SlideShare a Scribd company logo
1 of 21
Material Handling Kaizen Report Out Tugger Delivery Utica April 25, 2008
Team Kathryn Sardini, Diana Ronan, Doug Tegtmeier, Toby Justice, Chris Lucas, Andy Scott (Team Leader)
Charter Business Case: TVC  a KPI for the Utica plant. The TVC goal is $143. The implementation of the Tugger System will improve TVC by $1.65 The purpose of the event is to establish Standard Work using a Tugger system to pick up and deliver needed materials to the Assembly cells.  Currently, each group of cells has a Material Handler servicing only those cells.  The Tugger will pick up and deliver materials to all Assembly cells on a regular route.
Charter
Target Sheet ,[object Object],[object Object]
Standard Work Elements Work Elements     0.6 Seconds Each step the tugger operator takes (2.5 feet per step) 3.66 Feet per Seconds Tugger Travel Time estimated 2.5 miles per hour 3.9 Seconds Get on tugger 3.9 Seconds Get off tugger 7 Seconds per container Deliver container/ Pick up empty
Standard Work Calculation Total= 154.9 sec.  (93.1sec. delivery and pick up of empty bins + 7.8 sec. to get on and get off tugger + walk time around cell) PART# STANDARD PACK PIECES PER UNIT Daily Usage Daily Total Usage # of containers per day # of containers per hour # of containers per hour * 7 secs per container (pickup/delivery) GA-1054 50 1 72 72 1.4 0.2 1.4 SC-2951 100 2 72 144 1.4 0.2 1.4 SC-989 100 2 72 144 1.4 0.2 1.4 SC-641 200 2 72 144 0.7 0.1 0.7 SC-2944 100 2 72 144 1.4 0.2 1.4 SC-456 1000 5 72 360 0.4 0.0 0.3 MI-3054 200 3 72 216 1.1 0.1 1.0 93.1+7.8+54 sec.
Standard Work Calculation Delivery Route Standard Work   Stop ID Action Stop Time Drive Time 1 Travel from stop 7 at market to first stop 8. Deliver parts, pick up empty containers and pull signals 181.2 30.1 2 Travel from stop 8 to stop 9. Deliver parts, pick up empty containers and pull signals 152.8 13.1 3 Travel from stop 9 to stop 10. Deliver parts, pick up empty containers and pull signals 179.2 12.8 4 Travel from stop 10 to stop 11. Deliver parts, pick up empty containers and pull signals 154.9 14.8 5 Travel from stop11 to stop 12. Deliver parts, pick up empty containers and pull signals 199.7 15.3 6 Travel from stop 12 to stop 13. Deliver parts, pick up empty containers and pull signals 390.8 12.3 7 Travel from stop 13 to stop 1. Return to Market   63.7 8 Travel from stop 1 to stop 7 Market Time   54.4 Total: 21 3.6 Total Delivery Route Time: 24 min. 36 sec. per hour
Time Study Delivery Route Standard Work   Stop ID Action Stop Time Actual Time Variance Drive Time Actual Time Variance 1 Travel from stop 7 at market to first stop 8. Deliver parts, pick up empty containers and pull signals 181.2 68.3 112.9 30.1 31.0 -0.9 2 Travel from stop 8 to stop 9. Deliver parts, pick up empty containers and pull signals 152.8 144 8.8 13.1 14.0 -0.9 3 Travel from stop 9 to stop 10. Deliver parts, pick up empty containers and pull signals 179.2 142 37.2 12.8 18.0 -5.2 4 Travel from stop 10 to stop 11. Deliver parts, pick up empty containers and pull signals 154.9 517 -362.1 14.8 17.0 -2.2 5 Travel from stop11 to stop 12. Deliver parts, pick up empty containers and pull signals 199.7 35 164.7 15.3 17.0 -1.7 6 Travel from stop 12 to stop 13. Deliver parts, pick up empty containers and pull signals 390.8 150 240.8 12.3 12.0 0.3 7 Travel from stop 13 to stop 1. Return to Market       63.7 57.0 6.7 8 Travel from stop 1 to stop 7 Market Time       54.4 54.4 0.0 Total: 21 18 3 3.6 3.7 -0.1 Total Delivery Route Time: 24 min. 36 sec. per hour    
1 Hour Coupled Route Parameters Actual Max load time 33% of total time 20 min. (0.33 x 60 min.) Under 20 min.       Max travel time 33% of non load time 13 min. 12 sec. (.33 x 40 min.) 3 min. 36 sec.     *If load time were less than 33% (20 min.), maximum travel time could be greater. Total Stop Time   27 min. available if travel time is 13 min. 12 sec. 21 min.       Total Time 1 hr. 1 hr. 44 min. 36 sec.      
Kaizen Title Kaizen Sheet 1. No Defined Delivery Route. Marshaller’s took random routes. Defined Tugger Route and added delivery stops. Reduced travel distance by 37% (reduction of 4 miles in walking distance). A spaghetti diagram showed that one marshaller for one out of the 12 cells walked 9575 feet = 1.8 miles of walk distance.  (1.8*12= 21.5 miles) 13104 feet (2.5 miles) of travel distance for all 12 cells. Next page Next page Operator No. Problem Measures Taken Results Remarks Name
 
