SlideShare a Scribd company logo
1 of 14
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
1
Radial flow fan test
Objective:
The main objectives of this lab>
 To measure the total pressure drop with respect to flow rate
 To measure static pressure drop with respect to flow rate.
 To know the parameters that affects the operation capacity and efficiency of
the fan.
 And determine which parameters are the most determinant for the flow fan.
Theory
A radial flow fan comprising an impeller where the direction of the entry air flow is vertical
to the direction of the exit air flow
A centrifugal fan is a mechanical device for moving air or other gases. These fans increase
the speed of air stream with the rotating impellers. They use the kinetic energy of the
impellers or the rotating blade to increase the pressure of the air/gas stream which in turn
moves them against the resistance caused by ducts, dampers and other components.
Centrifugal fans accelerate air radially, changing the direction (typically by 90°) of the
airflow. They are sturdy, quiet, reliable, and capable of operating over a wide range of
conditions.
Centrifugal fans are constant displacement devices or constant volume devices, meaning
that, at a constant fan speed, a centrifugal fan will pump a constant volume of air rather
than a constant mass. This means that the air velocity in a system is fixed even though mass
flow rate through the fan is not.
The centrifugal fan is one of the most widely used fans. Centrifugal fans are by far the most
prevalent type of fan used in the HVAC industry today. They are usually cheaper than axial
fans and simpler in construction. It is used in transporting gas or materials and in
ventilation system for buildings. They are also used commonly in central heating/cooling
systems. They are also well-suited for industrial processes and air pollution control
systems.
It has a fan wheel composed of a number of fan blades, or ribs, mounted around a hub. As
shown in the figure, the hub turns on a driveshaft that passes through the fan housing. The
gas enters from the side of the fan wheel, turns 90 degrees and accelerates due to
centrifugal force as it flows over the fan blades and exits the fan housing.
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
2
Main parts of a centrifugal fan are:
 Fan housing
 Impellers
 Inlet and outlet ducts
 Drive shaft
 Drive mechanism
Principles of operation
The centrifugal fan uses the centrifugal power generated from the rotation of impellers to
increase the kinetic energy of air/gases. When the impellers rotate, the gas near the
impellers is thrown-off from the impellers due to the centrifugal force and then moves into
the fan casing. As a result, the kinetic energy of gas is converted to pressure because of
system resistance offered by the casing and duct. The gas is then guided to the exit via
outlet ducts. After the gas is thrown-off, the gas pressure in the middle region of the
impellers decreases. The gas from the impeller eye rushes in to normalize this pressure.
This cycle repeats and therefore the gas can be continuously transferred.
Apparatus and materials used
Data
Dim
Nozzle
position
Turn 1 3 5 7 9 11 13 15 17 19
wattmete
r
𝛼 25 27 28 31.5 35 39 41 43 46 48
Voltage V 450 450 450 450 450 450 450 450 450 450
current A 2.7 2.8 2.9 3 3.05 3.12 3.15 3.20 3.25 3.3
Speed n rpm 280
0
280
0
280
0
280
0
280
0
280
0
280
0
280
0
280
0
280
0
∆𝑝vent mmw 40 130 270 410 610 830 103 120 138 151
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
3
Bf=603mmHg
T=210C
B =Bf-T/8
C =20;
Power=C/2*𝛼w
SFven=1
SFfav= (808.3/0.787)*(inch/250)
AD=0.1452m
A0=34.77m
1, Calculation
c 0 0 0 0
∆𝑝fan mmw
c
930 890 885 880 860 840 790 740 680 610
value Di
m
1 Nozzle
position
Tur
n
1 3 5 7 9 11 13 15 17 19
2 wattmeter 𝛼 25 27 28 31.5 35 39 41 43 46 48
3 Voltage V 450 450 450 450 450 450 450 450 450 450
4 current A 2.7 2.8 2.9 3 3.05 3.12 3.15 3.2 3.25 3.3
5 Speed n rp
m
280
0
280
0
280
0
280
0
280
0
280
0
280
0
280
0
280
0
280
0
6 ∆𝑝vent m
m
wc
40 130 270 410 610 830 103
0
120
0
138
0
151
0
7 ∆𝑝fan m
m
wc
930 890 885 880 860 840 790 740 680 610
8 Nactive=(C/
2)*
𝛼
W 250 270 280 315 350 390 410 430 460 480
9 Napparent=V*
A
VA 121
5
126
0
130
5
135
0
137
2.5
140
4
141
7.5
144
0
146
2.5
148
5
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
4
1
0
cos𝜑=Nacti
ve/Napparant
- 0.20
6
0.21
43
0.21
46
0.23 0.25
5
0.27
8
0.28
92
0.29
9
0.31
5
0.32
3
1
1
n=n(rpm)
/60
1/s 46.6
7
46.6
7
46.6
7
46.6
7
46.6
7
46.6
7
46.6
7
46.6
7
46.6
7
46.6
7
1
2
𝜔=2𝜋n 1/s 293.
067
293.
067
293.
067
293.
067
293.
067
293.
067
293.
067
293.
067
293.
067
293.
067
1
3
U1=r1*𝜔 m/
s
20.6
32
20.6
32
20.6
32
20.6
32
20.6
32
20.6
32
20.6
32
20.6
32
20.6
32
20.6
32
1
4
U2=r2*𝜔 m/
s
23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6
1
5
U22=(r2 𝜔)
2
m2
/s2
556.
38
556.
38
556.
38
556.
38
556.
38
556.
38
556.
38
556.
38
556.
38
556.
38
1
6
A0u1=34.7
7*(r1 𝜔)
m3
/s
717.
375
717.
375
717.
375
717.
375
717.
375
717.
375
717.
375
717.
375
717.
375
717.
375
1
7
U13=(r1 𝜔)
3
m3
/s3
878
2.06
2
878
2.06
2
878
2.06
2
878
2.06
2
878
2.06
2
878
2.06
2
878
2.06
2
878
2.06
2
878
2.06
2
878
2.06
2
1
8
A0u13=34.
77*(r1 𝜔)3
m5
/s3
305
372
305
372
305
372
305
372
305
372
305
372
305
372
305
372
305
372
305
372
1
9
(𝜌/2)*
A0u13=0.4
5* A0u13
Kg
/m.
s3
137
417.
23
137
417.
23
137
417.
23
137
417.
23
137
417.
23
137
417.
23
137
417.
23
137
417.
23
137
417.
23
137
417.
23
2
0
∆pven/20*
0.8*0.5
m
m
wc
0.8 2.6 5.4 8.2 12.2 16.6 20.6 24 27.6 30.2
2
1
∆pven=g*pv
ent=9.81*’2
0’
Kg
/m
s2
7.85 25.5
06
52.9
74
80.4
42
119.
88
162.
85
202.
09
235.
44
270.
76
296.
3
2
2
∆pven/(𝜌/
2)
m2
/s2
17.4
4
56.6
8
117.
708
2
178.
76
266.
4
361.
89
449.
09
523.
2
601.
63
658.
44
2
3
√∆pven/𝜌 m/
s
4.17
7
7.52
9
10.8
52
13.3
7
16.3
22
19.0
23
21.2 22.9 24.5
3
25.6
6
2
4
𝛼A0√∆pve
n/𝜌=V
m/
s
0.02
756
4
0.04
97
0.07
161
0.08
823
0.10
771
0.12
553
3
0.13
49
0.15
114
0.16
2
0.16
93
2
5
∆Pfan=sʄfan
*∆P*fan
m
m
wc
18.6 17.8 17.7 17.6 17.2 16.8 15.8 14.8 13.6 12.2
2
6
∆Pfan=g∆Pf
an
Kg
/m
s2
182.
47
174.
