Table of Integrals
BASIC FORMS                                                                                 INTEGRALS WITH ROOTS
                                    1                                                                                       2
        ! x dx = n + 1 x                                                                           "    x ! adx =             (x ! a)3/2
           n                                n+1
(1)                                                                                         (18)
                                                                                                                            3
          1                                                                                              1
(2)     ! x dx = ln x                                                                       (19)   !    x±a
                                                                                                            dx = 2 x ± a

(3)     ! udv = uv " ! vdu                                                                  (20)   "
                                                                                                         1
                                                                                                             dx = 2 a ! x
                                                                                                        a! x
(4)     " u(x)v!(x)dx = u(x)v(x) # " v(x)u !(x)dx                                                                            2              2
                                                                                            (21)   "x     x ! adx =
                                                                                                                             3
                                                                                                                               a(x ! a)3/2 + (x ! a)5/2
                                                                                                                                            5
RATIONAL FUNCTIONS                                                                                                 " 2b 2x %
                                                                                            (22)   !    ax + bdx = $   +
                                                                                                                   # 3a 3 '&
                                                                                                                             b + ax
                  1                     1
(5)     ! ax + b dx = a ln(ax + b)
                                                                                                                                      " 2b 2 4bx 2ax 2 %
                                                                                                   ! (ax + b)             dx = b + ax $     +   +
                                                                                                                    3/2
                                                                                            (23)
                  1                          "1                                                                                       # 5a    5   5 '  &
(6)     ! (x + a)           2
                                dx =
                                            x+a
                                                                                                         x      2
                                                                                            (24)   !        dx = ( x ± 2a ) x ± a
                               " a      x %                                                             x±a     3
        ! (x + a) dx = (x + a) $ 1+n + 1+ n ' , n ! "1
                           n                         n
(7)
                               #            &
                                                                                                         x                             # x a! x&
                       (x + a)1+n (nx + x " a)                                              (25)   "    a! x
                                                                                                             dx = ! x a ! x ! a tan !1 %
                                                                                                                                       $ x!a '
                                                                                                                                               (
        ! x(x + a) dx = (n + 2)(n + 1)
                                n
(8)

                                                                                                         x
(9)
           dx
        ! 1+ x 2 = tan x
                      "1                                                                    (26)   !    x+a
                                                                                                            dx = x x + a " a ln # x + x + a %
                                                                                                                                $           &

                                                                                                                     # 4b 2 2bx 2x 2 &
(10)
             dx       1 "1
        ! a 2 + x 2 = a tan (x / a)                                                         (27)   !x     ax + bdx = % "    +
                                                                                                                     $ 15a 2 15a
                                                                                                                                 +
                                                                                                                                   5 (
                                                                                                                                     '
                                                                                                                                       b + ax

              xdx   1                                                                                                " b x x 3/2 %
(11)    !a    2
                   = ln(a 2 + x 2 )
               + x2 2                                                                              !    x ax + bdx = $    +
                                                                                                                            2 '
                                                                                                                                   b + ax
                                                                                                                     # 4a        &
                                                                                            (28)
(12)
           x 2 dx
        ! a 2 + x 2 = x " a tan (x / a)
                               "1
                                                                                                   !!!!!!!!!!!!!!!!!!!!!!!!!(
                                                                                                                                       (
                                                                                                                                 b 2 ln 2 a x + 2 b + ax    )
                                                                                                                                                3/2
                                                                                                                                           4a
            x 3 dx    1 2 1 2
        ! a 2 + x 2 = 2 x " 2 a ln(a + x )                                                                                   # b 2 x bx 3/2 x 5/2 &
                                    2   2
(13)
                                                                                                   !x             ax + bdx = % "     +     +        b + ax
                                                                                                        3/2