 
Kaizen Title Kaizen Sheet 2. There were items not on the tugger route. Added one of the items to the supermarket. Spacers are now on the tugger route. Before Kaizen After Kaizen Operator No. Problem Measures Taken Results Remarks Name
Kaizen Title Kaizen Sheet 3. Not all lines had empty bin return chutes. Installed 26 empty bin return chutes throughout assembly. Each cell has a way to signal the replenishment of their empty totes. After Kaizen After Kaizen Operator No. Problem Measures Taken Results Remarks Name
Kaizen Title Kaizen Sheet 4. 10% of items in the part presentation racks do not have permanent locations because of high variation (i.e. sockets).  Developed a kitting procedure for the high variation items. Now tugger will have a replenishment signal. Before Kaizen After Kaizen Operator No. Problem Measures Taken Results Remarks Name
Kaizen Title Kaizen Sheet 5. Used forklifts, walk behind forklifts, and push carts (Safety issues, inefficient material movement methods). Starting using a tugger vehicle that pulls a string of carts. Optimal material delivery method. Before Kaizen After Kaizen Operator No. Problem Measures Taken Results Remarks Name
Kaizen Title Kaizen Sheet 6. No defined address system or visual controls. Added visual signs above each part category and rack level indicators. Easier to find material. After Kaizen After Kaizen Operator No. Problem Measures Taken Results Remarks Name
Report Card/Newspaper
Report Card/Newspaper
Questions?

More Related Content

Viewers also liked

Viewers also liked (20)

WQD2011 – KAIZEN – GOLD WINNER – Emirates Aluminium - Production Capacity Max...
WQD2011 – KAIZEN – GOLD WINNER – Emirates Aluminium - Production Capacity Max...WQD2011 – KAIZEN – GOLD WINNER – Emirates Aluminium - Production Capacity Max...
WQD2011 – KAIZEN – GOLD WINNER – Emirates Aluminium - Production Capacity Max...
 
WQD2011 - KAIZEN - EMAL - To eliminate the chances of breaking of PC charging...
WQD2011 - KAIZEN - EMAL - To eliminate the chances of breaking of PC charging...WQD2011 - KAIZEN - EMAL - To eliminate the chances of breaking of PC charging...
WQD2011 - KAIZEN - EMAL - To eliminate the chances of breaking of PC charging...
 
WQD2011 - KAIZEN - EMAL - Suggestion for energy & cost saving as well as redu...
WQD2011 - KAIZEN - EMAL - Suggestion for energy & cost saving as well as redu...WQD2011 - KAIZEN - EMAL - Suggestion for energy & cost saving as well as redu...
WQD2011 - KAIZEN - EMAL - Suggestion for energy & cost saving as well as redu...
 