62
173.
64
172.
66
168.
723
164.
81
155 145.
19
133.
42
119.
682
2
7
Ystat=∆Pfan
/ 𝜌
m2
/s2
202.
744
194.
02
192.
93
191.
84
187.
5
183.
122
172.
22
161.
32
148.
244
133
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
5
2,plots
A, calculationand graph
𝜑 10^
-5
3.842
3
6.93 9.983 11.472
4
15.014
5
17.5 18.80
5
21.0
7
22.58
2
23.6
cos
𝜑
0.206 0.214
3
0.214
6
0.23 0.255 0.27
8
0.289
2
0.29
9
0.315 0.32
3
Nacti w 250 270 280 315 350 390 410 430 460 480
Cos𝝋Vs Nactive graph
2
8
CD=V/AD m/
s
1.89
81
3.42
3
4.93
2
6.07
645
7.41
804
8.64
55
9.63
5
10.4
091
11.1
57
11.6
6
2
9
Ydyn=CD2/
2
m2
/s2
1.80
14
5.86 12.1
62
18.4
62
27.5
14
37.2
82
46.4
2
54.1
75
62.2
4
67.9
8
3
0
Y= Ydyn+
Ystat
m2
/s2
204.
55
199.
88
205.
092
210.
302
215.
014
220.
404
218.
64
215.
5
210.
5
201
3
1
Neff=VY𝜌 w 5.07
44
8.94
063
13.2
2
16.7 20.8
43
24.9
012
27.5
3
29.3
14
30.6
91
30.6
3
3
2
Ƞtot= Neff/
Nactive
- 0.02
03
0.03
31
0.04
721
0.05
302
0.06 0.06
4
0.06
715
0.06
82
0.06
672
0.06
4
3
3
𝜑=V/
A0u1
10
^-5
3.84
23
6.93 9.98
2
11.4
724
00
15.0
145
17.5 18.8
05
21.0
7
22.5
82
23.6
3
4
Ψ=2Y/u22 - 0.36
76
0.35
93
0.36
9
0.37
8
0.38
65
0.39
614
0.93 0.38
733
0.37
834
0.36
13
3
5 𝜇tot=2Nact/
𝜌 A0u13
10
^-3
1.82 1.96
5
2.04 2.3 2.54
7
2.84 2.98
4
3.13 3.35 3.5
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
6
B
𝜑 10^
-5
3.8423 6.93 9.983 11.47
24
15.01
45
17.5 18.80
5
21.07 22.
582
23.6
V m/
s
0.0275
64
0.04
97
0.071
61
0.088
23
0.107
71
0.1255
33
0.134
9
0.1511
4
0.1
62
0.16
93
x m
m
1 3 5 7 9 11 13 15 17 19
cos
𝜑
- 0.206 0.214
3
0.214
6
0.23 0.255 0.27
8
0.28
92
0.2
99
0.315 0.3
23
V
x
m/
s
0.0056
8
0.01
07
0.015
4
0.020
3
0.027
5
0.035 0.039 0.0452 0.0
51
0.05
5
0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34
250
300
350
400
450
500
cos@
Nactive
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
7
C
𝜑 10^
-5
3.8423 6.93 9.983 11.47
24
15.01
45
17.5 18.80
5
21.07 22.
58
2
23.6
V m/s 0.0275
64
0.049
7
0.071
61
0.088
23
0.107
71
0.1255
33
0.134
9
0.1511
4
0.1
62
0.16
93
x mm 1 3 5 7 9 11 13 15 17 19
cos
𝜑
- 0.206 0.214
3
0.214
6
0.23 0.255 0.27
8
0.28
92
0.2
99
0.315 0.3
23
V
x
m/s 0.0056
8
0.010
7
0.015
4
0.020
3
0.027
5
0.035 0.039 0.0452 0.0
51
0.05
5
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
0
2
4
6
8
10
12
14
16
18
20
Vx(m/s)
x(mm)
Vx Vs x graph
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
8
Y
x
m2/
s2
42.14 42.83
43
44.01
3
48.37 54.83 61.3 63.23
07
64.435 66.
30
8
64.9
23
Y m2/
s2
204.55 199.8
8
205.0
92
210.3
02
215.0
14
220.40
4
218.6
4
215.5 21
0.5
201
D
Vx m/
s
0.0056
8
0.010
7
0.015
4
0.020
3
0.027
5
0.03
5
0.03
9
0.045
2
0.05
1
0.05
5
Nactiv
e
w 250 270 280 315 350 390 410 430 460 480
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
40
45
50
55
60
65
70
Vx(m/s)
Yx
Vx Vs Yx graph
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
9
E
Vx m/
s
0.005
68
0.010
7
0.015
4
0.020
3
0.027
5
0.03
5
0.039 0.045
2
0.051 0.05
5
Ƞt
ot
- 0.020
3
0.033
1
0.047
21
0.053
02
0.06 0.06
4
0.067
15
0.068
2
0.066
72
0.06
4
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
250
300
350
400
450
500
Vx(m/s)
Nactive(w)
Vx Vs Nctv graph
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
10
V x v s Ƞtot graph
F
𝝋 vs. 𝚿 graph
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
0.02
0.025
0.03
0.035
0.04
0.045
0.05
0.055
0.06
0.065
0.07
Vx
totalefficiency
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
11
G
𝝋 vs. v graph
0 5 10 15 20 25
0.355
0.36
0.365
0.37
0.375
0.38
0.385
0.39
0.395
0.4
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
12
H
𝝋 vs. Ƞtot graph
0 5 10 15 20 25
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
13
Conclusion and discussion
The centrifugal fan performance tables provide the fan RPM and power requirements for
the given CFM and static pressure at standard air density. When the centrifugal fan
performance is not at standard conditions, the performance must be converted to standard
conditions before entering the performance tables. Centrifugal fans rated by the Air
0 5 10 15 20 25
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015)
14
Movement and Control Association are tested in laboratories with test setups that simulate
installations that are typical for that type of fan. Usually they are tested and rated as one of
four standard installation types as designated in AMCA Standard 210.
AMCA Standard 210 defines uniform methods for conducting laboratory tests on housed
fans to determine airflow rate, pressure, power and efficiency, at a given speed of rotation.
The purpose of AMCA Standard 210 is to define exact procedures and conditions of fan
testing so that ratings provided by various manufacturers are on the same basis and may
be compared. For this reason, fans must be rated in standardized SCFM.
Generally from calculation and graphs we observed the fooling points:
 From graph A, the cosine of the Angele and Native slightly has direct relation (.i.e.
when cosine of the angle increases and also power requirement also increases.). In
our design of the fan we must consider this relation,(we should compromise the
speed and power requirement).
 From graph B, the nozzle position and the speed of the motor has direct relation.
 From graph C, at lower speed there is low amount of specific energy is needed, and
then sharply increases and at higher speed the specific energy start to decrease.
 From graph D, Nactive and the speed of the motor has direct relation. As the speed
increases and also the power requirement increase.
 From graph E, generally as speed increases efficiency increases and after reaching
maximum efficiency point it start to decrease as speed increases.
 From graph H, at very low angle the total efficiency also low, but a little increscent of
the angle increase the total efficiency very sharply and then a little incensement of
angle decreases the total efficiency very sharply. Here we observed that the angle of
rotation is the greater factor that affects the total efficiency of our flow fan, so when
we design the fan we must consider the angle of rotation greatly.

