALE IN CASO DI INCENDIO MODELLAZIONE CON CODICI DI CALCOLO E ...
 
Presentazione della Relazione sulle Opinioni degli Studenti - Facolta' di Ing...
Presentazione della Relazione sulle Opinioni degli Studenti - Facolta' di Ing...Presentazione della Relazione sulle Opinioni degli Studenti - Facolta' di Ing...
Presentazione della Relazione sulle Opinioni degli Studenti - Facolta' di Ing...
 
CM 2014_GG_Plates and shells
CM 2014_GG_Plates and shellsCM 2014_GG_Plates and shells
CM 2014_GG_Plates and shells
 
FIRE RISK in STAGED CONSTRUCTION: Safety & Security.
FIRE RISK in STAGED CONSTRUCTION: Safety & Security.FIRE RISK in STAGED CONSTRUCTION: Safety & Security.
FIRE RISK in STAGED CONSTRUCTION: Safety & Security.
 
Steel joint Study
Steel joint StudySteel joint Study
Steel joint Study
 
Schematizzazioni 3D confinamento cls
Schematizzazioni 3D confinamento clsSchematizzazioni 3D confinamento cls
Schematizzazioni 3D confinamento cls
 
Progetto e analisi di ospedali come costruzioni strategiche - Bontempi Rieti ...
Progetto e analisi di ospedali come costruzioni strategiche - Bontempi Rieti ...Progetto e analisi di ospedali come costruzioni strategiche - Bontempi Rieti ...
Progetto e analisi di ospedali come costruzioni strategiche - Bontempi Rieti ...
 
Presentazione della validazione di sistemi di continuità per strutture prefab...
Presentazione della validazione di sistemi di continuità per strutture prefab...Presentazione della validazione di sistemi di continuità per strutture prefab...
Presentazione della validazione di sistemi di continuità per strutture prefab...
 
BONTEMPI_IABMAS-ITALY
BONTEMPI_IABMAS-ITALYBONTEMPI_IABMAS-ITALY
BONTEMPI_IABMAS-ITALY
 
Corso RESISTENZA AL FUOCO DELLE STRUTTURE - Ordine degli Ingegneri della Prov...
Corso RESISTENZA AL FUOCO DELLE STRUTTURE - Ordine degli Ingegneri della Prov...Corso RESISTENZA AL FUOCO DELLE STRUTTURE - Ordine degli Ingegneri della Prov...
Corso RESISTENZA AL FUOCO DELLE STRUTTURE - Ordine degli Ingegneri della Prov...
 
PSA - Lezione 28 ottobre 2014 - RISK
PSA - Lezione 28 ottobre 2014 - RISKPSA - Lezione 28 ottobre 2014 - RISK
PSA - Lezione 28 ottobre 2014 - RISK
 
Concetti e metodi del Performance- Based Wind Engineering (PBWE) - Francesco ...
Concetti e metodi del Performance- Based Wind Engineering (PBWE) - Francesco ...Concetti e metodi del Performance- Based Wind Engineering (PBWE) - Francesco ...
Concetti e metodi del Performance- Based Wind Engineering (PBWE) - Francesco ...
 
2015 corso dottorato OTTIMIZZAZIONE STRUTTURALE franco bontempi - parte B
2015 corso dottorato OTTIMIZZAZIONE STRUTTURALE franco bontempi - parte B2015 corso dottorato OTTIMIZZAZIONE STRUTTURALE franco bontempi - parte B
2015 corso dottorato OTTIMIZZAZIONE STRUTTURALE franco bontempi - parte B
 
Multi-physics modelling for the safety assessment of complex structural syste...
Multi-physics modelling for the safety assessment of complex structural syste...Multi-physics modelling for the safety assessment of complex structural syste...
Multi-physics modelling for the safety assessment of complex structural syste...
 

Similar to Structural robustness and sustainability of structures:concepts and case studies.

Corso di dottorato su Ottimizzazione Strutturale: ROBUSTEZZA STRUTTURALE - Gk...
Corso di dottorato su Ottimizzazione Strutturale: ROBUSTEZZA STRUTTURALE - Gk...Corso di dottorato su Ottimizzazione Strutturale: ROBUSTEZZA STRUTTURALE - Gk...
Corso di dottorato su Ottimizzazione Strutturale: ROBUSTEZZA STRUTTURALE - Gk...Franco Bontempi Org Didattica
 
Corso di dottorato su Ottimizzazione Strutturale: ROBUSTEZZA STRUTTURALE - Gk...
Corso di dottorato su Ottimizzazione Strutturale: ROBUSTEZZA STRUTTURALE - Gk...Corso di dottorato su Ottimizzazione Strutturale: ROBUSTEZZA STRUTTURALE - Gk...
Corso di dottorato su Ottimizzazione Strutturale: ROBUSTEZZA STRUTTURALE - Gk...StroNGER2012
 
Corso boothby giugno 2017 bonus track
Corso boothby giugno 2017 bonus trackCorso boothby giugno 2017 bonus track
Corso boothby giugno 2017 bonus trackFranco Bontempi
 
Olmati and Giuliani
Olmati and GiulianiOlmati and Giuliani
Olmati and GiulianiStroNGER2012
 
SEISMIC_DESIGN_ASSESSMENT_AND_RETROFITTI.pdf
SEISMIC_DESIGN_ASSESSMENT_AND_RETROFITTI.pdfSEISMIC_DESIGN_ASSESSMENT_AND_RETROFITTI.pdf
SEISMIC_DESIGN_ASSESSMENT_AND_RETROFITTI.pdfJulio Terrones
 
Resume - Rossella Venezia
Resume - Rossella VeneziaResume - Rossella Venezia
Resume - Rossella VeneziaRossellaVenezia
 
Walled Cities, Open Societies - 2nd meeting of the Regional Network on the Ma...
Walled Cities, Open Societies - 2nd meeting of the Regional Network on the Ma...Walled Cities, Open Societies - 2nd meeting of the Regional Network on the Ma...
Walled Cities, Open Societies - 2nd meeting of the Regional Network on the Ma...UNESCO Venice Office
 
Finite element and analytical approaches for predicting the structural respon...
Finite element and analytical approaches for predicting the structural respon...Finite element and analytical approaches for predicting the structural respon...
Finite element and analytical approaches for predicting the structural respon...Franco Bontempi
 
Basis of the analysis and design for fire-induced collapses in structures
Basis of the analysis and design for fire-induced collapses in structuresBasis of the analysis and design for fire-induced collapses in structures
Basis of the analysis and design for fire-induced collapses in structuresFranco Bontempi
 
Autonomous non-intrusive condition assessment of structures - Kamyab Zandi, C...
Autonomous non-intrusive condition assessment of structures - Kamyab Zandi, C...Autonomous non-intrusive condition assessment of structures - Kamyab Zandi, C...
Autonomous non-intrusive condition assessment of structures - Kamyab Zandi, C...Svenska Betongföreningen
 
Deep Foundations and Underground Infrastructure Europe
Deep Foundations and Underground Infrastructure EuropeDeep Foundations and Underground Infrastructure Europe
Deep Foundations and Underground Infrastructure EuropeYunShi
 
BLAST RESISTANCE OF REINFORCED PRECAST CONCRETE WALLS UNDER UNCERTAINTY
BLAST RESISTANCE OF REINFORCED PRECAST CONCRETE WALLS UNDER UNCERTAINTYBLAST RESISTANCE OF REINFORCED PRECAST CONCRETE WALLS UNDER UNCERTAINTY
BLAST RESISTANCE OF REINFORCED PRECAST CONCRETE WALLS UNDER UNCERTAINTYFranco Bontempi
 
CURRICULUM VITAE OF ISABELLA VASSILOPOULOU
CURRICULUM VITAE OF ISABELLA VASSILOPOULOUCURRICULUM VITAE OF ISABELLA VASSILOPOULOU
CURRICULUM VITAE OF ISABELLA VASSILOPOULOUIsabella Vassilopoulou
 

Similar to Structural robustness and sustainability of structures:concepts and case studies. (20)

Robustness 20 11 2014
Robustness 20 11 2014Robustness 20 11 2014
Robustness 20 11 2014
 
Corso di dottorato su Ottimizzazione Strutturale: ROBUSTEZZA STRUTTURALE - Gk...
Corso di dottorato su Ottimizzazione Strutturale: ROBUSTEZZA STRUTTURALE - Gk...Corso di dottorato su Ottimizzazione Strutturale: ROBUSTEZZA STRUTTURALE - Gk...
Corso di dottorato su Ottimizzazione Strutturale: ROBUSTEZZA STRUTTURALE - Gk...
 
Corso di dottorato su Ottimizzazione Strutturale: ROBUSTEZZA STRUTTURALE - Gk...
Corso di dottorato su Ottimizzazione Strutturale: ROBUSTEZZA STRUTTURALE - Gk...Corso di dottorato su Ottimizzazione Strutturale: ROBUSTEZZA STRUTTURALE - Gk...
Corso di dottorato su Ottimizzazione Strutturale: ROBUSTEZZA STRUTTURALE - Gk...
 
Corso boothby giugno 2017 bonus track
Corso boothby giugno 2017 bonus trackCorso boothby giugno 2017 bonus track
Corso boothby giugno 2017 bonus track
 
STRUCTURAL DESIGN FROM EMPIRICAL TRADITION
STRUCTURAL DESIGN FROM EMPIRICAL TRADITIONSTRUCTURAL DESIGN FROM EMPIRICAL TRADITION
STRUCTURAL DESIGN FROM EMPIRICAL TRADITION
 
Olmati and Giuliani
Olmati and GiulianiOlmati and Giuliani
Olmati and Giuliani
 
Olmati et al.
Olmati et al.Olmati et al.
Olmati et al.
 
StroNGER / march 2014
StroNGER / march 2014StroNGER / march 2014
StroNGER / march 2014
 
SEISMIC_DESIGN_ASSESSMENT_AND_RETROFITTI.pdf
SEISMIC_DESIGN_ASSESSMENT_AND_RETROFITTI.pdfSEISMIC_DESIGN_ASSESSMENT_AND_RETROFITTI.pdf
SEISMIC_DESIGN_ASSESSMENT_AND_RETROFITTI.pdf
 
Resume - Rossella Venezia
Resume - Rossella VeneziaResume - Rossella Venezia
Resume - Rossella Venezia
 
Walled Cities, Open Societies - 2nd meeting of the Regional Network on the Ma...
Walled Cities, Open Societies - 2nd meeting of the Regional Network on the Ma...Walled Cities, Open Societies - 2nd meeting of the Regional Network on the Ma...
Walled Cities, Open Societies - 2nd meeting of the Regional Network on the Ma...
 
