SlideShare a Scribd company logo
1 of 12
Download to read offline
TELKOMNIKA Telecommunication, Computing, Electronics and Control
Vol. 19, No. 1, February 2021, pp. 51∼62
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v19i1.16275 r 51
Smartphone indoor positioning based on enhanced BLE
beacon multi-lateration
Ngoc-Son Duong, Thai-Mai Dinh Thi
Faculty of Electronics and Telecommunications,
VNU University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
Article Info
Article history:
Received Apr 7, 2020
Revised Aug 4, 2020
Accepted Sep 5, 2020
Keywords:
BLE iBeacon
Bluetooth low energy
Indoor positioning
Least square estimation
Trilateration
ABSTRACT
In this paper, we introduce a smartphone indoor positioning method using bluetooth
low energy (BLE) beacon multilateration. At first, based on signal strength analysis,
we construct a distance calculation model for BLE beacons. Then, with the aims to
improve positioning accuracy, we propose an improved lateral method (range-based
method) which is applied for 4 nearby beacons. The method is intended to design a
real-time system for some services such as emergency assistance, personal localiza-
tion and tracking, location-based advertising and marketing, etc. Experimental results
show that the proposed method achieves high accuracy when compared with the state
of the art lateral methods such as geometry-based (conventional trilateration), least
square estimation-based (LSE-based) and weighted LSE-based.
This is an open access article under the CC BY-SA license.
Corresponding Author:
Thai-Mai Dinh Thi
Faculty of Electronics and Telecommunications
VNU University of Engineering and Technology, Vietnam National University
G2 Building, 144 Xuan Thuy Str., Cau Giay Dist., Hanoi, Vietnam
Email: dttmai@vnu.edu.vn
1. INTRODUCTION
Nowadays, in large cities, human activities tend to shift from outdoor to indoor environments. This
has led to a growing need for services related to the indoor environment, such as location-based services (LBSs)
and social networking services (SNSs). Location accuracy is a measure of service quality. GPS has done this
well for outdoor environments. However, due to the obstruction of building materials, GPS signals can not
work well in indoor environments. Therefore, many technologies are utilized to deploy indoor positioning sys-
tems (IPS) such as WiFi [1, 2], radio frequency identification (RFID) [3], Zigbee [4], ultra-wideband (UWB)
[5] and camera-based (photo-based) [6]. To overcome the limitations of previous technologies, a bluetooth low
energy (BLE) based technology called iBeacon was introduced as an appropriate solution for IPS requirements
due to the advantages such as low energy consumption, wide-coverage, easy deployment, and potential high ac-
curacy. We can use iBeacon technology to build an indoor positioning system that uses received signal strength
(RSS) to estimate user location. There are two kinds of received signal strength index (RSSI) based technique:
fingerprinting [7] and range-based method [8] (as known as lateral or lateration method). In the localization
problem, the range-based method utilizes an estimated distance from the path-loss model to estimate the user’s
position. Meanwhile, Fingerprinting relies on map survey steps to build an radio signal strength (RSS) database
of an interested area. Then, the position decision is made based on online signals and offline database using a
matching algorithm. Some recent studies have chosen fingerprint as the main approach [9–12]. Others choose
Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA
52 r ISSN: 1693-6930
range-based as their main approach [13–15].
Looking at the number of current research, we can see that fingerprinting seems to be more popular
than range-based methods. However, to achieve high accuracy, the fingerprinting method requires data collec-
tion for many reference points. This task takes much time and is unfeasible to practical implementation. In
deployment, it seems fair to say that range-based methods are more feasible than fingerprinting. Range-based
methods can help implement an indoor positioning system without additional requirements such as map survey
or rebuild the database. However, range-methods have their disadvantages as well. Their problem is distance
estimation, which directly affects the accuracy of the estimated position. Theoretically, we all know the dis-
tance varies according to the logarithmic function. But, it is not easy to calculate the distance correctly due to
the effects of fading, small-scale, and human absorption.
To cope with this problem, we propose an improved method for a range-based method applied to
BLE signals and indoor environments. We consider that, at a certain RSS level, the estimation of the distance
between the phone and the BLE beacon is relatively accurate. So, such beacons are called reliable beacons.
Therefore, we obtain some reliable circles with the center of the reliable beacons and the radius of the estimated
distance from the mobile device. Then the returned position must be in such circles. Intervention by geometric
method, we move the estimated position of conventional trilateration to a position that belongs to the circles. In
order to get higher accuracy, we exploit the information of a large number of beacons. In this study, we applied
the proposed method for four beacons simultaneously. Each cluster of three beacons will estimate the phone’s
position based on Trilateration combined with reliable circles. Then the final position will be determined by
the average of possible positions. Experiments were carried out in the real world, and the results showed that
the proposed method outperformed existing conventional methods.
In the next part, the Trilateration method and its encountered problem, are briefly presented in section
2. Section 3 describes our proposed method, including an improved geometry-based method for Trilateration
and multiple BLE beacon usage. Section 4 provides system parameters and experimental results. Ultimately,
section 5 concludes this paper.
2. RESEARCH METHOD
2.1. Trilateration
In the global positioning system, trilateration [16, 17] (short for conventional trilateration) is a tradi-
tional method for determining the location of receiver equipment on earth. The position of the object can be
obtained by calculating the distance from the satellites. We can exploit this concept for indoor localization by
scaling down the trilateration concept used for global positioning system (GPS). In our study, trilateration, as
illustrated in Figure 1, is defined as a method to obtain the position of an object or people under the influence
of the indoor environment based on RSS information of three beacons. Received signal strengths from these
beacons are calculated via the following formula [18]:
Γ (d) = Γ (d0) − 10η log

d
d0

(1)
whereas, Γ (d) and Γ (d0) are RSSIs at Euclidean distance d and reference distance d0, respectively (in dBm).
d0 is usually chosen equal to one meter for the indoor environment and η represents the path loss exponent.
The distance from the smart phone to the i-th beacon can be expressed as:
di = d0 · 10
Γ(d0)−Γ(di)
10η (2)
In order to calculate the smart phone position, the coordinates of BLE beacons on the map must be known in
advance. Assume that (xi, yi) is the coordinates of ith beacon on the map. The equation for each beacon region
is represented by (z = 0):
(x − xi)
2
+ (y − yi)
2
= d2
i , i = {1, 2, 3} (3)
(3) is equivalent to:
x2
− 2xxi + x2
i + y2
− 2yyi + y2
i − d2
i = 0 (4)
TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 1, February 2021 : 51 – 62
TELKOMNIKA Telecommun Comput El Control r 53
Let ai = −2xi, bi = −2yi, ci = x2
i + y2
i − d2
i , then (4) is rewritten as:
x2
+ y2
+ aix + biy + ci = 0 (5)
The position of a tracked object can be estimated by:
x̂ =
(c2 − c1)(b2 − b3) − (c3 − c2)(b1 − b2)
(a1 − a2)(b2 − b3) − (a2 − a3)(b1 − b2)
(6)
ŷ =
(a2 − a1)(c3 − c2) − (c2 − c1)(a2 − a3)
(a1 − a2)(b2 − b3) − (a2 − a3)(b1 − b2)
(7)
B1 B2
B3
B1 B2
B3
(b) (c)
B1
B2
B3
(a)
Figure 1. Trilateration method; (a) ideal condition, 3 circles intersect at one point,
(b) and (c) imperfect condition, 3 circles do not intersect at one point
2.2. Distance estimation
Distance estimation plays a vital role in internet of things (IoT) applications. In this study, the accuracy
of distance estimation has a high impact on reckoning trilateration position. The more accurate the conversion
from RSSI to distance is, the more precise trilateration’s estimated position is. Unfortunately, for BLE signals,
it is not easy to calculate true distance through the log-distance path loss model. Many factors affect the
BLE signal in the indoor environment, such as the material of indoor structures, body-blocking. Intending to
construct a real-time indoor positioning system, we consider humans’ presence as a high-impact factor. The
human body consists of 70% water; therefore, this is a strong attenuation factor at a frequency of 2.4 GHz. The
attenuation of the BLE signal caused by humans body (in dBm) is estimated by [19, 20]:
PLH = 30 + 10 log(2 ∗ w ∗ n) (8)
where w and n are body weight and number of detected person in the area. As shown in Figure 2, we can see a
significant difference when the phone is blocked by the user body. Thus, use (2) with a fixed η to estimate the
distance no longer matches the BLE signal.
To look closely at the problem, we conducted some experiments to analyze the RSSI attenuation
of the BLE signal in 2 cases: line-of-sight (LOS) and non-LOS (NLOS) (body-blocking). Figure 3 shows
that whenever we receive the signal that has an RSS value larger than -70 dBm, we can use LOS curve line
confidently to calculate the distance from the smartphone to the beacon. For our empirical data, LOS curve line
is represented by a logarithmic trendline [21], i.e.:
Γ = −10.18 ln(d) − 59.533 (dBm) (9)
where, Γ is RSSI at distance d. At lower RSSI levels, a RSS value can correspond to many distances. For
example, in our experimental environment, -75 dBm can corresponds to either 3 m (LOS) or 4.5 m (NLOS)
while the smartphone does not know what type of condition it is confronting. So, it is considered as an unre-
liable situation. In this case, the distance is estimated by an average fitted curve between LOS and NLOS, i.e:
Γ = −8.621 ln(d) − 64.321.
Smartphone indoor positioning based on enhanced BLE beacon... (Ngoc-Son Duong)
54 r ISSN: 1693-6930
2.3. RSSI filtering
As precise distance estimation results in proper Trilateration localization, it would be better to use
some RSS filtration. For RSS, noise is often known for short-term fading [22], which is caused by surrounding
pedestrians. RSS can fluctuate sharply in a short period. To reduce its impact, we apply Kalman filter [23] for
RSS model: (
Γk = Γk−1
zk = Γk + vk
(10)
herein, we consider there is no noise in the process and vk denotes measurement noise of RSS observation zk
which is introduced as pedestrian’s movement. The detailed process of the Kalman filter algorithm is shown in
Algorithm 1.
Figure 2. Attenuation of received signal strength at 2 m of distance. 0◦
corresponds to the situation that the
user stands and holds the phone the opposite side to the beacon (LOS). 180◦
corresponds to the case that the
user turns away from the beacon (non-LOS)
1 2 3 4 5 6 7 8 9 10
Distance (m)
-85
-80
-75
-70
-65
-60
RSSI
(dBm)
LOS condition
NLOS condition
Fitted curve of LOS condition
Fitted curve of NLOS condition
Figure 3. RSSI varies by distance in 2 cases: LOS and NLOS at transmitting power of 0 dBm. Note that, this
is the empirical data and needs to be calibrated with another environment
TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 1, February 2021 : 51 – 62
TELKOMNIKA Telecommun Comput El Control r 55
Algorithm 1: Kalman Filter Algorithm
Initialize: State mean: Γ0 = z0
State covariance: ρ0 = 1
1. Predict state: Γ̂−
k = Γ̂k−1
2. Predict state covariance: ρ̂−
k = ρk−1
3. Calculate Kalman filter gain: Kk = ρ−
k (ρ−
k + R)−1
4. Update state: Γ̂k = Γ̂−
k + Kk(zk − Γ̂−
k )
5. Update state covariance: ρk = (1 − Kk)ρ−
k
3. ENHANCED BLE BEACON MULTI-LATERATION
3.1. Enhanced trilateration for BLE signal
Based on the above signal analysis, whenever the signal strength received from the beacon is higher
than -70 dBm, the relative position of the phone to the beacon is likely to be LOS. For simplicity, we call the
beacon that satisfies the condition with the RSSI returned on the phone higher than -70 dBm as rLOS beacon
and is denoted by B
. (abbreviation for reliable LOS beacon). Then, the estimated distance of rLOS beacon from
(9) is considered the most reliable. Moreover, the position is estimated by trilateration completely depends on
the radius of three circles. In theory, if the distance from the beacons to the smartphone is absolutely correct,
the position returned from trilateration must be the intersection of the three circles. Let B
. be the coordinates
of rLOS beacon, T be the coordinates returned by trilateration and P is the position calculated by the proposed
method. Case 1: There is no presence of rLOS beacon. In this case, there will not be any improvement, we
simply apply (6), (7) to estimate the user position. Case 2: Only one rLOS beacon is available. Since there
is only one rLOS beacon, that means we have only one trusted circle in total of three, called rLOS circle.
Therefore, the estimated Trilateration-based position should be returned on this circle. Then, P is defined as the
intersection of infinite line
←
→
B
. T and a rLOS circle which has radius of d
., centered at B
. and is denoted by (B
. ; d
.).
Figure 4 is the visual view of the proposed method. P must satisfy the following conditions:
(
P =
←
→
B
. T ∩ (B
. ; d
.)
PT is minimum
(11)
Estimated position of
the proposed method
Estimated position of
Trilateration
rLOS beacon
(a) (b)
rLOS circle
B1
B2
B3
P
T
B1
T
P
B2
B3
.
.
Figure 4. Position estimation in Case 2
Case 3: Two rLOS beacons exist. Let two circles of radii d
.1 and d
.2 and centered at B
. 1 and B
. 2
intersect at one or two point. Figure 5 illustrates how we estimate the user position. In this case, P must satisfy
the following conditions:
(
P =
T2
i=1 (B
. i; d
.i)
PT is minimum
(12)
In addition, we consider the case of two rLOS circle does not intersect as a case is described in Figure 4 where
the position is decided by a smaller rLOS circle. Because iBeacon is uniformly distributed, the smartphone
rarely gets the RSS above -70 dBm simultaneously from three different beacons due to the body’s obstruction;
therefore, there is no Case 4 for three rLOS beacons.
Smartphone indoor positioning based on enhanced BLE beacon... (Ngoc-Son Duong)
56 r ISSN: 1693-6930
Estimated position of
the proposed method
Estimated position of
Trilateration
(a) rLOS beacon (b)
rLOS circle
B1 B2
B3
P
T
P
T
B1
B2
B3
. .
. .
Figure 5. Position estimation in Case 3
3.2. Multi BLE iBeacon lateration
For achieving high accuracy, we use information from four beacons simultaneously. Accordingly,
when applying Trilateration for four beacons, we have C(4, 3) ways to choose a cluster of three beacons from
a set of four ones where commutation is not allowed. In detail, at first, we collect signals from all beacons on
the map. Then arrange them in an array of four components:
B = [B1, B2, B3, B4] (13)
in which, Bi represents ith beacon object in descending order of RSSI. In programming, Bi is a tuple, which is
represented in the form: Bi = [(xi, yi); Γi; di], where, (xi, yi) is the coordinates in two dimensions space, Γi
and di are RSSI and distance from the smartphone to that beacon, respectively. Let T (·) be the conventional
Trilateration function and P(·) be the function used to estimate the position according to the proposed method.
If we have two rLOS beacons, four possible positions are calculated by:









ˆ
P1 = P (B1, B2, B3)
ˆ
P2 = P (B1, B2, B4)
ˆ
P3 = P (B1, B3, B4)
ˆ
P4 = P (B2, B3, B4)
(14)
In case we only have a rLOS beacon (B1 is the rLOS beacon object), four possible positions are calculated by:









ˆ
P1 = P (B1, B2, B3)
ˆ
P2 = P (B1, B2, B4)
ˆ
P3 = P (B1, B3, B4)
ˆ
P4 = T (B2, B3, B4)
(15)
In the absence of any rLOS beacon, the entire P(·) function in (15) is replaced by the T (·) function. The final
position is estimated by:
P =
( ˆ
P1+ ˆ
P2+ ˆ
P3+ ˆ
P4
4 for Case 1, Case 3
3 ˆ
P1+3 ˆ
P2+3 ˆ
P3+ ˆ
P4
10 for Case 2
(16)
Herein, the P(·) function is considered to be more reliable than the T (·) function. Hence, the position
that returned by the P(·) function should be assigned with a higher weight. It is also possible if we use
Trilateration for a larger number of beacons. For example, with five beacons, we have to calculate C(5, 3) = 10
operations instead of C(4, 3) = 4. However, this increases the computational cost. Besides, it requires a bigger
number of beacons, which leads to an increase in deployment costs. Therefore, choosing to use the four beacons
is reasonable.
4. EVALUATION
4.1. Experiment setup
The experiment was executed on the 1st floor of G2 building, University of Engineering and Technol-
ogy, VNU. The testbed is typically open with some decorative trees, twos big columns, and occasionally has the
TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 1, February 2021 : 51 – 62
TELKOMNIKA Telecommun Comput El Control r 57
appearance of pedestrians. We deploy four beacons in an area of 90 m2
, and the shortest distance between two
beacons is 6 meters. The layout of the floor plan and the interested area are shown in Figure 6. Beacons are set
according to the strategy outlined in [24] at the height of 150 cm (equivalent to the height of user equipment)
with the same technical configuration. Detailed specifications of the system are given in Table 1. The phone is
held close to the body and in a parallel position to the horizontal plane. The proposed method is designed for
discrete positioning and applied to execute multiple measurements. We wrote a measurement software with the
help of several available frameworks, i.e: CoreLocation [25], CoreGraphic [26]. The collected data is sent via
email and we then use it to plot the figures using MATLAB.
Table 1. System parameters
Device iPhone SE
Operation System iOS 12.2
Beacon 4 Proximity Estimote Beacon
Bluetooh Interface BLE v5.0/2.4 GHz
Advertising Interval 100 ms
Broadcasting Power 0 dBm
Broadcasting Range 50 m
P. 103
NHÀ G2B
8.1 m
P. 107
P. 102
PHÒNG HỌC NVCL
90 m2
7.5 m
NG TN
m2
PHÒNG
MULTIMEDIA
TRUNG TÂM
MÁY TÍNH
PHÒNG MÁY
CHỦ
P. 104 PHÒNG KHO
10 m2
Up Up
Up
WC
Nữ
Up
O x
y
N
E
S
W
Test point
(14; 9.6)
Start point
(6;8)
(8; 11.6) (14; 11.6)
(11; 6) (15.6; 6)
Figure 6. Layout of the experiment area
4.2. Experiment results
4.2.1. Distance estimation
Firstly, we want to evaluate the accuracy in estimating the distance from the beacon to the user device.
As mentioned above, the distance estimation strategy is applied to two different RSSI ranges. If RSSI is
higher than -70 dBm, the (9) will be used. In contrast, if RSSI is less than or equal to -70 dBm, the distance is
calculated by the average between LOS and NLOS. We measure RSS value at different distances and directions
that change from 1 to 10 m. Each position is 1 m apart, and we collect 100 RSSI samples for each one. The
result, including the average estimated distance and variance, are given in Table 2. As the results are shown in
Table 2, at distances of 1 m, 2 m, and 3 m, the estimated distances are entirely accurate. The cause of this result
is, at those distances, the RSS level is almost higher than -70 dBm, then the distance is estimated by (9). Since
the equation for (9) changes slowly in this RSSI range, the variance is not too much. For distances greater than
3 m, the RSS varies considerably between LOS and NLOS and is usually less than -70 dBm. Thus, the distance
is estimated by the average model. Consequently, the errors, as well as the variance in these cases, are high.
Smartphone indoor positioning based on enhanced BLE beacon... (Ngoc-Son Duong)
58 r ISSN: 1693-6930
Table 2. Distance estimation
True Distance (m) 1 2 3 4 5 6 7 8 9 10
Avg. Estimated
Distance (m)
1.08 1.91 3.12 3.76 5.56 7.25 8.3 8.88 10.82 12.23
Variance 0.12 0.21 0.3 0.74 1.23 1.73 1.96 2.08 2.25 4.23
4.2.2. Impact of Kalman filter
In Figure 7, the red line represents nature RSS at a distance of 2.5 m under LOS condition, and the
blue line represents filtered RSS using the Kalman filter. At some time steps, the red line sharply attenuated
due to the presence of pedestrians. We easily see the Kalman filter somewhat reduced the impact of the RSS
fluctuations in the blue line. Figure 8 depicts the estimated position in the case above. When not using the
Kalman filter, the estimated positions show a large dispersion. After filtering, estimated positions show an
opposite trend. The cause of this result is the determination of whether a beacon is under rLOS condition or
not. In sensitive cases (RSS ≈ −70 dBm), Kalman filter helps to reduce about 37% of the variance.
Figure 7. Comparison of raw RSS and KF-filtered RSS
10 12 14 16
9
9.5
10
10.5
11
Nature Position
True Position
10 12 14 16
9
9.5
10
10.5
11
Filtered Position
True Position
Figure 8. The estimated position is thanks to using Kalman filter
4.2.3. Overall performance
The proposed method is verified via the experiment to see how effective it is. Distance errors are used
to evaluate the accuracy of the system. We define location error e as the distance between the estimated position
(xest, yest) and the actual position (x, y), i.e:
e =
p
(x − xest)2 + (y − yest)2 (17)
TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 1, February 2021 : 51 – 62
TELKOMNIKA Telecommun Comput El Control r 59
We choose three other methods to compare with proposed method, i.e: conventional trilateration, least square
estimation and weighted least squares estimation [27]. Table 3 specifies the parameters used in the experiments.
Table 3. Experiment parameter
Apply for ... beacons Distance estimation Kalman filter
Trilateration 3 Avg. Model Yes
LS 4 Avg. Model Yes
WLS 4 Avg. Model Yes
Proposed Method 4 LOS and Avg. Model Yes
a. Accuracy of the proposed method
First of all, we want to investigate the average error for each site in the region of interest. The ex-
periment was carried out on the zigzag route (as shown in Figure 6) at 80 different points on the map. Error
distribution is shown in Figure 9. We can recognize that errors of positions that lie in the parallelogram of
four beacons are lower than others that lie outside this region. The average error in this area is about 1.7 m.
Especially, the positions with coordinates (8.4; 11.2), (14; 11.2), (11; 8) and (15.6, 18) have negligible errors.
The reason for this result is that these positions are located in front of beacons where the distance is very close.
Consequently, when the user stands at these points, the estimated position will be treated with another policy,
as described in section 3.1. In contrast, edge areas have poor accuracy because phones and iBeacon are often
under an unreliable situation. At both ends of the experiment area, the error may reach more than 4 m.
18
17.2
16.4
15.6
14.8
14
13.2
0
1
X
12.4
2
11.6
3
Avg.
Localization
Error
(m)
8
4
10.8
5
8.8 10
Y
9.2
9.6
8.4
10.4
7.6
11.2 6.8
6
0
0.5
1
1.5
2
2.5
3
3.5
4
Figure 9. Error distribution of proposed method on the testbed
b. Positioning accuracy in different directions
Figure 10 describes the accuracy of the algorithms in four directions at a fixed position, say, (14; 9.6).
When the heading of the user’s device is the North, since none of the beacon was discovered is under rLOS
condition, the accuracy of the proposed method is not much better than the other algorithms. When users point
their phone towards the East, South, or West, a beacon at the coordinate of (14; 11.6) is detected as a reliable
beacon. As a result, our proposed method shows a marked improvement when compared to other methods.
c. Overall accuracy comparison
Figure 11 depicts the accumulative error of four approaches. As we can see, our proposed method has
the best performance in total of four. The average error of the method is 1.9 m. Our proposed method helps