WQD2011 - KAIZEN - EMAL - Hot Bath Removal Multi-Function Car Carriage Lift P...
WQD2011 - KAIZEN - EMAL - Hot Bath Removal Multi-Function Car Carriage Lift P...WQD2011 - KAIZEN - EMAL - Hot Bath Removal Multi-Function Car Carriage Lift P...
WQD2011 - KAIZEN - EMAL - Hot Bath Removal Multi-Function Car Carriage Lift P...
 
WQD2011 - KAIZEN - EMAL - Sermas Saw Strapping Position Modification
WQD2011 - KAIZEN - EMAL - Sermas Saw Strapping Position ModificationWQD2011 - KAIZEN - EMAL - Sermas Saw Strapping Position Modification
WQD2011 - KAIZEN - EMAL - Sermas Saw Strapping Position Modification
 
WQD2011 - KAIZEN - DEWA - CCTV (Closed Circuit Television) System
WQD2011 - KAIZEN - DEWA - CCTV (Closed Circuit Television) SystemWQD2011 - KAIZEN - DEWA - CCTV (Closed Circuit Television) System
WQD2011 - KAIZEN - DEWA - CCTV (Closed Circuit Television) System
 
WQD2011 - KAIZEN - SRF Oversear Ltd - To Eliminate frequent breakage of guide...
WQD2011 - KAIZEN - SRF Oversear Ltd - To Eliminate frequent breakage of guide...WQD2011 - KAIZEN - SRF Oversear Ltd - To Eliminate frequent breakage of guide...
WQD2011 - KAIZEN - SRF Oversear Ltd - To Eliminate frequent breakage of guide...
 
WQD2011 - KAIZEN - DEWA - WiFi (Wireless Fidelity) network facility
WQD2011 - KAIZEN - DEWA - WiFi (Wireless Fidelity) network facilityWQD2011 - KAIZEN - DEWA - WiFi (Wireless Fidelity) network facility
WQD2011 - KAIZEN - DEWA - WiFi (Wireless Fidelity) network facility
 
WQD2011 - KAIZEN - DEWA - Personal Computer Auto Shutdown
WQD2011 - KAIZEN - DEWA - Personal Computer Auto ShutdownWQD2011 - KAIZEN - DEWA - Personal Computer Auto Shutdown
WQD2011 - KAIZEN - DEWA - Personal Computer Auto Shutdown
 
WQD2011 - KAIZEN - DEWA - eSignature
WQD2011 - KAIZEN - DEWA - eSignatureWQD2011 - KAIZEN - DEWA - eSignature
WQD2011 - KAIZEN - DEWA - eSignature
 
WQD2011 - KAIZEN - SRF Oversear Ltd - Re-use of condensed water (generated fr...
WQD2011 - KAIZEN - SRF Oversear Ltd - Re-use of condensed water (generated fr...WQD2011 - KAIZEN - SRF Oversear Ltd - Re-use of condensed water (generated fr...
WQD2011 - KAIZEN - SRF Oversear Ltd - Re-use of condensed water (generated fr...
 
WQD2011 - KAIZEN - SRF Oversear Ltd - To reduce production loss due to Maximu...
WQD2011 - KAIZEN - SRF Oversear Ltd - To reduce production loss due to Maximu...WQD2011 - KAIZEN - SRF Oversear Ltd - To reduce production loss due to Maximu...
WQD2011 - KAIZEN - SRF Oversear Ltd - To reduce production loss due to Maximu...
 