                                                                                                                             $ 8a
                                                                                                                                   2
                                                                                                                                       12a    3 ( '
                                                                          # 2ax + b &       (29)
(14)    " (ax
                  2
                          + bx + c)!1 dx =
                                                             2
                                                           4ac ! b
                                                                   tan !1 %
                                                                     2
                                                                          $ 4ac ! b 2 (
                                                                                      '                                        "
                                                                                                                                       (
                                                                                                                                   b 3 ln 2 a x + 2 b + ax   )
                                                                                                                                                  5/2
                                                                                                                                            8a

                                                                                                                                                        (            )
                1               1
(15)    ! (x + a)(x + b) dx = b " a [ ln(a + x) " ln(b + x)] , a ! b                        (30)   !    x 2 ± a 2 dx =
                                                                                                                              1              1
                                                                                                                                x x 2 ± a 2 ± a 2 ln x + x 2 ± a 2
                                                                                                                              2              2
                      x                      a                                                                                                           # x a2 ! x2 &
(16)    ! (x + a)           2
                                dx =
                                            a+ x
                                                 + ln(a + x)
                                                                                            (31)   "    a 2 ! x 2 dx =
                                                                                                                              1              1
                                                                                                                                x a 2 ! x 2 ! a 2 tan !1 % 2         (
                                                                                                                                                         $ x !a '
                                                                                                                                                                  2
                                                                                                                              2              2
                       x            ln(ax 2 + bx + c)
        ! ax                   dx =                                                                                  1
                      + bx + c                                                                     !x     x 2 ± a 2 = (x 2 ± a 2 )3/2
                  2
                                           2a                                               (32)
(17)                                                                                                                 3
                                                                 b          # 2ax + b &
                                                                     tan "1 %
                                                                                                                                   (              )
                                                  !!!!!"
                                                           a 4ac " b        $ 4ac " b 2 (
                                                                                        '                     1
                                                                                                   !
                                                                         2
                                                                                            (33)                          dx = ln x + x 2 ± a 2
                                                                                                        x ±a
                                                                                                          2         2




©2005 BE Shapiro                                                                                                                                                 Page 1
This document may not be reproduced, posted or published without permission. The copyright holder makes no representation about the accuracy, correctness, or
suitability of this material for any purpose.
1                              x                                                                                                                        1#      b2 &
        "                              = sin !1                                                                                                   b           1
(34)
                                                                                                 ! x ln(ax + b)dx = 2a x " 4 x                                            + % x 2 " 2 ( ln(ax + b)
                                                                                                                                                                      2
                                                                                          (49)
             a !x
               2               2                  a                                                                                                                        2$      a '
                   x                                                                                                                         1#      a2 &
(35)    !    x2 ± a2
                                       = x 2 ± a2                                         (50)   " x ln(a
                                                                                                                  2                    1
                                                                                                                      ! b 2 x 2 )dx = ! x 2 + % x 2 ! 2 ( ln(a 2 ! bx 2 )
                                                                                                                                       2     2$      b '
                   x
(36)    "    a2 ! x2
                                   dx = ! a 2 ! x 2
                                                                                          EXPONENTIALS

                                                                          (       )
                   2
               x                            1              1                                                          1 ax
(37)    !    x ±a
               2               2
                                   dx =
                                            2
                                              x x 2 ± a 2 ! ln x + x 2 ± a 2
                                                           2
                                                                                          (51)   !e
                                                                                                      ax
                                                                                                           dx =
                                                                                                                      a
                                                                                                                        e

                                                                                                                                      i "
(38)    "
               x2          1           1           # x a2 ! x2 &
                     dx = ! x a ! x 2 ! a 2 tan !1 % 2         (
                                                                                          (52)   !     xeax dx =
                                                                                                                              1
                                                                                                                              a
                                                                                                                                xeax + 3/2 erf i ax
                                                                                                                                      2a
                                                                                                                                                                           (     )   where
                                                   $ x !a '
                                                            2
             a2 ! x2       2           2
                                                                                                                       2              x
                                                                                                                                  #       e"t dt
                                                                                                                                                  2
                                                                                                 erf (x) =
                                 " b x%                                                                                !              0