Finite element and analytical approaches for predicting the structural respon...
Finite element and analytical approaches for predicting the structural respon...Finite element and analytical approaches for predicting the structural respon...
Finite element and analytical approaches for predicting the structural respon...
 
ICOSSAR PO et al
ICOSSAR PO et alICOSSAR PO et al
ICOSSAR PO et al
 
Basis of the analysis and design for fire-induced collapses in structures
Basis of the analysis and design for fire-induced collapses in structuresBasis of the analysis and design for fire-induced collapses in structures
Basis of the analysis and design for fire-induced collapses in structures
 
Brunesi2015
Brunesi2015Brunesi2015
Brunesi2015
 
Autonomous non-intrusive condition assessment of structures - Kamyab Zandi, C...
Autonomous non-intrusive condition assessment of structures - Kamyab Zandi, C...Autonomous non-intrusive condition assessment of structures - Kamyab Zandi, C...
Autonomous non-intrusive condition assessment of structures - Kamyab Zandi, C...
 
Dcee 2016 program and abstracts
Dcee 2016 program and abstractsDcee 2016 program and abstracts
Dcee 2016 program and abstracts
 
Deep Foundations and Underground Infrastructure Europe
Deep Foundations and Underground Infrastructure EuropeDeep Foundations and Underground Infrastructure Europe
Deep Foundations and Underground Infrastructure Europe
 
BLAST RESISTANCE OF REINFORCED PRECAST CONCRETE WALLS UNDER UNCERTAINTY
BLAST RESISTANCE OF REINFORCED PRECAST CONCRETE WALLS UNDER UNCERTAINTYBLAST RESISTANCE OF REINFORCED PRECAST CONCRETE WALLS UNDER UNCERTAINTY
BLAST RESISTANCE OF REINFORCED PRECAST CONCRETE WALLS UNDER UNCERTAINTY
 
CURRICULUM VITAE OF ISABELLA VASSILOPOULOU
CURRICULUM VITAE OF ISABELLA VASSILOPOULOUCURRICULUM VITAE OF ISABELLA VASSILOPOULOU
CURRICULUM VITAE OF ISABELLA VASSILOPOULOU
 

More from Franco Bontempi Org Didattica

II evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdf
II evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdfII evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdf
II evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdfFranco Bontempi Org Didattica
 
ICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdf
ICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdfICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdf
ICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdfFranco Bontempi Org Didattica
 
Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...
Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...
Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...Franco Bontempi Org Didattica
 
Soft computing based multilevel strategy for bridge integrity monitoring
Soft computing based multilevel strategy for bridge integrity monitoringSoft computing based multilevel strategy for bridge integrity monitoring
Soft computing based multilevel strategy for bridge integrity monitoringFranco Bontempi Org Didattica
 
Systemic approach for the maintenance of complex structural systems
Systemic approach for the maintenance of complex structural systemsSystemic approach for the maintenance of complex structural systems
Systemic approach for the maintenance of complex structural systemsFranco Bontempi Org Didattica
 
The role of softening in the numerical analysis of R.C. framed structures
The role of softening in the numerical analysis of R.C. framed structuresThe role of softening in the numerical analysis of R.C. framed structures
The role of softening in the numerical analysis of R.C. framed structuresFranco Bontempi Org Didattica
 
Reliability of material and geometrically non-linear reinforced and prestress...
Reliability of material and geometrically non-linear reinforced and prestress...Reliability of material and geometrically non-linear reinforced and prestress...
Reliability of material and geometrically non-linear reinforced and prestress...Franco Bontempi Org Didattica
 
Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...
Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...
Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...Franco Bontempi Org Didattica
 
Cellular Automata Approach to Durability Analysis of Concrete Structures in A...
Cellular Automata Approach to Durability Analysis of Concrete Structures in A...Cellular Automata Approach to Durability Analysis of Concrete Structures in A...
Cellular Automata Approach to Durability Analysis of Concrete Structures in A...Franco Bontempi Org Didattica
 
UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...
UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...
UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...Franco Bontempi Org Didattica
 

More from Franco Bontempi Org Didattica (20)

50 anni.Image.Marked.pdf
50 anni.Image.Marked.pdf50 anni.Image.Marked.pdf
50 anni.Image.Marked.pdf
 
4. Comportamento di elementi inflessi.pdf
4. Comportamento di elementi inflessi.pdf4. Comportamento di elementi inflessi.pdf
4. Comportamento di elementi inflessi.pdf
 
Calcolo della precompressione: DOMINI e STRAUS7
Calcolo della precompressione: DOMINI e STRAUS7Calcolo della precompressione: DOMINI e STRAUS7
Calcolo della precompressione: DOMINI e STRAUS7
 
II evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdf
II evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdfII evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdf
II evento didattica 5 aprile 2022 TECNICA DELLE COSTRUZIONI.pdf
 
ICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdf
ICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdfICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdf
ICAR 09_incontro del 5 aprile 2022_secondo annuncio.pdf
 
Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...
Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...
Structural health monitoring of a cable-stayed bridge with Bayesian neural ne...
 
Soft computing based multilevel strategy for bridge integrity monitoring
Soft computing based multilevel strategy for bridge integrity monitoringSoft computing based multilevel strategy for bridge integrity monitoring
Soft computing based multilevel strategy for bridge integrity monitoring
 
Systemic approach for the maintenance of complex structural systems
Systemic approach for the maintenance of complex structural systemsSystemic approach for the maintenance of complex structural systems
Systemic approach for the maintenance of complex structural systems
 
Elenco studenti esaminandi
Elenco studenti esaminandiElenco studenti esaminandi
Elenco studenti esaminandi
 
Costruzione di ponti in cemento armato.
Costruzione di ponti in cemento armato.Costruzione di ponti in cemento armato.
Costruzione di ponti in cemento armato.
 
Costruzione di ponti in acciaio
Costruzione di ponti in acciaioCostruzione di ponti in acciaio
Costruzione di ponti in acciaio
 
Costruzione di Ponti - Ceradini
Costruzione di Ponti - CeradiniCostruzione di Ponti - Ceradini
Costruzione di Ponti - Ceradini
 
The role of softening in the numerical analysis of R.C. framed structures
The role of softening in the numerical analysis of R.C. framed structuresThe role of softening in the numerical analysis of R.C. framed structures
The role of softening in the numerical analysis of R.C. framed structures
 
Reliability of material and geometrically non-linear reinforced and prestress...
Reliability of material and geometrically non-linear reinforced and prestress...Reliability of material and geometrically non-linear reinforced and prestress...
Reliability of material and geometrically non-linear reinforced and prestress...
 
Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...
Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...
Probabilistic Service Life Assessment and Maintenance Planning of Concrete St...
 
Cellular Automata Approach to Durability Analysis of Concrete Structures in A...
Cellular Automata Approach to Durability Analysis of Concrete Structures in A...Cellular Automata Approach to Durability Analysis of Concrete Structures in A...
Cellular Automata Approach to Durability Analysis of Concrete Structures in A...
 
UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...
UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...
UNA FORMULAZIONE DEL DEGRADO DELLA RISPOSTA DI STRUTTURE INTELAIATE IN C.A./C...
 
Esami a distanza. Severgnini. Corriere della sera.
Esami a distanza. Severgnini. Corriere della sera.Esami a distanza. Severgnini. Corriere della sera.
Esami a distanza. Severgnini. Corriere della sera.
 
Tdc prova 2022 01-26
Tdc prova 2022 01-26Tdc prova 2022 01-26
Tdc prova 2022 01-26
 
Risultati
RisultatiRisultati
Risultati
 

Recently uploaded

pipeline in computer architecture design
pipeline in computer architecture  designpipeline in computer architecture  design
pipeline in computer architecture designssuser87fa0c1
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIkoyaldeepu123
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage examplePragyanshuParadkar1
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 

Recently uploaded (20)

pipeline in computer architecture design
pipeline in computer architecture  designpipeline in computer architecture  design
pipeline in computer architecture design
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AI
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage example
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 

Structural robustness and sustainability of structures:concepts and case studies.