WQD2011 - KAIZEN - EMAL - New design for Ring Main Cover lifting trolley
WQD2011 - KAIZEN - EMAL - New design for Ring Main Cover lifting trolleyWQD2011 - KAIZEN - EMAL - New design for Ring Main Cover lifting trolley
WQD2011 - KAIZEN - EMAL - New design for Ring Main Cover lifting trolley
 
WQD2011 - KAIZEN - EMAL - Modification of Dust Recycling Duct
WQD2011 - KAIZEN - EMAL - Modification of Dust Recycling DuctWQD2011 - KAIZEN - EMAL - Modification of Dust Recycling Duct
WQD2011 - KAIZEN - EMAL - Modification of Dust Recycling Duct
 
WQD2011 - KAIZEN - ETA Ascon - Eliminating Honeycombing Defect in Concrete
WQD2011 - KAIZEN - ETA Ascon - Eliminating Honeycombing Defect in ConcreteWQD2011 - KAIZEN - ETA Ascon - Eliminating Honeycombing Defect in Concrete
WQD2011 - KAIZEN - ETA Ascon - Eliminating Honeycombing Defect in Concrete
 
WQD2011 - KAIZEN - SRF Oversear Ltd - Set up time reduction in loom during st...
WQD2011 - KAIZEN - SRF Oversear Ltd - Set up time reduction in loom during st...WQD2011 - KAIZEN - SRF Oversear Ltd - Set up time reduction in loom during st...
WQD2011 - KAIZEN - SRF Oversear Ltd - Set up time reduction in loom during st...
 
WQD2011 - KAIZEN - EMAL - Vibro compactor Height Gauge Junction box Relocation
WQD2011 - KAIZEN - EMAL - Vibro compactor Height Gauge Junction box RelocationWQD2011 - KAIZEN - EMAL - Vibro compactor Height Gauge Junction box Relocation
WQD2011 - KAIZEN - EMAL - Vibro compactor Height Gauge Junction box Relocation
 
WQD2011 - KAIZEN - ETA Ascon - Repairing & Eliminating Honeycomb Defect in Co...
WQD2011 - KAIZEN - ETA Ascon - Repairing & Eliminating Honeycomb Defect in Co...WQD2011 - KAIZEN - ETA Ascon - Repairing & Eliminating Honeycomb Defect in Co...
WQD2011 - KAIZEN - ETA Ascon - Repairing & Eliminating Honeycomb Defect in Co...
 
WQD2011 - KAIZEN - EMAL - To conserve DM water
WQD2011 - KAIZEN - EMAL - To conserve DM waterWQD2011 - KAIZEN - EMAL - To conserve DM water
WQD2011 - KAIZEN - EMAL - To conserve DM water
 
WQD2011 - Kaizen case study by DEWA - Access Control System
WQD2011 - Kaizen case study by DEWA - Access Control SystemWQD2011 - Kaizen case study by DEWA - Access Control System
WQD2011 - Kaizen case study by DEWA - Access Control System
 

Similar to 20425 Utica Tugger

HS Labelers _ Downtime Results
HS Labelers _ Downtime ResultsHS Labelers _ Downtime Results
HS Labelers _ Downtime Results
Shane Ireland
 
OMP presentation
OMP presentationOMP presentation
OMP presentation
buhle keto
 

Similar to 20425 Utica Tugger (20)

20627 Utica Finished Assemblies Tugger
20627 Utica Finished Assemblies Tugger20627 Utica Finished Assemblies Tugger
20627 Utica Finished Assemblies Tugger
 
Research paper: Productivity Improvement in a Centralized Warehouse
Research paper: Productivity Improvement in a Centralized WarehouseResearch paper: Productivity Improvement in a Centralized Warehouse
Research paper: Productivity Improvement in a Centralized Warehouse
 
HS Labelers _ Downtime Results
HS Labelers _ Downtime ResultsHS Labelers _ Downtime Results
HS Labelers _ Downtime Results
 
2010 IIE/Rockwell Student Simulation Competition
2010 IIE/Rockwell Student Simulation Competition2010 IIE/Rockwell Student Simulation Competition
2010 IIE/Rockwell Student Simulation Competition
 
Finishing manual
Finishing manualFinishing manual
Finishing manual
 
OMP presentation
OMP presentationOMP presentation
OMP presentation
 
Value stream mapping (future state)
Value stream mapping (future state)Value stream mapping (future state)
Value stream mapping (future state)
 
Performance and Efficiency Analysis with Value Stream Mapping for Increasing ...
Performance and Efficiency Analysis with Value Stream Mapping for Increasing ...Performance and Efficiency Analysis with Value Stream Mapping for Increasing ...
Performance and Efficiency Analysis with Value Stream Mapping for Increasing ...
 
