SlideShare a Scribd company logo
1 of 67
Download to read offline
Rational Fractions
{π‘€π‘’π‘‘β„Žπ‘œπ‘‘ π‘œπ‘“ π‘π‘Ÿπ‘’π‘Žπ‘˜π‘–π‘›π‘” 𝑒𝑝 π‘–π‘›π‘‘π‘œ π‘π‘Žπ‘Ÿπ‘‘π‘–π‘Žπ‘™ π‘“π‘Ÿπ‘Žπ‘π‘‘π‘–π‘œπ‘›π‘ }
Factor in the denominator Corresponding partial fraction
(i) (π‘₯ βˆ’ π‘Ž)
(ii) (π‘₯ βˆ’ 𝑏)2
(iii) (π‘₯ βˆ’ 𝑐)3
(iv) (π‘Žπ‘₯2
+ 𝑏π‘₯ + 𝑐)
(i)
𝐴
(π‘₯βˆ’π‘Ž)
(ii)
𝐴
(π‘₯βˆ’π‘)
+
𝐡
(π‘₯βˆ’π‘)2
(iii)
𝐴
(π‘₯βˆ’π‘)
+
𝐡
(π‘₯βˆ’π‘)2 +
𝐢
(π‘₯βˆ’π‘)3
(iv)
𝐴π‘₯+𝐡
(π‘Žπ‘₯2+ 𝑏π‘₯+𝑐)
Exercise .A
Integrate the following:
1. ∫
(π‘₯βˆ’1)𝑑π‘₯
(π‘₯βˆ’2)(π‘₯βˆ’3)
Solution: Let 𝐼 = ∫
(π‘₯βˆ’1)𝑑π‘₯
(π‘₯βˆ’2)(π‘₯βˆ’3)
Let
(π‘₯βˆ’1)
(π‘₯βˆ’2)(π‘₯βˆ’3)
=
𝐴
(π‘₯βˆ’2)
+
𝐡
(π‘₯βˆ’3)
---------- (a)
(π‘₯βˆ’1)
(π‘₯βˆ’2)(π‘₯βˆ’3)
=
𝐴(π‘₯βˆ’3)+ 𝐡(π‘₯βˆ’2)
(π‘₯βˆ’2)(π‘₯βˆ’3)
 (π‘₯ βˆ’ 1) = 𝐴(π‘₯ βˆ’ 3) + 𝐡(π‘₯ βˆ’ 2) -------- (b)
Putting π‘₯ = 2 and π‘₯ = 3 in equation (b), we get
𝐴 = βˆ’1 and 𝐡 = 2
Now,
𝐼 = ∫
(π‘₯βˆ’1)𝑑π‘₯
(π‘₯βˆ’2)(π‘₯βˆ’3)
𝐼 = ∫ {
𝐴
(π‘₯βˆ’2)
+
𝐡
(π‘₯βˆ’3)
} 𝑑π‘₯ Using (a)
𝐼 = ∫
𝐴
(π‘₯βˆ’2)
𝑑π‘₯ + ∫
𝐡
(π‘₯βˆ’3)
𝑑π‘₯
𝐼 = 𝐴 ∫
𝑑π‘₯
(π‘₯βˆ’2)
+ 𝐡 ∫
𝑑π‘₯
(π‘₯βˆ’3)
𝐼 = 𝐴 log(π‘₯ βˆ’ 2) + 𝐡 log(π‘₯ βˆ’ 3)
𝐼 = βˆ’log(π‘₯ βˆ’ 2) + 2 log(π‘₯ βˆ’ 3)
𝐼 = 2 log(π‘₯ βˆ’ 3) βˆ’ log(π‘₯ βˆ’ 2)
2. ∫
π‘₯ 𝑑π‘₯
(π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘)
Solution: Let 𝐼 = ∫
π‘₯ 𝑑π‘₯
(π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘)
Let,
π‘₯
(π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘)
=
𝐴
(π‘₯βˆ’π‘Ž)
+
𝐡
(π‘₯βˆ’π‘)
---------- (a)
π‘₯
(π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘)
=
𝐴(π‘₯βˆ’π‘)+ 𝐡 (π‘₯βˆ’π‘Ž)
(π‘₯βˆ’π‘Ž) (π‘₯βˆ’π‘)
π‘₯ = 𝐴(π‘₯ βˆ’ 𝑏) + 𝐡 (π‘₯ βˆ’ π‘Ž) ----------- (b)
Putting π‘₯ = π‘Ž and π‘₯ = 𝑏 in (b), we get
𝐴 =
π‘Ž
(π‘Žβˆ’π‘)
and 𝐡 =
𝑏
(π‘βˆ’π‘Ž)
π‘π‘œπ‘€,
𝐼 = ∫
π‘₯ 𝑑π‘₯
(π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘)
𝐼 = ∫ {
𝐴
(π‘₯βˆ’π‘Ž)
+
𝐡
(π‘₯βˆ’π‘)
} 𝑑π‘₯ Using (a)
𝐼 = ∫
𝐴
(π‘₯βˆ’π‘Ž)
𝑑π‘₯ + ∫
𝐡
(π‘₯βˆ’π‘)
𝑑π‘₯
𝐼 = 𝐴 ∫
𝑑π‘₯
(π‘₯βˆ’π‘Ž)
+ 𝐡 ∫
𝑑π‘₯
(π‘₯βˆ’π‘)
𝐼 =
π‘Ž
(π‘Žβˆ’π‘)
∫
𝑑π‘₯
(π‘₯βˆ’π‘Ž)
+
𝑏
(π‘βˆ’π‘Ž)
∫
𝑑π‘₯
(π‘₯βˆ’π‘)
𝐼 =
π‘Ž
(π‘Žβˆ’π‘)
log(π‘₯ βˆ’ π‘Ž) +
𝑏
βˆ’(π‘Žβˆ’π‘)
log(π‘₯ βˆ’ 𝑏)
𝐼 =
1
(π‘Žβˆ’π‘)
(π‘Ž log(π‘₯ βˆ’ π‘Ž) βˆ’ 𝑏 log(π‘₯ βˆ’ 𝑏))
3. ∫
(π‘₯βˆ’1) 𝑑π‘₯
(π‘₯+2)(π‘₯βˆ’3)
Solution: Let 𝐼 = ∫
(π‘₯βˆ’1) 𝑑π‘₯
(π‘₯+2)(π‘₯βˆ’3)
Let,
(π‘₯βˆ’1)
(π‘₯+2)(π‘₯βˆ’3)
=
𝐴
(π‘₯+2)
+
𝐡
(π‘₯βˆ’3)
-------- (a)
(π‘₯βˆ’1)
(π‘₯+2)(π‘₯βˆ’3)
=
𝐴(π‘₯βˆ’3)+ 𝐡(π‘₯+2)
(π‘₯+2)(π‘₯βˆ’3)
(π‘₯ βˆ’ 1) = 𝐴(π‘₯ βˆ’ 3) + 𝐡(π‘₯ + 2) --------- (b)
Putting π‘₯ = 3 and π‘₯ = βˆ’2 in equation (b), we get
𝐴 =
3
5
and 𝐡 =
2
5
Now,
𝐼 = ∫
(π‘₯βˆ’1) 𝑑π‘₯
(π‘₯+2)(π‘₯βˆ’3)
𝐼 = ∫ (
𝐴
(π‘₯+2)
+
𝐡
(π‘₯βˆ’3)
) 𝑑π‘₯ Using (a)
𝐼 = ∫
𝐴
(π‘₯+2)
𝑑π‘₯ + ∫
𝐡
(π‘₯βˆ’3)
𝑑π‘₯
𝐼 = 𝐴 ∫
𝑑π‘₯
(π‘₯+2)
+ 𝐡 ∫
𝑑π‘₯
(π‘₯βˆ’3)
𝐼 =
3
5
∫
𝑑π‘₯
(π‘₯+2)
+
2
5
∫
𝑑π‘₯
(π‘₯βˆ’3)
𝐼 =
3
5
log(π‘₯ + 2) +
2
5
log(π‘₯ βˆ’ 3)
𝐼 =
1
5
(3 log(π‘₯ + 2) + 2 log(π‘₯ βˆ’ 3))
4. (i) ∫
π‘₯ 𝑑π‘₯
π‘₯2βˆ’12π‘₯+35
(ii) ∫
3π‘₯ 𝑑π‘₯
π‘₯2βˆ’ π‘₯βˆ’2
(i) Solution: Let 𝐼 = ∫
𝑑π‘₯
π‘₯2βˆ’12π‘₯+35
𝐼 = ∫
π‘₯ 𝑑π‘₯
π‘₯2βˆ’7π‘₯βˆ’5π‘₯+35
𝐼 = ∫
π‘₯ 𝑑π‘₯
π‘₯(π‘₯βˆ’7)βˆ’5(π‘₯βˆ’7)
𝐼 = ∫
π‘₯ 𝑑π‘₯
(π‘₯βˆ’5)(π‘₯βˆ’7)
Let,
π‘₯
(π‘₯βˆ’5)(π‘₯βˆ’7)
=
𝐴
(π‘₯βˆ’5)
+
𝐡
(π‘₯βˆ’7)
-------- (a)
π‘₯
(π‘₯βˆ’5)(π‘₯βˆ’7)
=
𝐴 (π‘₯βˆ’7)+ 𝐡 (π‘₯βˆ’5)
(π‘₯βˆ’5)
π‘₯ = 𝐴 (π‘₯ βˆ’ 7) + 𝐡 (π‘₯ βˆ’ 5) ------------ (b)
Putting π‘₯ = 7 and π‘₯ = 5 in equation (b), we get
𝐴 = βˆ’
5
2
and 𝐡 =
7
2
Now,
𝐼 = ∫
π‘₯ 𝑑π‘₯
(π‘₯βˆ’5)(π‘₯βˆ’7)
𝐼 = ∫ (
𝐴
(π‘₯βˆ’5)
+
𝐡
(π‘₯βˆ’7)
) 𝑑π‘₯ Using (a)
𝐼 = ∫
𝐴
(π‘₯βˆ’5)
𝑑π‘₯ + ∫
𝐡
(π‘₯βˆ’7)
𝑑π‘₯
𝐼 = 𝐴 ∫
𝑑π‘₯
(π‘₯βˆ’5)
+ 𝐡 ∫
𝑑π‘₯
(π‘₯βˆ’7)
𝐼 = βˆ’
5
2
∫
𝑑π‘₯
(π‘₯βˆ’5)
+
7
2
∫
𝑑π‘₯