More Related Content

What's hot

Analysis of stresses in turbine rotor 11.10
Analysis of stresses in turbine rotor 11.10Analysis of stresses in turbine rotor 11.10
Analysis of stresses in turbine rotor 11.10Akashdeep Brijpuriya
 
IRJET- Material Removal Rate (MRR) Study in Time Reduction Pneumatic Shaper M...
IRJET- Material Removal Rate (MRR) Study in Time Reduction Pneumatic Shaper M...IRJET- Material Removal Rate (MRR) Study in Time Reduction Pneumatic Shaper M...
IRJET- Material Removal Rate (MRR) Study in Time Reduction Pneumatic Shaper M...IRJET Journal
 
Performance and Fault diagnosis of Horizontal Axis Wind Turbine Components
Performance and Fault diagnosis of Horizontal Axis Wind Turbine ComponentsPerformance and Fault diagnosis of Horizontal Axis Wind Turbine Components
Performance and Fault diagnosis of Horizontal Axis Wind Turbine Componentsijsrd.com
 
Performance of the four strokes diesel engine
Performance of the four strokes diesel enginePerformance of the four strokes diesel engine
Performance of the four strokes diesel engineSaif al-din ali
 
Sutherland.Padi Audit Results Hvac.V1.06 Oct 07
Sutherland.Padi Audit Results    Hvac.V1.06 Oct 07Sutherland.Padi Audit Results    Hvac.V1.06 Oct 07
Sutherland.Padi Audit Results Hvac.V1.06 Oct 07pavang
 
Stirling engine performance prediction using schmidt analysis by considering ...
Stirling engine performance prediction using schmidt analysis by considering ...Stirling engine performance prediction using schmidt analysis by considering ...
Stirling engine performance prediction using schmidt analysis by considering ...eSAT Journals
 
IRJET- Theoretical & Computational Design of Wind Turbine with Wind Lens
IRJET- Theoretical & Computational Design of Wind Turbine with Wind LensIRJET- Theoretical & Computational Design of Wind Turbine with Wind Lens
IRJET- Theoretical & Computational Design of Wind Turbine with Wind LensIRJET Journal
 
Water cross flow shell and tube heat exchanger | Heat Transfer Laboratory
Water cross flow shell and tube heat exchanger | Heat Transfer LaboratoryWater cross flow shell and tube heat exchanger | Heat Transfer Laboratory
Water cross flow shell and tube heat exchanger | Heat Transfer LaboratorySaif al-din ali
 
First fare 2010 pneumatics presentation
First fare 2010 pneumatics presentationFirst fare 2010 pneumatics presentation
First fare 2010 pneumatics presentationOregon FIRST Robotics
 
Measuring speed, air, fuel of i.c. engine
Measuring speed, air, fuel of i.c. engineMeasuring speed, air, fuel of i.c. engine
Measuring speed, air, fuel of i.c. engineShantanu Girde
 
Fundamentals of Centrifugal Compressor - Head (revised)
Fundamentals of Centrifugal Compressor - Head (revised)Fundamentals of Centrifugal Compressor - Head (revised)
Fundamentals of Centrifugal Compressor - Head (revised)Sudhindra Tiwari
 
Centrifugal compressor head - Impact of MW and other parameters
Centrifugal compressor head - Impact of MW and other parametersCentrifugal compressor head - Impact of MW and other parameters
Centrifugal compressor head - Impact of MW and other parametersSudhindra Tiwari
 
Evaluation of thermal performance of a typical vapor compression refrigeratio...
Evaluation of thermal performance of a typical vapor compression refrigeratio...Evaluation of thermal performance of a typical vapor compression refrigeratio...
Evaluation of thermal performance of a typical vapor compression refrigeratio...Saif al-din ali
 
Position characterization of electro pneumatic closed loop control valve
Position characterization of electro pneumatic closed loop control valvePosition characterization of electro pneumatic closed loop control valve
Position characterization of electro pneumatic closed loop control valveeSAT Journals
 
Stirling engine performance prediction using schmidt
Stirling engine performance prediction using schmidtStirling engine performance prediction using schmidt
Stirling engine performance prediction using schmidteSAT Publishing House
 

What's hot (19)

Analysis of stresses in turbine rotor 11.10
Analysis of stresses in turbine rotor 11.10Analysis of stresses in turbine rotor 11.10
Analysis of stresses in turbine rotor 11.10
 
Weight measurement
Weight measurementWeight measurement
Weight measurement
 
IRJET- Material Removal Rate (MRR) Study in Time Reduction Pneumatic Shaper M...
IRJET- Material Removal Rate (MRR) Study in Time Reduction Pneumatic Shaper M...IRJET- Material Removal Rate (MRR) Study in Time Reduction Pneumatic Shaper M...
IRJET- Material Removal Rate (MRR) Study in Time Reduction Pneumatic Shaper M...
 