  • 1. Dipartimento di Ingegneria Strutturale e Geotecnica Dottorato di Ricerca in Ingegneria delle Strutture “Structural robustness and sustainability of structures: concepts and case studies” Konstantinos Gkoumas, Ph.D., P.E. Corso di Dottorato: introduzio​ne all'ottimi​zzazione strutturale Prof.-Ing. Franco Bontempi Konstantinos Gkoumas Dipartimento di Ingegneria Strutturale e Geotecnica
  • 2. Konstantinos Gkoumas 06/05/2015 Sustainability of tall buildings: structural design and intelligent technologies Page 2 Personal profile Appointments 2011-’14 Research Fellow (PostDoc), Department of Structural and Geotechnical Engineering - Sapienza University of Rome. Research on dependability and energy harvesting for structures and infrastructures. 2009-’10 Postdoctoral Fellow (German Academic Exchange Service), Institut für Numerische und Angewandte Mathematik, Universität Göttingen, Germany. 2005-’08 Professional Engineer at Co.Re. Ingegneria Srl., Rome. 2004-’07 PhD Student, Department of Hydraulics, Transportation and Roads - Sapienza University of Rome. 1996-‘03 Laurea in Civil Engineering, Transportation Major (5-year degree, equivalent with MEng + MSc) - Sapienza University of Rome
  • 3. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE 1st part structural robustness
  • 4. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Word cloud
  • 5. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Black Swan Vulnerability Cause Damage Index Robustness Collapse resistance Progressive collapse Photo Credit: Wikipedia Commons. Member consequence factor • Significant collapse cases • LPHC events and Black Swans • Structural robustness in qualitative terms • Structural robustness in civil engineering design • Collapse types • Structural robustness and progressive collapse definitions • Measures against progressive collapse • Quantification of robustness • Robustness and optimization • Member consequence factor • Assessment of simple structures • Assessment of complex structures • What now/next? • References
  • 6. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Black Swan Vulnerability Cause Damage Index • Significant collapse cases • LPHC events and Black Swans • Structural robustness in qualitative terms • Structural robustness in civil engineering design • Collapse types • Structural robustness and progressive collapse definitions • Measures against progressive collapse • Quantification of robustness • Robustness and optimization • Member consequence factor • Assessment of simple structures • Assessment of complex structures • What now/next? • References Robustness Collapse resistance Progressive collapse Photo Credit: Wikipedia Commons. Member consequence factor
  • 7. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Ronan Point Tower Block – May 16, 1968 Description: - apartments building; - built between 1966 and 1968; - 64 m tall with 22 story; - walls, floors, and staircases was precast concrete; - each floor was supported directly by the walls in the lower stories, (bearing walls system). The event: - May 16, 1968 a gas explosion blew out an outer panel of the 18th floor, - the loss of the bearing wall causes the progressive collapse of the upper floors, - the impact of the upper floors’ debris caused the progressive collapse of the lower floors. Cause Damage Pr. Collapse
  • 8. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Description: - apartments building; - precast concrete wall and floor components was the structural bearing system; - ductile detailing and effective ties between the precast components. Cause Damage Pr. Collapse The event: - June 25, 1996 9 tons of TNTeq detonated in front of the building; - the exterior wall was entirely destroyed; - collapse did not progress beyond areas of first damage. Khobar Towers Bombing – June 25, 1996
  • 9. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Description: - office facility for the Deutsche Bank in Manhattan; - constructed in the early ‘70s in steel-framed structure moment connected, 130 m tall, 40 story and 2 subterranean levels; The event: - On September 11, 2011, the WTC towers debris impact on a building’s façade, - heavy damage between the 9th and the 23rd floor, the column was lost from the 9th and the 18th floor; - the framing system was able to support and redistribute the loads. Deutsche Bank Building – September 11, 2001 Cause Damage Pr. Collapse
  • 10. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Probability of progressive collapse from an abnormal event P(F) = P(D|H) P(F|DH)P(H) x x damage is caused in the structure damage spreads in the structure occurrence of critical event occurrence of broad or global collapse STRUCTURAL INTEGRITY (ISO/FDS 2394) COLLAPSE RESISTANCE (Starossek&Wolff 2005) VULNERABILITY ROBUSTNESSEXPOSURE VULNERABILITY ROBUSTNESSEXPOSURE Faber (2006) STRUCTURALNON STRUCTURAL MEASURES HAZARD References: Ellingwood, B.R. and Dusenberry, D.O. (2005), “Building design for abnormal loads and progressive collapse”, Comput-Aided Civ. Inf., 20(3), 194-205.
  • 11. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Black Swan Vulnerability Cause Damage Index • Significant collapse cases • LPHC events and Black Swans • Structural robustness in qualitative terms • Structural robustness in civil engineering design • Collapse types • Structural robustness and progressive collapse definitions • Measures against progressive collapse • Quantification of robustness • Robustness and optimization • Member consequence factor • Assessment of simple structures • Assessment of complex structures • What now/next? • References Robustness Collapse resistance Progressive collapse Photo Credit: Wikipedia Commons. Member consequence factor
  • 12. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Reference: Bontempi, F. (2005) Frameworks for structural analysis, In: Innovation in Civil and Structural Engineering Topping, BHV ed., pp. 1-24 HPLC High Probability – Low Consequences LPHC Low Probability – High Consequences Complexity Non linear issues and interaction mechanisms Designapproach: StochasticDeterministic QUALITATIVE RISK ANALYSIS PROBABILISTIC RISK ANALYSIS PRAGMATIC ANALYSIS OF RISK SCENARIOS Secondary design Primary design Low Probability – High Consequences Events
  • 13. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE References: Taleb, Nassim Nicholas (April 2007). The Black Swan: The Impact of the Highly Improbable (1st ed.). London: Penguin. p. 400. ISBN 1-84614045-5. A Black Swan is an event with the following three attributes. 1. First, it is an outlier, as it lies outside the realm of regular expectations, because nothing in the past can convincingly point to its possibility. Rarity -The event is a surprise (to the observer). 2. Second, it carries an extreme 'impact'. Extreme “impact” - the event has a major effect. 3. Third, in spite of its outlier status, human nature makes us concoct explanations for its occurrence after the fact, making it explainable and predictable. Retrospective (though not prospective) predictability - After the first recorded instance of the event, it is rationalized by hindsight, as if it could have been expected; that is, the relevant data were available but unaccounted for in risk mitigation programs. The same is true for the personal perception by individuals. Black Swans
  • 14. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE References: Taleb, Nassim Nicholas (April 2007). The Black Swan: The Impact of the Highly Improbable (1st ed.). London: Penguin. p. 400. ISBN 1-84614045-5. Strengths of Black Swan Theory – Benefits • Increased awareness of uncertainty in decision making • New way to deal with risks and uncertainty Limitations of Black Swan Theory – Disadvantages • Black Swan is rather extreme • Theory is not yet mainstream Assumptions of Black Swan Theory • Black Swans cannot be predicted because they are rare • Overestimation of knowledge/Underestimation of randomness and uncertainty • Overestimation of skills/underestimation of luck in life Black Swans
  • 15. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Black Swan Vulnerability Cause Damage Index • Significant collapse cases • LPHC events and Black Swans • Structural robustness in qualitative terms • Structural robustness in civil engineering design • Collapse types • Structural robustness and progressive collapse definitions • Measures against progressive collapse • Quantification of robustness • Robustness and optimization • Member consequence factor • Assessment of simple structures • Assessment of complex structures • What now/next? • References Robustness Collapse resistance Progressive collapse Photo Credit: Wikipedia Commons. Member consequence factor
  • 16. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE QUALITY DAMAGE or ERROR REQUIRED PERFORMANCE NOMINAL PERFORMANCE NOMINAL SITUATION Structural Robustness
  • 17. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE • Capacity of a construction to exhibit regular decrease of its structural quality as a consequence of negative causes. • It implies: a) some smoothness of the decrease of structural performance due to negative events (intensive feature); b) some limited spatial spread of the rupture (extensive feature). Structural Robustness
  • 18. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Qualitative definitions of structural robustness [EN 1991-1-7: 2006 ]: ability of a structure to withstand actions due to fires, explosions, impacts or consequences of human errors, without suffering damages disproportionate to the triggering causes [SEI 2007, Beton Kalender 2008]: insensitivity of the structure to local failure structure B d P s STRUCTURE B: P s ROBUSTNESS CURVES P (performance) structure A STRUCTURE A damaged integer DP damaged more performant, less resistant integer (damage level) DPDP more performant, less robust less performant, more robust Structural Robustness A B
  • 19. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Black Swan Vulnerability Cause Damage Index • Significant collapse cases • LPHC events and Black Swans • Structural robustness in qualitative terms • Structural robustness in civil engineering design • Collapse types • Structural robustness and progressive collapse definitions • Measures against progressive collapse • Quantification of robustness • Robustness and optimization • Member consequence factor • Assessment of simple structures • Assessment of complex structures • What now/next? • References Robustness Collapse resistance Progressive collapse Photo Credit: Wikipedia Commons. Member consequence factor
  • 20. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE CommonULS&SLS VerificationFormat Structural Robustness Assessment 1st level: Material Point 2nd level: Element Section 3rd level: Structural Element 4th level: Structural System Structural robustness in design
  • 21. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE STRUCTURAL DESIGN PRIMARY SECONDARY TERTIARY LOADS DEAD X LIVE X SNOW X EARTHQUAKE X FIRE X X EXPLOSIONS X X “BLACK SWAN” X Member-based structural design Consequence-based structural design Black Swan event: - unpredictable, - large impact on community, - easy to predict after its occurrence. References: Nafday, AM. (2011) Consequence-based structural design approach for black swan events. Structural Safety, 33(1): 108-114. Structural robustness in design
  • 22. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Uncertainty in the likelihood that the harmful consequences of a particular event will be realized Uncertainty in the consequences related to the specific event Primary design Secondary design Tertiary design Structural robustness in design
  • 23. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Black Swan Vulnerability Cause Damage Index • Significant collapse cases • LPHC events and Black Swans • Structural robustness in qualitative terms • Structural robustness in civil engineering design • Collapse types • Structural robustness and progressive collapse definitions • Measures against progressive collapse • Quantification of robustness • Robustness and optimization • Member consequence factor • Assessment of simple structures • Assessment of complex structures • What now/next? • References Robustness Collapse resistance Progressive collapse Photo Credit: Wikipedia Commons. Member consequence factor