(π‘₯βˆ’7)
𝐼 = βˆ’
5
2
log(π‘₯ βˆ’ 5) +
7
2
log(π‘₯ βˆ’ 7)
𝐼 =
1
2
(7 log(π‘₯ βˆ’ 7) βˆ’5log(π‘₯ βˆ’ 5))
(ii) Solution: Let 𝐼 = ∫
3π‘₯ 𝑑π‘₯
π‘₯2βˆ’ π‘₯βˆ’2
𝐼 = ∫
3π‘₯ 𝑑π‘₯
π‘₯2βˆ’2 π‘₯+π‘₯βˆ’2
𝐼 = ∫
3π‘₯ 𝑑π‘₯
π‘₯(π‘₯βˆ’2)+1(π‘₯βˆ’2)
𝐼 = ∫
3π‘₯ 𝑑π‘₯
(π‘₯+1)(π‘₯βˆ’2)
Let,
3π‘₯
(π‘₯+1)(π‘₯βˆ’2)
=
𝐴
(π‘₯+1)
+
𝐡
(π‘₯βˆ’2)
------ (a)
3π‘₯
(π‘₯+1)(π‘₯βˆ’2)
=
𝐴(π‘₯βˆ’2)+ 𝐡(π‘₯+1)
(π‘₯+1)(π‘₯βˆ’2)
3π‘₯ = 𝐴(π‘₯ βˆ’ 2) + 𝐡(π‘₯ + 1) -------- (b)
Putting π‘₯ = 2 and π‘₯ = βˆ’1, we get
𝐴 = 1 and 𝐡 = 2
Now,
𝐼 = ∫
3π‘₯ 𝑑π‘₯
(π‘₯+1)(π‘₯βˆ’2)
𝐼 = ∫ (
𝐴
(π‘₯+1)
+
𝐡
(π‘₯βˆ’2)
) 𝑑π‘₯
𝐼 = ∫
𝐴
(π‘₯+1)
𝑑π‘₯ + ∫
𝐡
(π‘₯βˆ’2)
𝑑π‘₯
𝐼 = 𝐴 ∫
𝑑π‘₯
(π‘₯+1)
+ 𝐡 ∫
𝑑π‘₯
(π‘₯βˆ’2)
𝐼 = ∫
𝑑π‘₯
(π‘₯+1)
+ 2 ∫
𝑑π‘₯
(π‘₯βˆ’2)
𝐼 = log(π‘₯ + 1) + 2 log(π‘₯ βˆ’ 2)
𝐼 = log(π‘₯ + 1) + log(π‘₯ βˆ’ 2)2
𝐼 = log{(π‘₯ βˆ’ 2)2(π‘₯ + 1)}
5. ∫
π‘₯2 𝑑π‘₯
(π‘₯βˆ’1)(π‘₯βˆ’2)(π‘₯βˆ’3)
Solution: Let 𝐼 = ∫
π‘₯2 𝑑π‘₯
(π‘₯βˆ’1)(π‘₯βˆ’2)(π‘₯βˆ’3)
Let,
π‘₯2
(π‘₯βˆ’1)(π‘₯βˆ’2)(π‘₯βˆ’3)
=
𝐴
(π‘₯βˆ’1)
+
𝐡
(π‘₯βˆ’2)
+
𝐢
(π‘₯βˆ’3)
-------- (a)
π‘₯2
(π‘₯βˆ’1)(π‘₯βˆ’2)(π‘₯βˆ’3)
=
𝐴(π‘₯βˆ’2)(π‘₯βˆ’3)+ 𝐡(π‘₯βˆ’1)(π‘₯βˆ’3) + 𝐢(π‘₯βˆ’1)(π‘₯βˆ’2)
(π‘₯βˆ’1)(π‘₯βˆ’2)(π‘₯βˆ’3)
π‘₯2
= 𝐴(π‘₯ βˆ’ 2)(π‘₯ βˆ’ 3) + 𝐡(π‘₯ βˆ’ 1)(π‘₯ βˆ’ 3) + 𝐢(π‘₯ βˆ’ 1)(π‘₯ βˆ’ 2) -------- (b)
Putting π‘₯ = 1 , π‘₯ = 2 and π‘₯ = 3 in equation (b), we get
𝐴 =
1
2
, 𝐡 = βˆ’4 and 𝐢 =
9
2
Now,
𝐼 = ∫
π‘₯2 𝑑π‘₯
(π‘₯βˆ’1)(π‘₯βˆ’2)(π‘₯βˆ’3)
𝐼 = ∫ (
𝐴
(π‘₯βˆ’1)
+
𝐡
(π‘₯βˆ’2)
+
𝐢
(π‘₯βˆ’3)
) 𝑑π‘₯
𝐼 = ∫
𝐴
(π‘₯βˆ’1)
𝑑π‘₯ + ∫
𝐡
(π‘₯βˆ’2)
𝑑π‘₯ + ∫
𝐢
(π‘₯βˆ’3)
𝑑π‘₯
𝐼 = 𝐴 ∫
𝑑π‘₯
(π‘₯βˆ’1)
+ 𝐡 ∫
𝑑π‘₯
(π‘₯βˆ’2)
+ 𝐢 ∫
𝑑π‘₯
(π‘₯βˆ’3)
𝐼 = 𝐴 log(π‘₯ βˆ’ 1) + 𝐡 log(π‘₯ βˆ’ 2) + 𝐢 log(π‘₯ βˆ’ 3)
𝐼 =
1
2
log(π‘₯ βˆ’ 1) βˆ’ 4 log(π‘₯ βˆ’ 2) +
9
2
log(π‘₯ βˆ’ 3)
𝑛 log π‘₯ = log π‘₯𝑛
log 𝐴 + log 𝐡 = log 𝐴𝐡
6. (i) ∫
(2π‘₯+3) 𝑑π‘₯
π‘₯3+π‘₯2βˆ’ 2π‘₯
(ii) ∫
(π‘₯2+1)𝑑π‘₯
π‘₯(π‘₯2βˆ’1)
(i) Solution: Let 𝐼 = ∫
(2π‘₯+3) 𝑑π‘₯
π‘₯3+π‘₯2βˆ’ 2π‘₯
𝐼 = ∫
(2π‘₯+3) 𝑑π‘₯
π‘₯(π‘₯2+π‘₯βˆ’2)
𝐼 = ∫
(2π‘₯+3) 𝑑π‘₯
π‘₯(π‘₯2+2π‘₯βˆ’π‘₯βˆ’2)
𝐼 = ∫
(2π‘₯+3) 𝑑π‘₯
π‘₯{π‘₯(π‘₯+2)βˆ’1(π‘₯+2)}
𝐼 = ∫
(2π‘₯+3) 𝑑π‘₯
π‘₯{(π‘₯βˆ’1)(π‘₯+2)}
𝐼 = ∫
(2π‘₯+3) 𝑑π‘₯
π‘₯ (π‘₯βˆ’1)(π‘₯+2)
Let,
(2π‘₯+3)
π‘₯ (π‘₯βˆ’1)(π‘₯+2)
=
𝐴
π‘₯
+
𝐡
(π‘₯βˆ’1)
+
𝐢
(π‘₯+2)
------- (a)
(2π‘₯+3)
π‘₯ (π‘₯βˆ’1)(π‘₯+2)
=
𝐴 (π‘₯βˆ’1)(π‘₯+2)+ 𝐡 π‘₯ (π‘₯+2)+ 𝐢 π‘₯ (π‘₯βˆ’1)
π‘₯ (π‘₯βˆ’1)(π‘₯+2)
(2π‘₯ + 3) = 𝐴 (π‘₯ βˆ’ 1)(π‘₯ + 2) + 𝐡 π‘₯ (π‘₯ + 2) + 𝐢 π‘₯ (π‘₯ βˆ’ 1) ----- (b)
Putting, = 1 , π‘₯ = βˆ’2 and π‘₯ = 0 in equation (b), we get
𝐴 = βˆ’
3
2
, 𝐡 =
5
3
and 𝐢 = βˆ’
1
6
π‘π‘œπ‘€,
𝐼 = ∫
(2π‘₯+3) 𝑑π‘₯
π‘₯ (π‘₯βˆ’1)(π‘₯+2)
𝐼 = ∫ {
𝐴
π‘₯
+
𝐡
(π‘₯βˆ’1)
+
𝐢
(π‘₯+2)
} 𝑑π‘₯
𝐼 = ∫
𝐴
π‘₯
𝑑π‘₯ + ∫
𝐡
(π‘₯βˆ’1)
𝑑π‘₯ + ∫
𝐢
(π‘₯+2)
𝑑π‘₯
𝐼 = 𝐴 ∫
𝑑π‘₯
π‘₯
+ 𝐡 ∫
𝑑π‘₯
(π‘₯βˆ’1)
+ 𝐢 ∫
𝑑π‘₯
(π‘₯+2)
𝐼 = 𝐴 log π‘₯ + 𝐡 log(π‘₯ βˆ’ 1) + 𝐢 log(π‘₯ + 2)
𝐼 = βˆ’
3
2
log π‘₯ +
5
3
log(π‘₯ βˆ’ 1) βˆ’
1
6
log(π‘₯ + 2)
𝐼 =
5
3
log(π‘₯ βˆ’ 1) βˆ’
3
2
log π‘₯ βˆ’
1
6
log(π‘₯ + 2)
(ii) Solution: Let 𝐼 = ∫
(π‘₯2+1)𝑑π‘₯
π‘₯(π‘₯2βˆ’1)
𝐼 = ∫
(π‘₯2+1)𝑑π‘₯
π‘₯{(π‘₯+1)(π‘₯βˆ’1)}
𝐼 = ∫
(π‘₯2+1)𝑑π‘₯
π‘₯ (π‘₯+1)(π‘₯βˆ’1)
Let,
(π‘₯2+1)
π‘₯ (π‘₯+1)(π‘₯βˆ’1)
=
𝐴
π‘₯
+
𝐡
(π‘₯+1)
+
𝐢
(π‘₯βˆ’1)
----------- (a)
(π‘₯2+1)
π‘₯ (π‘₯+1)(π‘₯βˆ’1)
=
𝐴 (π‘₯+1)(π‘₯βˆ’1)+ 𝐡 π‘₯ (π‘₯βˆ’1)+ 𝐢 π‘₯ (π‘₯+1)
π‘₯ (π‘₯+1)(π‘₯βˆ’1)
(π‘₯2
+ 1) = 𝐴 (π‘₯ + 1)(π‘₯ βˆ’ 1) + 𝐡 π‘₯ (π‘₯ βˆ’ 1) + 𝐢 π‘₯ (π‘₯ + 1) ---------- (b)
Putting, π‘₯ = 0, π‘₯ = 1 and π‘₯ = βˆ’1 in equation (b), we get
𝐴 = βˆ’1 , 𝐡 = 1 and 𝐢 = 1
Now,
𝐼 = ∫
(π‘₯2+1)𝑑π‘₯
π‘₯ (π‘₯+1)(π‘₯βˆ’1)
𝐼 = ∫ {
𝐴
π‘₯
+
𝐡
(π‘₯+1)
+
𝐢
(π‘₯βˆ’1)
} 𝑑π‘₯
𝐼 = ∫
𝐴
π‘₯
𝑑π‘₯ + ∫
𝐡
(π‘₯+1)
𝑑π‘₯ + ∫
𝐢
(π‘₯βˆ’1)
𝑑π‘₯
𝐼 = 𝐴 ∫
𝑑π‘₯
π‘₯
+ 𝐡 ∫
𝑑π‘₯
(π‘₯+1)
+ 𝐢 ∫
𝑑π‘₯