Smed implementation on manufacturing stamping line
Smed implementation on manufacturing stamping lineSmed implementation on manufacturing stamping line
Smed implementation on manufacturing stamping line
 
SMED implementation on Automated Stamping Line
SMED implementation on Automated Stamping LineSMED implementation on Automated Stamping Line
SMED implementation on Automated Stamping Line
 
Project Reportof Velocity Apparelz Nort Africa
Project Reportof Velocity Apparelz  Nort AfricaProject Reportof Velocity Apparelz  Nort Africa
Project Reportof Velocity Apparelz Nort Africa
 
LINE CALL REDUCTION USING PROCESS IMPROVEMENT IN AN AUTOMOBILE COMPANY: A SIM...
LINE CALL REDUCTION USING PROCESS IMPROVEMENT IN AN AUTOMOBILE COMPANY: A SIM...LINE CALL REDUCTION USING PROCESS IMPROVEMENT IN AN AUTOMOBILE COMPANY: A SIM...
LINE CALL REDUCTION USING PROCESS IMPROVEMENT IN AN AUTOMOBILE COMPANY: A SIM...
 
LOGISTIC SOLUTIONS FOR ITC
LOGISTIC SOLUTIONS FOR ITCLOGISTIC SOLUTIONS FOR ITC
LOGISTIC SOLUTIONS FOR ITC
 
Efficient belt extension_process in Room and Pillar mining method
Efficient belt extension_process in Room and Pillar mining methodEfficient belt extension_process in Room and Pillar mining method
Efficient belt extension_process in Room and Pillar mining method
 
SAMA_RAGAVA REDDY
SAMA_RAGAVA REDDYSAMA_RAGAVA REDDY
SAMA_RAGAVA REDDY
 
Jonson"s Rule Production scheduling
 Jonson"s Rule Production scheduling Jonson"s Rule Production scheduling
Jonson"s Rule Production scheduling
 
Method study
Method studyMethod study
Method study
 
concrete manual updated.pdf
concrete manual updated.pdfconcrete manual updated.pdf
concrete manual updated.pdf
 
Scooter india,sip presentation
Scooter india,sip presentationScooter india,sip presentation
Scooter india,sip presentation
 