  • 24. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE STRUCTURE & LOADS Collapse Mechanism NO SWAY “IMPLOSION” OF THE STRUCTURE “EXPLOSION” OF THE STRUCTURE is a process in which objects are destroyed by collapsing on themselves is a process NOT CONFINED SWAY Bad VS Good collapse design requirements for ductile performance
  • 25. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Initial load-bearing element failure that triggers the rigid fall of a part of the structure onto another and leads to a sequential impacts on the rest of the structure, that collapses on itself. Characteristic feature is the force redistribution into alternative paths, impulsive loading due to sudden element failure and force concentration in elements to fail next. Zipper Domino Section Instability Mixed Pancake Initial cross-section cut and stress concentration that cause the rupture of further cross-sectional parts (fast fracture) and failure progression throughout the entire section. Initial element rigid overturning and falling over another element, that, by means of transformation of potential into kinetic energy, trigger the overturning of the following element. The destabilization of some load-carrying elements in compression due to an initial failure of stabilizing elements can trigger a failure progression throughout the structure. Some collapses are less amenable to generalization because the relative importance of the contributing basic categories of collapse can vary and combine in progression of failures. - DOMINO + PANCAKE (e.g. A.P.Murrah Building, Building during Izmit Earquake) - ZIPPER + INSTABILITY (e.g. cable-stayed bridges) Reference: Betoncalendar, 2008 (adapted from “Structural integrity: robustness assessment and progressive collapse susceptibility”, Luisa Giuliani, PhD Thesis, Sapienza University of Rome, Dipartimento di Ingegneria Strutturale e Geotecnica) Collapse types
  • 26. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Initial load-bearing element failure that triggers the rigid fall of a part of the structure onto another and leads to a sequential impacts on the rest of the structure, that collapses on itself. Characteristic feature is the force redistribution into alternative paths, impulsive loading due to sudden element failure and force concentration in elements to fail next. Zipper Domino Section Instability Mixed Pancake Initial cross-section cut and stress concentration that cause the rupture of further cross-sectional parts (fast fracture) and failure progression throughout the entire section. Initial element rigid overturning and falling over another element, that, by means of transformation of potential into kinetic energy, trigger the overturning of the following element. The destabilization of some load-carrying elements in compression due to an initial failure of stabilizing elements can trigger a failure progression throughout the structure. Some collapses are less amenable to generalization because the relative importance of the contributing basic categories of collapse can vary and combine in progression of failures. - DOMINO + PANCAKE (e.g. A.P.Murrah Building, Building during Izmit Earquake) - ZIPPER + INSTABILITY (e.g. cable-stayed bridges) Reference: Betoncalendar, 2008 (adapted from “Structural integrity: robustness assessment and progressive collapse susceptibility”, Luisa Giuliani, PhD Thesis, Sapienza University of Rome, Dipartimento di Ingegneria Strutturale e Geotecnica) Collapse types Islamabad Earthquake 2005 Münsterland, 2005 Viaduct after earthquake Izmit Earthquake 1999 Tanker S.S. Schenectady, 1941
  • 27. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE The Boeing B-17 Flying Fortress collided with another aircraft during World War II and, although sustaining large amount of structural damage, landed safely, due to the high redundancy of the fuselage connections. Design Strategy #1: Continuity (robust behavior-redundancy)
  • 28. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE On July 1945 a B-25 bomber crashed into the Empire State Building, The impact of the plane created a 5.5x6 m hole in the side of the tower. This crash caused extensive damage to the masonry exterior and the interior steel structure of the building. The 278 m building was rocked by the impact but resist the impact in consequence of the intrinsic redundancy of its framed system. Plane crash on the Empire State Building, 1945 Design Strategy #1: Continuity (robust behavior-redundancy)
  • 29. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Design Strategy #2: Segmentation (Compartmentalization) A service-induced damage led to explosive decompression and loss of large portion of fuselage skin when small fatigue crack suddenly linked together. The subsequent fracture was eventually arrested by fuselage frame structure and the craft landed safely. Aloha Boeing 737, April 1988 (compartmentalization by strengthening)
  • 30. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Design Strategy #2: Segmentation (Compartmentalization) The partial collapse, started in the roof and due design and execution errors, stoped at the two joints which separated the collapsing section from the adjacent structures. A higher continuity could have unlikely sustained the forces during collapse, since the construction deficiencies affected also adjacent sections.
  • 31. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Black Swan Vulnerability Cause Damage Index • Significant collapse cases • LPHC events and Black Swans • Structural robustness in qualitative terms • Structural robustness in civil engineering design • Collapse types • Structural robustness and progressive collapse definitions • Measures against progressive collapse • Quantification of robustness • Robustness and optimization • Member consequence factor • Assessment of simple structures • Assessment of complex structures • What now/next? • References Robustness Collapse resistance Progressive collapse Photo Credit: Wikipedia Commons. Member consequence factor
  • 32. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE References: (EN 1991-1-7 2006): "Eurocode 1 – Actions on structures, Part 1-7: General actions – accidental actions." Comité European de Normalization (CEN). (Bontempi F, Giuliani L, Gkoumas K, 2007): "Handling the exceptions: robustness assessment of a complex structural system.“, Invited Lecture, Structural Engineering, Mechanics and Computation (SEMC) 3, 1747-1752. (Starossek U, 2009): “Progressive collapse of structures.” London: Thomas Telford Publishing, 2009. Definitions: 1- "The ability of a structure to withstand events like fire, explosions, impact or the consequences of human error without being damaged to an extent disproportionate to the original cause." (EN 1991-1-7 2006) 2- "The robustness of a structure, intended as its ability not to suffer disproportionate damages as a result of limited initial failure, is an intrinsic requirement, inherent to the structural system organization." (Bontempi F, Giuliani L, Gkoumas K, 2007) 3- “Robustness is defined as insensitivity to local failure." (Starossek U, 2009) Structural Robustness
  • 33. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE References: (ASCE 7-05 2005): "Minimum design loads for buildings and other structures." American Society of Civil Engineers (ASCE). (GSA 2003): "Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects." General Services Administration (GSA). (UFC 4-010-01 2003): "DoD minimum antiterrorism standards for buildings." Department of Defense (DoD). Progressive Collapse Definitions: 1-"Progressive collapse is defined as the spread of an initial local failure from element to element resulting, eventually, in the collapse of an entire structure or a disproportionate large part of it." (ASCE 7-05 2005) 2- "A progressive collapse is a situation where local failure of a primary structural component leads to the collapse of adjoining members which, in turn, leads to additional collapse. Hence, the total collapse is disproportionate to the original cause." (GSA 2003) 3-"Progressive collapse: a chain reaction failure of building members to an extent disproportionate to the original localized damage." (UFC 4-010-01 2003)
  • 34. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE References: Arup (2011), Review of international research on structural robustness and disproportionate collapse, London, Department for Communities and Local Government. Starossek, U. and Haberland, M. (2010), “Disproportionate Collapse: Terminology and Procedures”, J. Perf. Constr. Fac., 24(6), 519-528. Observations: − A progressive collapse is one which develops in a progressive manner akin to the collapse of a row of dominos. − A disproportionate collapse is one which is judged (by some measure defined by the observer) to be disproportionate to the initial cause. This is merely a judgement made on observations of the consequences of the damage which results from the initiating events. − A collapse may be progressive in nature but not necessarily disproportionate in its extents, for example if arrested after it progresses through a number of structural bays. Vice versa, a collapse may be disproportionate but not necessarily progressive if, for example, the collapse is limited in its extents to a single structural bay but the structural bays are large. − The terms of disproportionate collapse and progressive collapse are often used interchangeably because disproportionate collapse often occurs in a progressive manner and progressive collapse can be disproportionate. Progressive Collapse VS Disproportionate Collapse
  • 35. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Robustness and collapse resistance in a dependability framework Sgambi, L., Gkoumas, K. and Bontempi, F. (2012), “Genetic algorithms for the dependability assurance in the design of a long- span suspension bridge”, Comput-Aided Civ. Inf., 27(9), 655-675.
  • 36. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Black Swan Vulnerability Cause Damage Index • Significant collapse cases • LPHC events and Black Swans • Structural robustness in qualitative terms • Structural robustness in civil engineering design • Collapse types • Structural robustness and progressive collapse definitions • Measures against progressive collapse • Quantification of robustness • Robustness and optimization • Member consequence factor • Assessment of simple structures • Assessment of complex structures • What now/next? • References Robustness Collapse resistance Progressive collapse Photo Credit: Wikipedia Commons. Member consequence factor
  • 37. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE The currently available design strategies and methods to prevent disproportionate collapse are as follows: − Prevent local failure of key elements (direct design) − Specific local resistance − Non-structural protective measures − Presume local failure (direct design) − Alternative load paths − Isolation by segmentation − Prescriptive design rules (indirect design) Reference: Starossek, U. 2008. Collapse resistance and robustness of bridges. IABMAS’08: 4th International Conference on Bridge Maintenance, Safety, and Management Seoul, Korea, July 13-17, 2008 Measures against disproportionate collapse
  • 38. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Reference: Giuliani, L., 2012. Structural safety in case of extreme actions. International Journal of Lifecycle Performance Engineering IJLCPE Special Issue on: "Performance and Robustness of Complex Structural Systems", Guest Editor Franco Bontempi, ISSN (Online): 2043-8656 - ISSN (Print): 2043-8648. Design strategies against progressive collapse