(π‘₯βˆ’1)
𝐼 = 𝐴 log π‘₯ + 𝐡 log(π‘₯ + 1) + 𝐢 log(π‘₯ βˆ’ 1)
𝐼 = βˆ’log π‘₯ + log(π‘₯ + 1) + log(π‘₯ βˆ’ 1)
𝐼 = βˆ’log π‘₯ + log{(π‘₯ + 1)(π‘₯ βˆ’ 1)}
𝐼 = βˆ’log π‘₯ + log{(π‘₯2
βˆ’ 1)}
𝐼 = βˆ’log π‘₯ + log(π‘₯2
βˆ’ 1)
𝐼 = log(π‘₯2
βˆ’ 1) βˆ’ log π‘₯
7. (i) ∫
π‘₯3 𝑑π‘₯
π‘₯2+ 7π‘₯+12
(ii) ∫
(π‘₯βˆ’1)(π‘₯βˆ’5)
(π‘₯βˆ’2)(π‘₯βˆ’4)
𝑑π‘₯
log 𝐴 + log 𝐡 = log 𝐴𝐡
(i) Solution: Let 𝐼 = ∫
π‘₯3 𝑑π‘₯
π‘₯2+ 7π‘₯+12
𝐼 = ∫
π‘₯3
π‘₯2+ 7π‘₯ + 12
𝑑π‘₯
𝐼 = ∫ (π‘₯ βˆ’ 7 +
37π‘₯+84
π‘₯2+ 7π‘₯ + 12
) 𝑑π‘₯
𝐼 = ∫ π‘₯ 𝑑π‘₯ βˆ’ 7 ∫ 𝑑π‘₯ + ∫
37π‘₯+84
π‘₯2+ 7π‘₯ + 12
𝑑π‘₯
𝐼 =
1
2
π‘₯2
βˆ’ 7π‘₯ + ∫
37π‘₯+84
π‘₯2+ 7π‘₯ + 12
𝑑π‘₯
𝐼 =
1
2
π‘₯2
βˆ’ 7π‘₯ + ∫
37π‘₯+84
π‘₯2+ 3π‘₯+4π‘₯+12
𝑑π‘₯
𝐼 =
1
2
π‘₯2
βˆ’ 7π‘₯ + ∫
37π‘₯+84
(π‘₯+3)(π‘₯+4)
𝑑π‘₯
Let,
37π‘₯+84
(π‘₯+3)(π‘₯+4)
=
𝐴
(π‘₯+3)
+
𝐡
(π‘₯+4)
----------- (a)
37π‘₯+84
(π‘₯+3)(π‘₯+4)
=
𝐴(π‘₯+4)+ 𝐡 (π‘₯+3)
(π‘₯+3) (π‘₯+4)
37π‘₯ + 84 = 𝐴(π‘₯ + 4) + 𝐡 (π‘₯ + 3) ---------- (b)
𝑃𝑒𝑑𝑑𝑖𝑛𝑔, π‘₯ = βˆ’3 and π‘₯ = βˆ’4 in equation (b), we get
𝐴 = βˆ’27 and 𝐡 = 64
Now,
𝐼 =
1
2
π‘₯2
βˆ’ 7π‘₯ + ∫
37π‘₯+84
(π‘₯+3)(π‘₯+4)
𝑑π‘₯
𝐼 =
1
2
π‘₯2
βˆ’ 7π‘₯ + ∫ (
𝐴
(π‘₯+3)
+
𝐡
(π‘₯+4)
) 𝑑π‘₯
𝐼 =
1
2
π‘₯2
βˆ’ 7π‘₯ + ∫
𝐴
(π‘₯+3)
𝑑π‘₯ + ∫
𝐡
(π‘₯+4)
𝑑π‘₯
𝐼 =
1
2
π‘₯2
βˆ’ 7π‘₯ + 𝐴 ∫
𝑑π‘₯
(π‘₯+3)
+ 𝐡 ∫
𝑑π‘₯
(π‘₯+4)
𝐼 =
1
2
π‘₯2
βˆ’ 7π‘₯ + 𝐴 log(π‘₯ + 3) + 𝐡 log(π‘₯ + 4)
𝐼 =
1
2
π‘₯2
βˆ’ 7π‘₯ βˆ’ 27 log(π‘₯ + 3) + 64 log(π‘₯ + 4)
(ii) Solution: Let 𝐼 = ∫
(π‘₯βˆ’1)(π‘₯βˆ’5)
(π‘₯βˆ’2)(π‘₯βˆ’4)
𝑑π‘₯
𝐼 = ∫
π‘₯2βˆ’6π‘₯+5
π‘₯2βˆ’6π‘₯+8
𝑑π‘₯
π‘₯2
+ 7π‘₯ + 12 ⟌π‘₯3
( π‘₯ βˆ’ 7
π‘₯3
+ 7π‘₯2
+ 12π‘₯
_____________________
βˆ’7π‘₯2
βˆ’ 12π‘₯
βˆ’7π‘₯2
βˆ’ 49π‘₯ βˆ’ 84
_________________________
37π‘₯ + 84
𝐼 = ∫ (
π‘₯2βˆ’6π‘₯+8
π‘₯2βˆ’6π‘₯+8
βˆ’
3
π‘₯2βˆ’6π‘₯+8
) 𝑑π‘₯
𝐼 = ∫ (1 βˆ’
3
π‘₯2βˆ’6π‘₯+8
) 𝑑π‘₯
𝐼 = ∫ 1 𝑑π‘₯ βˆ’ ∫
3
π‘₯2βˆ’6π‘₯+8
𝑑π‘₯
𝐼 = π‘₯ βˆ’ 3 ∫
1
π‘₯2βˆ’6π‘₯+8
𝑑π‘₯
𝐼 = π‘₯ βˆ’ 3 ∫
1
(π‘₯βˆ’2)(π‘₯βˆ’4)
𝑑π‘₯
Take,
1
(π‘₯βˆ’2)(π‘₯βˆ’4)
=
𝐴
(π‘₯βˆ’2)
+
𝐡
(π‘₯βˆ’4)
----------- (a)
1
(π‘₯βˆ’2)(π‘₯βˆ’4)
=
𝐴 (π‘₯βˆ’4) +𝐡 (π‘₯βˆ’2)
(π‘₯βˆ’2)
1 = 𝐴 (π‘₯ βˆ’ 4) + 𝐡 (π‘₯ βˆ’ 2) ------------- (b)
Putting, π‘₯ = 2 and π‘₯ = 4, we get
𝐴 = βˆ’
1
2
and 𝐡 =
1
2
Now,
𝐼 = π‘₯ βˆ’ 3 ∫
1
(π‘₯βˆ’2)(π‘₯βˆ’4)
𝑑π‘₯
𝐼 = π‘₯ βˆ’ 3 ∫ {
𝐴
(π‘₯βˆ’2)
+
𝐡
(π‘₯βˆ’4)
} 𝑑π‘₯ Using (a)
𝐼 = π‘₯ βˆ’ 3 {∫
𝐴
(π‘₯βˆ’2)
𝑑π‘₯ + ∫
𝐡
(π‘₯βˆ’4)
𝑑π‘₯}
𝐼 = π‘₯ βˆ’ 3 {𝐴∫
𝑑π‘₯
(π‘₯βˆ’2)
+ 𝐡 ∫
𝑑π‘₯
(π‘₯βˆ’4)
}
𝐼 = π‘₯ βˆ’ 3{𝐴 log(π‘₯ + 2) + 𝐡 log(π‘₯ βˆ’ 4)}
𝐼 = π‘₯ βˆ’ 3 {βˆ’
1
2
log(π‘₯ + 2) +
1
2
log(π‘₯ βˆ’ 4)}
𝐼 = π‘₯ βˆ’
3
2
{βˆ’log(π‘₯ + 2) + log(π‘₯ βˆ’ 4)}
𝐼 = π‘₯ βˆ’
3
2
{log(π‘₯ βˆ’ 4) βˆ’ log(π‘₯ βˆ’ 2)}
𝐼 = π‘₯ βˆ’
3
2
log
π‘₯βˆ’4
π‘₯βˆ’2
8. (i) ∫
1βˆ’3π‘₯2
3π‘₯βˆ’π‘₯3 𝑑π‘₯ (ii) ∫
π‘₯ 𝑑π‘₯
(3βˆ’π‘₯)(3+2π‘₯)
log 𝐴 βˆ’ log 𝐡 = log
𝐴
𝐡
(i) Solution: Let 𝐼 = ∫
1βˆ’3π‘₯2
3π‘₯βˆ’π‘₯3 𝑑π‘₯
𝐼 = ∫
1
3π‘₯βˆ’π‘₯3 𝑑π‘₯ βˆ’ ∫
3π‘₯2
3π‘₯βˆ’π‘₯3 𝑑π‘₯
𝐼 = ∫
1
π‘₯(3βˆ’π‘₯2)
𝑑π‘₯ βˆ’ ∫
3π‘₯2
π‘₯(3βˆ’π‘₯2)
𝑑π‘₯
𝐼 = ∫
1
π‘₯(√3 +π‘₯)(√π‘₯βˆ’3)
𝑑π‘₯ βˆ’ 3 ∫
π‘₯
3βˆ’π‘₯2 𝑑π‘₯
𝐼 = 𝐼1 βˆ’ 3𝐼2 Where, 𝐼1 = ∫
1
π‘₯(√3 +π‘₯)(√π‘₯βˆ’3)
𝑑π‘₯ and 𝐼2 = ∫
π‘₯
3βˆ’π‘₯2 𝑑π‘₯
Here,
𝐼1 = ∫
1
π‘₯(√3 +π‘₯)(√3βˆ’π‘₯)
𝑑π‘₯
Let,
1
π‘₯(√3 +π‘₯)(√3βˆ’π‘₯)
=
𝐴
π‘₯
+
𝐡
(√3 +π‘₯)
+
𝐢
(√3βˆ’π‘₯)
------------ (b)
1
π‘₯(√3 +π‘₯)(√π‘₯βˆ’3)
=
𝐴(√3 +π‘₯)(√3βˆ’π‘₯)+ 𝐡 π‘₯(√π‘₯βˆ’3)+ 𝐢 π‘₯(√3 +π‘₯)
π‘₯(√3 +π‘₯)(3βˆ’π‘₯)
1 = 𝐴(√3 + π‘₯)(√3 βˆ’ π‘₯) + 𝐡 π‘₯(√3 βˆ’ π‘₯) + 𝐢 π‘₯(√3 + π‘₯) ------------ (b)
Putting, π‘₯ = 0 , π‘₯ = √3 and π‘₯ = βˆ’βˆš3 in equation (b) , we get
𝐴 =
1
3
, 𝐡 = βˆ’
1
6
and 𝐢 =
1
6
Now,
𝐼1 = ∫
1
π‘₯(√3 +π‘₯)(√3βˆ’π‘₯)
𝑑π‘₯
𝐼1 = ∫ {
𝐴
π‘₯
+
𝐡
(√3 +π‘₯)
+
𝐢
(√3βˆ’π‘₯)
} 𝑑π‘₯
𝐼1 = ∫
𝐴
π‘₯
𝑑π‘₯ + ∫
𝐡
(√3 +π‘₯)
𝑑π‘₯ + ∫
𝐢
(√3βˆ’π‘₯)
𝑑π‘₯