increase the accuracy of indoor positioning by 35.15% over the conventional trilateration method, 23.22% over
the least square method, and 15.55% over weighted least square method.
Smartphone indoor positioning based on enhanced BLE beacon... (Ngoc-Son Duong)
60 r ISSN: 1693-6930
10 11 12 13 14 15 16 17 18
7
8
9
10
11
12
North
Proposed Method
Trilateration position
LS position
WLS position
True Position
10 11 12 13 14 15 16 17 18
7
8
9
10
11
12
East
10 11 12 13 14 15 16 17 18
7
8
9
10
11
12
South
10 11 12 13 14 15 16 17 18
7
8
9
10
11
12
West
Figure 10. Actual and estimated position of 4 methods at 4-orientations
0 1 2 3 4 5 6 7
Localization Error (m)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
CDF
Conventional Line Intersection-Based Trilateration
Least Square Estimation
Proposed Method
Weighted Least Square Estimation
Figure 11. Comparison of distance error distribution for different methods
5. CONCLUSION
In this paper, we introduced a plain and robust method to improve the accuracy of the trilateration-
based indoor positioning system using BLE beacon. The proposed method makes use of an RSSI range (greater
than -70 dBm equivalent to a distance of less than 3 m) to estimate the distance accurately. This increases the
positioning accuracy by moving the estimated position of trilateration to reliable circles. In addition, the power
of four beacons is utilized at the same time for more accurate positioning. Experimental results show that this
is an effective and robust proposed scheme. As we have seen the impact of rLOS beacon, in the future, we will
study the optimal method of beacon placement, in which, in any position, users always be able to observe an
rLOS beacon.
ACKNOWLEDGMENT
This work has been supported/partly supported by Vietnam National University, Hanoi (VNU), under
Project No. QG.19.25
REFERENCES
[1] H. Liu, J. Yang, S. Sidhom, Y. Wang, Y. Chen and F. Ye, “Accurate WiFi Based Localization for Smartphones Using
Peer Assistance,” IEEE Transactions on Mobile Computing, vol. 13, no. 10, pp. 2199-2214, 2014.
TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 1, February 2021 : 51 – 62
TELKOMNIKA Telecommun Comput El Control r 61
[2] W. Zhao, S. Han, R. Hu, W. Meng and Z. Jia, “Crowdsourcing and Multisource Fusion-Based Fingerprint Sensing in
Smartphone Localization,” IEEE Sensors Journal, vol. 18, no. 8, pp. 3236-3247, 2018.
[3] H. Xu, M. Wu, P. Li, F. Zhu and R. Wang, “An RFID Indoor Positioning Algorithm Based on Support Vector Regres-
sion,” Sensors, vol. 18, no. 5, pp. 1504-1518, 2018.
[4] M. Uradzinski, H. Guo, X. Liu and M. Yu, “Advanced Indoor Positioning Using Zigbee Wireless Technology,”
Wireless Personal Communications, vol. 97, no. 4, pp. 6509-6518, 2017.
[5] Q. Tian, K. Wang and Z. Salcic, “A Low-Cost INS and UWB Fusion Pedestrian Tracking System,” IEEE Sensors
Journal, vol. 19, no. 10, pp. 3733-3740, 2019.
[6] J. Jiao, F. Li, Z. Deng and W. Ma, “A Smartphone Camera-Based Indoor Positioning Algorithm of Crowded Scenarios
with the Assistance of Deep CNN,” Sensors, vol. 17, no. 4, pp. 704-713, 2017.
[7] L. Kanaris, A. Kokkinis, A. Liotta and S. Stavrou, “Fusing Bluetooth Beacon Data with Wi-Fi Radiomaps for Im-
proved Indoor Localization,” Sensors, vol. 17, no. 4, p. 812, 2017.
[8] Yan, C. Tiberius, G. Janssen, P. Teunissen and G. Bellusci, “Review of range-based positioning algorithms,” IEEE
Aerospace and Electronic Systems Magazine, vol. 28, no. 8, pp. 2-27, 2013.
[9] S. Subedi, H. Gang, N. Ko, S. Hwang and J. Pyun, “Improving Indoor Fingerprinting Positioning With Affinity
Propagation Clustering and Weighted Centroid Fingerprint,” IEEE Access, vol. 7, pp. 31738-31750, 2019.
[10] K. Sung, D. Lee and H. Kim, “Indoor Pedestrian Localization Using iBeacon and Improved Kalman Filter,” Sensors,
vol. 18, no. 6, pp. 1722-1748, 2018.
[11] J. Zuo, S. Liu, H. Xia and Y. Qiao, “Multi-Phase Fingerprint Map Based on Interpolation for Indoor Localization
Using iBeacons,” IEEE Sensors Journal, vol. 18, no. 8, pp. 3351-3359, 2018.
[12] Ngoc-Son Duong, Anh Vu-Tuan Trinh and Thai-Mai Thi Dinh, “Bluetooth Low Energy Based Indoor Positioning
on iOS Platform,” in 2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip
(MCSoC), Hanoi, Vietnam, 2018.
[13] H. Xia, J. Zuo, S. Liu and Y. Qiao, “Indoor Localization on Smartphones Using Built-In Sensors and Map Con-
straints,” IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 4, pp. 1189-1198, 2019.
[14] J. Röbesaat, P. Zhang, M. Abdelaal and O. Theel, “An Improved BLE Indoor Localization with Kalman-Based Fusion:
An Experimental Study,” Sensors, vol. 17, no. 5, pp. 951-976, 2017.
[15] V. Chandel, N. Ahmed, S. Arora and A. Ghose, “InLoc: An end-to-end robust indoor localization and routing so-
lution using mobile phones and BLE beacons,” in 2016 International Conference on Indoor Positioning and Indoor
Navigation (IPIN), Alcala de Henares, Spain, 2016.
[16] S. Pradhan, Y. Bae, J. Pyun, N. Ko and S. Hwang, “Hybrid TOA Trilateration Algorithm Based on Line Intersection
and Comparison Approach of Intersection Distances,” Energies, vol. 12, no. 9, pp. 1668-1693, 2019.
[17] P. Spachos and K. Plataniotis, “BLE Beacons for Indoor Positioning at an Interactive IoT-Based Smart Museum,”
IEEE Systems Journal, vol. 14, no. 3, pp. 3483-3493, 2020.
[18] A. Goldsmith, Wireless Communications, New York, NY, USA: Cambridge University Press, 2005.
[19] M. Gosselin et al., ”Estimation Formulas for the Specific Absorption Rate in Humans Exposed to Base-Station
Antennas,” IEEE Transactions on Electromagnetic Compatibility, vol. 53, no. 4, pp. 909-922, 2011.
[20] International Electrical Commission (IEC). 60601-2-33 Medical Electrical Equipment–Part 2-33: Particular Require-
ments for the Basic Safety and Essential Performance of Magnetic Resonance Equipment for Medical Diagnosis, 3.0
edn. IEC, 2010.
[21] E. W. Weisstein, “Least Squares Fitting–Logarithmic – from Wolfram MathWorld,” Mathworld.wolfram.com, 2020.
[Online]. Available: https://mathworld.wolfram.com/LeastSquaresFittingLogarithmic.html.
[22] A. Zanella, “Best Practice in RSS Measurements and Ranging,” IEEE Communications Surveys  Tutorials, vol. 18,
no. 4, pp. 2662-2686, 2016.
[23] I. Guvenc, C. Abdallah, R. Jordan, and O. Dedoglu, “Enhancements to RSS-based indoor tracking systems using
Kalman filters,” in Proc. Int. Signal Processing Conf., 2003.
[24] J. Rezazadeh, R. Subramanian, K. Sandrasegaran, X. Kong, M. Moradi and F. Khodamoradi, “Novel iBeacon Place-
ment for Indoor Positioning in IoT,” IEEE Sensors Journal, vol. 18, no. 24, pp. 10240-10247, 2018.
[25] Core Location — Apple Developer Documentation,” Developer.apple.com, 2020. [Online]. Available:
https://developer.apple.com/documentation/corelocation/.
[26] Core Graphics — Apple Developer Documentation,” Developer.apple.com, 2020. [Online]. Available:
https://developer.apple.com/documentation/coregraphics.
[27] D. Feng, C. Wang, C. He, Y. Zhuang and X. Xia, “Kalman-Filter-Based Integration of IMU and UWB for High-
Accuracy Indoor Positioning and Navigation,” IEEE Internet of Things Journal, vol. 7, no. 4, pp. 3133-3146, 2020.
Smartphone indoor positioning based on enhanced BLE beacon... (Ngoc-Son Duong)
62 r ISSN: 1693-6930
BIOGRAPHIES OF AUTHORS
Ngoc-Son Duong was born in Bac Giang, Vietnam. He received the B.E. degree in electronics and
telecommunications from University of Engineering and Technology, Vietnam National University,
Vietnam, in 2018. He is currently pursuing the M.Sc. degree at the University of Engineering and
Technology, Vietnam National University, Hanoi, Vietnam. His research interests include indoor
localization, and wireless communications.
Thai-Mai Dinh Thi is a Lecturer of Faculty of Electronics and Telecommunications, VNU Univer-
sity of Engineering and Technology, Hanoi, Vietnam. She graduated from Post and Telecommunica-
tion Institute of Technology, Vietnam in 2006. Then, she received the Master and PhD degrees from
Paris Sud 11, France in 2008 and VNU University of Engineering and Technology, Hanoi, Vietnam in
2016, respectively. Her research interests focus on 5G Mobile Networks, Wireless Communications
and Indoor Positioning System as well.
TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 1, February 2021 : 51 – 62