  • 39. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Black Swan Vulnerability Cause Damage Index • Significant collapse cases • LPHC events and Black Swans • Structural robustness in qualitative terms • Structural robustness in civil engineering design • Collapse types • Structural robustness and progressive collapse definitions • Measures against progressive collapse • Quantification of robustness • Robustness and optimization • Member consequence factor • Assessment of simple structures • Assessment of complex structures • What now/next? • References Robustness Collapse resistance Progressive collapse Photo Credit: Wikipedia Commons. Member consequence factor
  • 40. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE RISK-BASED [Faber, 2005] R I inddir dir rob R R   direct risk indirect riskDAMAGE-BASED    n 1i ' i i )K(tr )K(tr .Deg.Stiff ithelement stiffness matrix (integer state) damaged elements ithelement stiffness matrix (damaged state) [Yan&Chang, 2006] [Biondini & Frangopol, 2008] 1 0      energy between intact and damaged system (backward pseudo-loads)  energy between intact and damaged system (forward pseudo-loads)  Indirect Risk  Direct Risk  Indirect Risk  Direct Risk Reference: Olmati, P., Brando, F., Gkoumas, K. “Robustness assessment of a Steel Truss Bridge”, ASCE/SEI Structures Congress, Pittsburgh, Pennsylvania, May 2-4, 2013. B A Withstand actions, events Withstand damages Structural Robustness assessment TOPOLOGY-BASEDOther:
  • 41. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE [Baker et al. 2008] R I inddir dir rob R R   direct risk indirect risk Reference: Baker J.W., Schubert M., Faber M.H., (2008). On the Assessment of Robustness, Journal of Structural Safety, Volume 30, Issue 3, pp. 253-267, DOI:10.1016/j.strusafe.2006.11.004 “A robust system is considered to be one where indirect risks do not contribute significantly to the total system risk” Rdir˃˃Rind Rdir: related to initial damage Rind: related to additional damage EXBD: Exposure before damage D : Damage D : No Damage F : Probability of system failure Cdir : Direct consequences Cind: Indirect consequences Risk Based Structural Robustness assessment
  • 42. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE 𝑅 𝑑 𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑 − 𝐸 𝑑 𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑 ≥ 0 member-based design 𝑅 − 𝐸 ≥ 0limit state design Resistance (probabilistic) Solicitation (probabilistic) Resistance (design values) Solicitation (design values) (1 − 𝐶𝑓 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 )𝑅 𝑑 𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑 −𝐸 𝑑 𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑 ≥ 0 Member consequence factor based design 0 ≤ 𝐶 𝑓 ≤ 1 • Cf quantifies the influence that a loss of a structural element has on the load carrying capacity. • Cf provides to the single structural member an additional load carrying capacity, in function of the nominal design (not extreme) loads that can be used for contrasting unexpected and extreme loads. • Essentially, if Cf tends to 1, the member is more likely to be important to the structural system; instead if Cf tends to 0, the member is more likely to be unimportant to the structural system. Member consequence factor and robustness assessment 0EγγRγγ kEMEk 1 Rd 1 MR   0E)R(*)C1( kEdMEk 1 Rd 1 MRf  
  • 43. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE • The structure is subjected to a set of damage scenarios and the consequence of the damages is evaluated by the member consequence factor (𝐶𝑓 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 ) that for convenience can be easily expressed in percentage. • For damage scenario is intended the failure of one or more structural elements. • Robustness can be expressed as the complement to 100 of 𝐶𝑓 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 , intended as the effective coefficient that affects directly the resistance. • 𝐶𝑓 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 is evaluated by the maximum percentage difference of the structural stiffness matrix eigenvalues of the damaged and undamaged configurations of the structure. 𝐶𝑓 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = 𝑚𝑎𝑥 𝜆𝑖 𝑢𝑛 − 𝜆𝑖 𝑑𝑎𝑚 𝜆𝑖 𝑢𝑛 100 𝑖=1−𝑁 where, 𝜆𝑖 𝑢𝑛 and 𝜆𝑖 𝑑𝑎𝑚 are respectively the i-th eigenvalue of the structural stiffness matrix in the undamaged and damaged configuration, and N is the total number of the eigenvalues. Member consequence factor and robustness assessment
  • 44. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE • The corresponding robustness index (𝑅 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 ) is therefore defined as: 𝑅 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜=1 - 𝐶𝑓 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 • Values of Cf close to 100% mean that the failure of the structural member most likely causes a global structural collapse. • Low values of Cf do not necessarily mean that the structure survives after the failure of the structural member: this is something that must be established by additional analysis that considers the loss of the specific structural member. • A value of Cf close to 0% means that the structure has a good structural robustness. The proposed method for computing the consequence factors, for different reasons, should not be used for: 1. Structures that have high concentrated masses (especially non-structural masses) in a particular zone; and, 2. Structures that have cable structural system (e.g., tensile structures, suspension bridges). Member consequence factor and robustness assessment
  • 45. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Black Swan Vulnerability Cause Damage Index • Significant collapse cases • LPHC events and Black Swans • Structural robustness in qualitative terms • Structural robustness in civil engineering design • Collapse types • Structural robustness and progressive collapse definitions • Measures against progressive collapse • Quantification of robustness • Robustness and optimization • Member consequence factor • Assessment of simple structures • Assessment of complex structures • What now/next? • References Robustness Collapse resistance Progressive collapse Photo Credit: Wikipedia Commons. Member consequence factor
  • 46. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Cost of robustness measures ≤ Reduction of failure consequences • The objective function for optimization may be very complex and depend on the type of the structural system, robustness measures, characteristics of failure consequences and probabilities of occurrence and intensities of various hazards. • If the total cost of robustness measures exceeds the reduction in failure consequences, then the system may be considered as robust but uneconomic. In such a situation, probabilistic methods of risk assessment may be effectively used Reference: COST Action TU0601 Robustness of Structures STRUCTURAL ROBUSTNESS DESIGN FOR PRACTISING ENGINEERS. EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY, Editor T. D. Gerard Canisius. Robustness and Optimization
  • 47. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Reference: Casciati, S. and Faravelli, L. (2008) Building a Robustness Index. Robustness of Structures COST Action TU0601, 1st Workshop, February 4-5, ETH Zurich, Switzerland. Robustness and Optimization Example: Hierarchy of the failure modes (“weak beam/strong column”) ...develop the less catastrophic failure modes first. ...ranking the failure modes in terms of a hierarchy in such a way that the less harmful ones are generated at lower loading levels Objective function: Robustness term: Pfi: probability of the i-th failure mode m: number of failure modes A robust structure requires the plastic moment of the column, MPc, being larger than the one of the beam, MPb; that is, Z = MPc– MPb≥ 0 µc, σc, µb, σb: means and the standard deviations of the plastic moments of the columns and of the beam, respectively. To ensure robustness, the index I needs to be kept positive. The objective is, therefore, to minimize FI=-I.
  • 48. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Black Swan Vulnerability Cause Damage Index • Significant collapse cases • LPHC events and Black Swans • Structural robustness in qualitative terms • Structural robustness in civil engineering design • Collapse types • Structural robustness and progressive collapse definitions • Measures against progressive collapse • Quantification of robustness • Robustness and optimization • Member consequence factor • Assessment of simple structures • Assessment of complex structures • What now/next? • References Robustness Collapse resistance Progressive collapse Photo Credit: Wikipedia Commons. Member consequence factor
  • 49. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Stiffness matrix Kun λi un Eigenvalues Kdam λi dam Consequence factor Robustness indexRscenario= 100 - Cf scenario N1i un i dam i un iscenario f 100 )( maxC           Structural Robustness assessment - overview
  • 50. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE ka kb x y Kun = 10 0 0 10 Cf1 1 = 0% Cf2 1 = 30% R1 = 70% R1 = 100 − Cf 1N: total eigenvalues number i: single eigenvalue number a and b: elements a b N1i un i dam i un iscenario f 100 )( maxC           Kdam = 10 0 0 7 Scenario 1 Single damage – analytic calculation
  • 51. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE • Single bay frame structure with a diagonal beam brace, composed in total of 5 members • IPE 300, S235 steel, one meter length, pinned boundary conditions. The evaluated scenarios consist in the removal of elements 1, 2 and 3 sequentially, so the damage is cumulative: this means that the each scenario includes the damage from the previous one. Cumulative damage – numerical assessment DSj = Σi=(1-j) di
  • 52. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Cumulative damage – numerical assessment • star-shaped structure – 8 members - pipe cross section - 20 centimeters outside diameter - 20 millimeters thickness - S235 steel. • members 1, 3, 5, and 7 are 0.5 meters long and members 2, 4, 6, and 8 are 0.7 meters long. All the members are connected to each other by a fixed type connection. Also the boundary conditions are of the fixed type and the structure is plane. DSj = Σi=(1-j) di
  • 53. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Black Swan Vulnerability Cause Damage Index • Significant collapse cases • LPHC events and Black Swans • Structural robustness in qualitative terms • Structural robustness in civil engineering design • Collapse types • Structural robustness and progressive collapse definitions • Measures against progressive collapse • Quantification of robustness • Robustness and optimization • Member consequence factor • Assessment of simple structures • Assessment of complex structures • What now/next? • References Robustness Collapse resistance Progressive collapse Photo Credit: Wikipedia Commons. Member consequence factor
  • 54. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE I-35 West Bridge, Minneapolis, MN COLLAPSE OF THE BRIDGE ON I 35-W MINNESOTA, AUGUST 1ST 2007 The I-35W Mississippi River Bridge (officially known as Bridge 9340) was an eight-lane, deck truss bridge, designed by the engineering consulting firm of Sverdrup & Parcel and Associates. The design plans were approved by the Minnesota Department of Transportation (Mn DOT) on 1965 and opened to traffic on 1967. http://www.dot.state.mn.us/i35wbridge/ntsb/finalreport.pdf
  • 55. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE I-35 West Bridge, Minneapolis, MN http://www.dot.state.mn.us/i35wbridge/ntsb/finalreport.pdf • The deck truss comprised in two parallel Warren trusses (east and west) with verticals. • The east and west main trusses were spaced 22 m and were connected by 27 transverse welded floor trusses spaced 11.6 m on centers and by two floor beams at the north and south ends. • Steel gusset plates were used on all the 112 connections of the two main trusses. All nodes had two gusset plates on either side of the connection.