Performance and Fault diagnosis of Horizontal Axis Wind Turbine Components
Performance and Fault diagnosis of Horizontal Axis Wind Turbine ComponentsPerformance and Fault diagnosis of Horizontal Axis Wind Turbine Components
Performance and Fault diagnosis of Horizontal Axis Wind Turbine Components
 
Performance of the four strokes diesel engine
Performance of the four strokes diesel enginePerformance of the four strokes diesel engine
Performance of the four strokes diesel engine
 
fans and blowers
fans and blowersfans and blowers
fans and blowers
 
Sutherland.Padi Audit Results Hvac.V1.06 Oct 07
Sutherland.Padi Audit Results    Hvac.V1.06 Oct 07Sutherland.Padi Audit Results    Hvac.V1.06 Oct 07
Sutherland.Padi Audit Results Hvac.V1.06 Oct 07
 
Stirling engine performance prediction using schmidt analysis by considering ...
Stirling engine performance prediction using schmidt analysis by considering ...Stirling engine performance prediction using schmidt analysis by considering ...
Stirling engine performance prediction using schmidt analysis by considering ...
 
IRJET- Theoretical & Computational Design of Wind Turbine with Wind Lens
IRJET- Theoretical & Computational Design of Wind Turbine with Wind LensIRJET- Theoretical & Computational Design of Wind Turbine with Wind Lens
IRJET- Theoretical & Computational Design of Wind Turbine with Wind Lens
 
Water cross flow shell and tube heat exchanger | Heat Transfer Laboratory
Water cross flow shell and tube heat exchanger | Heat Transfer LaboratoryWater cross flow shell and tube heat exchanger | Heat Transfer Laboratory
Water cross flow shell and tube heat exchanger | Heat Transfer Laboratory
 
First fare 2010 pneumatics presentation
First fare 2010 pneumatics presentationFirst fare 2010 pneumatics presentation
First fare 2010 pneumatics presentation
 
Measuring speed, air, fuel of i.c. engine
Measuring speed, air, fuel of i.c. engineMeasuring speed, air, fuel of i.c. engine
Measuring speed, air, fuel of i.c. engine
 
Fundamentals of Centrifugal Compressor - Head (revised)
Fundamentals of Centrifugal Compressor - Head (revised)Fundamentals of Centrifugal Compressor - Head (revised)
Fundamentals of Centrifugal Compressor - Head (revised)
 
Centrifugal compressor head - Impact of MW and other parameters
Centrifugal compressor head - Impact of MW and other parametersCentrifugal compressor head - Impact of MW and other parameters
Centrifugal compressor head - Impact of MW and other parameters
 
Az35288290
Az35288290Az35288290
Az35288290
 
Evaluation of thermal performance of a typical vapor compression refrigeratio...
Evaluation of thermal performance of a typical vapor compression refrigeratio...Evaluation of thermal performance of a typical vapor compression refrigeratio...
Evaluation of thermal performance of a typical vapor compression refrigeratio...
 
1CF-Elumalai-Sandeepkumar-FullPaper
1CF-Elumalai-Sandeepkumar-FullPaper1CF-Elumalai-Sandeepkumar-FullPaper
1CF-Elumalai-Sandeepkumar-FullPaper
 
Position characterization of electro pneumatic closed loop control valve
Position characterization of electro pneumatic closed loop control valvePosition characterization of electro pneumatic closed loop control valve
Position characterization of electro pneumatic closed loop control valve
 
Stirling engine performance prediction using schmidt
Stirling engine performance prediction using schmidtStirling engine performance prediction using schmidt
Stirling engine performance prediction using schmidt
 

Viewers also liked

A mozgókép születése, fejlődése
A mozgókép születése, fejlődése A mozgókép születése, fejlődése
A mozgókép születése, fejlődése Sajó Annamária
 
Top 5 aromatherapy essential oils
Top 5 aromatherapy essential oilsTop 5 aromatherapy essential oils
Top 5 aromatherapy essential oilssammachell90
 
Similar film analysis
Similar film analysisSimilar film analysis
Similar film analysisjacobsmedia
 
ENG Assignment 1
ENG Assignment 1ENG Assignment 1
ENG Assignment 1wzhen77
 
Digital Marketing Strategy
Digital Marketing StrategyDigital Marketing Strategy
Digital Marketing Strategywhittem3
 
Kumpulansoaljarkomlanjut
KumpulansoaljarkomlanjutKumpulansoaljarkomlanjut
KumpulansoaljarkomlanjutSatria Speed
 
Gk sosteoporoze labots
Gk sosteoporoze labotsGk sosteoporoze labots
Gk sosteoporoze labotsLaura Vanka
 
Real world Webapp
Real world WebappReal world Webapp
Real world WebappThings Lab
 
WHAT IS GLOBAL WARMING ?
WHAT IS GLOBAL WARMING ?WHAT IS GLOBAL WARMING ?
WHAT IS GLOBAL WARMING ?busraakyurek
 

Viewers also liked (20)

A mozgókép születése, fejlődése
A mozgókép születése, fejlődése A mozgókép születése, fejlődése
A mozgókép születése, fejlődése
 
Top 5 aromatherapy essential oils
Top 5 aromatherapy essential oilsTop 5 aromatherapy essential oils
Top 5 aromatherapy essential oils
 
Similar film analysis
Similar film analysisSimilar film analysis
Similar film analysis
 
Arizona Divorce process
Arizona Divorce processArizona Divorce process
Arizona Divorce process
 
Cfpb proposed modifications-mortgage-rules
Cfpb proposed modifications-mortgage-rulesCfpb proposed modifications-mortgage-rules
Cfpb proposed modifications-mortgage-rules
 
Robs New Resume
Robs New ResumeRobs New Resume
Robs New Resume
 
ENG Assignment 1
ENG Assignment 1ENG Assignment 1
ENG Assignment 1
 
Digital Marketing Strategy
Digital Marketing StrategyDigital Marketing Strategy
Digital Marketing Strategy
 
The Challenges of Integrating Mapping and Texting for Community Development i...
The Challenges of Integrating Mapping and Texting for Community Development i...The Challenges of Integrating Mapping and Texting for Community Development i...
The Challenges of Integrating Mapping and Texting for Community Development i...
 