More Related Content

What's hot

Deep learning for 3-D Scene Reconstruction and Modeling
Deep learning for 3-D Scene Reconstruction and Modeling Deep learning for 3-D Scene Reconstruction and Modeling
Deep learning for 3-D Scene Reconstruction and Modeling Yu Huang
 
An RSS Based Localization Algorithm in Cellular Networks
An RSS Based Localization Algorithm in Cellular NetworksAn RSS Based Localization Algorithm in Cellular Networks
An RSS Based Localization Algorithm in Cellular NetworksIDES Editor
 
A High Performance Modified SPIHT for Scalable Image Compression
A High Performance Modified SPIHT for Scalable Image CompressionA High Performance Modified SPIHT for Scalable Image Compression
A High Performance Modified SPIHT for Scalable Image CompressionCSCJournals
 
survey on Scene Detection Techniques on video
survey on Scene Detection Techniques on videosurvey on Scene Detection Techniques on video
survey on Scene Detection Techniques on videoChandra Shekhar Mithlesh
 
Single image super resolution with improved wavelet interpolation and iterati...
Single image super resolution with improved wavelet interpolation and iterati...Single image super resolution with improved wavelet interpolation and iterati...
Single image super resolution with improved wavelet interpolation and iterati...iosrjce
 
Minimization of Localization Error using Connectivity based Geometrical Metho...
Minimization of Localization Error using Connectivity based Geometrical Metho...Minimization of Localization Error using Connectivity based Geometrical Metho...
Minimization of Localization Error using Connectivity based Geometrical Metho...Dr. Amarjeet Singh
 
Different Image Fusion Techniques –A Critical Review
Different Image Fusion Techniques –A Critical ReviewDifferent Image Fusion Techniques –A Critical Review
Different Image Fusion Techniques –A Critical ReviewIJMER
 
Image super resolution based on
Image super resolution based onImage super resolution based on
Image super resolution based onjpstudcorner
 
Moving Cast Shadow Detection Using Physics-based Features (CVPR 2009)
Moving Cast Shadow Detection Using Physics-based Features (CVPR 2009)Moving Cast Shadow Detection Using Physics-based Features (CVPR 2009)
Moving Cast Shadow Detection Using Physics-based Features (CVPR 2009)Jia-Bin Huang
 
IMAGE FUSION IN IMAGE PROCESSING
IMAGE FUSION IN IMAGE PROCESSINGIMAGE FUSION IN IMAGE PROCESSING
IMAGE FUSION IN IMAGE PROCESSINGgarima0690
 
fusion of Camera and lidar for autonomous driving II
fusion of Camera and lidar for autonomous driving IIfusion of Camera and lidar for autonomous driving II
fusion of Camera and lidar for autonomous driving IIYu Huang
 
Comparison of image fusion methods
Comparison of image fusion methodsComparison of image fusion methods
Comparison of image fusion methodsAmr Nasr
 
Land Cover Feature Extraction using Hybrid Swarm Intelligence Techniques - A ...
Land Cover Feature Extraction using Hybrid Swarm Intelligence Techniques - A ...Land Cover Feature Extraction using Hybrid Swarm Intelligence Techniques - A ...
Land Cover Feature Extraction using Hybrid Swarm Intelligence Techniques - A ...IDES Editor
 
Wavelet based image fusion
Wavelet based image fusionWavelet based image fusion
Wavelet based image fusionUmed Paliwal
 
Digital Image Watermarking Basics
Digital Image Watermarking BasicsDigital Image Watermarking Basics
Digital Image Watermarking BasicsIOSR Journals
 
IRJET- Heuristic Approach for Low Light Image Enhancement using Deep Learning
IRJET- Heuristic Approach for Low Light Image Enhancement using Deep LearningIRJET- Heuristic Approach for Low Light Image Enhancement using Deep Learning
IRJET- Heuristic Approach for Low Light Image Enhancement using Deep LearningIRJET Journal
 

What's hot (20)

Deep learning for 3-D Scene Reconstruction and Modeling
Deep learning for 3-D Scene Reconstruction and Modeling Deep learning for 3-D Scene Reconstruction and Modeling
Deep learning for 3-D Scene Reconstruction and Modeling
 
An RSS Based Localization Algorithm in Cellular Networks
An RSS Based Localization Algorithm in Cellular NetworksAn RSS Based Localization Algorithm in Cellular Networks
An RSS Based Localization Algorithm in Cellular Networks
 
A High Performance Modified SPIHT for Scalable Image Compression
A High Performance Modified SPIHT for Scalable Image CompressionA High Performance Modified SPIHT for Scalable Image Compression
A High Performance Modified SPIHT for Scalable Image Compression
 
survey on Scene Detection Techniques on video
survey on Scene Detection Techniques on videosurvey on Scene Detection Techniques on video
survey on Scene Detection Techniques on video
 
Single image super resolution with improved wavelet interpolation and iterati...
Single image super resolution with improved wavelet interpolation and iterati...Single image super resolution with improved wavelet interpolation and iterati...
Single image super resolution with improved wavelet interpolation and iterati...
 
U4408108113
U4408108113U4408108113
U4408108113
 
Ec36783787
Ec36783787Ec36783787
Ec36783787
 
Minimization of Localization Error using Connectivity based Geometrical Metho...
Minimization of Localization Error using Connectivity based Geometrical Metho...Minimization of Localization Error using Connectivity based Geometrical Metho...
Minimization of Localization Error using Connectivity based Geometrical Metho...
 
Imran2016
Imran2016Imran2016
Imran2016
 
Different Image Fusion Techniques –A Critical Review
Different Image Fusion Techniques –A Critical ReviewDifferent Image Fusion Techniques –A Critical Review
Different Image Fusion Techniques –A Critical Review
 
Image super resolution based on
Image super resolution based onImage super resolution based on
Image super resolution based on
 
Moving Cast Shadow Detection Using Physics-based Features (CVPR 2009)
Moving Cast Shadow Detection Using Physics-based Features (CVPR 2009)Moving Cast Shadow Detection Using Physics-based Features (CVPR 2009)
Moving Cast Shadow Detection Using Physics-based Features (CVPR 2009)
 
IMAGE FUSION IN IMAGE PROCESSING
IMAGE FUSION IN IMAGE PROCESSINGIMAGE FUSION IN IMAGE PROCESSING
IMAGE FUSION IN IMAGE PROCESSING
 
fusion of Camera and lidar for autonomous driving II
fusion of Camera and lidar for autonomous driving IIfusion of Camera and lidar for autonomous driving II
fusion of Camera and lidar for autonomous driving II
 
Comparison of image fusion methods
Comparison of image fusion methodsComparison of image fusion methods
Comparison of image fusion methods
 
Land Cover Feature Extraction using Hybrid Swarm Intelligence Techniques - A ...
Land Cover Feature Extraction using Hybrid Swarm Intelligence Techniques - A ...Land Cover Feature Extraction using Hybrid Swarm Intelligence Techniques - A ...
Land Cover Feature Extraction using Hybrid Swarm Intelligence Techniques - A ...
 
Ja2415771582
Ja2415771582Ja2415771582
Ja2415771582
 
Wavelet based image fusion
Wavelet based image fusionWavelet based image fusion
Wavelet based image fusion
 
Digital Image Watermarking Basics
Digital Image Watermarking BasicsDigital Image Watermarking Basics
Digital Image Watermarking Basics
 
IRJET- Heuristic Approach for Low Light Image Enhancement using Deep Learning
IRJET- Heuristic Approach for Low Light Image Enhancement using Deep LearningIRJET- Heuristic Approach for Low Light Image Enhancement using Deep Learning
IRJET- Heuristic Approach for Low Light Image Enhancement using Deep Learning
 

Similar to Smartphone indoor positioning based on enhanced BLE beacon multi-lateration

Indoor positioning-methods-using-vlc-leds-2015
Indoor positioning-methods-using-vlc-leds-2015Indoor positioning-methods-using-vlc-leds-2015
Indoor positioning-methods-using-vlc-leds-2015THIENNGUYENVAN12
 
Location estimation in zig bee network based on fingerprinting
Location estimation in zig bee network based on fingerprintingLocation estimation in zig bee network based on fingerprinting
Location estimation in zig bee network based on fingerprintingHanumesh Palla
 
Localization using filtered dgps
Localization using filtered dgpsLocalization using filtered dgps
Localization using filtered dgpseSAT Journals
 
IOT-WSN: SURVEY ON POSITIONING TECHNIQUES
IOT-WSN: SURVEY ON POSITIONING TECHNIQUESIOT-WSN: SURVEY ON POSITIONING TECHNIQUES
IOT-WSN: SURVEY ON POSITIONING TECHNIQUESijassn
 
C015 apwcs10-positioning
C015 apwcs10-positioningC015 apwcs10-positioning
C015 apwcs10-positioningevegod
 