  • 56. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE I-35 West Bridge, Minneapolis, MN After this tragedy, the Federal Highway Administration (FHWA) focused its attention on all the 465 steel deck truss bridges present in the National Bridge Inventory [NTSB, 2008]. “The term “fracture critical” indicates that if one main component of a bridge fails, the entire structure could collapse. Therefore, a fracture critical bridge is a steel structure that is designed with little or no load path redundancy. Load path redundancy is a characteristic of the design that allows the bridge to redistribute load to other structural members on the bridge if any one member loses capacity. “
  • 57. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE I-35 West Bridge, Minneapolis, MN National Transportation Safety Board, NTSB, 2008 “Collapse of I-35 W Highway Bridge, Minneapolis, Minnesota, August 1, 2007” Accident Report, NTSB/HAR 08/03 PB 2008- 916213, Washington D.C. 20594..
  • 58. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE I-35 West Bridge, Minneapolis, MN The primary cause of the collapse was the under-sized gusset plates, with a thickness of 0.5 inches (13 mm); U10-W [*] National Transportation Safety Board, “Collapse of I-35 W Highway Bridge, Minneapolis, Minnesota, August 1, 2007” Accident Report, NTSB/HAR 08/03 PB 2008-916213, Washington D.C. 20594. 2008.
  • 59. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE I-35 West Bridge, Minneapolis, MN FINITE ELEMENT MODEL FOR OUTSIDE WEST GUSSET PLATE AT U10W [*] National Transportation Safety Board, “Collapse of I-35 W Highway Bridge, Minneapolis, Minnesota, August 1, 2007” Accident Report, NTSB/HAR 08/03 PB 2008-916213, Washington D.C. 20594. 2008. Stress contours for outside (west) gusset plate at U10W at time of bridge opening in 1967 Yield stress of 51.5 ksi South North
  • 60. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE I-35 West Bridge, Minneapolis, MN 2 inches (51 mm) of concrete were added to the road surface over the years, increasing the dead load by 20%; [*] National Transportation Safety Board, “Collapse of I-35 W Highway Bridge, Minneapolis, Minnesota, August 1, 2007” Accident Report, NTSB/HAR 08/03 PB 2008-916213, Washington D.C. 20594. 2008. 1977, Renovation: Increased Deck Thickness 1998, Renovation: Median Barrier, Traffic Railings, and Anti-Icing System 2007, Repair and Renovation: Repaving
  • 61. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE I-35 West Bridge, Minneapolis, MN FINITE ELEMENT MODEL FOR OUTSIDE WEST GUSSET PLATE AT U10W [*] National Transportation Safety Board, “Collapse of I-35 W Highway Bridge, Minneapolis, Minnesota, August 1, 2007” Accident Report, NTSB/HAR 08/03 PB 2008-916213, Washington D.C. 20594. 2008. Stress contours for outside (west) gusset plate at U10W after 1977 and 1998 renovation projects Yield stress of 51.5 ksi South North
  • 62. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE I-35 West Bridge, Minneapolis, MN The extraordinary weight of construction equipment and material resting on the bridge just above its weakest point at the time of the collapse [*] National Transportation Safety Board, “Collapse of I-35 W Highway Bridge, Minneapolis, Minnesota, August 1, 2007” Accident Report, NTSB/HAR 08/03 PB 2008-916213, Washington D.C. 20594. 2008. [*] U10-WNorth South 184 380 lbf (820 kN) of gravel 198 820 lbf (884 kN) of sand 195 535 lbf (870 kN) of parked construction vehicles and personnel
  • 63. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE I-35 West Bridge, Minneapolis, MN The extraordinary weight of construction equipment and material resting on the bridge just above its weakest point at the time of the collapse [*] National Transportation Safety Board, “Collapse of I-35 W Highway Bridge, Minneapolis, Minnesota, August 1, 2007” Accident Report, NTSB/HAR 08/03 PB 2008-916213, Washington D.C. 20594. 2008. [*] U10-WNorth South Pier 6 184 380 lbf (820 kN) of gravel 198 820 lbf (884 kN) of sand 195 535 lbf (870 kN) of parked construction vehicles and personnel
  • 64. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE I-35 West Bridge, Minneapolis, MN [*] National Transportation Safety Board, “Collapse of I-35 W Highway Bridge, Minneapolis, Minnesota, August 1, 2007” Accident Report, NTSB/HAR 08/03 PB 2008-916213, Washington D.C. 20594. 2008. Stress contours for outside (west) gusset plate at U10W on August 1, 2007 Yield stress of 51.5 ksi South North
  • 65. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE I-35 West Bridge, Minneapolis, MN FINITE ELEMENT MODEL FOR OUTSIDE WEST GUSSET PLATE AT U10W Stress contours for outside (west) gusset plate at U10W on August 1, 2007 Yield stress of 51.5 ksi
  • 81. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE I-35 West Bridge, Minneapolis, MN INSPECTION REPORT FOR I-35W BRIDGE, 1983-2007
  • 82. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE GUSSET PLATE??? I-35 West Bridge, Minneapolis, MN INSPECTION REPORT FOR I-35W BRIDGE, 1983-2007
  • 83. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE I-35 West Bridge, Minneapolis, MN BOWED GUSSET PLATE AT NODE U10
  • 84. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE I-35 West Bridge, Minneapolis, MN INSPECTION REPORT FOR I-35W BRIDGE, 1983-2007
  • 85. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE I-35 West Bridge, Minneapolis, MN RESISTANCE OF GUSSET PLATES: GUSSET PLATES IN TENSION GUSSET PLATES SUBJECT TO SHEAR GUSSET PLATES IN COMPRESSION RESISTANCE OF FASTENERS SHEAR RESISTANCE OF FASTENERS PLATE BEARING RESISTANCE AT FASTENERS http://bridges.transportation.org/Documents/FHWA-IF-09 014LoadRatingGuidanceandExamplesforGussetsFebruary2009rev3.pdf FHWA GUIDELINES, (2009)
  • 86. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE I-35 West Bridge, Collapse Initiation Pier 7 Pier 6 Failure Initiation North of Pier 6 N U10-E U10-W L9 L11
  • 87. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Pier 7 Pier 6 N U10-E U10-W L9 L11 L11 L9 U10 I-35 West Bridge, Collapse Initiation Failure Initiation North of Pier 6
  • 88. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE I-35 West Bridge, Collapse Initiation Weight Temp. & Const. Weight Temp. & Const. Construction loads increase forces by 3% Forces due to weight of bridge and traffic Additional forces due to temperature (corroded bearings) and construction load L11 L9 L11 L9 L11 L9 U10 • Additional forces due to temperature (corroded bearings) and construction load Failure Initiation North of Pier 6 • Forces due to weight of bridge and traffic
  • 89. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE I-35 West Bridge, Collapse Initiation Gusset hinges, tears at top and buckles at bottom L11 L9 L11 L9 L11 L9 U10 Lower chord fails in buckling • Additional forces due to temperature (corroded bearings) and construction load • Lower chord fails in buckling • Gusset hinges, tears at top and buckles at bottom Failure Initiation North of Pier 6 • Forces due to weight of bridge and traffic
  • 90. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE I-35 West Bridge, Collapse Initiation BUCKLED TORN Rivet hole elongation U L11 L9 U10 • Additional forces due to temperature (corroded bearings) and construction load • Lower chord fails in buckling • Gusset hinges, tears at top and buckles at bottom Failure Initiation North of Pier 6 • Forces due to weight of bridge and traffic • Rivet hole elongation
  • 91. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE I-35 W bridge I-35 West Bridge, Minneapolis, MN NTSB 2007
  • 92. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Undamaged Damaged scenario I-35 West Bridge, Minneapolis, MN – damage scenarios
  • 93. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE I-35 West Bridge, Minneapolis, MN – damage scenarios 3D 2D
  • 94. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE d1 d2d3 d4 d5 d7 d6 37 59 42 45 35 38 23 63 41 58 55 65 62 77 0 20 40 60 80 100 1 2 3 4 5 6 7 Robustness% Scenario Cf max Robustness 42 45 35 38 23 58 55 65 62 77 3 4 5 6 7 Scenario Cf max Robustness 83 87 88 53 60 86 64 17 13 12 47 40 14 36 0 20 40 60 80 100 1 2 3 4 5 6 7 Robustness% Scenario Cf max Robustness Damage scenario Damage scenario d3 d4 d5 d6 d7 d1 d2 d3 d4 d5 d6 d7 DSj = di I-35 West Bridge, Minneapolis, MN – single damage
  • 95. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE d1 d2d3 d4 d5 d7 d6 42 45 35 38 23 58 55 65 62 77 3 4 5 6 7 Scenario Cf max Robustness 83 87 88 53 60 86 64 17 13 12 47 40 14 36 0 20 40 60 80 100 1 2 3 4 5 6 7 Robustness% Scenario Cf max Robustness Damage scenario Damage scenario d3 d4 d5 d6 d7 d1 d2 d3 d4 d5 d6 d7 I-35 West Bridge, Minneapolis, MN/ enhanced– single damage DSj = di
  • 96. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE I-35W SAINT ANTHONY FALLS BRIDGE (September 2008) There are 323 sensors that regularly measure bridge conditions such as deck movement, stress, and temperature
  • 97. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE •100-year life span •10 lanes of traffic, five in each direction—two lanes wider than the former bridge •189 feet wide—the previous bridge was 113 feet wide •13 foot wide right shoulders and 14 foot wide left shoulders, the previous bridge had no shoulders •Light Rail Transport-ready which may help accommodate future transportation needs •Design-build project complete in 339 days. •Designed to be aesthetically pleasing and fit in with its environment •There are 323 sensors that regularly measure bridge conditions such as deck movement, stress, and temperature •The bridge is equipped with anti-icing sprayers and was constructed with high-strength concrete. I-35W SAINT ANTHONY FALLS BRIDGE (September 2008)
  • 98. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Black Swan Vulnerability Cause Damage Index • Significant collapse cases • LPHC events and Black Swans • Structural robustness in qualitative terms • Structural robustness in civil engineering design • Collapse types • Structural robustness and progressive collapse definitions • Measures against progressive collapse • Quantification of robustness • Robustness and optimization • Member consequence factor • Assessment of simple structures • Assessment of complex structures • What now/next? • References Robustness Collapse resistance Progressive collapse Photo Credit: Wikipedia Commons. Member consequence factor
  • 99. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE (disaster) resilience Definition (not univocal): A resilient community is defined as the one having the ability to absorb disaster impacts and rapidly return to normal socioeconomic activity. MCEER (Multidisciplinary Center for Earthquake Engineering Research), (2006). “MCEER’s Resilience Framework”. Available at http://mceer.buffalo.edu/research/resilience/Resilience_10-24-06.pdf NEHRP (National Earthquake Hazards Reduction Program), 2010. “Comments on the Meaning of Resilience”. NEHRP Technical report. Available at http://www.nehrp.gov/pdf/ACEHRCommentsJan2010.pdf MCEER framework for resilience evaluation: Initial losses Recovery time, depending on: • Resourcefulness • Rapidity Disaster strikes Systemic Robustness
  • 100. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE (disaster) resilience Definition (not univocal): A resilient community is defined as the one having the ability to absorb disaster impacts and rapidly return to normal socioeconomic activity. MCEER (Multidisciplinary Center for Earthquake Engineering Research), (2006). “MCEER’s Resilience Framework”. Available at http://mceer.buffalo.edu/research/resilience/Resilience_10-24-06.pdf NEHRP (National Earthquake Hazards Reduction Program), 2010. “Comments on the Meaning of Resilience”. NEHRP Technical report. Available at http://www.nehrp.gov/pdf/ACEHRCommentsJan2010.pdf MCEER framework for resilience evaluation: Resilience is inversely proportional to the area A. (dQ/dt) L0 TR (dQ/dt)0 A