ME460 Presentation
ME460 PresentationME460 Presentation
ME460 Presentation
 

20425 Utica Tugger

  • 1. Material Handling Kaizen Report Out Tugger Delivery Utica April 25, 2008
  • 2. Team Kathryn Sardini, Diana Ronan, Doug Tegtmeier, Toby Justice, Chris Lucas, Andy Scott (Team Leader)
  • 3. Charter Business Case: TVC a KPI for the Utica plant. The TVC goal is $143. The implementation of the Tugger System will improve TVC by $1.65 The purpose of the event is to establish Standard Work using a Tugger system to pick up and deliver needed materials to the Assembly cells. Currently, each group of cells has a Material Handler servicing only those cells. The Tugger will pick up and deliver materials to all Assembly cells on a regular route.
  • 5.
  • 6. Standard Work Elements Work Elements     0.6 Seconds Each step the tugger operator takes (2.5 feet per step) 3.66 Feet per Seconds Tugger Travel Time estimated 2.5 miles per hour 3.9 Seconds Get on tugger 3.9 Seconds Get off tugger 7 Seconds per container Deliver container/ Pick up empty
  • 7. Standard Work Calculation Total= 154.9 sec. (93.1sec. delivery and pick up of empty bins + 7.8 sec. to get on and get off tugger + walk time around cell) PART# STANDARD PACK PIECES PER UNIT Daily Usage Daily Total Usage # of containers per day # of containers per hour # of containers per hour * 7 secs per container (pickup/delivery) GA-1054 50 1 72 72 1.4 0.2 1.4 SC-2951 100 2 72 144 1.4 0.2 1.4 SC-989 100 2 72 144 1.4 0.2 1.4 SC-641 200 2 72 144 0.7 0.1 0.7 SC-2944 100 2 72 144 1.4 0.2 1.4 SC-456 1000 5 72 360 0.4 0.0 0.3 MI-3054 200 3 72 216 1.1 0.1 1.0 93.1+7.8+54 sec.
  • 8. Standard Work Calculation Delivery Route Standard Work   Stop ID Action Stop Time Drive Time 1 Travel from stop 7 at market to first stop 8. Deliver parts, pick up empty containers and pull signals 181.2 30.1 2 Travel from stop 8 to stop 9. Deliver parts, pick up empty containers and pull signals 152.8 13.1 3 Travel from stop 9 to stop 10. Deliver parts, pick up empty containers and pull signals 179.2 12.8 4 Travel from stop 10 to stop 11. Deliver parts, pick up empty containers and pull signals 154.9 14.8 5 Travel from stop11 to stop 12. Deliver parts, pick up empty containers and pull signals 199.7 15.3 6 Travel from stop 12 to stop 13. Deliver parts, pick up empty containers and pull signals 390.8 12.3 7 Travel from stop 13 to stop 1. Return to Market   63.7 8 Travel from stop 1 to stop 7 Market Time   54.4 Total: 21 3.6 Total Delivery Route Time: 24 min. 36 sec. per hour
  • 9. Time Study Delivery Route Standard Work   Stop ID Action Stop Time Actual Time Variance Drive Time Actual Time Variance 1 Travel from stop 7 at market to first stop 8. Deliver parts, pick up empty containers and pull signals 181.2 68.3 112.9 30.1 31.0 -0.9 2 Travel from stop 8 to stop 9. Deliver parts, pick up empty containers and pull signals 152.8 144 8.8 13.1 14.0 -0.9 3 Travel from stop 9 to stop 10. Deliver parts, pick up empty containers and pull signals 179.2 142 