Indoor tracking with bluetooth low energy devices using k nearest neighbour a...
Indoor tracking with bluetooth low energy devices using k nearest neighbour a...Indoor tracking with bluetooth low energy devices using k nearest neighbour a...
Indoor tracking with bluetooth low energy devices using k nearest neighbour a...Conference Papers
 
Investigations on real time RSSI based outdoor target tracking using kalman f...
Investigations on real time RSSI based outdoor target tracking using kalman f...Investigations on real time RSSI based outdoor target tracking using kalman f...
Investigations on real time RSSI based outdoor target tracking using kalman f...IJECEIAES
 
A genetic based indoor positioning algorithm using Wi-Fi received signal stre...
A genetic based indoor positioning algorithm using Wi-Fi received signal stre...A genetic based indoor positioning algorithm using Wi-Fi received signal stre...
A genetic based indoor positioning algorithm using Wi-Fi received signal stre...IAESIJAI
 
Ubiquitous Positioning: A Taxonomy for Location Determination on Mobile Navig...
Ubiquitous Positioning: A Taxonomy for Location Determination on Mobile Navig...Ubiquitous Positioning: A Taxonomy for Location Determination on Mobile Navig...
Ubiquitous Positioning: A Taxonomy for Location Determination on Mobile Navig...sipij
 
Fuzzy-proportional-integral-derivative-based controller for object tracking i...
Fuzzy-proportional-integral-derivative-based controller for object tracking i...Fuzzy-proportional-integral-derivative-based controller for object tracking i...
Fuzzy-proportional-integral-derivative-based controller for object tracking i...IJECEIAES
 
Goal location prediction based on deep learning using RGB-D camera
Goal location prediction based on deep learning using RGB-D cameraGoal location prediction based on deep learning using RGB-D camera
Goal location prediction based on deep learning using RGB-D camerajournalBEEI
 
Performance Analysis of DV-Hop Localization Using Voronoi Approach
Performance Analysis of DV-Hop Localization Using Voronoi ApproachPerformance Analysis of DV-Hop Localization Using Voronoi Approach
Performance Analysis of DV-Hop Localization Using Voronoi ApproachIJMER
 
Novel Position Estimation using Differential Timing Information for Asynchron...
Novel Position Estimation using Differential Timing Information for Asynchron...Novel Position Estimation using Differential Timing Information for Asynchron...
Novel Position Estimation using Differential Timing Information for Asynchron...IJCNCJournal
 
NOVEL POSITION ESTIMATION USING DIFFERENTIAL TIMING INFORMATION FOR ASYNCHRON...
NOVEL POSITION ESTIMATION USING DIFFERENTIAL TIMING INFORMATION FOR ASYNCHRON...NOVEL POSITION ESTIMATION USING DIFFERENTIAL TIMING INFORMATION FOR ASYNCHRON...
NOVEL POSITION ESTIMATION USING DIFFERENTIAL TIMING INFORMATION FOR ASYNCHRON...IJCNCJournal
 
Eecs221 final report
Eecs221   final reportEecs221   final report
Eecs221 final reportSaurebh Raut
 
EECS221 - Final Report
EECS221 - Final ReportEECS221 - Final Report
EECS221 - Final ReportSaurebh Raut
 
Indoor localisation and dead reckoning using Sensor Tag™ BLE.
Indoor localisation and dead reckoning using Sensor Tag™ BLE.Indoor localisation and dead reckoning using Sensor Tag™ BLE.
Indoor localisation and dead reckoning using Sensor Tag™ BLE.Abhishek Madav
 
Comparative study between metaheuristic algorithms for internet of things wir...
Comparative study between metaheuristic algorithms for internet of things wir...Comparative study between metaheuristic algorithms for internet of things wir...
Comparative study between metaheuristic algorithms for internet of things wir...IJECEIAES
 

Similar to Smartphone indoor positioning based on enhanced BLE beacon multi-lateration (20)

Indoor positioning-methods-using-vlc-leds-2015
Indoor positioning-methods-using-vlc-leds-2015Indoor positioning-methods-using-vlc-leds-2015
Indoor positioning-methods-using-vlc-leds-2015
 
Coordinate Location Fingerprint Based On WiFi Service
Coordinate Location Fingerprint Based On  WiFi ServiceCoordinate Location Fingerprint Based On  WiFi Service
Coordinate Location Fingerprint Based On WiFi Service
 
Location estimation in zig bee network based on fingerprinting
Location estimation in zig bee network based on fingerprintingLocation estimation in zig bee network based on fingerprinting
Location estimation in zig bee network based on fingerprinting
 
Localization using filtered dgps
Localization using filtered dgpsLocalization using filtered dgps
Localization using filtered dgps
 
IOT-WSN: SURVEY ON POSITIONING TECHNIQUES
IOT-WSN: SURVEY ON POSITIONING TECHNIQUESIOT-WSN: SURVEY ON POSITIONING TECHNIQUES
IOT-WSN: SURVEY ON POSITIONING TECHNIQUES
 
C015 apwcs10-positioning
C015 apwcs10-positioningC015 apwcs10-positioning
C015 apwcs10-positioning
 
Indoor tracking with bluetooth low energy devices using k nearest neighbour a...
Indoor tracking with bluetooth low energy devices using k nearest neighbour a...Indoor tracking with bluetooth low energy devices using k nearest neighbour a...
Indoor tracking with bluetooth low energy devices using k nearest neighbour a...
 
Investigations on real time RSSI based outdoor target tracking using kalman f...
Investigations on real time RSSI based outdoor target tracking using kalman f...Investigations on real time RSSI based outdoor target tracking using kalman f...
Investigations on real time RSSI based outdoor target tracking using kalman f...
 
A genetic based indoor positioning algorithm using Wi-Fi received signal stre...
A genetic based indoor positioning algorithm using Wi-Fi received signal stre...A genetic based indoor positioning algorithm using Wi-Fi received signal stre...
A genetic based indoor positioning algorithm using Wi-Fi received signal stre...
 
Ubiquitous Positioning: A Taxonomy for Location Determination on Mobile Navig...
Ubiquitous Positioning: A Taxonomy for Location Determination on Mobile Navig...Ubiquitous Positioning: A Taxonomy for Location Determination on Mobile Navig...
Ubiquitous Positioning: A Taxonomy for Location Determination on Mobile Navig...
 
Fuzzy-proportional-integral-derivative-based controller for object tracking i...
Fuzzy-proportional-integral-derivative-based controller for object tracking i...Fuzzy-proportional-integral-derivative-based controller for object tracking i...
Fuzzy-proportional-integral-derivative-based controller for object tracking i...
 
Goal location prediction based on deep learning using RGB-D camera
Goal location prediction based on deep learning using RGB-D cameraGoal location prediction based on deep learning using RGB-D camera
Goal location prediction based on deep learning using RGB-D camera
 
3 ijcse-01222-5
3 ijcse-01222-53 ijcse-01222-5
3 ijcse-01222-5
 
Performance Analysis of DV-Hop Localization Using Voronoi Approach
Performance Analysis of DV-Hop Localization Using Voronoi ApproachPerformance Analysis of DV-Hop Localization Using Voronoi Approach
Performance Analysis of DV-Hop Localization Using Voronoi Approach
 
Novel Position Estimation using Differential Timing Information for Asynchron...
Novel Position Estimation using Differential Timing Information for Asynchron...Novel Position Estimation using Differential Timing Information for Asynchron...
Novel Position Estimation using Differential Timing Information for Asynchron...
 
NOVEL POSITION ESTIMATION USING DIFFERENTIAL TIMING INFORMATION FOR ASYNCHRON...
NOVEL POSITION ESTIMATION USING DIFFERENTIAL TIMING INFORMATION FOR ASYNCHRON...NOVEL POSITION ESTIMATION USING DIFFERENTIAL TIMING INFORMATION FOR ASYNCHRON...
NOVEL POSITION ESTIMATION USING DIFFERENTIAL TIMING INFORMATION FOR ASYNCHRON...
 
Eecs221 final report
Eecs221   final reportEecs221   final report
Eecs221 final report
 
EECS221 - Final Report
EECS221 - Final ReportEECS221 - Final Report
EECS221 - Final Report
 
Indoor localisation and dead reckoning using Sensor Tag™ BLE.
Indoor localisation and dead reckoning using Sensor Tag™ BLE.Indoor localisation and dead reckoning using Sensor Tag™ BLE.
Indoor localisation and dead reckoning using Sensor Tag™ BLE.
 
Comparative study between metaheuristic algorithms for internet of things wir...
Comparative study between metaheuristic algorithms for internet of things wir...Comparative study between metaheuristic algorithms for internet of things wir...
Comparative study between metaheuristic algorithms for internet of things wir...
 

More from TELKOMNIKA JOURNAL

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...TELKOMNIKA JOURNAL
 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...TELKOMNIKA JOURNAL
 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...TELKOMNIKA JOURNAL
 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...TELKOMNIKA JOURNAL
 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...TELKOMNIKA JOURNAL
 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaTELKOMNIKA JOURNAL
 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireTELKOMNIKA JOURNAL
 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkTELKOMNIKA JOURNAL
 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsTELKOMNIKA JOURNAL
 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...TELKOMNIKA JOURNAL
 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesTELKOMNIKA JOURNAL
 
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...TELKOMNIKA JOURNAL
 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemTELKOMNIKA JOURNAL
 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...TELKOMNIKA JOURNAL
 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorTELKOMNIKA JOURNAL
 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...TELKOMNIKA JOURNAL
 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...TELKOMNIKA JOURNAL
 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksTELKOMNIKA JOURNAL
 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingTELKOMNIKA JOURNAL
 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...TELKOMNIKA JOURNAL
 

More from TELKOMNIKA JOURNAL (20)

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...
 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...
 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...
 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...
 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antenna
 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fire
 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio network
 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bands
 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...
 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertainties
 
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...
 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensor
 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...
 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networks
 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imaging
 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
 

Recently uploaded

(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 

Recently uploaded (20)