Divorce document-checklist
Divorce document-checklistDivorce document-checklist
Divorce document-checklist
 
50 ways to flourish after divorce ebook
50 ways to flourish after divorce ebook50 ways to flourish after divorce ebook
50 ways to flourish after divorce ebook
 
Kumpulansoaljarkomlanjut
KumpulansoaljarkomlanjutKumpulansoaljarkomlanjut
Kumpulansoaljarkomlanjut
 
Lawl
LawlLawl
Lawl
 
Gk sosteoporoze labots
Gk sosteoporoze labotsGk sosteoporoze labots
Gk sosteoporoze labots
 
Real world Webapp
Real world WebappReal world Webapp
Real world Webapp
 
WHAT IS GLOBAL WARMING ?
WHAT IS GLOBAL WARMING ?WHAT IS GLOBAL WARMING ?
WHAT IS GLOBAL WARMING ?
 
Types of Divorce
Types of DivorceTypes of Divorce
Types of Divorce
 
زينيب 2
زينيب 2زينيب 2
زينيب 2
 
HOW DOES AGING AFFECT FINANCIAL DECISION MAKING?
HOW DOES AGING AFFECT FINANCIAL DECISION MAKING?HOW DOES AGING AFFECT FINANCIAL DECISION MAKING?
HOW DOES AGING AFFECT FINANCIAL DECISION MAKING?
 
ABC`s of Divorce
ABC`s of DivorceABC`s of Divorce
ABC`s of Divorce
 

Similar to Radial flow fan test

Designing and-installation-of-lowcost-optimized-wind-monitoring-system-2169-0...
Designing and-installation-of-lowcost-optimized-wind-monitoring-system-2169-0...Designing and-installation-of-lowcost-optimized-wind-monitoring-system-2169-0...
Designing and-installation-of-lowcost-optimized-wind-monitoring-system-2169-0...Saurav Gupta
 
Designing and installation of low cost optimized wind monitoring system
Designing and installation of low cost optimized wind monitoring systemDesigning and installation of low cost optimized wind monitoring system
Designing and installation of low cost optimized wind monitoring systemeSAT Publishing House
 
MANUAL DE ACTUADOR NEUMATICO BRAY CONTROL.pdf
MANUAL DE ACTUADOR NEUMATICO BRAY CONTROL.pdfMANUAL DE ACTUADOR NEUMATICO BRAY CONTROL.pdf
MANUAL DE ACTUADOR NEUMATICO BRAY CONTROL.pdfYeissonJavierBeltran1
 
Proposal Wide Blower No.1 & 2 with inverter
Proposal Wide Blower No.1 & 2  with inverterProposal Wide Blower No.1 & 2  with inverter
Proposal Wide Blower No.1 & 2 with inverterRidhoIrawan12
 
Lucrare de licență - Inginerie Mecanică
Lucrare de licență - Inginerie MecanicăLucrare de licență - Inginerie Mecanică
Lucrare de licență - Inginerie MecanicăBogdanIordan3
 
thermal project # 2
thermal project # 2thermal project # 2
thermal project # 2James Li
 
IRJET- Experimental Analysis of Vertical Axis Wind Turbine by using Spinn...
IRJET-  	  Experimental Analysis of Vertical Axis Wind Turbine by using Spinn...IRJET-  	  Experimental Analysis of Vertical Axis Wind Turbine by using Spinn...
IRJET- Experimental Analysis of Vertical Axis Wind Turbine by using Spinn...IRJET Journal
 
Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir Morgulis
 
Introduction المقدمة.ppt
Introduction المقدمة.pptIntroduction المقدمة.ppt
Introduction المقدمة.pptZiad Salem
 
IRJET- Design and Fabrication of Pneumatic Stirrup Making Machine
IRJET- Design and Fabrication of Pneumatic Stirrup Making MachineIRJET- Design and Fabrication of Pneumatic Stirrup Making Machine
IRJET- Design and Fabrication of Pneumatic Stirrup Making MachineIRJET Journal
 
forced heat convection | HEAT TRANSFER Laboratory
forced heat convection | HEAT TRANSFER Laboratoryforced heat convection | HEAT TRANSFER Laboratory
forced heat convection | HEAT TRANSFER LaboratorySaif al-din ali
 
5_ISMTII2015_1281_VAWT_ShiehHsiao_et.al_manuscript_15Juli2015_vorlage
5_ISMTII2015_1281_VAWT_ShiehHsiao_et.al_manuscript_15Juli2015_vorlage5_ISMTII2015_1281_VAWT_ShiehHsiao_et.al_manuscript_15Juli2015_vorlage
5_ISMTII2015_1281_VAWT_ShiehHsiao_et.al_manuscript_15Juli2015_vorlageDoug Yang-Hsu Liao
 
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdfVolvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdffijsekkkdmdm3e
 
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdfVolvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdflunrizan628
 
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdfVolvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdffapanhe306271
 
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdfVolvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdff8iosedkdm3e
 
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdfVolvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdftepu22753653
 
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdfVolvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdfrou774513po
 

Similar to Radial flow fan test (20)

Radial flow fan test
Radial flow fan testRadial flow fan test
Radial flow fan test
 
Designing and-installation-of-lowcost-optimized-wind-monitoring-system-2169-0...
Designing and-installation-of-lowcost-optimized-wind-monitoring-system-2169-0...Designing and-installation-of-lowcost-optimized-wind-monitoring-system-2169-0...
Designing and-installation-of-lowcost-optimized-wind-monitoring-system-2169-0...
 