        !    ax 2 + bx + c !dx = $   +
                                 # 4a 2 '
                                        &
                                          ax 2 + bx + c
                                                                                                 ! xe dx = (x " 1)e
                                                                                                        x                                     x
(39)                                                                                      (53)
                        4ac ( b 2 " 2ax + b                   %
        !!!!!!!!!!!!!!+          ln $       + 2 ax 2 + bc + c '
                         8a 3/2     #  a                      &                                                     #x 1&
                                                                                                 ! xe          dx = % " 2 ( eax
                                                                                                        ax
                                                                                          (54)
                                                                                                                    $a a '
        !x    ax 2 + bx + c !dx =
                                                                                                 ! x e dx = e (x                              " 2x + 2)
                                                                                                      2 x                     x           2
                        # x 3 bx 8ac " 3b 2 &                                             (55)
(40)    !!!!!!!!!!!!!!! % +     +             ax 2 + bx + c
                        $ 3 12a    24a 2 (  '
                                                                                                                    # x 2 2x 2 &
        !!!!!!!!!!!!!!"
                                   b(4ac " b ) # 2ax + b
                                              ln %
                                                      2
                                                                           &
                                                         + 2 ax 2 + bc + c (
                                                                                          (56)   ! x 2 eax dx = eax % " 2 + 3 (
                                                                                                                    $ a a    a '
                                     16a 5/2     $  a                      '
                                                                                                 ! x e dx = e (x                              " 3x 2 + 6x " 6)
                                                                                                      3 x                     x           3
                                                                                          (57)
                           1    1 " 2ax + b                   %
(41)    !    ax 2 + bx + c
                           dx =   ln
                                 a $ # a
                                            + 2 ax 2 + bx + c '
                                                              &                                                                               1
                                                                                                 !x e            dx = ( "1)                     #[1+ n, "ax] where
                                                                                                      n ax                                n
                                                                                          (58)
                  x             1                                                                                                             a
        !    ax 2 + bx + c
                           dx =
                                a
                                    ax 2 + bx + c
                                                                                                 !(a, x) =            $
                                                                                                                          #
                                                                                                                              t a"1e"t dt
                                                                                                                          x
(42)
                 b      # 2ax + b                   &
                                  + 2 ax 2 + bx + c (                                                                          #
        !!!!!" 3/2 ln %
              2a        $    a                      '                                     (59)   !e
                                                                                                      ax 2
                                                                                                             dx = "i
                                                                                                                              2 a
                                                                                                                                  erf ix a            (           )
LOGARITHMS

(43)    ! ln xdx = x ln x " x                                                             TRIGONOMETRIC FUNCTIONS

(44)    !
            ln(ax)     1
                   dx = ( ln(ax))
                                  2                                                       (60)   ! sin xdx = " cos x
               x       2
                                                                                                                              x 1
                                                                                                 ! sin           xdx =         " sin 2x
                                                                                                           2
                                            ax + b                                        (61)
(45)    ! ln(ax + b)dx =                      a
                                                   ln(ax + b) " x                                                             2 4
                                                                                                                        3        1
                                                                                                 ! sin           xdx = " cos x + cos 3x
                                                                                                           3
                                            2b "1 # ax &                                  (62)
        ! ln(a x ± b )dx = x ln(a x ± b ) + a tan % b ( " 2x                                                            4       12
                   2       2            2                 2   2       2
(46)
                                                  $ '

                                            2a !1 # bx &
                                                                                          (63)   ! cos xdx = sin x
        " ln(a ! b x )dx = x ln(a ! b x ) + b tan % a ( ! 2x
                   2               2    2                 2       2   2
(47)
                                                  $ '                                                                         x 1
                                                                                                 ! cos           xdx =         + sin 2x
                                                                                                             2
                                                                                          (64)
                                                                                                                              2 4
                                           1                   # 2ax + b &
        ! ln(ax            + bx + c)dx =      4ac " b 2 tan "1 %
                       2