𝐼1 = 𝐴 ∫
𝑑π‘₯
π‘₯
+ 𝐡 ∫
𝑑π‘₯
(√3 +π‘₯)
+ 𝐢 ∫
𝑑π‘₯
(√3βˆ’π‘₯)
𝐼1 = 𝐴 log π‘₯ + 𝐡 log(√3 + π‘₯) + 𝐢 ∫
𝑑π‘₯
(√3βˆ’π‘₯)
𝐼1 = 𝐴 log π‘₯ + 𝐡 log(√3 + π‘₯) + 𝐢 ∫
𝑑π‘₯
(√3βˆ’π‘₯)
𝐼1 = 𝐴 log π‘₯ + 𝐡 log(√3 + π‘₯) βˆ’ 𝐢 log(√3 βˆ’ π‘₯)
𝐼1 =
1
3
log π‘₯ βˆ’
1
6
log(√3 + π‘₯) βˆ’
1
6
log(√3 βˆ’ π‘₯)
𝐼1 =
1
3
log π‘₯ βˆ’
1
6
[log(√3 + π‘₯) + log(√3 βˆ’ π‘₯)]
𝐼1 =
1
3
log π‘₯ βˆ’
1
6
[log{(√3 + π‘₯)(√3 βˆ’ π‘₯)}]
𝐼1 =
1
3
log π‘₯ βˆ’
1
6
[log{(3 βˆ’ π‘₯2)}]
𝐼1 =
1
3
log π‘₯ βˆ’
1
6
log{(3 βˆ’ π‘₯2)}
𝐼1 =
1
3
log π‘₯ βˆ’
1
6
log(3 βˆ’ π‘₯2)
And
𝐼2 = ∫
π‘₯
3βˆ’π‘₯2 𝑑π‘₯
Taking, 3 βˆ’ π‘₯2
= 𝑒  π‘₯ 𝑑π‘₯ = βˆ’
1
2
𝑑𝑒
𝐼2 = ∫
βˆ’
1
2
𝑑𝑒
𝑒
𝐼2 = βˆ’
1
2
∫
𝑑𝑒
𝑒
𝐼2 = βˆ’
1
2
log 𝑒
𝐼2 = βˆ’
1
2
log(3 βˆ’ π‘₯2)
π‘‡β„Žπ‘’π‘ ,
𝐼 = 𝐼1 βˆ’ 3𝐼2
𝐼 =
1
3
log π‘₯ βˆ’
1
6
log(3 βˆ’ π‘₯2) βˆ’ 3 (βˆ’
1
2
log(3 βˆ’ π‘₯2))
𝐼 =
1
3
log π‘₯ βˆ’
1
6
log(3 βˆ’ π‘₯2) +
3
2
log(3 βˆ’ π‘₯2)
𝐼 =
1
3
log π‘₯ +
4
3
log(3 βˆ’ π‘₯2)
𝐼 =
1
3
{log π‘₯ + 4 log(3 βˆ’ π‘₯2)}
𝐼 =
1
3
{log π‘₯ + log(3 βˆ’ π‘₯2)4}
𝐼 =
1
3
log{π‘₯(3 βˆ’ π‘₯2)4}
(ii) Solution: Let 𝐼 = ∫
π‘₯ 𝑑π‘₯
(3βˆ’π‘₯)(3+2π‘₯)
Let,
π‘₯
(3βˆ’π‘₯)(3+2π‘₯)
=
𝐴
(3βˆ’π‘₯)
+
𝐡
(3+2π‘₯)
-------- (a)
π‘₯
(3βˆ’π‘₯)(3+2π‘₯)
=
𝐴(3+2π‘₯)+ 𝐡(3βˆ’π‘₯)
(3βˆ’π‘₯)(3+2π‘₯)
𝑛 log π‘₯ = log π‘₯𝑛
log 𝐴 + log 𝐡 = log 𝐴𝐡
π‘₯ = 𝐴(3 + 2π‘₯) + 𝐡(3 βˆ’ π‘₯) ------------ (b)
P𝑒𝑑𝑑𝑖𝑛𝑔 π‘₯ = 3 and π‘₯ = βˆ’
3
2
in equation (b), we get
𝐴 =
1
3
and 𝐡 = βˆ’
1
3
Now,
𝐼 = ∫
π‘₯ 𝑑π‘₯
(3βˆ’π‘₯)(3+2π‘₯)
𝐼 = ∫ {
𝐴
(3βˆ’π‘₯)
+
𝐡
(3+2π‘₯)
} 𝑑π‘₯
𝐼 = ∫
𝐴
(3βˆ’π‘₯)
𝑑π‘₯ + ∫
𝐡
(3+2π‘₯)
𝑑π‘₯
𝐼 = 𝐴 ∫
𝑑π‘₯
(3βˆ’π‘₯)
+ 𝐡 ∫
𝑑π‘₯
(3+2π‘₯)
π‘‡π‘Žπ‘˜π‘’, 3 βˆ’ π‘₯ = 𝑒  𝑑π‘₯ = βˆ’π‘‘π‘’ and 3 + 2π‘₯ = 𝑣  𝑑π‘₯ =
1
2
𝑑𝑣
𝐼 = 𝐴 ∫
βˆ’ 𝑑𝑒
𝑒
+ 𝐡 ∫
1
2
𝑑𝑣
𝑣
𝐼 = βˆ’π΄ ∫
𝑑𝑒
𝑒
+
1
2
𝐡 ∫
𝑑𝑣
𝑣
𝐼 = βˆ’π΄ log 𝑒 +
1
2
𝐡 log 𝑣
𝐼 = βˆ’π΄ log(3 βˆ’ π‘₯) +
1
2
𝐡 log(3 + 2π‘₯)
𝐼 = βˆ’
1
3
log(3 βˆ’ π‘₯) +
1
2
ο‚΄ (βˆ’
1
3
) log(3 + 2π‘₯)
𝐼 = βˆ’
1
3
log(3 βˆ’ π‘₯) βˆ’
1
6
log(3 + 2π‘₯)
9. (i) ∫
π‘₯2 𝑑π‘₯
(π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘)(π‘₯βˆ’π‘)
(ii) ∫
𝑑π‘₯
(π‘₯βˆ’π‘Ž)2 (π‘₯βˆ’π‘)
(iii) ∫
𝑑π‘₯
(π‘₯βˆ’2)2(π‘₯βˆ’1)3 (iv) ∫
𝑑π‘₯
(π‘₯+1)2(π‘₯+2)3
(i) Solution: Let 𝐼 = ∫
π‘₯2 𝑑π‘₯
(π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘)(π‘₯βˆ’π‘)
Let,
π‘₯2
(π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘)(π‘₯βˆ’π‘)
=
𝐴
(π‘₯βˆ’π‘Ž)
+
𝐡
(π‘₯βˆ’π‘)
+
𝐢
(π‘₯βˆ’π‘)
------------- (a)
π‘₯2
(π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘)(π‘₯βˆ’π‘)
=
𝐴(π‘₯βˆ’π‘)(π‘₯βˆ’π‘)
(π‘₯βˆ’π‘Ž)
+
𝐡(π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘)
(π‘₯βˆ’π‘)
+
𝐢(π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘)
(π‘₯βˆ’π‘)
π‘₯2
(π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘)(π‘₯βˆ’π‘)
=
𝐴(π‘₯βˆ’π‘)(π‘₯βˆ’π‘)+ 𝐡(π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘)+𝐢(π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘)
(π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘)(π‘₯βˆ’π‘)
π‘₯2
= 𝐴(π‘₯ βˆ’ 𝑏)(π‘₯ βˆ’ 𝑐) + 𝐡(π‘₯ βˆ’ π‘Ž)(π‘₯ βˆ’ 𝑐) + 𝐢(π‘₯ βˆ’ π‘Ž)(π‘₯ βˆ’ 𝑏) --------- (b)
Putting, π‘₯ = π‘Ž , π‘₯ = 𝑏 and π‘₯ = 𝑐 in equation (b), we get
𝐴 =
π‘Ž2
(π‘Žβˆ’π‘)(π‘Žβˆ’π‘)
, 𝐡 =
𝑏2
(π‘βˆ’π‘Ž)(π‘βˆ’π‘)
and 𝐢 =
𝑐2
(π‘βˆ’π‘Ž)(π‘βˆ’π‘)
Now,
𝐼 = ∫
π‘₯2 𝑑π‘₯
(π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘)(π‘₯βˆ’π‘)
𝐼 = ∫ {
𝐴
(π‘₯βˆ’π‘Ž)
+
𝐡
(π‘₯βˆ’π‘)
+
𝐢
(π‘₯βˆ’π‘)
} 𝑑π‘₯
𝐼 = ∫
𝐴
(π‘₯βˆ’π‘Ž)
𝑑π‘₯ + ∫
𝐡
(π‘₯βˆ’π‘)
𝑑π‘₯ + ∫
𝐢
(π‘₯βˆ’π‘)
𝑑π‘₯
𝐼 = 𝐴 ∫
𝑑π‘₯
(π‘₯βˆ’π‘Ž)
+ 𝐡 ∫
𝑑π‘₯
(π‘₯βˆ’π‘)
+ 𝐢 ∫
𝑑π‘₯
(π‘₯βˆ’π‘)
𝐼 = 𝐴 log(π‘₯ βˆ’ π‘Ž) + 𝐡 log(π‘₯ βˆ’ 𝑏) + 𝐢 log(π‘₯ βˆ’ 𝑐)
𝐼 =
π‘Ž2
(π‘Žβˆ’π‘)(π‘Žβˆ’π‘)
log(π‘₯ βˆ’ π‘Ž) +
𝑏2
(π‘βˆ’π‘Ž)(π‘βˆ’π‘)