Designing and installation of low cost optimized wind monitoring system
Designing and installation of low cost optimized wind monitoring systemDesigning and installation of low cost optimized wind monitoring system
Designing and installation of low cost optimized wind monitoring system
 
MANUAL DE ACTUADOR NEUMATICO BRAY CONTROL.pdf
MANUAL DE ACTUADOR NEUMATICO BRAY CONTROL.pdfMANUAL DE ACTUADOR NEUMATICO BRAY CONTROL.pdf
MANUAL DE ACTUADOR NEUMATICO BRAY CONTROL.pdf
 
Proposal Wide Blower No.1 & 2 with inverter
Proposal Wide Blower No.1 & 2  with inverterProposal Wide Blower No.1 & 2  with inverter
Proposal Wide Blower No.1 & 2 with inverter
 
Lucrare de licență - Inginerie Mecanică
Lucrare de licență - Inginerie MecanicăLucrare de licență - Inginerie Mecanică
Lucrare de licență - Inginerie Mecanică
 
thermal project # 2
thermal project # 2thermal project # 2
thermal project # 2
 
IRJET- Experimental Analysis of Vertical Axis Wind Turbine by using Spinn...
IRJET-  	  Experimental Analysis of Vertical Axis Wind Turbine by using Spinn...IRJET-  	  Experimental Analysis of Vertical Axis Wind Turbine by using Spinn...
IRJET- Experimental Analysis of Vertical Axis Wind Turbine by using Spinn...
 
Nir_pres_Hagana_v1
Nir_pres_Hagana_v1Nir_pres_Hagana_v1
Nir_pres_Hagana_v1
 
Introduction المقدمة.ppt
Introduction المقدمة.pptIntroduction المقدمة.ppt
Introduction المقدمة.ppt
 
IRJET- Design and Fabrication of Pneumatic Stirrup Making Machine
IRJET- Design and Fabrication of Pneumatic Stirrup Making MachineIRJET- Design and Fabrication of Pneumatic Stirrup Making Machine
IRJET- Design and Fabrication of Pneumatic Stirrup Making Machine
 
forced heat convection | HEAT TRANSFER Laboratory
forced heat convection | HEAT TRANSFER Laboratoryforced heat convection | HEAT TRANSFER Laboratory
forced heat convection | HEAT TRANSFER Laboratory
 
5_ISMTII2015_1281_VAWT_ShiehHsiao_et.al_manuscript_15Juli2015_vorlage
5_ISMTII2015_1281_VAWT_ShiehHsiao_et.al_manuscript_15Juli2015_vorlage5_ISMTII2015_1281_VAWT_ShiehHsiao_et.al_manuscript_15Juli2015_vorlage
5_ISMTII2015_1281_VAWT_ShiehHsiao_et.al_manuscript_15Juli2015_vorlage
 
Internship Report
Internship ReportInternship Report
Internship Report
 
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdfVolvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
 
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdfVolvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
 
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdfVolvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
 
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdfVolvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
 
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdfVolvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
 
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdfVolvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
Volvo L90G Wheel Loader Service Repair Manual Instant Download.pdf
 

More from Wolkite University (11)

Chemical engineering.pptx
Chemical engineering.pptxChemical engineering.pptx
Chemical engineering.pptx
 
Apparatus design project on heat exchanger
Apparatus design project on heat exchangerApparatus design project on heat exchanger
Apparatus design project on heat exchanger
 
Staining
StainingStaining
Staining
 
Material balance 2017
Material balance 2017Material balance 2017
Material balance 2017
 
Final report 2017
Final report 2017Final report 2017
Final report 2017
 
Energy from water
Energy from waterEnergy from water
Energy from water
 
Metal extraction
Metal extractionMetal extraction
Metal extraction
 
Radial flow fan test
Radial flow fan testRadial flow fan test
Radial flow fan test
 
Flow visualization
Flow visualizationFlow visualization
Flow visualization
 
Preparetion of asprine
Preparetion of asprinePreparetion of asprine
Preparetion of asprine
 
Complexometric titration
Complexometric titrationComplexometric titration
Complexometric titration
 