                                                               $ 4ac " b 2 (
                                                                                                                              3         1
                                                                           '                     ! cos           xdx =          sin x + sin 3x
                                                                                                             3
                                           a                                              (65)
(48)                                                                                                                          4        12
                                                 # b      &
        !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"2x + %
                                                 $ 2a
                                                      + x ( ln ax 2 + bx + c
                                                          '
                                                                              (       )                                                           1
                                                                                                 ! sin x cos xdx = " 2 cos
                                                                                                                                                          2
                                                                                          (66)                                                                x



©2005 BE Shapiro                                                                                                                                                                             Page 2
This document may not be reproduced, posted or published without permission. The copyright holder makes no representation about the accuracy, correctness, or
suitability of this material for any purpose.
! sin
                                   1         1
                                                                                         !x        cos axdx =
                                                                                              n
(67)             2
                     x cos xdx =     sin x " sin 3x
                                   4        12                                  (89)               1
                            1          1                                                 !!!!!!!!!! (ia)1"n $("1)n #(1+ n, "iax) " #(1+ n,iax) &
                                                                                                            %                                  '
        ! sin x cos xdx = " 4 cos x " 12 cos 3x                                                    2
                        2
(68)

                                    x 1
                                                                                (90)     ! x sin xdx = "x cos x + sin x
        ! sin x cos xdx =            " sin 4 x
             2     2
(69)
                                    8 32                                                                             x            1
                                                                                (91)     ! x sin(ax)dx = " a cos ax + a            2
                                                                                                                                       sin ax
(70)    ! tan xdx = " ln cos x
                                                                                         !x        sin xdx = (2 " x 2 )cos x + 2x sin x
                                                                                              2
                                                                                (92)
        ! tan xdx = "x + tan x
             2
(71)
                                                                                                                   2 " a2 x2          2
                                                                                         ! x sin axdx =
                                                                                            3
                                      1                                         (93)                                         cos ax + 3 x sin ax
        ! tan        xdx = ln[cos x] + sec 2 x                                                                        a3             a
                 3
(72)
                                      2
                                                                                                              1
                                                                                         !x        sin xdx = " (i)n $ #(n + 1, "ix) " ("1)n #(n + 1, "ix) &
                                                                                              n
                                                                                (94)                                %                                     '
(73)    ! sec xdx = ln | sec x + tan x |                                                                      2
                                                                                TRIGONOMETRIC FUNCTIONS WITH e ax
        ! sec        xdx = tan x
                 2
(74)
                                                                                                              1 x
                                                                                (95)     !e
                                                                                              x
                                                                                                  sin xdx =     e [ sin x " cos x ]
                    1               1
        ! sec xdx = 2 sec x tan x + 2 ln | sec x tan x |
(75)             3                                                                                            2
                                                                                                                       1
                                                                                (96)     !e
                                                                                              bx
                                                                                                      sin(ax)dx =           ebx [ b sin ax " a cos ax ]
        ! sec x tan xdx = sec x                                                                                      b + a2
                                                                                                                      2
(76)
                                                                                                                  1 x
                                   1 2                                          (97)     !e
                                                                                              x
                                                                                                  cos xdx =         e [ sin x + cos x ]
        ! sec        x tan xdx =
                 2
(77)                                 sec x                                                                        2
                                   2
                                                                                                                        1
                                   1 n                                          (98)     !e
                                                                                              bx
                                                                                                      cos(ax)dx =            ebx [ a sin ax + b cos ax ]
        ! sec        x tan xdx =     sec x , n ! 0                                                                   b2 + a2
                 n
(78)
                                   n

(79)    ! csc xdx = ln | csc x " cot x |                                        TRIGONOMETRIC FUNCTIONS WITH x n AND e ax