log(π‘₯ βˆ’ 𝑏) +
𝑐2
(π‘βˆ’π‘Ž)(π‘βˆ’π‘)
log(π‘₯ βˆ’ 𝑐)
(ii) Solution: Let, 𝐼 = ∫
𝑑π‘₯
(π‘₯βˆ’π‘Ž)2 (π‘₯βˆ’π‘)
Let,
1
(π‘₯βˆ’π‘Ž)2 (π‘₯βˆ’π‘)
=
𝐴
(π‘₯βˆ’π‘Ž)
+
𝐡
(π‘₯βˆ’π‘Ž)2 +
𝐢
(π‘₯βˆ’π‘)
--------- (a)
1
(π‘₯βˆ’π‘Ž)2 (π‘₯βˆ’π‘)
=
𝐴 (π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘)+ 𝐡(π‘₯βˆ’π‘)+ 𝐢 (π‘₯βˆ’π‘Ž)2
(π‘₯βˆ’π‘Ž)2 (π‘₯βˆ’π‘)
1 = 𝐴 (π‘₯ βˆ’ π‘Ž)(π‘₯ βˆ’ 𝑏) + 𝐡(π‘₯ βˆ’ 𝑏) + 𝐢 (π‘₯ βˆ’ π‘Ž)2
--------- (b)
Putting π‘₯ = π‘Ž and π‘₯ = 𝑏 in equation (b), we get
𝐡 =
1
π‘Žβˆ’π‘
and 𝐢 =
1
(π‘βˆ’π‘Ž)2 -------- (c)
π΄π‘”π‘Žπ‘–π‘›, From equation (b), we have
1 = 𝐴 (π‘₯ βˆ’ π‘Ž)(π‘₯ βˆ’ 𝑏) + 𝐡(π‘₯ βˆ’ 𝑏) + 𝐢 (π‘₯ βˆ’ π‘Ž)2
1 = 𝐴 (π‘₯2
βˆ’ (π‘Ž + 𝑏)π‘₯ + π‘Žπ‘) + 𝐡π‘₯ βˆ’ 𝑏𝐡 + 𝐢 (π‘₯2
βˆ’ 2π‘Žπ‘₯ + π‘Ž2)
1 = 𝐴 π‘₯2
βˆ’ (π‘Ž + 𝑏)𝐴π‘₯ + π‘Žπ‘π΄ + 𝐡π‘₯ βˆ’ 𝑏𝐡 + 𝐢 π‘₯2
βˆ’ 2π‘ŽπΆπ‘₯ + π‘Ž2
𝐢 ---- (d)
Equating the constant terms on both sides of equation (d), we get
1 = π‘Žπ‘π΄ βˆ’ 𝑏𝐡 + π‘Ž2
𝐢
1 = π‘Žπ‘π΄ βˆ’ 𝑏
1
π‘Žβˆ’π‘
+ π‘Ž2
ο‚΄
1
(π‘βˆ’π‘Ž)2 Using (c)
1 = π‘Žπ‘π΄ βˆ’
𝑏
π‘Žβˆ’π‘
+
π‘Ž2
(π‘βˆ’π‘Ž)2
π‘Žπ‘π΄ βˆ’
𝑏
π‘Žβˆ’π‘
+
π‘Ž2
(π‘βˆ’π‘Ž)2 = 1
π‘Žπ‘π΄ +
π‘Ž2
(π‘βˆ’π‘Ž)2 = 1 +
𝑏
π‘Žβˆ’π‘
π‘Žπ‘π΄ +
π‘Ž2
(π‘βˆ’π‘Ž)2 =
π‘Ž+π‘βˆ’π‘
π‘Žβˆ’π‘
π‘Žπ‘π΄ +
π‘Ž2
(π‘βˆ’π‘Ž)2 =
π‘Ž
π‘Žβˆ’π‘
π‘Žπ‘π΄ =
π‘Ž
π‘Žβˆ’π‘
βˆ’
π‘Ž2
(π‘βˆ’π‘Ž)2
π‘Žπ‘π΄ =
π‘Ž
π‘Žβˆ’π‘
βˆ’
π‘Ž2
(π‘Žβˆ’π‘)2
π‘Žπ‘π΄ =
π‘Ž(π‘Žβˆ’π‘)βˆ’π‘Ž2
(π‘Žβˆ’π‘)2
π‘Žπ‘π΄ =
π‘Ž2βˆ’π‘Žπ‘βˆ’π‘Ž2
(π‘Žβˆ’π‘)2
π‘Žπ‘π΄ =
βˆ’π‘Žπ‘
(π‘Žβˆ’π‘)2
 𝐴 =
βˆ’1
(π‘Žβˆ’π‘)2
Now,
𝐼 = ∫
𝑑π‘₯
(π‘₯βˆ’π‘Ž)2 (π‘₯βˆ’π‘)
𝐼 = ∫ {
𝐴
(π‘₯βˆ’π‘Ž)
+
𝐡
(π‘₯βˆ’π‘Ž)2 +
𝐢
(π‘₯βˆ’π‘)
} 𝑑π‘₯
𝐼 = ∫
𝐴
(π‘₯βˆ’π‘Ž)
𝑑π‘₯ + ∫
𝐡
(π‘₯βˆ’π‘Ž)2 𝑑π‘₯ + ∫
𝐢
(π‘₯βˆ’π‘)
𝑑π‘₯
𝐼 = 𝐴 ∫
𝑑π‘₯
(π‘₯βˆ’π‘Ž)
+ 𝐡 ∫
1
(π‘₯βˆ’π‘Ž)2 𝑑π‘₯ + 𝐢 ∫
𝑑π‘₯
(π‘₯βˆ’π‘)
𝐼 = 𝐴 ∫
𝑑π‘₯
(π‘₯βˆ’π‘Ž)
+ 𝐡 ∫(π‘₯ βˆ’ π‘Ž)βˆ’2
𝑑π‘₯ + 𝐢 ∫
𝑑π‘₯
(π‘₯βˆ’π‘)
𝐼 = 𝐴 log(π‘₯ βˆ’ π‘Ž) βˆ’ 𝐡(π‘₯ βˆ’ π‘Ž)βˆ’1
+ 𝐢 log(π‘₯ βˆ’ 𝑏)
𝐼 = βˆ’
1
(π‘Žβˆ’π‘)2 log(π‘₯ βˆ’ π‘Ž) βˆ’
1
π‘Žβˆ’π‘
1
(π‘₯βˆ’π‘Ž)
+
1
(π‘βˆ’π‘Ž)2 log(π‘₯ βˆ’ 𝑏)
𝐼 =
1
(π‘Žβˆ’π‘)2
{log(π‘₯ βˆ’ 𝑏) βˆ’ log(π‘₯ βˆ’ π‘Ž)} βˆ’
1
π‘Žβˆ’π‘
1
(π‘₯βˆ’π‘Ž)
𝐼 =
1
(π‘Žβˆ’π‘)2
{log
π‘₯βˆ’π‘
π‘₯βˆ’π‘Ž
} βˆ’
1
π‘Žβˆ’π‘
1
(π‘₯βˆ’π‘Ž)
𝐼 =
1
(π‘Žβˆ’π‘)2 log
π‘₯βˆ’π‘
π‘₯βˆ’π‘Ž
βˆ’
1
βˆ’(π‘βˆ’π‘Ž)
1
(π‘₯βˆ’π‘Ž)
𝐼 =
1
(π‘Žβˆ’π‘)2 log
π‘₯βˆ’π‘
π‘₯βˆ’π‘Ž
+
1
(π‘βˆ’π‘Ž)
1
(π‘₯βˆ’π‘Ž)
𝐼 =
1
(π‘Žβˆ’π‘)2 log
π‘₯βˆ’π‘
π‘₯βˆ’π‘Ž
+
1
(π‘βˆ’π‘Ž)(π‘₯βˆ’π‘Ž)
(iii) Solution: Let 𝐼 = ∫
𝑑π‘₯
(π‘₯βˆ’2)2(π‘₯βˆ’1)3
{Integral of the form ∫
𝒅𝒙
(π’™βˆ’π’‚)π’Ž(π’™βˆ’π’ƒ)𝒏 , can be evaluated by putting 𝒙 βˆ’ 𝒂 = 𝒖(𝒙 βˆ’ 𝒃)}.
Let, π‘₯ βˆ’ 2 = 𝑒(π‘₯ βˆ’ 1) and differentiating with respect to π‘₯, we get
π‘₯ βˆ’ 2 = 𝑒π‘₯ βˆ’ 𝑒
π‘₯ βˆ’ 𝑒π‘₯ = 2 βˆ’ 𝑒
π‘₯(1 βˆ’ 𝑒) = 2 βˆ’ 𝑒
 π‘₯ =
2βˆ’π‘’
1βˆ’π‘’
-------- (a)
Differentiating with respect to 𝑒, we get
𝑑π‘₯
𝑑𝑒
=
(1βˆ’π‘’)
𝑑
𝑑𝑒
(2βˆ’π‘’)βˆ’(2βˆ’π‘’)
𝑑
𝑑𝑒
(1βˆ’π‘’)
(1βˆ’π‘’)2
𝑑π‘₯
𝑑𝑒
=
βˆ’(1βˆ’π‘’)+(2βˆ’π‘’)
(1βˆ’π‘’)2
𝑑π‘₯
𝑑𝑒
=
βˆ’1+𝑒+2βˆ’π‘’
(1βˆ’π‘’)2
𝑑π‘₯
𝑑𝑒
=
1
(1βˆ’π‘’)2
𝑑π‘₯ =
𝑑𝑒
(1βˆ’π‘’)2
Now,
𝐼 = ∫
𝑑π‘₯
(π‘₯βˆ’2)2(π‘₯βˆ’1)3
𝐼 = ∫
𝑑𝑒
(1βˆ’π‘’)2
(
2βˆ’π‘’
1βˆ’π‘’
βˆ’2)
2
(
2βˆ’π‘’
1βˆ’π‘’
βˆ’1)
3 Since, π‘₯ =
2βˆ’π‘’
1βˆ’π‘’
𝐼 = ∫
𝑑𝑒
(1βˆ’π‘’)2
(
2βˆ’π‘’βˆ’2(1βˆ’π‘’)
1βˆ’π‘’
βˆ’)
2
(
2βˆ’π‘’βˆ’(1βˆ’π‘’)
1βˆ’π‘’
)
3
𝐼 = ∫
𝑑𝑒
(1βˆ’π‘’)2
(
2βˆ’π‘’βˆ’2+2𝑒
1βˆ’π‘’
βˆ’)
2
(
2βˆ’π‘’βˆ’1+𝑒
1βˆ’π‘’
)
3
𝐼 = ∫
𝑑𝑒
(1βˆ’π‘’)2
𝑒2
(1βˆ’π‘’)2
1
(1βˆ’π‘’)3
𝐼 = ∫
𝑑𝑒
(1βˆ’π‘’)2
𝑒2
(1βˆ’π‘’)5
𝐼 = ∫
𝑑𝑒
(1βˆ’π‘’)2 ο‚΄
(1βˆ’π‘’)5
𝑒2
𝐼 = ∫
(1βˆ’π‘’)3
𝑒2 𝑑𝑒
𝐼 = ∫
1βˆ’3𝑒+3𝑒2βˆ’π‘’3
𝑒2 𝑑𝑒
𝐼 = ∫
1
𝑒2 𝑑𝑒 βˆ’ ∫
3𝑒
𝑒2 𝑑𝑒 + ∫
3𝑒2
𝑒2 𝑑𝑒 βˆ’ ∫
𝑒3
𝑒2 𝑑𝑒
𝐼 = ∫ π‘’βˆ’2
𝑑𝑒 βˆ’ 3 ∫
1
𝑒
𝑑𝑒 + 3 ∫ 1 𝑑𝑒 βˆ’ ∫ 𝑒 𝑑𝑒
𝐼 = βˆ’
1
𝑒
βˆ’ 3 log 𝑒 + 3𝑒 βˆ’
1
2
𝑒2
We take, π‘₯ βˆ’ 2 = 𝑒(π‘₯ βˆ’ 1)