  • 101. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE References: Taleb, Nassim Nicholas (November 2012). Antifragile: Things That Gain from Disorder(1st ed.). London: Penguin. p. 519. ISBN 1-400-06782-0. People/systems/organizations/things/ideas can be described in one of three ways: - fragile - resilient, or - antifragile "Some things benefit from shocks; they thrive and grow when exposed to volatility, randomness, disorder, and stressors and love adventure, risk, and uncertainty. Yet, in spite of the ubiquity of the phenomenon, there is no word for the exact opposite of fragile. Let us call it anti-fragile. Anti-fragility is beyond resilience or robustness. The resilient resists shocks and stays the same; the anti-fragile gets better". “anti-fragility”
  • 102. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE References: Taleb, Nassim Nicholas (November 2012). Antifragile: Things That Gain from Disorder(1st ed.). London: Penguin. p. 519. ISBN 1-400-06782-0 . ----- ---- “anti-fragility” References: Beyond “Sissy” Resilience: On Becoming Antifragile. Available online at http://www.artofmanliness.com/2013/12/03/beyond-sissy-resilience-on-becoming-antifragile/ Things that are fragile break or suffer from chaos and randomness. The resilient, or robust, don’t care if circumstances become volatile or disruptive (up to a point). Things that are anti- fragile grow and strengthen from volatility and stress (to a point).
  • 103. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE “anti-fragility” Fragile people/ systems/ organizations are concave. As fluctuations increase (x-axis) you experience more loss. Anti-fragile things are convex. As variability increases (x-axis), gains increase. References: Beyond “Sissy” Resilience: On Becoming Antifragile. Available online at http://www.artofmanliness.com/2013/12/03/beyond-sissy-resilience-on-becoming-antifragile/
  • 104. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Black Swan Vulnerability Cause Damage Index • Significant collapse cases • LPHC events and Black Swans • Structural robustness in qualitative terms • Structural robustness in civil engineering design • Collapse types • Structural robustness and progressive collapse definitions • Measures against progressive collapse • Quantification of robustness • Robustness and optimization • Member consequence factor • Assessment of simple structures • Assessment of complex structures • What now/next? • References Robustness Collapse resistance Progressive collapse Photo Credit: Wikipedia Commons. Member consequence factor
  • 105. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE References Alashker, Y., Li, H. and El-Tawil, S. (2011), “Approximations in Progressive Collapse Modeling”, J. Struct. Eng.- ASCE, 137(9), 914-924. Arup (2011), Review of international research on structural robustness and disproportionate collapse, London: Department for Communities and Local Government. ASCE 7-05 (2005), Minimum design loads for buildings and other structures, American Society of Civil Engineers (ASCE). Biondini, F. and Frangopol, D. (2009), “Lifetime reliability-based optimization of reinforced concrete cross-sections under corrosion”, Struct. Saf., 31(6), 483-489. Biondini, F., Frangopol, D.M. and Restelli, S. (2008), “On structural robustness, redundancy and static indeterminancy”, Proceedings of the 2008 Structures Congress, April 24-26, 2008, Vancouver, BC, Canada. Bontempi, F. and Giuliani, L. (2008), “Nonlinear dynamic analysis for the structural robustness assessment of a complex structural system”, Proceedings of the 2008 Structures Congress, April 24-26, 2008, Vancouver, BC, Canada. Bontempi, F., Giuliani, L. and Gkoumas, K. (2007), “Handling the exceptions: dependability of systems and structural robustness”, Invited Lecture, Proceedings of the 3rd International Conference on Structural Engineering, Mechanics and Computation (SEMC), Cape Town, South Africa, September 10-12. Brando, F., Testa, R.B. and Bontempi, F. (2010), “Multilevel structural analysis for robustness assessment of a steel truss bridge”, Bridge Maintenance, Safety, Management and Life-Cycle Optimization - Frangopol, Sause and Kusko (eds), Taylor & Francis Group, London, ISBN 978-0-415-87786-2. Canisius, T.D.G., Sorensen, J.D. and Baker, J.W. (2007), “Robustness of structural systems - A new focus for the Joint Committee on Structural Safety (JCSS)”, Proceedings of the 10th Int. Conf. on Applications of Statistics and Probability in Civil Engineering (ICASP10), Taylor and Francis, London. Casciati, S. and Faravelli, L. (2008) Building a Robustness Index. Robustness of Structures COST Action TU0601, 1st Workshop, February 4-5, 2008, ETH Zurich, Zurich, Switzerland. Cha, E. J. and Ellingwood, B. R. (2012), “Risk-averse decision-making for civil infrastructure exposed to low-probability, high- consequence events”, Reliab. Eng. Syst. Safe., 104(1), 27-35. Choi, J-h. and Chang, D-k. (2009), “Prevention of progressive collapse for building structures to member disappearance by accidental actions”, J. Loss Prevent. Proc., 22(6), 1016-1019. COST (2011), TU0601 - Structural Robustness Design for Practising Engineers, Canisius, T.D.G. (Editor). Crosti, C. and Duthinh, D. (2012), “Simplified gusset plate model for failure prediction of truss bridges”, Bridge Maintenance, Safety, Management, Resilience and Sustainability - Proceedings of the 6th International Conference on Bridge Maintenance, Safety and Management, IABMAS 2012, Italy, Stresa, 8-12 July 2012. Crosti, C., Duthinh, D. and Simiu, E. (2011), “Risk consistency and synergy in multihazard design”, J. Struct. Eng.- ASCE, 137(8), 844- 849.
  • 106. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE References DoD - Department of Defense (2009), Unified Facilities Criteria (UFC). Report No. UFC 4-023-03: Design of buildings to resist progressive collapse. Washington DC: National Institute of Building Sciences. Ellingwood, B. (2002), “Load and resistance factor criteria for progressive collapse design”, Proceedings of Workshop on Prevention of Progressive Collapse, National Institute of Building Sciences, Washington, D.C Ellingwood, B.R. and Dusenberry, D.O. (2005), “Building design for abnormal loads and progressive collapse”, Comput-Aided Civ. Inf., 20(3), 194-205. Ellingwood, B.R., Smilowitz, R., Dusenberry, D.O., Duthinh, D. and Carino, N.J. (2007), Report No. NISTIR 7396: Best practices for reducing the potential for progressive collapse in buildings. Washington DC: National Institute of Standards and Technology (NIST) EN 1990 (2002), Eurocode - Basis of structural design. Faber, M.H. and Stewart, M.G. (2003), “Risk assessment for civil engineering facilities: critical overview and discussion”, Reliab. Eng. Syst. Safe., 80(2), 173-184. FHWA (2011), Framework for Improving Resilience of Bridge Design, Publication No IF-11-016. Galal, K. and El-Sawy, T. (2010), “Effect of retrofit strategies on mitigating progressive collapse of steel frame structures”, J. Constr. Steel Res., 66(4), 520-531. Ghosn, M. and Moses, F. (1998), NCHRP Report 406: Redundancy in Highway Bridge Superstructures, TRB, National Research Council, Washington, D.C. Giuliani, L. (2012), “Structural safety in case of extreme actions”, Special Issue on: “Performance and Robustness of Complex Structural Systems”, Int. J. of Lifecycle Performance Engineering (IJLCPE), 1(1), 22-40. GSA - General Service Administration (2003), Progressive collapse analysis and design guidelines for new federal office buildings and major modernization project, Washington DC: GSA. Hoffman, S. T. and Fahnestock, L. A. (2011), “Behavior of multi-story steel buildings under dynamic column loss scenarios”, Steel Compos. Struc., 11(2), 149-168. HSE - Health and Safety Executive (2001), Reducing risks, protecting people, HSE’s decision-making process, United King: Crown copyright. Izzuddin, B. A., Vlassis, A. G., Elghazouli, A. Y. and Nethercot, D. A. (2008a), “Progressive collapse of multi-storey buildings due to sudden column loss - Part I: Simplified assessment framework”, Eng. Struct., 30(5), 1308-1318. Izzuddin, B. A., Vlassis, A. G., Elghazouli, A. Y. and Nethercot, D. A. (2008b), “Progressive collapse of multi-storey buildings due to sudden column loss - Part II: Application”, Eng. Struct., 30(5), 1424-1438. Kim, J. and Kim, T. (2009), “Assessment of progressive collapse-resisting capacity of steel moment frames”, J. Constr. Steel Res., 65(1), 169-179.
  • 107. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE References Kwasniewski, L. (2010), “Nonlinear dynamic simulations of progressive collapse for a multistory building”, Eng. Struct., 32(5), 1223- 1235. Malla, R.B., Agarwal, P. and Ahmad, R. (2011), “Dynamic analysis methodology for progressive failure of truss structures considering inelastic postbuckling cyclic member behavior”, Eng. Struct., 33(5), 1503-1513. Miyachi, K., Nakamura, S. and Manda, A. (2012), “Progressive collapse analysis of steel truss bridges and evaluation of ductility”, J. Constr. Steel Res., 78, 192-200. Nafday, A.M. (2008), “System Safety Performance Metrics for Skeletal Structures”, J. Struct. Eng.- ASCE, 134(3), 499-504. Nafday, A.M. (2011), “Consequence-based structural design approach for black swan events”, Struct. Saf., 33(1), 108-114. Olmati, P., Gkoumas, K., Brando, F., Cao, L. (2013) “Consequence-based robustness assessment of a steel truss bridge”, Steel and Composite Structures, An International Journal, 14(4), 379-395. Rezvani, F. H. and Asgarian, B. (2012), “Element loss analysis of concentrically braced frames considering structural performance criteria”, Steel Compos. Struc., 12(3), 231-248. Saydam, D. and Frangopol, D. M. (2011), “Time-dependent performance indicators of damaged bridge superstructures”, Eng. Struct., 33(9), 2458-2471. Starossek, U. (2009), Progressive collapse of structures, London: Thomas Telford Publishing. Starossek, U. and Haberland, M. (2010), “Disproportionate Collapse: Terminology and Procedures”, J. Perf. Constr. Fac. 24(6), 519-528. Starossek, U. and Haberland, M. (2012), “Robustness of structures”, Special Issue on: “Performance and Robustness of Complex Structural Systems”, Int. J. of Lifecycle Performance Engineering (IJLCPE), 1(1), 3-21. Taleb, Nassim Nicholas (April 2007). The Black Swan: The Impact of the Highly Improbable (1st ed.). London: Penguin. p. 400. ISBN 1- 84614045-5. Yuan, W. and Tan, K. H. (2011), “Modeling of progressive collapse of a multi-storey structure using a spring-mass-damper system”, Struct. Eng. Mech., 37(1), 79-93. Taleb, Nassim Nicholas (November 2012). Antifragile: Things That Gain from Disorder(1st ed.). London: Penguin. p. 519. ISBN 1-400- 06782-0
  • 108. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE 2nd part sustainability of structures
  • 109. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Sustainability: overview SUSTAINABILITY SOCIAL ENVIRONMENTAL ECONOMIC SUSTAINABLE DEVELOPMENT: “Development that meets the needs of the present without compromising the ability of future generations to meet their own needs.” (Brundtland Commission, 1987)
  • 110. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Sustainability: use of steel and structural form Steel Material • 40% of resources from recycling • Manufacturing process with controlled environmental impact • Material durability • High recycling rate Construction Phase • prefabrication/ offsite manufacture Design and Service Life • Weight reduction of structure • Creation of versatile spaces • Longevity and robustness of steel components • Simple incorporation of renewable energy generation systems End of Life • Easy dismantling • Reusability/Reciclability Source: Foster + Partners Hearst Tower USA, 2000 - 2006 SUSTAINABILITY IN STRUCTURES Material Used Resource Efficient Site Planning Non Pollution Energy Efficiency Structural Form
  • 111. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Sustainability: building automation and energy harvesting SUSTAINABILITY IN STRUCTURES Material Used Resource Efficient Site Planning Non Pollution Energy Efficiency Structural Form
  • 112. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Sustainability: integration SUSTAINABILITY IN STRUCTURES Material Used Resource Efficient Site Planning Non Pollution Energy Efficiency Structural Form Diagrid: double façade - chimney effect