Radial flow fan test

  • 1. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 1 Radial flow fan test Objective: The main objectives of this lab>  To measure the total pressure drop with respect to flow rate  To measure static pressure drop with respect to flow rate.  To know the parameters that affects the operation capacity and efficiency of the fan.  And determine which parameters are the most determinant for the flow fan. Theory A radial flow fan comprising an impeller where the direction of the entry air flow is vertical to the direction of the exit air flow A centrifugal fan is a mechanical device for moving air or other gases. These fans increase the speed of air stream with the rotating impellers. They use the kinetic energy of the impellers or the rotating blade to increase the pressure of the air/gas stream which in turn moves them against the resistance caused by ducts, dampers and other components. Centrifugal fans accelerate air radially, changing the direction (typically by 90°) of the airflow. They are sturdy, quiet, reliable, and capable of operating over a wide range of conditions. Centrifugal fans are constant displacement devices or constant volume devices, meaning that, at a constant fan speed, a centrifugal fan will pump a constant volume of air rather than a constant mass. This means that the air velocity in a system is fixed even though mass flow rate through the fan is not. The centrifugal fan is one of the most widely used fans. Centrifugal fans are by far the most prevalent type of fan used in the HVAC industry today. They are usually cheaper than axial fans and simpler in construction. It is used in transporting gas or materials and in ventilation system for buildings. They are also used commonly in central heating/cooling systems. They are also well-suited for industrial processes and air pollution control systems. It has a fan wheel composed of a number of fan blades, or ribs, mounted around a hub. As shown in the figure, the hub turns on a driveshaft that passes through the fan housing. The gas enters from the side of the fan wheel, turns 90 degrees and accelerates due to centrifugal force as it flows over the fan blades and exits the fan housing.
  • 2. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 2 Main parts of a centrifugal fan are:  Fan housing  Impellers  Inlet and outlet ducts  Drive shaft  Drive mechanism Principles of operation The centrifugal fan uses the centrifugal power generated from the rotation of impellers to increase the kinetic energy of air/gases. When the impellers rotate, the gas near the impellers is thrown-off from the impellers due to the centrifugal force and then moves into the fan casing. As a result, the kinetic energy of gas is converted to pressure because of system resistance offered by the casing and duct. The gas is then guided to the exit via outlet ducts. After the gas is thrown-off, the gas pressure in the middle region of the impellers decreases. The gas from the impeller eye rushes in to normalize this pressure. This cycle repeats and therefore the gas can be continuously transferred. Apparatus and materials used Data Dim Nozzle position Turn 1 3 5 7 9 11 13 15 17 19 wattmete r 𝛼 25 27 28 31.5 35 39 41 43 46 48 Voltage V 450 450 450 450 450 450 450 450 450 450 current A 2.7 2.8 2.9 3 3.05 3.12 3.15 3.20 3.25 3.3 Speed n rpm 280 0 280 0 280 0 280 0 280 0 280 0 280 0 280 0 280 0 280 0 ∆𝑝vent mmw 40 130 270 410 610 830 103 120 138 151
  • 3. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 3 Bf=603mmHg T=210C B =Bf-T/8 C =20; Power=C/2*𝛼w SFven=1 SFfav= (808.3/0.787)*(inch/250) AD=0.1452m A0=34.77m 1, Calculation c 0 0 0 0 ∆𝑝fan mmw c 930 890 885 880 860 840 790 740 680 610 value Di m 1 Nozzle position Tur n 1 3 5 7 9 11 13 15 17 19 2 wattmeter 𝛼 25 27 28 31.5 35 39 41 43 46 48 3 Voltage V 450 450 450 450 450 450 450 450 450 450 4 current A 2.7 2.8 2.9 3 3.05 3.12 3.15 3.2 3.25 3.3 5 Speed n rp m 280 0 280 0 280 0 280 0 280 0 280 0 280 0 280 0 280 0 280 0 6 ∆𝑝vent m m wc 40 130 270 410 610 830 103 0 120 0 138 0 151 0 7 ∆𝑝fan m m wc 930 890 885 880 860 840 790 740 680 610 8 Nactive=(C/ 2)* 𝛼 W 250 270 280 315 350 390 410 430 460 480 9 Napparent=V* A VA 121 5 126 0 130 5 135 0 137 2.5 140 4 141 7.5 144 0 146 2.5 148 5
  • 4. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 4 1 0 cos𝜑=Nacti ve/Napparant - 0.20 6 0.21 43 0.21 46 0.23 0.25 5 0.27 8 0.28 92 0.29 9 0.31 5 0.32 3 1 1 n=n(rpm) /60 1/s 46.6 7 46.6 7 46.6 7 46.6 7 46.6 7 46.6 7 46.6 7 46.6 7 46.6 7 46.6 7 1 2 𝜔=2𝜋n 1/s 293. 067 293. 067 293. 067 293. 067 293. 067 293. 067 293. 067 293. 067 293. 067 293. 067 1 3 U1=r1*𝜔 m/ s 20.6 32 20.6 32 20.6 32 20.6 32 20.6 32 20.6 32 20.6 32 20.6 32 20.6 32 20.6 32 1 4 U2=r2*𝜔 m/ s 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 1 5 U22=(r2 𝜔) 2 m2 /s2 556. 38 556. 38 556. 38 556. 38 556. 38 556. 38 556. 38 556. 38 556. 38 556. 38 1 6 A0u1=34.7 7*(r1 𝜔) m3 /s 717. 375 717. 375 717. 375 717. 375 717. 375 717. 375 717. 375 717. 375 717. 375 717. 375 1 7 U13=(r1 𝜔) 3 m3 /s3 878 2.06 2 878 2.06 2 878 2.06 2 878 2.06 2 878 2.06 2 878 2.06 2 878 2.06 2 878 2.06 2 878 2.06 2 878 2.06 2 1 8 A0u13=34. 77*(r1 𝜔)3 m5 /s3 305 372 305 372 305 372 305 372 305 372 305 372 305 372 305 372 305 372 305 372 1 9 (𝜌/2)* A0u13=0.4 5* A0u13 Kg /m. s3 137 417. 23 137 417. 23 137 417. 23 137 417. 23 137 417. 23 137 417. 23 137 417. 23 137 417. 23 137 417. 23 137 417. 23 2 0 ∆pven/20* 0.8*0.5 m m wc 0.8 2.6 5.4 8.2 12.2 16.6 20.6 24 27.6 30.2 2 1 ∆pven=g*pv ent=9.81*’2 0’ Kg /m s2 7.85 25.5 06 52.9 74 80.4 42 119. 88 162. 85 202. 09 235. 44 270. 76 296. 3 2 2 ∆pven/(𝜌/ 2) m2 /s2 17.4 4 56.6 8 117. 708 2 178. 76 266. 4 361. 89 449. 09 523. 2 601. 63 658. 44 2 3 √∆pven/𝜌 m/ s 4.17 7 7.52 9 10.8 52 13.3 7 16.3 22 19.0 23 21.2 22.9 24.5 3 25.6 6 2 4 𝛼A0√∆pve n/𝜌=V m/ s 0.02 756 4 0.04 97 0.07 161 0.08 823 0.10 771 0.12 553 3 0.13 49 0.15 114 0.16 2 0.16 93 2 5 ∆Pfan=sʄfan *∆P*fan m m wc 18.6 17.8 17.7 17.6 17.2 16.8 15.8 14.8 13.6 12.2 2 6 ∆Pfan=g∆Pf an Kg /m s2 182. 47 174. 62 173. 64 172. 66 168. 723 164. 81 155 145. 19 133. 42 119. 682 2 7 Ystat=∆Pfan / 𝜌 m2 /s2 202. 744 194. 02 192. 93 191. 84 187. 5 183. 122 172. 22 161. 32 148. 244 133