 𝑒 =
π‘₯βˆ’2
π‘₯βˆ’1
Thus,
𝐼 = βˆ’
1
𝑒
βˆ’ 3 log 𝑒 + 3𝑒 βˆ’
1
2
𝑒2
𝐼 = βˆ’
1
π‘₯βˆ’2
π‘₯βˆ’1
βˆ’ 3 log
π‘₯βˆ’2
π‘₯βˆ’1
+ 3
π‘₯βˆ’2
π‘₯βˆ’1
βˆ’
1
2
(
π‘₯βˆ’2
π‘₯βˆ’1
)
2
𝐼 = βˆ’
π‘₯βˆ’1
π‘₯βˆ’2
βˆ’ 3 log
π‘₯βˆ’2
π‘₯βˆ’1
+ 3
π‘₯βˆ’2
π‘₯βˆ’1
βˆ’
1
2
(
π‘₯βˆ’2
π‘₯βˆ’1
)
2
(iv) Solution: Let 𝐼 = ∫
𝑑π‘₯
(π‘₯+1)2(π‘₯+2)3
Let, π‘₯ + 1 = 𝑒(π‘₯ + 2)
π‘₯ + 1 = 𝑒π‘₯ + 2𝑒
π‘₯ βˆ’ 𝑒π‘₯ = 2𝑒 βˆ’ 1
π‘₯(1 βˆ’ 𝑒) = 2𝑒 βˆ’ 1
 π‘₯ =
2π‘’βˆ’1
1βˆ’π‘’
Differentiating with respect to 𝑒 , we get
𝑑π‘₯
𝑑𝑒
=
(1βˆ’π‘’)
𝑑
𝑑𝑒
(2π‘’βˆ’1)βˆ’(2π‘’βˆ’1)
𝑑
𝑑𝑒
(1βˆ’π‘’)
(1βˆ’π‘’)2
𝑑π‘₯
𝑑𝑒
=
2(1βˆ’π‘’)+(2π‘’βˆ’1)
(1βˆ’π‘’)2
𝑑π‘₯
𝑑𝑒
=
2βˆ’2𝑒+2π‘’βˆ’1
(1βˆ’π‘’)2
𝑑π‘₯
𝑑𝑒
=
1
(1βˆ’π‘’)2
 𝑑π‘₯ =
𝑑𝑒
(1βˆ’π‘’)2
Now,
𝐼 = ∫
𝑑π‘₯
(π‘₯+1)2(π‘₯+2)3
𝐼 = ∫
𝑑𝑒
(1βˆ’π‘’)2
(
2π‘’βˆ’1
1βˆ’π‘’
+1)
2
(
2π‘’βˆ’1
1βˆ’π‘’
+2)
3 Since, π‘₯ =
2π‘’βˆ’1
1βˆ’π‘’
𝐼 = ∫
𝑑𝑒
(1βˆ’π‘’)2
(
2π‘’βˆ’1+1βˆ’u
1βˆ’π‘’
)
2
(
2π‘’βˆ’1+2βˆ’2𝑒
1βˆ’π‘’
)
3
𝐼 = ∫
𝑑𝑒
(1βˆ’π‘’)2
(
u
1βˆ’π‘’
)
2
(
1
1βˆ’π‘’
)
3
𝐼 = ∫
𝑑𝑒
(1βˆ’π‘’)2
𝑒2
(1βˆ’π‘’)2ο‚΄
1
(1βˆ’π‘’)3
𝐼 = ∫
𝑑𝑒
(1βˆ’π‘’)2
𝑒2
(1βˆ’π‘’)5
𝐼 = ∫
𝑑𝑒
(1βˆ’π‘’)2 ο‚΄
(1βˆ’π‘’)5
𝑒2
𝐼 = ∫
(1βˆ’π‘’)3
𝑒2 𝑑𝑒
𝐼 = ∫
1βˆ’3𝑒+3𝑒2βˆ’π‘’3
𝑒2 𝑑𝑒
𝐼 = ∫
1
𝑒2 𝑑𝑒 βˆ’ ∫
3𝑒
𝑒2 𝑑𝑒 + 3 ∫
𝑒2
𝑒2 𝑑𝑒 βˆ’ ∫
𝑒3
𝑒2 𝑑𝑒
𝐼 = ∫ π‘’βˆ’2
𝑑𝑒 βˆ’ 3 ∫
1
𝑒
𝑑𝑒 + 3 ∫ 1 𝑑𝑒 βˆ’ ∫ 𝑒 𝑑𝑒
𝐼 = βˆ’π‘’βˆ’1
βˆ’ 3 log 𝑒 + 3𝑒 βˆ’
1
2
𝑒2
𝐼 = βˆ’
1
𝑒
βˆ’ 3 log 𝑒 + 3𝑒 βˆ’
1
2
𝑒2
We take, π‘₯ + 1 = 𝑒(π‘₯ + 2)
 𝑒 =
π‘₯+1
π‘₯+2
𝐼 = βˆ’
1
π‘₯+1
π‘₯+2
βˆ’ 3 log
π‘₯+1
π‘₯+2
+ 3
π‘₯+1
π‘₯+2
βˆ’
1
2
(
π‘₯+1
π‘₯+2
)
2
𝐼 = βˆ’
π‘₯+2
π‘₯+1
βˆ’ 3 log
π‘₯+1
π‘₯+2
+ 3
π‘₯+1
π‘₯+2
βˆ’
1
2
(
π‘₯+1
π‘₯+2
)
2
10. (i) ∫
π‘₯2 𝑑π‘₯
(π‘₯+1)(π‘₯+2)2 (ii) ∫
(3βˆ’π‘₯)
π‘₯2+π‘₯3 𝑑π‘₯
Solution: Let, 𝐼 = ∫
π‘₯2 𝑑π‘₯
(π‘₯+1)(π‘₯+2)2
Let,
π‘₯2
(π‘₯+1)(π‘₯+2)2 =
𝐴
(π‘₯+1)
+
𝐡
(π‘₯+2)
+
𝐢
(π‘₯+2)2 ------ (a)
π‘₯2
(π‘₯+1)(π‘₯+2)2 =
𝐴(π‘₯+2)2+𝐡(π‘₯+1)(π‘₯+2)+ 𝐢 (π‘₯+1)
(π‘₯+1)(π‘₯+2)2
π‘₯2
= 𝐴(π‘₯ + 2)2
+ 𝐡(π‘₯ + 1)(π‘₯ + 2) + 𝐢 (π‘₯ + 1) ----------- (b)
Putting, π‘₯ = βˆ’1 and π‘₯ = βˆ’2 in equation (b), we get
𝐴 = 1 , 𝐢 = βˆ’4
Again, from (b), we have
π‘₯2
= 𝐴(π‘₯2
+ 4π‘₯ + 4) + 𝐡(π‘₯2
+ 3π‘₯ + 2) + 𝐢 (π‘₯ + 1) ----- (c)
Equating the coefficient of π‘₯2
on both sides of equation (c), we get
1 = 𝐴 + 𝐡
1 = 1 + 𝐡 Since, 𝐴 = 1
 𝐡 = 0
Now,
𝐼 = ∫
π‘₯2 𝑑π‘₯
(π‘₯+1)(π‘₯+2)2
𝐼 = ∫ {
𝐴
(π‘₯+1)
+
𝐡
(π‘₯+2)
+
𝐢
(π‘₯+2)2
} 𝑑π‘₯ Using (a)
𝐼 = ∫
𝐴
(π‘₯+1)
𝑑π‘₯ + ∫
𝐡
(π‘₯+2)
𝑑π‘₯ + ∫
𝐢
(π‘₯+2)2 𝑑π‘₯
𝐼 = 𝐴 ∫
𝑑π‘₯
(π‘₯+1)
+ 𝐡 ∫
𝑑π‘₯
(π‘₯+2)
+ 𝐢 ∫
𝑑π‘₯
(π‘₯+2)2
𝐼 = 𝐴 log(π‘₯ + 1) + 𝐡 log(π‘₯ + 2) + 𝐢 ∫(π‘₯ + 2)βˆ’2
𝑑π‘₯
𝐼 = 𝐴 log(π‘₯ + 1) + 𝐡 log(π‘₯ + 2) βˆ’ 𝐢(π‘₯ + 2)βˆ’1
𝐼 = log(π‘₯ + 1) + 0ο‚΄ log(π‘₯ + 2) βˆ’ (βˆ’4)
1
(π‘₯+2)
𝐼 = log(π‘₯ + 1) +
4
(π‘₯+2)
(iii) Solution: Let 𝐼 = ∫
(3βˆ’π‘₯)
π‘₯2+π‘₯3 𝑑π‘₯
𝐼 = ∫
(3βˆ’π‘₯)
π‘₯2(1+π‘₯)
𝑑π‘₯
Let,
(3βˆ’π‘₯)
π‘₯2(1+π‘₯)
=
𝐴
π‘₯
+
𝐡
π‘₯2 +
𝐢
(1+π‘₯)
------- (a)
(3βˆ’π‘₯)
π‘₯2(1+π‘₯)
=
𝐴π‘₯(1+π‘₯)+ 𝐡(1+π‘₯)+ 𝐢π‘₯2
π‘₯2(1+π‘₯)
(3 βˆ’ π‘₯) = 𝐴π‘₯(1 + π‘₯) + 𝐡(1 + π‘₯) + 𝐢π‘₯2
-------- (b)
Putting, π‘₯ = 0 and π‘₯ = βˆ’1 in equation (b), we get
𝐡 = 3 and 𝐢 = 4
Again, From (b), we have
(3 βˆ’ π‘₯) = 𝐴π‘₯(1 + π‘₯) + 𝐡(1 + π‘₯) + 𝐢π‘₯2
(3 βˆ’ π‘₯) = 𝐴(π‘₯ + π‘₯2) + 𝐡(1 + π‘₯) + 𝐢π‘₯2
Comparing the coefficients of π‘₯2
on both sides of equation (c), we get
0 = 𝐴 + 𝐢
𝐴 = βˆ’πΆ
 𝐴 = βˆ’4
Now,
𝐼 = ∫
(3βˆ’π‘₯)
π‘₯2(1+π‘₯)
𝑑π‘₯
𝐼 = ∫ {
𝐴
π‘₯
+
𝐡
π‘₯2 +
𝐢
(1+π‘₯)
} 𝑑π‘₯ Using (a)
𝐼 = ∫
𝐴
π‘₯
𝑑π‘₯ + ∫
𝐡
π‘₯2 𝑑π‘₯ + ∫
𝐢
(1+π‘₯)
𝑑π‘₯
𝐼 = 𝐴 ∫
𝑑π‘₯
π‘₯
+ 𝐡 ∫ π‘₯βˆ’2
𝑑π‘₯ + 𝐢 ∫
𝑑π‘₯
(1+π‘₯)
𝐼 = 𝐴 log π‘₯ βˆ’ 𝐡 π‘₯βˆ’1
+ 𝐢 log(1 + π‘₯)
𝐼 = 𝐴 log π‘₯ βˆ’
𝐡
π‘₯
+ 𝐢 log(1 + π‘₯)
𝐼 = βˆ’4 log π‘₯ βˆ’
3
π‘₯
+ 4 log(1 + π‘₯)
11. (i) ∫
𝑑π‘₯