        ! csc        xdx = " cot x
                 2
(80)                                                                                                              1 x
                                                                                (99)     ! xe
                                                                                                  x
                                                                                                      sin xdx =     e [ cos x " x cos x + x sin x ]
                                                                                                                  2
                            1             1
        ! csc        xdx = " cot x csc x + ln | csc x " cot x |
                 3
(81)                                                                                                               1 x
                            2             2                                     (100)    ! xe
                                                                                                  x
                                                                                                      cos xdx =      e [ x cos x " sin x + x sin x ]
                                                                                                                   2
                                  1
        ! csc        x cot xdx = " csc n x , n ! 0
                 n
(82)
                                  n
                                                                                HYPERBOLIC FUNCTIONS
(83)    ! sec x csc xdx = ln tan x                                              (101)    ! cosh xdx = sinh x
                                                                                                                       eax
TRIGONOMETRIC FUNCTIONS WITH x n                                                (102)    !e
                                                                                              ax
                                                                                                      cosh bxdx =
                                                                                                                     a " b2
                                                                                                                         2  [ a cosh bx " b sinh bx ]
(84)    ! x cos xdx = cos x + x sin x                                           (103)    ! sinh xdx = cosh x
                        1            1
(85)    ! x cos(ax)dx = a 2 cos ax + a x sin ax                                                                        eax
                                                                                                                            [ "b cosh bx + a sinh bx ]
                                                                                         !e           sinh bxdx =
                                                                                              ax
                                                                                (104)
                                                                                                                     a " b2
                                                                                                                      2


        !x       cos xdx = 2x cos x + (x 2 " 2)sin x
             2
(86)
                                                                                         !e        tanh xdx = e x " 2 tan "1 (e x )
                                                                                              x
                                                                                (105)
                              2              a2 x2 " 2
        !x       cos axdx =       x cos ax +
             2
(87)                                                   sin ax                                                  1
                                                                                         ! tanh axdx = a ln cosh ax
                                2
                              a                 a3                              (106)

        !x       cos xdx =
             n


(88)                  1 1+n $
                                                                                         ! cos ax cosh bxdx =
        !!!!!!!!!"      (i ) % #(1+ n, "ix) + ( "1)n #(1+ n,ix)&
                                                               '
                                                                                (107)                    1
                      2                                                                  !!!!!!!!!!
                                                                                                       a + b2
                                                                                                         2    [ a sin ax cosh bx + b cos ax sinh bx ]
©2005 BE Shapiro                                                                                                                                           Page 3
This document may not be reproduced, posted or published without permission. The copyright holder makes no representation about the accuracy, correctness, or
suitability of this material for any purpose.
! cos ax sinh bxdx =
(108)                  1
        !!!!!!!!!!
                     a + b2
                      2     [b cos ax cosh bx + a sin ax sinh bx ]

        ! sin ax cosh bxdx =
(109)                  1
        !!!!!!!!!!
                     a + b2
                      2     [ "a cos ax cosh bx + b sin ax sinh bx ]

        ! sin ax sinh bxdx =
(110)                  1
        !!!!!!!!!!
                     a + b2
                      2     [b cosh bx sin ax " a cos ax sinh bx ]
                                     1
(111)   ! sinh ax cosh axdx = 4a [ "2ax + sinh(2ax)]
        ! sinh ax cosh bxdx =
(112)                   1
        !!!!!!!!!!
                     b2 " a2
                             [b cosh bx sinh ax " a cosh ax sinh bx ]




©2005 BE Shapiro                                                                                                                                    Page 4
This document may not be reproduced, posted or published without permission. The copyright holder makes no representation about the accuracy, correctness, or
suitability of this material for any purpose.