(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 

Smartphone indoor positioning based on enhanced BLE beacon multi-lateration

  • 1. TELKOMNIKA Telecommunication, Computing, Electronics and Control Vol. 19, No. 1, February 2021, pp. 51∼62 ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, No: 21/E/KPT/2018 DOI: 10.12928/TELKOMNIKA.v19i1.16275 r 51 Smartphone indoor positioning based on enhanced BLE beacon multi-lateration Ngoc-Son Duong, Thai-Mai Dinh Thi Faculty of Electronics and Telecommunications, VNU University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam Article Info Article history: Received Apr 7, 2020 Revised Aug 4, 2020 Accepted Sep 5, 2020 Keywords: BLE iBeacon Bluetooth low energy Indoor positioning Least square estimation Trilateration ABSTRACT In this paper, we introduce a smartphone indoor positioning method using bluetooth low energy (BLE) beacon multilateration. At first, based on signal strength analysis, we construct a distance calculation model for BLE beacons. Then, with the aims to improve positioning accuracy, we propose an improved lateral method (range-based method) which is applied for 4 nearby beacons. The method is intended to design a real-time system for some services such as emergency assistance, personal localiza- tion and tracking, location-based advertising and marketing, etc. Experimental results show that the proposed method achieves high accuracy when compared with the state of the art lateral methods such as geometry-based (conventional trilateration), least square estimation-based (LSE-based) and weighted LSE-based. This is an open access article under the CC BY-SA license. Corresponding Author: Thai-Mai Dinh Thi Faculty of Electronics and Telecommunications VNU University of Engineering and Technology, Vietnam National University G2 Building, 144 Xuan Thuy Str., Cau Giay Dist., Hanoi, Vietnam Email: dttmai@vnu.edu.vn 1. INTRODUCTION Nowadays, in large cities, human activities tend to shift from outdoor to indoor environments. This has led to a growing need for services related to the indoor environment, such as location-based services (LBSs) and social networking services (SNSs). Location accuracy is a measure of service quality. GPS has done this well for outdoor environments. However, due to the obstruction of building materials, GPS signals can not work well in indoor environments. Therefore, many technologies are utilized to deploy indoor positioning sys- tems (IPS) such as WiFi [1, 2], radio frequency identification (RFID) [3], Zigbee [4], ultra-wideband (UWB) [5] and camera-based (photo-based) [6]. To overcome the limitations of previous technologies, a bluetooth low energy (BLE) based technology called iBeacon was introduced as an appropriate solution for IPS requirements due to the advantages such as low energy consumption, wide-coverage, easy deployment, and potential high ac- curacy. We can use iBeacon technology to build an indoor positioning system that uses received signal strength (RSS) to estimate user location. There are two kinds of received signal strength index (RSSI) based technique: fingerprinting [7] and range-based method [8] (as known as lateral or lateration method). In the localization problem, the range-based method utilizes an estimated distance from the path-loss model to estimate the user’s position. Meanwhile, Fingerprinting relies on map survey steps to build an radio signal strength (RSS) database of an interested area. Then, the position decision is made based on online signals and offline database using a matching algorithm. Some recent studies have chosen fingerprint as the main approach [9–12]. Others choose Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA
  • 2. 52 r ISSN: 1693-6930 range-based as their main approach [13–15]. Looking at the number of current research, we can see that fingerprinting seems to be more popular than range-based methods. However, to achieve high accuracy, the fingerprinting method requires data collec- tion for many reference points. This task takes much time and is unfeasible to practical implementation. In deployment, it seems fair to say that range-based methods are more feasible than fingerprinting. Range-based methods can help implement an indoor positioning system without additional requirements such as map survey or rebuild the database. However, range-methods have their disadvantages as well. Their problem is distance estimation, which directly affects the accuracy of the estimated position. Theoretically, we all know the dis- tance varies according to the logarithmic function. But, it is not easy to calculate the distance correctly due to the effects of fading, small-scale, and human absorption. To cope with this problem, we propose an improved method for a range-based method applied to BLE signals and indoor environments. We consider that, at a certain RSS level, the estimation of the distance between the phone and the BLE beacon is relatively accurate. So, such beacons are called reliable beacons. Therefore, we obtain some reliable circles with the center of the reliable beacons and the radius of the estimated distance from the mobile device. Then the returned position must be in such circles. Intervention by geometric method, we move the estimated position of conventional trilateration to a position that belongs to the circles. In order to get higher accuracy, we exploit the information of a large number of beacons. In this study, we applied the proposed method for four beacons simultaneously. Each cluster of three beacons will estimate the phone’s position based on Trilateration combined with reliable circles. Then the final position will be determined by the average of possible positions. Experiments were carried out in the real world, and the results showed that the proposed method outperformed existing conventional methods. In the next part, the Trilateration method and its encountered problem, are briefly presented in section 2. Section 3 describes our proposed method, including an improved geometry-based method for Trilateration and multiple BLE beacon usage. Section 4 provides system parameters and experimental results. Ultimately, section 5 concludes this paper. 2. RESEARCH METHOD 2.1. Trilateration In the global positioning system, trilateration [16, 17] (short for conventional trilateration) is a tradi- tional method for determining the location of receiver equipment on earth. The position of the object can be obtained by calculating the distance from the satellites. We can exploit this concept for indoor localization by scaling down the trilateration concept used for global positioning system (GPS). In our study, trilateration, as illustrated in Figure 1, is defined as a method to obtain the position of an object or people under the influence of the indoor environment based on RSS information of three beacons. Received signal strengths from these beacons are calculated via the following formula [18]: Γ (d) = Γ (d0) − 10η log d d0 (1) whereas, Γ (d) and Γ (d0) are RSSIs at Euclidean distance d and reference distance d0, respectively (in dBm). d0 is usually chosen equal to one meter for the indoor environment and η represents the path loss exponent. The distance from the smart phone to the i-th beacon can be expressed as: di = d0 · 10 Γ(d0)−Γ(di) 10η (2) In order to calculate the smart phone position, the coordinates of BLE beacons on the map must be known in advance. Assume that (xi, yi) is the coordinates of ith beacon on the map. The equation for each beacon region is represented by (z = 0): (x − xi) 2 + (y − yi) 2 = d2 i , i = {1, 2, 3} (3) (3) is equivalent to: x2 − 2xxi + x2 i + y2 − 2yyi + y2 i − d2 i = 0 (4) TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 1, February 2021 : 51 – 62
  • 3. TELKOMNIKA Telecommun Comput El Control r 53 Let ai = −2xi, bi = −2yi, ci = x2 i + y2 i − d2 i , then (4) is rewritten as: x2 + y2 + aix + biy + ci = 0 (5) The position of a tracked object can be estimated by: x̂ = (c2 − c1)(b2 − b3) − (c3 − c2)(b1 − b2) (a1 − a2)(b2 − b3) − (a2 − a3)(b1 − b2) (6) ŷ = (a2 − a1)(c3 − c2) − (c2 − c1)(a2 − a3) (a1 − a2)(b2 − b3) − (a2 − a3)(b1 − b2) (7) B1 B2 B3 B1 B2 B3 (b) (c) B1 B2 B3 (a) Figure 1. Trilateration method; (a) ideal condition, 3 circles intersect at one point, (b) and (c) imperfect condition, 3 circles do not intersect at one point 2.2. Distance estimation Distance estimation plays a vital role in internet of things (IoT) applications. In this study, the accuracy of distance estimation has a high impact on reckoning trilateration position. The more accurate the conversion from RSSI to distance is, the more precise trilateration’s estimated position is. Unfortunately, for BLE signals, it is not easy to calculate true distance through the log-distance path loss model. Many factors affect the BLE signal in the indoor environment, such as the material of indoor structures, body-blocking. Intending to construct a real-time indoor positioning system, we consider humans’ presence as a high-impact factor. The human body consists of 70% water; therefore, this is a strong attenuation factor at a frequency of 2.4 GHz. The attenuation of the BLE signal caused by humans body (in dBm) is estimated by [19, 20]: PLH = 30 + 10 log(2 ∗ w ∗ n) (8) where w and n are body weight and number of detected person in the area. As shown in Figure 2, we can see a significant difference when the phone is blocked by the user body. Thus, use (2) with a fixed η to estimate the distance no longer matches the BLE signal. To look closely at the problem, we conducted some experiments to analyze the RSSI attenuation of the BLE signal in 2 cases: line-of-sight (LOS) and non-LOS (NLOS) (body-blocking). Figure 3 shows that whenever we receive the signal that has an RSS value larger than -70 dBm, we can use LOS curve line confidently to calculate the distance from the smartphone to the beacon. For our empirical data, LOS curve line is represented by a logarithmic trendline [21], i.e.: Γ = −10.18 ln(d) − 59.533 (dBm) (9) where, Γ is RSSI at distance d. At lower RSSI levels, a RSS value can correspond to many distances. For example, in our experimental environment, -75 dBm can corresponds to either 3 m (LOS) or 4.5 m (NLOS) while the smartphone does not know what type of condition it is confronting. So, it is considered as an unre- liable situation. In this case, the distance is estimated by an average fitted curve between LOS and NLOS, i.e: Γ = −8.621 ln(d) − 64.321. Smartphone indoor positioning based on enhanced BLE beacon... (Ngoc-Son Duong)