π‘₯3βˆ’π‘₯2βˆ’π‘₯+1
(ii) ∫
𝑑π‘₯
π‘₯ (π‘₯+1)2
(i) Solution: Let, 𝐼 = ∫
𝑑π‘₯
π‘₯3βˆ’π‘₯2βˆ’π‘₯+1
𝐼 = ∫
𝑑π‘₯
π‘₯2(π‘₯βˆ’1)βˆ’π‘₯+1
𝐼 = ∫
𝑑π‘₯
π‘₯2(π‘₯βˆ’1)βˆ’1(π‘₯βˆ’1)
𝐼 = ∫
𝑑π‘₯
(π‘₯βˆ’1)(π‘₯2βˆ’1)
𝐼 = ∫
𝑑π‘₯
(π‘₯βˆ’1)(π‘₯βˆ’1)(π‘₯+1)
𝐼 = ∫
𝑑π‘₯
(π‘₯+1) (π‘₯βˆ’1)2
Let,
1
(π‘₯+1) (π‘₯βˆ’1)2 =
𝐴
(π‘₯+1)
+
𝐡
(π‘₯βˆ’1)
+
𝐢
(π‘₯βˆ’1)2 ------- (a)
1
(π‘₯+1) (π‘₯βˆ’1)2 =
𝐴(π‘₯βˆ’1)2+ 𝐡(π‘₯βˆ’1)(π‘₯+1)+ 𝐢(π‘₯+1)
(π‘₯+1) (π‘₯βˆ’1)2
1 = 𝐴(π‘₯ βˆ’ 1)2
+ 𝐡(π‘₯ βˆ’ 1)(π‘₯ + 1) + 𝐢(π‘₯ + 1) -------- (b)
Putting, π‘₯ = 1 and π‘₯ = βˆ’1 in equation (b), we get
𝐢 =
1
2
and 𝐴 =
1
4
Again, from (b), we have
1 = 𝐴(π‘₯ βˆ’ 1)2
+ 𝐡(π‘₯ βˆ’ 1)(π‘₯ + 1) + 𝐢(π‘₯ + 1)
1 = 𝐴 (π‘₯2
βˆ’ 2π‘₯ + 1) + 𝐡(π‘₯2
βˆ’ 1) + 𝐢(π‘₯ + 1) -------- (c)
Equating the constant terms on both sides of equation (c), we get
1 = 𝐴 βˆ’ 𝐡 + 𝐢
1 =
1
4
βˆ’ 𝐡 +
1
2
1 =
3
4
βˆ’ 𝐡
𝐡 =
3
4
βˆ’ 1
𝐡 = βˆ’
1
4
Now,
𝐼 = ∫
𝑑π‘₯
(π‘₯+1) (π‘₯βˆ’1)2
𝐼 = ∫ {
𝐴
(π‘₯+1)
+
𝐡
(π‘₯βˆ’1)
+
𝐢
(π‘₯βˆ’1)2
} 𝑑π‘₯ Using (a)
𝐼 = ∫
𝐴
(π‘₯+1)
𝑑π‘₯ + ∫
𝐡
(π‘₯βˆ’1)
𝑑π‘₯ + ∫
𝐢
(π‘₯βˆ’1)2 𝑑π‘₯
𝐼 = 𝐴 ∫
𝑑π‘₯
(π‘₯+1)
+ 𝐡 ∫
𝑑π‘₯
(π‘₯βˆ’1)
+ 𝐢 ∫
1
(π‘₯βˆ’1)2 𝑑π‘₯
𝐼 = 𝐴 log(π‘₯ + 1) + 𝐡 log(π‘₯ βˆ’ 1) + 𝐢 ∫(π‘₯ βˆ’ 1)βˆ’2
𝑑π‘₯
𝐼 = 𝐴 log(π‘₯ + 1) + 𝐡 log(π‘₯ βˆ’ 1) βˆ’ 𝐢 (π‘₯ βˆ’ 1)βˆ’1
𝐼 = 𝐴 log(π‘₯ + 1) + 𝐡 log(π‘₯ βˆ’ 1) βˆ’
𝐢
(π‘₯βˆ’1)
𝐼 =
1
4
log(π‘₯ + 1) βˆ’
1
4
log(π‘₯ βˆ’ 1) βˆ’
1
2
(π‘₯βˆ’1)
𝐼 =
1
4
{log(π‘₯ + 1) βˆ’ log(π‘₯ βˆ’ 1)} βˆ’
1
2 (π‘₯βˆ’1)
𝐼 =
1
4
log
π‘₯+1
π‘₯βˆ’1
βˆ’
1
2 (π‘₯βˆ’1)
(ii) Solution: Let, 𝐼 = ∫
𝑑π‘₯
π‘₯ (π‘₯+1)2
Let,
1
π‘₯ (π‘₯+1)2 =
𝐴
π‘₯
+
𝐡
(π‘₯+1)
+
𝐢
(π‘₯+1)2 ----- (a)
1
π‘₯ (π‘₯+1)2 =
𝐴(π‘₯+1)2+ 𝐡 π‘₯ (π‘₯+1)+ 𝐢π‘₯
π‘₯ (π‘₯+1)2
1 = 𝐴(π‘₯ + 1)2
+ 𝐡 π‘₯ (π‘₯ + 1) + 𝐢π‘₯ ------- (b)
Putting, π‘₯ = 0 and π‘₯ = βˆ’1 in equation (b), we get
𝐴 = 1 and 𝐢 = βˆ’1
Again, from (b), we have
1 = 𝐴(π‘₯ + 1)2
+ 𝐡 π‘₯ (π‘₯ + 1) + 𝐢π‘₯
1 = 𝐴(π‘₯2
+ 2π‘₯ + 1) + 𝐡 (π‘₯2
+ π‘₯) + 𝐢π‘₯ ------ (c)
Equating the coefficients of π‘₯2
on both sides of equation (c), we get
0 = 𝐴 + 𝐡
𝐡 = βˆ’π΄
𝐡 = βˆ’1
Now,
𝐼 = ∫
𝑑π‘₯
π‘₯ (π‘₯+1)2
𝐼 = ∫ {
𝐴
π‘₯
+
𝐡
(π‘₯+1)
+
𝐢
(π‘₯+1)2
} 𝑑π‘₯
𝐼 = ∫
𝐴
π‘₯
𝑑π‘₯ + ∫
𝐡
(π‘₯+1)
𝑑π‘₯ + ∫
𝐢
(π‘₯+1)2 𝑑π‘₯
𝐼 = 𝐡 ∫
𝑑π‘₯
π‘₯
+ 𝐡 ∫
𝑑π‘₯
(π‘₯+1)
+ 𝐢 ∫
1
(π‘₯+1)2 𝑑π‘₯
𝐼 = 𝐴 log π‘₯ + 𝐡 log(π‘₯ + 1) + 𝐢 ∫(π‘₯ + 1)βˆ’2
𝑑π‘₯
𝐼 = 𝐴 log π‘₯ + 𝐡 log(π‘₯ + 1) βˆ’ 𝐢(π‘₯ + 1)βˆ’1
𝐼 = log π‘₯ βˆ’ log(π‘₯ + 1) βˆ’
βˆ’1
(π‘₯+1)
𝐼 = log
π‘₯
π‘₯+1
+
1
(π‘₯+1)
12. (i) ∫
𝑑π‘₯
(π‘₯2βˆ’1)2 (ii) ∫
(π‘₯+1) 𝑑π‘₯
(π‘₯βˆ’1)2(π‘₯+2)2
(i) Solution: Let 𝐼 = ∫
𝑑π‘₯
(π‘₯2βˆ’1)2
𝐼 = ∫
𝑑π‘₯
(π‘₯2βˆ’1)(π‘₯2βˆ’1)
𝐼 = ∫
𝑑π‘₯
(π‘₯+1)(π‘₯βˆ’1)(π‘₯+1)(π‘₯βˆ’1)
𝐼 = ∫
𝑑π‘₯
(π‘₯+1)2(π‘₯βˆ’1)2
Let,
1
(π‘₯+1)2(π‘₯βˆ’1)2 =
𝐴
(π‘₯+1)
+
𝐡
(π‘₯+1)2 +
𝐢
(π‘₯βˆ’1)
+
𝐷
(π‘₯βˆ’1)2 -------- (a)
1
(π‘₯+1)2(π‘₯βˆ’1)2 =
𝐴(π‘₯+1) (π‘₯βˆ’1)2+ 𝐡(π‘₯βˆ’1)2+ 𝐢(π‘₯βˆ’1) (π‘₯+1)2+ 𝐷 (π‘₯+1)2
(π‘₯+1)2(π‘₯βˆ’1)2
1 = 𝐴(π‘₯ + 1) (π‘₯ βˆ’ 1)2
+ 𝐡(π‘₯ βˆ’ 1)2
+ 𝐢(π‘₯ βˆ’ 1) (π‘₯ + 1)2
+ 𝐷 (π‘₯ + 1)2
--------- (b)
Putting, π‘₯ = 1 and π‘₯ = βˆ’1, we get
𝐷 =
1
4
and 𝐡 =
1
4
Again, from (b), we have
1 = 𝐴(π‘₯ + 1) (π‘₯ βˆ’ 1)2
+ 𝐡(π‘₯ βˆ’ 1)2
+ 𝐢(π‘₯ βˆ’ 1) (π‘₯ + 1)2
+ 𝐷 (π‘₯ + 1)2
1 = 𝐴(π‘₯ + 1) (π‘₯2
βˆ’ 2π‘₯ + 1) + 𝐡(π‘₯2
βˆ’ 2π‘₯ + 1) + 𝐢(π‘₯ βˆ’ 1) (π‘₯2
+ 2π‘₯ + 1) + 𝐷 (π‘₯2
+ 2π‘₯ + 1)
1 = 𝐴 (π‘₯3
βˆ’ π‘₯2
βˆ’ π‘₯ + 1) + 𝐡(π‘₯2
βˆ’ 2π‘₯ + 1) + 𝐢 (π‘₯3
+ π‘₯2
βˆ’ π‘₯ βˆ’ 1) + 𝐷 (π‘₯2
+ 2π‘₯ + 1) ---- (c)
Equating the constant terms on both sides of equation (c), we get
1 = 𝐴 + 𝐡 βˆ’ 𝐢 + 𝐷
1 = 𝐴 +
1
4
βˆ’ 𝐢 +
1
4
1 = 𝐴 βˆ’ 𝐢 +
1
2
𝐴 βˆ’ 𝐢 =
1
2
𝐴 = 𝐢 +
1
2
------- (d)
Again, equating the coefficients of π‘₯2
on both sides of equation (c), we get
0 = βˆ’π΄β€” 2𝐡 βˆ’ 𝐢 + 2𝐷