Integral table

  • 1.
    Table of Integrals BASICFORMS INTEGRALS WITH ROOTS 1 2 ! x dx = n + 1 x " x ! adx = (x ! a)3/2 n n+1 (1) (18) 3 1 1 (2) ! x dx = ln x (19) ! x±a dx = 2 x ± a (3) ! udv = uv " ! vdu (20) " 1 dx = 2 a ! x a! x (4) " u(x)v!(x)dx = u(x)v(x) # " v(x)u !(x)dx 2 2 (21) "x x ! adx = 3 a(x ! a)3/2 + (x ! a)5/2 5 RATIONAL FUNCTIONS " 2b 2x % (22) ! ax + bdx = $ + # 3a 3 '& b + ax 1 1 (5) ! ax + b dx = a ln(ax + b) " 2b 2 4bx 2ax 2 % ! (ax + b) dx = b + ax $ + + 3/2 (23) 1 "1 # 5a 5 5 ' & (6) ! (x + a) 2 dx = x+a x 2 (24) ! dx = ( x ± 2a ) x ± a " a x % x±a 3 ! (x + a) dx = (x + a) $ 1+n + 1+ n ' , n ! "1 n n (7) # & x # x a! x& (x + a)1+n (nx + x " a) (25) " a! x dx = ! x a ! x ! a tan !1 % $ x!a ' ( ! x(x + a) dx = (n + 2)(n + 1) n (8) x (9) dx ! 1+ x 2 = tan x "1 (26) ! x+a dx = x x + a " a ln # x + x + a % $ & # 4b 2 2bx 2x 2 & (10) dx 1 "1 ! a 2 + x 2 = a tan (x / a) (27) !x ax + bdx = % " + $ 15a 2 15a + 5 ( ' b + ax xdx 1 " b x x 3/2 % (11) !a 2 = ln(a 2 + x 2 ) + x2 2 ! x ax + bdx = $ + 2 ' b + ax # 4a & (28) (12) x 2 dx ! a 2 + x 2 = x " a tan (x / a) "1 !!!!!!!!!!!!!!!!!!!!!!!!!( ( b 2 ln 2 a x + 2 b + ax ) 3/2 4a x 3 dx 1 2 1 2 ! a 2 + x 2 = 2 x " 2 a ln(a + x ) # b 2 x bx 3/2 x 5/2 & 2 2 (13) !x ax + bdx = % " + + b + ax 3/2 $ 8a 2 12a 3 ( ' # 2ax + b & (29) (14) " (ax 2 + bx + c)!1 dx = 2 4ac ! b tan !1 % 2 $ 4ac ! b 2 ( ' " ( b 3 ln 2 a x + 2 b + ax ) 5/2 8a ( ) 1 1 (15) ! (x + a)(x + b) dx = b " a [ ln(a + x) " ln(b + x)] , a ! b (30) ! x 2 ± a 2 dx = 1 1 x x 2 ± a 2 ± a 2 ln x + x 2 ± a 2 2 2 x a # x a2 ! x2 & (16) ! (x + a) 2 dx = a+ x + ln(a + x) (31) " a 2 ! x 2 dx = 1 1 x a 2 ! x 2 ! a 2 tan !1 % 2 ( $ x !a ' 2 2 2 x ln(ax 2 + bx + c) ! ax dx = 1 + bx + c !x x 2 ± a 2 = (x 2 ± a 2 )3/2 2 2a (32) (17) 3 b # 2ax + b & tan "1 % ( ) !!!!!" a 4ac " b $ 4ac " b 2 ( ' 1 ! 2 (33) dx = ln x + x 2 ± a 2 x ±a 2 2 ©2005 BE Shapiro Page 1 This document may not be reproduced, posted or published without permission. The copyright holder makes no representation about the accuracy, correctness, or suitability of this material for any purpose.
  • 2.
    1 x 1# b2 & " = sin !1 b 1 (34) ! x ln(ax + b)dx = 2a x " 4 x + % x 2 " 2 ( ln(ax + b) 2 (49) a !x 2 2 a 2$ a ' x 1# a2 & (35) ! x2 ± a2 = x 2 ± a2 (50) " x ln(a 2 1 ! b 2 x 2 )dx = ! x 2 + % x 2 ! 2 ( ln(a 2 ! bx 2 ) 2 2$ b ' x (36) " a2 ! x2 dx = ! a 2 ! x 2 EXPONENTIALS ( ) 2 x 1 1 1 ax (37) ! x ±a 2 2 dx = 2 x x 2 ± a 2 ! ln x + x 2 ± a 2 2 (51) !e ax dx = a e i " (38) " x2 1 1 # x a2 ! x2 & dx = ! x a ! x 2 ! a 2 tan !1 % 2 ( (52) ! xeax dx = 1 a xeax + 3/2 erf i ax 2a ( ) where $ x !a ' 2 a2 ! x2 2 2 2 x # e"t dt 2 erf (x) = " b x% ! 