  • 4. 54 r ISSN: 1693-6930 2.3. RSSI filtering As precise distance estimation results in proper Trilateration localization, it would be better to use some RSS filtration. For RSS, noise is often known for short-term fading [22], which is caused by surrounding pedestrians. RSS can fluctuate sharply in a short period. To reduce its impact, we apply Kalman filter [23] for RSS model: ( Γk = Γk−1 zk = Γk + vk (10) herein, we consider there is no noise in the process and vk denotes measurement noise of RSS observation zk which is introduced as pedestrian’s movement. The detailed process of the Kalman filter algorithm is shown in Algorithm 1. Figure 2. Attenuation of received signal strength at 2 m of distance. 0◦ corresponds to the situation that the user stands and holds the phone the opposite side to the beacon (LOS). 180◦ corresponds to the case that the user turns away from the beacon (non-LOS) 1 2 3 4 5 6 7 8 9 10 Distance (m) -85 -80 -75 -70 -65 -60 RSSI (dBm) LOS condition NLOS condition Fitted curve of LOS condition Fitted curve of NLOS condition Figure 3. RSSI varies by distance in 2 cases: LOS and NLOS at transmitting power of 0 dBm. Note that, this is the empirical data and needs to be calibrated with another environment TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 1, February 2021 : 51 – 62
  • 5. TELKOMNIKA Telecommun Comput El Control r 55 Algorithm 1: Kalman Filter Algorithm Initialize: State mean: Γ0 = z0 State covariance: ρ0 = 1 1. Predict state: Γ̂− k = Γ̂k−1 2. Predict state covariance: ρ̂− k = ρk−1 3. Calculate Kalman filter gain: Kk = ρ− k (ρ− k + R)−1 4. Update state: Γ̂k = Γ̂− k + Kk(zk − Γ̂− k ) 5. Update state covariance: ρk = (1 − Kk)ρ− k 3. ENHANCED BLE BEACON MULTI-LATERATION 3.1. Enhanced trilateration for BLE signal Based on the above signal analysis, whenever the signal strength received from the beacon is higher than -70 dBm, the relative position of the phone to the beacon is likely to be LOS. For simplicity, we call the beacon that satisfies the condition with the RSSI returned on the phone higher than -70 dBm as rLOS beacon and is denoted by B . (abbreviation for reliable LOS beacon). Then, the estimated distance of rLOS beacon from (9) is considered the most reliable. Moreover, the position is estimated by trilateration completely depends on the radius of three circles. In theory, if the distance from the beacons to the smartphone is absolutely correct, the position returned from trilateration must be the intersection of the three circles. Let B . be the coordinates of rLOS beacon, T be the coordinates returned by trilateration and P is the position calculated by the proposed method. Case 1: There is no presence of rLOS beacon. In this case, there will not be any improvement, we simply apply (6), (7) to estimate the user position. Case 2: Only one rLOS beacon is available. Since there is only one rLOS beacon, that means we have only one trusted circle in total of three, called rLOS circle. Therefore, the estimated Trilateration-based position should be returned on this circle. Then, P is defined as the intersection of infinite line ← → B . T and a rLOS circle which has radius of d ., centered at B . and is denoted by (B . ; d .). Figure 4 is the visual view of the proposed method. P must satisfy the following conditions: ( P = ← → B . T ∩ (B . ; d .) PT is minimum (11) Estimated position of the proposed method Estimated position of Trilateration rLOS beacon (a) (b) rLOS circle B1 B2 B3 P T B1 T P B2 B3 . . Figure 4. Position estimation in Case 2 Case 3: Two rLOS beacons exist. Let two circles of radii d .1 and d .2 and centered at B . 1 and B . 2 intersect at one or two point. Figure 5 illustrates how we estimate the user position. In this case, P must satisfy the following conditions: ( P = T2 i=1 (B . i; d .i) PT is minimum (12) In addition, we consider the case of two rLOS circle does not intersect as a case is described in Figure 4 where the position is decided by a smaller rLOS circle. Because iBeacon is uniformly distributed, the smartphone rarely gets the RSS above -70 dBm simultaneously from three different beacons due to the body’s obstruction; therefore, there is no Case 4 for three rLOS beacons. Smartphone indoor positioning based on enhanced BLE beacon... (Ngoc-Son Duong)
  • 6. 56 r ISSN: 1693-6930 Estimated position of the proposed method Estimated position of Trilateration (a) rLOS beacon (b) rLOS circle B1 B2 B3 P T P T B1 B2 B3 . . . . Figure 5. Position estimation in Case 3 3.2. Multi BLE iBeacon lateration For achieving high accuracy, we use information from four beacons simultaneously. Accordingly, when applying Trilateration for four beacons, we have C(4, 3) ways to choose a cluster of three beacons from a set of four ones where commutation is not allowed. In detail, at first, we collect signals from all beacons on the map. Then arrange them in an array of four components: B = [B1, B2, B3, B4] (13) in which, Bi represents ith beacon object in descending order of RSSI. In programming, Bi is a tuple, which is represented in the form: Bi = [(xi, yi); Γi; di], where, (xi, yi) is the coordinates in two dimensions space, Γi and di are RSSI and distance from the smartphone to that beacon, respectively. Let T (·) be the conventional Trilateration function and P(·) be the function used to estimate the position according to the proposed method. If we have two rLOS beacons, four possible positions are calculated by:          ˆ P1 = P (B1, B2, B3) ˆ P2 = P (B1, B2, B4) ˆ P3 = P (B1, B3, B4) ˆ P4 = P (B2, B3, B4) (14) In case we only have a rLOS beacon (B1 is the rLOS beacon object), four possible positions are calculated by:          ˆ P1 = P (B1, B2, B3) ˆ P2 = P (B1, B2, B4) ˆ P3 = P (B1, B3, B4) ˆ P4 = T (B2, B3, B4) (15) In the absence of any rLOS beacon, the entire P(·) function in (15) is replaced by the T (·) function. The final position is estimated by: P = ( ˆ P1+ ˆ P2+ ˆ P3+ ˆ P4 4 for Case 1, Case 3 3 ˆ P1+3 ˆ P2+3 ˆ P3+ ˆ P4 10 for Case 2 (16) Herein, the P(·) function is considered to be more reliable than the T (·) function. Hence, the position that returned by the P(·) function should be assigned with a higher weight. It is also possible if we use Trilateration for a larger number of beacons. For example, with five beacons, we have to calculate C(5, 3) = 10 operations instead of C(4, 3) = 4. However, this increases the computational cost. Besides, it requires a bigger number of beacons, which leads to an increase in deployment costs. Therefore, choosing to use the four beacons is reasonable. 4. EVALUATION 4.1. Experiment setup The experiment was executed on the 1st floor of G2 building, University of Engineering and Technol- ogy, VNU. The testbed is typically open with some decorative trees, twos big columns, and occasionally has the TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 1, February 2021 : 51 – 62
  • 7. TELKOMNIKA Telecommun Comput El Control r 57 appearance of pedestrians. We deploy four beacons in an area of 90 m2 , and the shortest distance between two beacons is 6 meters. The layout of the floor plan and the interested area are shown in Figure 6. Beacons are set according to the strategy outlined in [24] at the height of 150 cm (equivalent to the height of user equipment) with the same technical configuration. Detailed specifications of the system are given in Table 1. The phone is held close to the body and in a parallel position to the horizontal plane. The proposed method is designed for discrete positioning and applied to execute multiple measurements. We wrote a measurement software with the help of several available frameworks, i.e: CoreLocation [25], CoreGraphic [26]. The collected data is sent via email and we then use it to plot the figures using MATLAB. Table 1. System parameters Device iPhone SE Operation System iOS 12.2 Beacon 4 Proximity Estimote Beacon Bluetooh Interface BLE v5.0/2.4 GHz Advertising Interval 100 ms Broadcasting Power 0 dBm Broadcasting Range 50 m P. 103 NHÀ G2B 8.1 m P. 107 P. 102 PHÒNG HỌC NVCL 90 m2 7.5 m NG TN m2 PHÒNG MULTIMEDIA TRUNG TÂM MÁY TÍNH PHÒNG MÁY CHỦ P. 104 PHÒNG KHO 10 m2 Up Up Up WC Nữ Up O x y N E S W Test point (14; 9.6) Start point (6;8) (8; 11.6) (14; 11.6) (11; 6) (15.6; 6) Figure 6. Layout of the experiment area 4.2. Experiment results 4.2.1. Distance estimation Firstly, we want to evaluate the accuracy in estimating the distance from the beacon to the user device. As mentioned above, the distance estimation strategy is applied to two different RSSI ranges. If RSSI is higher than -70 dBm, the (9) will be used. In contrast, if RSSI is less than or equal to -70 dBm, the distance is calculated by the average between LOS and NLOS. We measure RSS value at different distances and directions that change from 1 to 10 m. Each position is 1 m apart, and we collect 100 RSSI samples for each one. The result, including the average estimated distance and variance, are given in Table 2. As the results are shown in Table 2, at distances of 1 m, 2 m, and 3 m, the estimated distances are entirely accurate. The cause of this result is, at those distances, the RSS level is almost higher than -70 dBm, then the distance is estimated by (9). Since the equation for (9) changes slowly in this RSSI range, the variance is not too much. For distances greater than 3 m, the RSS varies considerably between LOS and NLOS and is usually less than -70 dBm. Thus, the distance is estimated by the average model. Consequently, the errors, as well as the variance in these cases, are high. Smartphone indoor positioning based on enhanced BLE beacon... (Ngoc-Son Duong)
  • 8. 58 r ISSN: 1693-6930 Table 2. Distance estimation True Distance (m) 1 2 3 4 5 6 7 8 9 10 Avg. Estimated Distance (m) 1.08 1.91 3.12 3.76 5.56 7.25 8.3 8.88 10.82 12.23 Variance 0.12 0.21 0.3 0.74 1.23 1.73 1.96 2.08 2.25 4.23 4.2.2. Impact of Kalman filter In Figure 7, the red line represents nature RSS at a distance of 2.5 m under LOS condition, and the blue line represents filtered RSS using the Kalman filter. At some time steps, the red line sharply attenuated due to the presence of pedestrians. We easily see the Kalman filter somewhat reduced the impact of the RSS fluctuations in the blue line. Figure 8 depicts the estimated position in the case above. When not using the Kalman filter, the estimated positions show a large dispersion. After filtering, estimated positions show an opposite trend. The cause of this result is the determination of whether a beacon is under rLOS condition or not. In sensitive cases (RSS ≈ −70 dBm), Kalman filter helps to reduce about 37% of the variance. Figure 7. Comparison of raw RSS and KF-filtered RSS 10 12 14 16 9 9.5 10 10.5 11 Nature Position True Position 10 12 14 16 9 9.5 10 10.5 11 Filtered Position True Position Figure 8. The estimated position is thanks to using Kalman filter 4.2.3. Overall performance The proposed method is verified via the experiment to see how effective it is. Distance errors are used to evaluate the accuracy of the system. We define location error e as the distance between the estimated position (xest, yest) and the actual position (x, y), i.e: e = p (x − xest)2 + (y − yest)2 (17) TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 1, February 2021 : 51 – 62