  • 113. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Sustainability: tall buildings Ali, M. M., Moon, K. S. (2007). Structural Development in Tall Buildings: Current Trends and Future Prospects. Architectural Science Review, Vol. 50, pp. 205-223. Interior structuresExterior structures
  • 114. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Diagrid structure: diagrid module Mele, E., Toreno, M., Brandonisio, G. and Del Luca, A. (2014). Diagrid structures for tall buildings: case studies and design considerations. The Structural Design of Tall and Special Buildings. Wiley Online Library, Vol. 23, No. 2, pp. 124-145. effect of gravity load effect of overturning moment effect of shear force
  • 115. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Diagrid structure: Initial configuration and diagrid schemes Outrigger Structure Diagrid Structures 42° 60° 75° 160m 36 m
  • 116. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Diagrid structure: structural configuration Original Structure: Outrigger Improved Structure: Diagrid Perimetral Structure Internal Structure
  • 117. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Diagrid structure: analyses and comparisons SLS Dead Gk Tamp Qk Qn W+X W-X W+Y W-Y COMB5 1 1 1 0,7 0,5 1 - - - COMB6 1 1 1 0,7 0,5 - 1 - - COMB7 1 1 1 0,7 0,5 - - 1 - COMB8 1 1 1 0,7 0,5 - - - 1 ULS Dead Gk Tamp Qk Qn W+X W-X W+Y W-Y COMB5 1,3 1,3 1,3 1,05 0,75 1,5 - - - COMB6 1,3 1,3 1,3 1,05 0,75 - 1,5 - - COMB7 1,3 1,3 1,3 1,05 0,75 - - 1,5 - COMB8 1,3 1,3 1,3 1,05 0,75 - - - 1,5 Acronym Description Color Outrigger Outrigger Structure Diagrid 42° Diagrid Structure with inclination of diagonal members of 42° Diagrid 60° Diagrid Structure with inclination of diagonal members of 60° Diagrid 75° Diagrid Structure with inclination of diagonal members of 75° Outrigger 42° 60° 75° P (ton) 8052 6523 5931 5389 Saving (%) - 19 26 33 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 P(ton) Weight
  • 118. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Diagrid structure: modal analysis T1 T2 T3 T4 T5 T6 Outrigger 3.7 3.6 2.5 1.2 1.1 0.8 Diagrid 42° 3.1 3.1 1.7 1.0 1.0 0.8 Diagrid 60° 3.3 3.3 1.9 1.0 1.0 0.9 Diagrid 75° 3.7 3.6 2.8 1.3 1.2 1.2 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 T(s) First six periods Traslational in Y direction Traslational in X direction Rotational around Z axis Traslational in Y direction Traslational in X direction Rotational around Z axis
  • 119. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Diagrid structure: SLS - load combinations SLS Dead Gk Tamp Qk Qn W+X W-X W+Y W-Y COMB5 1 1 1 0,7 0,5 1 - - - COMB6 1 1 1 0,7 0,5 - 1 - - COMB7 1 1 1 0,7 0,5 - - 1 - COMB8 1 1 1 0,7 0,5 - - - 1 HORIZONTAL DISPLACEMENTS COMB Outrigger Diagrid42° Diagrid60° Diagrid75° Acronym Description Color Outrigger Outrigger Structure Diagrid 42° Diagrid Structure with inclination of diagonal members of 42° Diagrid 60° Diagrid Structure with inclination of diagonal members of 60° Diagrid 75° Diagrid Structure with inclination of diagonal members of 75°
  • 120. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Diagrid structure: Horizontal displacements 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 16 32 48 64 80 96 112 128 144 160 U1 (m) Z(m) Diagrid 42° Diagrid 60° Outrigger Diagrid 75° SLS limit Outrigger Diagrid42° Diagrid60° Diagrid75°
  • 121. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Diagrid structure: ULS - load combinations, pushover Outrigger Diagrid42° Diagrid60° Diagrid75° Acronym Description Color Outrigger Outrigger Structure Diagrid 42° Diagrid Structure with inclination of diagonal members of 42° Diagrid 60° Diagrid Structure with inclination of diagonal members of 60° Diagrid 75° Diagrid Structure with inclination of diagonal members of 75° ULS Dead Gk Tamp Qk Qn W+X W-X W+Y W-Y DEAD 1 - - - - - - - - VERT 1 1 1 - - - - - - +STATIC PUSHOVER FORCES PUSHOVER DEAD VERT
  • 122. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Diagrid structure: Diagrid 60°, Pushover (YZ Sections) 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 F(kN) U1 (m) Pushover Step25 Step28 Step37 Step44 Step51 Step67 Step 67Step 51Step 44Step 37Step 25
  • 123. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Diagrid structure: Diagrid 60°, Pushover+Vert (YZ Sections) 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 F(kN) U1 (m) Pushover+Vert Step11 Step16 Step39 Step47 Step55 Step 47 Step 55Step 39Step 11 VERT
  • 124. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Diagrid structure: comparison of capacity curves 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 F(kN) U1 (m) Pushover 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 U1 (m) Pushover+Vert Outrigger Diagrid 42° Diagrid 60° Diagrid 75° 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 U1 (m) Pushover+Dead DEAD VERT
  • 125. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Diagrid structure: definition of significant properties R=Fmax (Strength) K=Fy/Dy (Stiffness) m=Dmax/Dy (Ductility)
  • 126. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Diagrid structure: comparison of significant properties Outrigger Diagrid 42° Diagrid 60° Diagrid 75° Pushover+Vert Pushover+Vert Pushover+Vert Pushover+Vert Strength (R) – kN 94775 110185 104972 97131 Stiffness (K) – kN/m 77143 80615 71306 60897 Ductility (m) 1,535 3,587 5,681 2,564 Weight (P) - Ton 8052 6523 5931 5389 Weighted average (W.A.) of significant properties Outrigger Diagrid 42° Diagrid 60° Diagrid 75° Pushover+Vert Pushover+Vert Pushover+Vert Pushover+Vert Strength (R) – kN 94775 110185 104972 97131 Stiffness (K) – kN/m 77143 80615 71306 60897 Ductility (m) 1,535 3,587 5,681 2,564 Weight (P) - Ton 8052 6523 5931 5389 W.A. 4,20 5,97 7,25 5,08
  • 127. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Diagrid structure: comparison of mechanical properties 0 0.5 1 1.5 2 2.5 3 3.5 4 R/R0 K/K0 m/m0 1,2 ((P0- P)/P0+1) Pushover+Vert Outrigger Diagrid 42° Diagrid 60° Diagrid 75°
  • 128. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE Diagrid structure: robustness checks D1,L1 D1,L2 D2,L1 D2,L2 D3,L1 D3,L2 0 20000 40000 60000 80000 100000 120000 140000 0 0.5 1 1.5 2 2.5 3 F(kN) U1 (m) Pushover D1,L1 D1,L2 D2,L1 D2,L2 D3,L1 D3,L2 INTATTA
  • 129. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE References Adams, W.M. (2006) The Future of Sustainability: Re-thinking Environment and Development in the Twenty-first Century. Report of the IUCN Renowned Thinkers Meeting, 29-31 January. Ali, M. M., Moon, K. S. (2007) Structural Development in Tall Buildings: Current Trends and Future Prospects. Architectural Science Review, Vol. 50, pp. 205-223. Berardi, U. (2013) Clarifying the new interpretations of the concept of sustainable building. Sustainable Cities and Society, Vol. 8, pp. 72- 78. Cowlard, A., Bittern, A., Abeccassis-Empis, C., Torero, J. (2013) Fire safety design for tall buildings. Procedia Engineering, Vol. 62, pp. 169-181. Gkoumas, K., Petrini, F., Arangio, S. and Crosti, C. (2013) Energy harvesting for the sustainability of structures and infrastructures. Research and Applications in Structural Engineering, Mechanics and Computation Alphose Zingoni (ed.), CRC Press, pp. 2457-2462. ISE - Institution of Structural Engineers (1999) Building for a sustainable future: Construction without depletion, ISE/SETO, London, UK. Khan F. R. (1973) Evolution of Structural Systems for High-Rise Buildings in Steel and Concrete, Proceedings of the 10th regional conference on tall buildigs-planning, design and construction, Bratislava. Landolfo, R., Cascini, L. and Portioli F. (2011) Sustainability of steel structures: towards an integrated approach to life-time engineering design. Frontiers of Architecture and Civil Engineering in China, Vol. 5, No. 3, pp. 304-314. Leonard, J. (2007) Investigation of Shear Lag Effect in High-rise Buildings with Diagrid System, Master's thesis, Department of Civil and Environmental Engineering, MIT. Maunsel, F. (2002) Tall Buildings and Sustainability, Corporation of London. Mele, E., Toreno, M., Brandonisio, G. and Del Luca, A. (2014) Diagrid structures for tall buildings: case studies and design considerations. The Structural Design of Tall and Special Buildings. Wiley Online Library, Vol. 23, No. 2, pp. 124-145. Milana, G., Gkoumas, K., Bontempi, F. “Sustainability Concepts in the Design of High-Rise buildings: the case of Diagrid Systems”, Proceedings of the 3rd International Workshop on Design in Civil and Environmental Engineering, Technical University of Denmark, Denmark, August 21-23, 2014 Lotte Bjerregaard Jensen & Mary Kathryn Thompson Editors, pp. 170-179, ISBN 978-0-9894658-3-0 Milana, G., Olmati, P., Gkoumas, K. Scenario Based Structural Robustness Assessment of Tall Diagrid Structures, IF CRASC ’15, Third Congress on, Forensic Engineering - Sixth Congress on Collapses, Reliability and Retrofit of Structures, Rome (Italy), 14-16 May 2015. Milana, G., Olmati, P., Gkoumas, K., Bontempi, F. (2015) “Ultimate capacity of diagrid systems for tall buildings in the nominal configuration and the damaged state”, Periodica Polytechnica Civil Engineering, accepted. Moon, K. S. (2008) Sustainable Structural Engineering Strategies for Tall Buildings. The Structural Design of Tall and Special Buildings, Vol. 17, No. 5, pp. 895-914. Moon, K. S. (2011) Diagrid Structures for Complex-Shaped Tall Buildings. Procedia Engineering, Vol. 14, pp. 1343-1350.
  • 130. Roma, 6 Maggio 2015 - Corso di Dottorato: introduzio​ne all'ottimi​zzazione struttural​e, Prof.-Ing. Franco Bontempi Konstantinos Gkoumas, PhD, PE References Moon, K.S., Connor, J.J., Fernandez, J.E. (2007) Diagrid structural system for tall buildings: characteristics and methodology for preliminary design. The Structural Design of Tall and Special Buildings, Vol. 16, No. 2, pp. 205-230. Nguyen, B. K. and Altan H. (2011) Comparative Review of Five Sustainable Rating Systems. Procedia Engineering, Vol. 21, pp. 376-386. NTC - Norme Tecniche per le Costruzioni/Italian Building Code (2008) Decreto Ministeriale del 14/1/2008, Suppl. ord. n. 30 alla G.U. n. 29 del 4/2/2008 (in Italian). Pank, W., Girardet, H. and Cox, G. (2002) Tall Buildings and Sustainability, The Corporation of London, London. Retrieved May 29, 2014 from: http://www.cityoflondon.gov.uk/services/environment-and-planning/sustainability/Documents/pdfs/tall-buildings- sustainability.pdf Ramesha, T., Prakasha, R. and Shuklab, K.K. (2010) Life cycle energy analysis of buildings: An overview. Energy and Buildings, Vol. 42, pp. 1592-1600. Robin, C. P. Y. and Poon, C. S. (2009) Cultural shift towards sustainability in the construction industry of Hong Kong. Journal of Environmental Management, Vol. 90, pp. 3616–3628. Sarja, A., Bamforth, P., Caccavelli, D., Chevalier, J., Durucan, S. (2005) Lifetime Engineering of Buildings and Civil Infrastructures. Retrieved May 9, 2003 from: http://lifetime.vtt.fi/lifetime_deliverable_3_1.pdf Srinivasan, R. S., Brahamb, W. W., Campbell, D. E. and Curcija, C. D. (2011) Re(De)fining Net Zero Energy: Renewable Energy Balance in environmental building design. Building and Environment, Vol. 47, pp. 300-315. Tae, S. and Shin, S. (2009) Current work and future trends for sustainable buildings in South Korea. Renewable and Sustainable Energy Reviews, Vol 13, pp. 1910-1921. UN - United Nations. (1987) Report of the World Commission on Environment and Development. General Assembly Resolution 42/187, 11 December. Retrieved May 29, 2014 from: http://www.un.org/documents/ga/res/42/ares42-187.htm USGBC - United States Green Building Council. (2009) LEED for New Construction and Major Renovations, version 3.0. Green Building Council, Washington, D.C. Vezzoli, C. and Manzini, E. (2008) Design for Environmental Sustainability. Springer-Verlag London.
  • 131. Dipartimento di Ingegneria Strutturale e Geotecnica Dottorato di Ricerca in Ingegneria delle Strutture “Sustainability of structures and structural robustness: concepts and case studies” Konstantinos Gkoumas, Ph.D., P.E. Corso di Dottorato: introduzio​ne all'ottimi​zzazione strutturale Prof.-Ing. Franco Bontempi Konstantinos Gkoumas Dipartimento di Ingegneria Strutturale e Geotecnica