0 ! ax 2 + bx + c !dx = $ + # 4a 2 ' & ax 2 + bx + c ! xe dx = (x " 1)e x x (39) (53) 4ac ( b 2 " 2ax + b % !!!!!!!!!!!!!!+ ln $ + 2 ax 2 + bc + c ' 8a 3/2 # a & #x 1& ! xe dx = % " 2 ( eax ax (54) $a a ' !x ax 2 + bx + c !dx = ! x e dx = e (x " 2x + 2) 2 x x 2 # x 3 bx 8ac " 3b 2 & (55) (40) !!!!!!!!!!!!!!! % + + ax 2 + bx + c $ 3 12a 24a 2 ( ' # x 2 2x 2 & !!!!!!!!!!!!!!" b(4ac " b ) # 2ax + b ln % 2 & + 2 ax 2 + bc + c ( (56) ! x 2 eax dx = eax % " 2 + 3 ( $ a a a ' 16a 5/2 $ a ' ! x e dx = e (x " 3x 2 + 6x " 6) 3 x x 3 (57) 1 1 " 2ax + b % (41) ! ax 2 + bx + c dx = ln a $ # a + 2 ax 2 + bx + c ' & 1 !x e dx = ( "1) #[1+ n, "ax] where n ax n (58) x 1 a ! ax 2 + bx + c dx = a ax 2 + bx + c !(a, x) = $ # t a"1e"t dt x (42) b # 2ax + b & + 2 ax 2 + bx + c ( # !!!!!" 3/2 ln % 2a $ a ' (59) !e ax 2 dx = "i 2 a erf ix a ( ) LOGARITHMS (43) ! ln xdx = x ln x " x TRIGONOMETRIC FUNCTIONS (44) ! ln(ax) 1 dx = ( ln(ax)) 2 (60) ! sin xdx = " cos x x 2 x 1 ! sin xdx = " sin 2x 2 ax + b (61) (45) ! ln(ax + b)dx = a ln(ax + b) " x 2 4 3 1 ! sin xdx = " cos x + cos 3x 3 2b "1 # ax & (62) ! ln(a x ± b )dx = x ln(a x ± b ) + a tan % b ( " 2x 4 12 2 2 2 2 2 2 (46) $ ' 2a !1 # bx & (63) ! cos xdx = sin x " ln(a ! b x )dx = x ln(a ! b x ) + b tan % a ( ! 2x 2 2 2 2 2 2 (47) $ ' x 1 ! cos xdx = + sin 2x 2 (64) 2 4 1 # 2ax + b & ! ln(ax + bx + c)dx = 4ac " b 2 tan "1 % 2 $ 4ac " b 2 ( 3 1 ' ! cos xdx = sin x + sin 3x 3 a (65) (48) 4 12 # b & !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"2x + % $ 2a + x ( ln ax 2 + bx + c ' ( ) 1 ! sin x cos xdx = " 2 cos 2 (66) x ©2005 BE Shapiro Page 2 This document may not be reproduced, posted or published without permission. The copyright holder makes no representation about the accuracy, correctness, or suitability of this material for any purpose.
  • 3.
    ! sin 1 1 !x cos axdx = n (67) 2 x cos xdx = sin x " sin 3x 4 12 (89) 1 1 1 !!!!!!!!!! (ia)1"n $("1)n #(1+ n, "iax) " #(1+ n,iax) & % ' ! sin x cos xdx = " 4 cos x " 12 cos 3x 2 2 (68) x 1 (90) ! x sin xdx = "x cos x + sin x ! sin x cos xdx = " sin 4 x 2 2 (69) 8 32 x 1 (91) ! x sin(ax)dx = " a cos ax + a 2 sin ax (70) ! tan xdx = " ln cos x !x sin xdx = (2 " x 2 )cos x + 2x sin x 2 (92) ! tan xdx = "x + tan x 2 (71) 2 " a2 x2 2 ! x sin axdx = 3 1 (93) cos ax + 3 x sin ax ! tan xdx = ln[cos x] + sec 2 x