  • 9. TELKOMNIKA Telecommun Comput El Control r 59 We choose three other methods to compare with proposed method, i.e: conventional trilateration, least square estimation and weighted least squares estimation [27]. Table 3 specifies the parameters used in the experiments. Table 3. Experiment parameter Apply for ... beacons Distance estimation Kalman filter Trilateration 3 Avg. Model Yes LS 4 Avg. Model Yes WLS 4 Avg. Model Yes Proposed Method 4 LOS and Avg. Model Yes a. Accuracy of the proposed method First of all, we want to investigate the average error for each site in the region of interest. The ex- periment was carried out on the zigzag route (as shown in Figure 6) at 80 different points on the map. Error distribution is shown in Figure 9. We can recognize that errors of positions that lie in the parallelogram of four beacons are lower than others that lie outside this region. The average error in this area is about 1.7 m. Especially, the positions with coordinates (8.4; 11.2), (14; 11.2), (11; 8) and (15.6, 18) have negligible errors. The reason for this result is that these positions are located in front of beacons where the distance is very close. Consequently, when the user stands at these points, the estimated position will be treated with another policy, as described in section 3.1. In contrast, edge areas have poor accuracy because phones and iBeacon are often under an unreliable situation. At both ends of the experiment area, the error may reach more than 4 m. 18 17.2 16.4 15.6 14.8 14 13.2 0 1 X 12.4 2 11.6 3 Avg. Localization Error (m) 8 4 10.8 5 8.8 10 Y 9.2 9.6 8.4 10.4 7.6 11.2 6.8 6 0 0.5 1 1.5 2 2.5 3 3.5 4 Figure 9. Error distribution of proposed method on the testbed b. Positioning accuracy in different directions Figure 10 describes the accuracy of the algorithms in four directions at a fixed position, say, (14; 9.6). When the heading of the user’s device is the North, since none of the beacon was discovered is under rLOS condition, the accuracy of the proposed method is not much better than the other algorithms. When users point their phone towards the East, South, or West, a beacon at the coordinate of (14; 11.6) is detected as a reliable beacon. As a result, our proposed method shows a marked improvement when compared to other methods. c. Overall accuracy comparison Figure 11 depicts the accumulative error of four approaches. As we can see, our proposed method has the best performance in total of four. The average error of the method is 1.9 m. Our proposed method helps increase the accuracy of indoor positioning by 35.15% over the conventional trilateration method, 23.22% over the least square method, and 15.55% over weighted least square method. Smartphone indoor positioning based on enhanced BLE beacon... (Ngoc-Son Duong)
  • 10. 60 r ISSN: 1693-6930 10 11 12 13 14 15 16 17 18 7 8 9 10 11 12 North Proposed Method Trilateration position LS position WLS position True Position 10 11 12 13 14 15 16 17 18 7 8 9 10 11 12 East 10 11 12 13 14 15 16 17 18 7 8 9 10 11 12 South 10 11 12 13 14 15 16 17 18 7 8 9 10 11 12 West Figure 10. Actual and estimated position of 4 methods at 4-orientations 0 1 2 3 4 5 6 7 Localization Error (m) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 CDF Conventional Line Intersection-Based Trilateration Least Square Estimation Proposed Method Weighted Least Square Estimation Figure 11. Comparison of distance error distribution for different methods 5. CONCLUSION In this paper, we introduced a plain and robust method to improve the accuracy of the trilateration- based indoor positioning system using BLE beacon. The proposed method makes use of an RSSI range (greater than -70 dBm equivalent to a distance of less than 3 m) to estimate the distance accurately. This increases the positioning accuracy by moving the estimated position of trilateration to reliable circles. In addition, the power of four beacons is utilized at the same time for more accurate positioning. Experimental results show that this is an effective and robust proposed scheme. As we have seen the impact of rLOS beacon, in the future, we will study the optimal method of beacon placement, in which, in any position, users always be able to observe an rLOS beacon. ACKNOWLEDGMENT This work has been supported/partly supported by Vietnam National University, Hanoi (VNU), under Project No. QG.19.25 REFERENCES [1] H. Liu, J. Yang, S. Sidhom, Y. Wang, Y. Chen and F. Ye, “Accurate WiFi Based Localization for Smartphones Using Peer Assistance,” IEEE Transactions on Mobile Computing, vol. 13, no. 10, pp. 2199-2214, 2014. TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 1, February 2021 : 51 – 62
  • 11. TELKOMNIKA Telecommun Comput El Control r 61 [2] W. Zhao, S. Han, R. Hu, W. Meng and Z. Jia, “Crowdsourcing and Multisource Fusion-Based Fingerprint Sensing in Smartphone Localization,” IEEE Sensors Journal, vol. 18, no. 8, pp. 3236-3247, 2018. [3] H. Xu, M. Wu, P. Li, F. Zhu and R. Wang, “An RFID Indoor Positioning Algorithm Based on Support Vector Regres- sion,” Sensors, vol. 18, no. 5, pp. 1504-1518, 2018. [4] M. Uradzinski, H. Guo, X. Liu and M. Yu, “Advanced Indoor Positioning Using Zigbee Wireless Technology,” Wireless Personal Communications, vol. 97, no. 4, pp. 6509-6518, 2017. [5] Q. Tian, K. Wang and Z. Salcic, “A Low-Cost INS and UWB Fusion Pedestrian Tracking System,” IEEE Sensors Journal, vol. 19, no. 10, pp. 3733-3740, 2019. [6] J. Jiao, F. Li, Z. Deng and W. Ma, “A Smartphone Camera-Based Indoor Positioning Algorithm of Crowded Scenarios with the Assistance of Deep CNN,” Sensors, vol. 17, no. 4, pp. 704-713, 2017. [7] L. Kanaris, A. Kokkinis, A. Liotta and S. Stavrou, “Fusing Bluetooth Beacon Data with Wi-Fi Radiomaps for Im- proved Indoor Localization,” Sensors, vol. 17, no. 4, p. 812, 2017. [8] Yan, C. Tiberius, G. Janssen, P. Teunissen and G. Bellusci, “Review of range-based positioning algorithms,” IEEE Aerospace and Electronic Systems Magazine, vol. 28, no. 8, pp. 2-27, 2013. [9] S. Subedi, H. Gang, N. Ko, S. Hwang and J. Pyun, “Improving Indoor Fingerprinting Positioning With Affinity Propagation Clustering and Weighted Centroid Fingerprint,” IEEE Access, vol. 7, pp. 31738-31750, 2019. [10] K. Sung, D. Lee and H. Kim, “Indoor Pedestrian Localization Using iBeacon and Improved Kalman Filter,” Sensors, vol. 18, no. 6, pp. 1722-1748, 2018. [11] J. Zuo, S. Liu, H. Xia and Y. Qiao, “Multi-Phase Fingerprint Map Based on Interpolation for Indoor Localization Using iBeacons,” IEEE Sensors Journal, vol. 18, no. 8, pp. 3351-3359, 2018. [12] Ngoc-Son Duong, Anh Vu-Tuan Trinh and Thai-Mai Thi Dinh, “Bluetooth Low Energy Based Indoor Positioning on iOS Platform,” in 2018 IEEE 12th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), Hanoi, Vietnam, 2018. [13] H. Xia, J. Zuo, S. Liu and Y. Qiao, “Indoor Localization on Smartphones Using Built-In Sensors and Map Con- straints,” IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 4, pp. 1189-1198, 2019. [14] J. Röbesaat, P. Zhang, M. Abdelaal and O. Theel, “An Improved BLE Indoor Localization with Kalman-Based Fusion: An Experimental Study,” Sensors, vol. 17, no. 5, pp. 951-976, 2017. [15] V. Chandel, N. Ahmed, S. Arora and A. Ghose, “InLoc: An end-to-end robust indoor localization and routing so- lution using mobile phones and BLE beacons,” in 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcala de Henares, Spain, 2016. [16] S. Pradhan, Y. Bae, J. Pyun, N. Ko and S. Hwang, “Hybrid TOA Trilateration Algorithm Based on Line Intersection and Comparison Approach of Intersection Distances,” Energies, vol. 12, no. 9, pp. 1668-1693, 2019. [17] P. Spachos and K. Plataniotis, “BLE Beacons for Indoor Positioning at an Interactive IoT-Based Smart Museum,” IEEE Systems Journal, vol. 14, no. 3, pp. 3483-3493, 2020. [18] A. Goldsmith, Wireless Communications, New York, NY, USA: Cambridge University Press, 2005. [19] M. Gosselin et al., ”Estimation Formulas for the Specific Absorption Rate in Humans Exposed to Base-Station Antennas,” IEEE Transactions on Electromagnetic Compatibility, vol. 53, no. 4, pp. 909-922, 2011. [20] International Electrical Commission (IEC). 60601-2-33 Medical Electrical Equipment–Part 2-33: Particular Require- ments for the Basic Safety and Essential Performance of Magnetic Resonance Equipment for Medical Diagnosis, 3.0 edn. IEC, 2010. [21] E. W. Weisstein, “Least Squares Fitting–Logarithmic – from Wolfram MathWorld,” Mathworld.wolfram.com, 2020. [Online]. Available: https://mathworld.wolfram.com/LeastSquaresFittingLogarithmic.html. [22] A. Zanella, “Best Practice in RSS Measurements and Ranging,” IEEE Communications Surveys Tutorials, vol. 18, no. 4, pp. 2662-2686, 2016. [23] I. Guvenc, C. Abdallah, R. Jordan, and O. Dedoglu, “Enhancements to RSS-based indoor tracking systems using Kalman filters,” in Proc. Int. Signal Processing Conf., 2003. [24] J. Rezazadeh, R. Subramanian, K. Sandrasegaran, X. Kong, M. Moradi and F. Khodamoradi, “Novel iBeacon Place- ment for Indoor Positioning in IoT,” IEEE Sensors Journal, vol. 18, no. 24, pp. 10240-10247, 2018. [25] Core Location — Apple Developer Documentation,” Developer.apple.com, 2020. [Online]. Available: https://developer.apple.com/documentation/corelocation/. [26] Core Graphics — Apple Developer Documentation,” Developer.apple.com, 2020. [Online]. Available: https://developer.apple.com/documentation/coregraphics. [27] D. Feng, C. Wang, C. He, Y. Zhuang and X. Xia, “Kalman-Filter-Based Integration of IMU and UWB for High- Accuracy Indoor Positioning and Navigation,” IEEE Internet of Things Journal, vol. 7, no. 4, pp. 3133-3146, 2020. Smartphone indoor positioning based on enhanced BLE beacon... (Ngoc-Son Duong)
  • 12. 62 r ISSN: 1693-6930 BIOGRAPHIES OF AUTHORS Ngoc-Son Duong was born in Bac Giang, Vietnam. He received the B.E. degree in electronics and telecommunications from University of Engineering and Technology, Vietnam National University, Vietnam, in 2018. He is currently pursuing the M.Sc. degree at the University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam. His research interests include indoor localization, and wireless communications. Thai-Mai Dinh Thi is a Lecturer of Faculty of Electronics and Telecommunications, VNU Univer- sity of Engineering and Technology, Hanoi, Vietnam. She graduated from Post and Telecommunica- tion Institute of Technology, Vietnam in 2006. Then, she received the Master and PhD degrees from Paris Sud 11, France in 2008 and VNU University of Engineering and Technology, Hanoi, Vietnam in 2016, respectively. Her research interests focus on 5G Mobile Networks, Wireless Communications and Indoor Positioning System as well. TELKOMNIKA Telecommun Comput El Control, Vol. 19, No. 1, February 2021 : 51 – 62