  • 5. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 5 2,plots A, calculationand graph 𝜑 10^ -5 3.842 3 6.93 9.983 11.472 4 15.014 5 17.5 18.80 5 21.0 7 22.58 2 23.6 cos 𝜑 0.206 0.214 3 0.214 6 0.23 0.255 0.27 8 0.289 2 0.29 9 0.315 0.32 3 Nacti w 250 270 280 315 350 390 410 430 460 480 Cos𝝋Vs Nactive graph 2 8 CD=V/AD m/ s 1.89 81 3.42 3 4.93 2 6.07 645 7.41 804 8.64 55 9.63 5 10.4 091 11.1 57 11.6 6 2 9 Ydyn=CD2/ 2 m2 /s2 1.80 14 5.86 12.1 62 18.4 62 27.5 14 37.2 82 46.4 2 54.1 75 62.2 4 67.9 8 3 0 Y= Ydyn+ Ystat m2 /s2 204. 55 199. 88 205. 092 210. 302 215. 014 220. 404 218. 64 215. 5 210. 5 201 3 1 Neff=VY𝜌 w 5.07 44 8.94 063 13.2 2 16.7 20.8 43 24.9 012 27.5 3 29.3 14 30.6 91 30.6 3 3 2 Ƞtot= Neff/ Nactive - 0.02 03 0.03 31 0.04 721 0.05 302 0.06 0.06 4 0.06 715 0.06 82 0.06 672 0.06 4 3 3 𝜑=V/ A0u1 10 ^-5 3.84 23 6.93 9.98 2 11.4 724 00 15.0 145 17.5 18.8 05 21.0 7 22.5 82 23.6 3 4 Ψ=2Y/u22 - 0.36 76 0.35 93 0.36 9 0.37 8 0.38 65 0.39 614 0.93 0.38 733 0.37 834 0.36 13 3 5 𝜇tot=2Nact/ 𝜌 A0u13 10 ^-3 1.82 1.96 5 2.04 2.3 2.54 7 2.84 2.98 4 3.13 3.35 3.5
  • 6. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 6 B 𝜑 10^ -5 3.8423 6.93 9.983 11.47 24 15.01 45 17.5 18.80 5 21.07 22. 582 23.6 V m/ s 0.0275 64 0.04 97 0.071 61 0.088 23 0.107 71 0.1255 33 0.134 9 0.1511 4 0.1 62 0.16 93 x m m 1 3 5 7 9 11 13 15 17 19 cos 𝜑 - 0.206 0.214 3 0.214 6 0.23 0.255 0.27 8 0.28 92 0.2 99 0.315 0.3 23 V x m/ s 0.0056 8 0.01 07 0.015 4 0.020 3 0.027 5 0.035 0.039 0.0452 0.0 51 0.05 5 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 250 300 350 400 450 500 cos@ Nactive
  • 7. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 7 C 𝜑 10^ -5 3.8423 6.93 9.983 11.47 24 15.01 45 17.5 18.80 5 21.07 22. 58 2 23.6 V m/s 0.0275 64 0.049 7 0.071 61 0.088 23 0.107 71 0.1255 33 0.134 9 0.1511 4 0.1 62 0.16 93 x mm 1 3 5 7 9 11 13 15 17 19 cos 𝜑 - 0.206 0.214 3 0.214 6 0.23 0.255 0.27 8 0.28 92 0.2 99 0.315 0.3 23 V x m/s 0.0056 8 0.010 7 0.015 4 0.020 3 0.027 5 0.035 0.039 0.0452 0.0 51 0.05 5 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0 2 4 6 8 10 12 14 16 18 20 Vx(m/s) x(mm) Vx Vs x graph
  • 8. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 8 Y x m2/ s2 42.14 42.83 43 44.01 3 48.37 54.83 61.3 63.23 07 64.435 66. 30 8 64.9 23 Y m2/ s2 204.55 199.8 8 205.0 92 210.3 02 215.0 14 220.40 4 218.6 4 215.5 21 0.5 201 D Vx m/ s 0.0056 8 0.010 7 0.015 4 0.020 3 0.027 5 0.03 5 0.03 9 0.045 2 0.05 1 0.05 5 Nactiv e w 250 270 280 315 350 390 410 430 460 480 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 40 45 50 55 60 65 70 Vx(m/s) Yx Vx Vs Yx graph
  • 9. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 9 E Vx m/ s 0.005 68 0.010 7 0.015 4 0.020 3 0.027 5 0.03 5 0.039 0.045 2 0.051 0.05 5 Ƞt ot - 0.020 3 0.033 1 0.047 21 0.053 02 0.06 0.06 4 0.067 15 0.068 2 0.066 72 0.06 4 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 250 300 350 400 450 500 Vx(m/s) Nactive(w) Vx Vs Nctv graph
  • 10. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 10 V x v s Ƞtot graph F 𝝋 vs. 𝚿 graph 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 Vx totalefficiency
  • 11. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 11 G 𝝋 vs. v graph 0 5 10 15 20 25 0.355 0.36 0.365 0.37 0.375 0.38 0.385 0.39 0.395 0.4
  • 12. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 12 H 𝝋 vs. Ƞtot graph 0 5 10 15 20 25 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
  • 13. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 13 Conclusion and discussion The centrifugal fan performance tables provide the fan RPM and power requirements for the given CFM and static pressure at standard air density. When the centrifugal fan performance is not at standard conditions, the performance must be converted to standard conditions before entering the performance tables. Centrifugal fans rated by the Air 0 5 10 15 20 25 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
  • 14. By abnetmengesh(ADDIS ABABAUNIVERSTIYINSTITUTE OFTECHNOLOGY2015) 14 Movement and Control Association are tested in laboratories with test setups that simulate installations that are typical for that type of fan. Usually they are tested and rated as one of four standard installation types as designated in AMCA Standard 210. AMCA Standard 210 defines uniform methods for conducting laboratory tests on housed fans to determine airflow rate, pressure, power and efficiency, at a given speed of rotation. The purpose of AMCA Standard 210 is to define exact procedures and conditions of fan testing so that ratings provided by various manufacturers are on the same basis and may be compared. For this reason, fans must be rated in standardized SCFM. Generally from calculation and graphs we observed the fooling points:  From graph A, the cosine of the Angele and Native slightly has direct relation (.i.e. when cosine of the angle increases and also power requirement also increases.). In our design of the fan we must consider this relation,(we should compromise the speed and power requirement).  From graph B, the nozzle position and the speed of the motor has direct relation.  From graph C, at lower speed there is low amount of specific energy is needed, and then sharply increases and at higher speed the specific energy start to decrease.  From graph D, Nactive and the speed of the motor has direct relation. As the speed increases and also the power requirement increase.  From graph E, generally as speed increases efficiency increases and after reaching maximum efficiency point it start to decrease as speed increases.  From graph H, at very low angle the total efficiency also low, but a little increscent of the angle increase the total efficiency very sharply and then a little incensement of angle decreases the total efficiency very sharply. Here we observed that the angle of rotation is the greater factor that affects the total efficiency of our flow fan, so when we design the fan we must consider the angle of rotation greatly.