37.2 12.8 18.0 -5.2 4 Travel from stop 10 to stop 11. Deliver parts, pick up empty containers and pull signals 154.9 517 -362.1 14.8 17.0 -2.2 5 Travel from stop11 to stop 12. Deliver parts, pick up empty containers and pull signals 199.7 35 164.7 15.3 17.0 -1.7 6 Travel from stop 12 to stop 13. Deliver parts, pick up empty containers and pull signals 390.8 150 240.8 12.3 12.0 0.3 7 Travel from stop 13 to stop 1. Return to Market       63.7 57.0 6.7 8 Travel from stop 1 to stop 7 Market Time       54.4 54.4 0.0 Total: 21 18 3 3.6 3.7 -0.1 Total Delivery Route Time: 24 min. 36 sec. per hour    
  • 10. 1 Hour Coupled Route Parameters Actual Max load time 33% of total time 20 min. (0.33 x 60 min.) Under 20 min.       Max travel time 33% of non load time 13 min. 12 sec. (.33 x 40 min.) 3 min. 36 sec.     *If load time were less than 33% (20 min.), maximum travel time could be greater. Total Stop Time   27 min. available if travel time is 13 min. 12 sec. 21 min.       Total Time 1 hr. 1 hr. 44 min. 36 sec.      
  • 11. Kaizen Title Kaizen Sheet 1. No Defined Delivery Route. Marshaller’s took random routes. Defined Tugger Route and added delivery stops. Reduced travel distance by 37% (reduction of 4 miles in walking distance). A spaghetti diagram showed that one marshaller for one out of the 12 cells walked 9575 feet = 1.8 miles of walk distance. (1.8*12= 21.5 miles) 13104 feet (2.5 miles) of travel distance for all 12 cells. Next page Next page Operator No. Problem Measures Taken Results Remarks Name
  • 12.  
  • 13.  
  • 14. Kaizen Title Kaizen Sheet 2. There were items not on the tugger route. Added one of the items to the supermarket. Spacers are now on the tugger route. Before Kaizen After Kaizen Operator No. Problem Measures Taken Results Remarks Name
  • 15. Kaizen Title Kaizen Sheet 3. Not all lines had empty bin return chutes. Installed 26 empty bin return chutes throughout assembly. Each cell has a way to signal the replenishment of their empty totes. After Kaizen After Kaizen Operator No. Problem Measures Taken Results Remarks Name
  • 16. Kaizen Title Kaizen Sheet 4. 10% of items in the part presentation racks do not have permanent locations because of high variation (i.e. sockets). Developed a kitting procedure for the high variation items. Now tugger will have a replenishment signal. Before Kaizen After Kaizen Operator No. Problem Measures Taken Results Remarks Name
  • 17. Kaizen Title Kaizen Sheet 5. Used forklifts, walk behind forklifts, and push carts (Safety issues, inefficient material movement methods). Starting using a tugger vehicle that pulls a string of carts. Optimal material delivery method. Before Kaizen After Kaizen Operator No. Problem Measures Taken Results Remarks Name
  • 18. Kaizen Title Kaizen Sheet 6. No defined address system or visual controls. Added visual signs above each part category and rack level indicators. Easier to find material. After Kaizen After Kaizen Operator No. Problem Measures Taken Results Remarks Name