a3 a 3 (72) 2 1 !x sin xdx = " (i)n $ #(n + 1, "ix) " ("1)n #(n + 1, "ix) & n (94) % ' (73) ! sec xdx = ln | sec x + tan x | 2 TRIGONOMETRIC FUNCTIONS WITH e ax ! sec xdx = tan x 2 (74) 1 x (95) !e x sin xdx = e [ sin x " cos x ] 1 1 ! sec xdx = 2 sec x tan x + 2 ln | sec x tan x | (75) 3 2 1 (96) !e bx sin(ax)dx = ebx [ b sin ax " a cos ax ] ! sec x tan xdx = sec x b + a2 2 (76) 1 x 1 2 (97) !e x cos xdx = e [ sin x + cos x ] ! sec x tan xdx = 2 (77) sec x 2 2 1 1 n (98) !e bx cos(ax)dx = ebx [ a sin ax + b cos ax ] ! sec x tan xdx = sec x , n ! 0 b2 + a2 n (78) n (79) ! csc xdx = ln | csc x " cot x | TRIGONOMETRIC FUNCTIONS WITH x n AND e ax ! csc xdx = " cot x 2 (80) 1 x (99) ! xe x sin xdx = e [ cos x " x cos x + x sin x ] 2 1 1 ! csc xdx = " cot x csc x + ln | csc x " cot x | 3 (81) 1 x 2 2 (100) ! xe x cos xdx = e [ x cos x " sin x + x sin x ] 2 1 ! csc x cot xdx = " csc n x , n ! 0 n (82) n HYPERBOLIC FUNCTIONS (83) ! sec x csc xdx = ln tan x (101) ! cosh xdx = sinh x eax TRIGONOMETRIC FUNCTIONS WITH x n (102) !e ax cosh bxdx = a " b2 2 [ a cosh bx " b sinh bx ] (84) ! x cos xdx = cos x + x sin x (103) ! sinh xdx = cosh x 1 1 (85) ! x cos(ax)dx = a 2 cos ax + a x sin ax eax [ "b cosh bx + a sinh bx ] !e sinh bxdx = ax (104) a " b2 2 !x cos xdx = 2x cos x + (x 2 " 2)sin x 2 (86) !e tanh xdx = e x " 2 tan "1 (e x ) x (105) 2 a2 x2 " 2 !x cos axdx = x cos ax + 2 (87) sin ax 1 ! tanh axdx = a ln cosh ax 2 a a3 (106) !x cos xdx = n (88) 1 1+n $ ! cos ax cosh bxdx = !!!!!!!!!" (i ) % #(1+ n, "ix) + ( "1)n #(1+ n,ix)& ' (107) 1 2 !!!!!!!!!! a + b2 2 [ a sin ax cosh bx + b cos ax sinh bx ] ©2005 BE Shapiro Page 3 This document may not be reproduced, posted or published without permission. The copyright holder makes no representation about the accuracy, correctness, or suitability of this material for any purpose.
  • 4.
    ! cos axsinh bxdx = (108) 1 !!!!!!!!!! a + b2 2 [b cos ax cosh bx + a sin ax sinh bx ] ! sin ax cosh bxdx = (109) 1 !!!!!!!!!! a + b2 2 [ "a cos ax cosh bx + b sin ax sinh bx ] ! sin ax sinh bxdx = (110) 1 !!!!!!!!!! a + b2 2 [b cosh bx sin ax " a cos ax sinh bx ] 1 (111) ! sinh ax cosh axdx = 4a [ "2ax + sinh(2ax)] ! sinh ax cosh bxdx = (112) 1 !!!!!!!!!! b2 " a2 [b cosh bx sinh ax " a cosh ax sinh bx ] ©2005 BE Shapiro Page 4 This document may not be reproduced, posted or published without permission. The copyright holder makes no representation about the accuracy, correctness, or suitability of this material for any purpose.