Editor's Notes

  1. If possible: Provide an example for the participants. Write the variables and the equation on a flip chart and fill in and calculate.
  2. Walk through the example and provide a written example on a flip chart. Ask the class to calculate another example and volunteer an answer.
  3. Walk through the example and provide a written example on a flip chart. Ask the class to calculate another example and volunteer an answer.
  4. Walk through the example and provide a written example on a flip chart. Ask the class to calculate another example and volunteer an answer.
  5. 平準化はグローバルプロダクションシステム( GPS) の礎を築くものです。これが基礎となりジャスト・イン・タイムと自働化の 2 本柱を支えています。 現場改善と生産準備を実施していくつもの改善を達成したとします。さらに顧客により早く対応出来るようになりました。しかし、顧客から受ける多くの注文は現在でも変化に富み、注文通り、時間通りに物が造れていません。 この変化に富んだ注文サイクルは、顧客が望む日程で我々が製品を配達できていないという不信感からきていたことをつきとめました。この信頼の欠如が、一括注文システムや早期注文につながっているのです。この状況を変えるために、顧客との信頼関係を築く必要があります。 平準化は簡単には実施できません。しかしながら本質は、やるか、やらないかです。よって挑戦することをためらう必要はありません。平準化無くしては、我々が実行してきた多くの改善が最大の効力を発揮させることが出来ないのです。 株式会社 新技術研究所
  6. 平準化はグローバルプロダクションシステム( GPS) の礎を築くものです。これが基礎となりジャスト・イン・タイムと自働化の 2 本柱を支えています。 現場改善と生産準備を実施していくつもの改善を達成したとします。さらに顧客により早く対応出来るようになりました。しかし、顧客から受ける多くの注文は現在でも変化に富み、注文通り、時間通りに物が造れていません。 この変化に富んだ注文サイクルは、顧客が望む日程で我々が製品を配達できていないという不信感からきていたことをつきとめました。この信頼の欠如が、一括注文システムや早期注文につながっているのです。この状況を変えるために、顧客との信頼関係を築く必要があります。 平準化は簡単には実施できません。しかしながら本質は、やるか、やらないかです。よって挑戦することをためらう必要はありません。平準化無くしては、我々が実行してきた多くの改善が最大の効力を発揮させることが出来ないのです。 株式会社 新技術研究所
  7. 平準化はグローバルプロダクションシステム( GPS) の礎を築くものです。これが基礎となりジャスト・イン・タイムと自働化の 2 本柱を支えています。 現場改善と生産準備を実施していくつもの改善を達成したとします。さらに顧客により早く対応出来るようになりました。しかし、顧客から受ける多くの注文は現在でも変化に富み、注文通り、時間通りに物が造れていません。 この変化に富んだ注文サイクルは、顧客が望む日程で我々が製品を配達できていないという不信感からきていたことをつきとめました。この信頼の欠如が、一括注文システムや早期注文につながっているのです。この状況を変えるために、顧客との信頼関係を築く必要があります。 平準化は簡単には実施できません。しかしながら本質は、やるか、やらないかです。よって挑戦することをためらう必要はありません。平準化無くしては、我々が実行してきた多くの改善が最大の効力を発揮させることが出来ないのです。 株式会社 新技術研究所
  8. 平準化はグローバルプロダクションシステム( GPS) の礎を築くものです。これが基礎となりジャスト・イン・タイムと自働化の 2 本柱を支えています。 現場改善と生産準備を実施していくつもの改善を達成したとします。さらに顧客により早く対応出来るようになりました。しかし、顧客から受ける多くの注文は現在でも変化に富み、注文通り、時間通りに物が造れていません。 この変化に富んだ注文サイクルは、顧客が望む日程で我々が製品を配達できていないという不信感からきていたことをつきとめました。この信頼の欠如が、一括注文システムや早期注文につながっているのです。この状況を変えるために、顧客との信頼関係を築く必要があります。 平準化は簡単には実施できません。しかしながら本質は、やるか、やらないかです。よって挑戦することをためらう必要はありません。平準化無くしては、我々が実行してきた多くの改善が最大の効力を発揮させることが出来ないのです。 株式会社 新技術研究所
  9. 平準化はグローバルプロダクションシステム( GPS) の礎を築くものです。これが基礎となりジャスト・イン・タイムと自働化の 2 本柱を支えています。 現場改善と生産準備を実施していくつもの改善を達成したとします。さらに顧客により早く対応出来るようになりました。しかし、顧客から受ける多くの注文は現在でも変化に富み、注文通り、時間通りに物が造れていません。 この変化に富んだ注文サイクルは、顧客が望む日程で我々が製品を配達できていないという不信感からきていたことをつきとめました。この信頼の欠如が、一括注文システムや早期注文につながっているのです。この状況を変えるために、顧客との信頼関係を築く必要があります。 平準化は簡単には実施できません。しかしながら本質は、やるか、やらないかです。よって挑戦することをためらう必要はありません。平準化無くしては、我々が実行してきた多くの改善が最大の効力を発揮させることが出来ないのです。 株式会社 新技術研究所
  10. 平準化はグローバルプロダクションシステム( GPS) の礎を築くものです。これが基礎となりジャスト・イン・タイムと自働化の 2 本柱を支えています。 現場改善と生産準備を実施していくつもの改善を達成したとします。さらに顧客により早く対応出来るようになりました。しかし、顧客から受ける多くの注文は現在でも変化に富み、注文通り、時間通りに物が造れていません。 この変化に富んだ注文サイクルは、顧客が望む日程で我々が製品を配達できていないという不信感からきていたことをつきとめました。この信頼の欠如が、一括注文システムや早期注文につながっているのです。この状況を変えるために、顧客との信頼関係を築く必要があります。 平準化は簡単には実施できません。しかしながら本質は、やるか、やらないかです。よって挑戦することをためらう必要はありません。平準化無くしては、我々が実行してきた多くの改善が最大の効力を発揮させることが出来ないのです。 株式会社 新技術研究所