 𝐢 = βˆ’π΄ βˆ’ 2𝐡 + 2𝐷 --------- (e)
Solving (d) and (e), we get
𝐢 = βˆ’
1
4
Again, putting 𝐢 = βˆ’
1
4
in (d), we get
𝐴 =
1
4
Now,
𝐼 = ∫
𝑑π‘₯
(π‘₯+1)2(π‘₯βˆ’1)2
𝐼 = ∫ {
𝐴
(π‘₯+1)
+
𝐡
(π‘₯+1)2 +
𝐢
(π‘₯βˆ’1)
+
𝐷
(π‘₯βˆ’1)2
} 𝑑π‘₯ Using (a)
𝐼 = ∫
𝐴
(π‘₯+1)
𝑑π‘₯ + ∫
𝐡
(π‘₯+1)2 𝑑π‘₯ + ∫
𝐢
(π‘₯βˆ’1)
𝑑π‘₯ + ∫
𝐷
(π‘₯βˆ’1)2 𝑑π‘₯
𝐼 = 𝐴 ∫
𝑑π‘₯
(π‘₯+1)
+ 𝐡 ∫(π‘₯ + 1)βˆ’2
𝑑π‘₯ + 𝐢 ∫
𝑑π‘₯
(π‘₯βˆ’1)
+ 𝐷 ∫(π‘₯ βˆ’ 1)βˆ’2
𝑑π‘₯
𝐼 = 𝐴 log(π‘₯ + 1) βˆ’ 𝐡(π‘₯ + 1)βˆ’1
+ 𝐢 log(π‘₯ βˆ’ 1 ) βˆ’ 𝐷(π‘₯ βˆ’ 1)βˆ’1
𝐼 = 𝐴 log(π‘₯ + 1) βˆ’
𝐡
(π‘₯+1)
+ 𝐢 log(π‘₯ βˆ’ 1 ) βˆ’
𝐷
(π‘₯βˆ’1)
𝐼 =
1
4
log(π‘₯ + 1) βˆ’
1
4
(π‘₯+1)
βˆ’
1
4
log(π‘₯ βˆ’ 1 ) βˆ’
1
4
(π‘₯βˆ’1)
𝐼 =
1
4
{log(π‘₯ + 1) βˆ’ log(π‘₯ βˆ’ 1)} βˆ’
1
4(π‘₯+1)
βˆ’
1
4(π‘₯βˆ’1)
𝐼 =
1
4
log
π‘₯+1
π‘₯βˆ’1
βˆ’
1
4
(
(π‘₯βˆ’1)+(π‘₯+1)
(π‘₯+1)(π‘₯βˆ’1)
)
𝐼 =
1
4
log
π‘₯+1
π‘₯βˆ’1
βˆ’
1
4
(
2π‘₯
π‘₯2βˆ’1
)
𝐼 =
1
4
log
π‘₯+1
π‘₯βˆ’1
βˆ’
1
2
(
π‘₯
π‘₯2βˆ’1
)
(ii) Solution: Let 𝐼 = ∫
(π‘₯+1) 𝑑π‘₯
(π‘₯βˆ’1)2(π‘₯+2)2
Let,
(π‘₯+1)
(π‘₯βˆ’1)2(π‘₯+2)2 =
𝐴
(π‘₯βˆ’1)
+
𝐡
(π‘₯βˆ’1)2 +
𝐢
(π‘₯+2)
+
𝐷
(π‘₯+2)2 ------- (b)
(π‘₯+1)
(π‘₯βˆ’1)2(π‘₯+2)2 =
𝐴(π‘₯βˆ’1)(π‘₯+2)2+ 𝐡(π‘₯+2)2+ 𝐢 (π‘₯βˆ’1)2(π‘₯+2)+ 𝐷 (π‘₯βˆ’1)2
(π‘₯βˆ’1)2(π‘₯+2)2
(π‘₯ + 1) = 𝐴(π‘₯ βˆ’ 1)(π‘₯ + 2)2
+ 𝐡(π‘₯ + 2)2
+ 𝐢 (π‘₯ βˆ’ 1)2(π‘₯ + 2) + 𝐷 (π‘₯ βˆ’ 1)2
----- (c)
Putting, π‘₯ = 1 and π‘₯ = βˆ’2 in equation (c), we get
𝐡 =
2
9
and 𝐷 = βˆ’
1
9
Again, from (c), we have
(π‘₯ + 1) = 𝐴(π‘₯ βˆ’ 1)(π‘₯ + 2)2
+ 𝐡(π‘₯ + 2)2
+ 𝐢 (π‘₯ βˆ’ 1)2(π‘₯ + 2) + 𝐷 (π‘₯ βˆ’ 1)2
π‘₯ + 1 = 𝐴(π‘₯ βˆ’ 1)(π‘₯2
+ 4π‘₯ + 4) + 𝐡(π‘₯2
+ 4π‘₯ + 4) + 𝐢 (π‘₯2
βˆ’ 2π‘₯ + 1)(π‘₯ + 2) + 𝐷 (π‘₯2
βˆ’ 2π‘₯ + 1)
π‘₯ + 1 = 𝐴(π‘₯3
+ 3π‘₯2
βˆ’ 4) + 𝐡(π‘₯2
+ 4π‘₯ + 4) + 𝐢 (π‘₯3
βˆ’ 3π‘₯ + 2) + 𝐷 (π‘₯2
βˆ’ 2π‘₯ + 1) ----- (d)
Equating the coefficients of π‘₯ on both sides of equation (d), we get
1 = 4𝐡 βˆ’ 3𝐢 βˆ’ 2𝐷
1 = 4ο‚΄
2
9
βˆ’ 3𝐢 βˆ’ 2 (βˆ’
1
9
)
1 =
8
9
+
2
9
βˆ’ 3𝐢
1 =
10
9
βˆ’ 3𝐢
3𝐢 =
10
9
βˆ’ 1
3𝐢 =
1
9
𝐢 =
1
27
Again, equating the coefficients of π‘₯3
on both sides of (d), we get
0 = 𝐴 + 𝐢
𝐴 = βˆ’πΆ
𝐴 = βˆ’
1
27
𝐻𝑒𝑛𝑐𝑒, 𝐴 = βˆ’
1
27
, , =
2
9
, 𝐢 =
1
27
and 𝐷 = βˆ’
1
9
Now,
𝐼 = ∫
(π‘₯+1) 𝑑π‘₯
(π‘₯βˆ’1)2(π‘₯+2)2
𝐼 = ∫ {
𝐴
(π‘₯βˆ’1)
+
𝐡
(π‘₯βˆ’1)2 +
𝐢
(π‘₯+2)
+
𝐷
(π‘₯+2)2
} 𝑑π‘₯
𝐼 = ∫
𝐴
(π‘₯βˆ’1)
𝑑π‘₯ + ∫
𝐡
(π‘₯βˆ’1)2 𝑑π‘₯ + ∫
𝐢
(π‘₯+2)
𝑑π‘₯ + ∫
𝐷
(π‘₯+2)2 𝑑π‘₯
𝐼 = 𝐴 log(π‘₯ βˆ’ 1) + 𝐡 ∫(π‘₯ βˆ’ 1)βˆ’2
𝑑π‘₯ + 𝐢 log(π‘₯ + 2) + 𝐷 ∫(π‘₯ + 2)βˆ’2
𝑑π‘₯
𝐼 = 𝐴 log(π‘₯ βˆ’ 1) βˆ’ 𝐡(π‘₯ βˆ’ 1)βˆ’1
+ 𝐢 log(π‘₯ + 2) βˆ’ 𝐷 (π‘₯ + 2)βˆ’1
𝐼 = 𝐴 log(π‘₯ βˆ’ 1) βˆ’
𝐡
(π‘₯βˆ’1)
+ 𝐢 log(π‘₯ + 2) βˆ’
𝐷
(π‘₯+2)
𝐼 = βˆ’
1
27
log(π‘₯ βˆ’ 1) βˆ’
2
9
(π‘₯βˆ’1)
+
1
27
log(π‘₯ + 2) βˆ’
βˆ’
1
9
(π‘₯+2)
𝐼 = βˆ’
1
27
{log(π‘₯ βˆ’ 1) βˆ’ log(π‘₯ + 2)} +
1
9
{
1
(π‘₯+2)
βˆ’
2
(π‘₯βˆ’1)
}
𝐼 = βˆ’
1
27
log
π‘₯βˆ’1
π‘₯+2
+
1
9
{
1
(π‘₯+2)
βˆ’
2
(π‘₯βˆ’1)
}
𝐼 =
1
9
{
1
(π‘₯+2)
βˆ’
2
(π‘₯βˆ’1)
} βˆ’
1
27
log
π‘₯βˆ’1
π‘₯+2
𝐼 =
1
9
{
1
(π‘₯+2)
βˆ’
2
(π‘₯βˆ’1)
βˆ’
1
3
log
π‘₯βˆ’1
π‘₯+2
}
13. (i) ∫
𝑑π‘₯
(π‘₯βˆ’1)3 (π‘₯+1)
(ii) ∫
(3π‘₯+2) 𝑑π‘₯
π‘₯ (π‘₯+1)3
(i) Solution: Let 𝐼 = ∫
𝑑π‘₯
(π‘₯βˆ’1)3 (π‘₯+1)
Let,
1
(π‘₯βˆ’1)3 (π‘₯+1)
=
𝐴
(π‘₯βˆ’1)
+
𝐡
(π‘₯βˆ’1)2 +
𝐢
(π‘₯βˆ’1)3 +
𝐷
(π‘₯+1)
-------- (a)
1
(π‘₯βˆ’1)3 (π‘₯+1)
=
𝐴 (π‘₯βˆ’1)2 (π‘₯+1)+ 𝐡 (π‘₯βˆ’1) (π‘₯+1)+ 𝐢(π‘₯+1)+ 𝐷 (π‘₯βˆ’1)3
(π‘₯βˆ’1)3 (π‘₯+1)
1 = 𝐴 (π‘₯ βˆ’ 1)2 (π‘₯ + 1) + 𝐡 (π‘₯ βˆ’ 1) (π‘₯ + 1) + 𝐢(π‘₯ + 1) + 𝐷 (π‘₯ βˆ’ 1)3
----- (b)
Putting, π‘₯ = 1 and π‘₯ = βˆ’1 in equation (b), we get
𝐢 =
1
2
and 𝐷 = βˆ’
1
8
Again, from equation (b), we have
1 = 𝐴 (π‘₯ βˆ’ 1)2 (π‘₯ + 1) + 𝐡 (π‘₯ βˆ’ 1) (π‘₯ + 1) + 𝐢(π‘₯ + 1) + 𝐷 (π‘₯ βˆ’ 1)3
1 = 𝐴 (π‘₯2
βˆ’ 2π‘₯ + 1) (π‘₯ + 1) + 𝐡 (π‘₯2
βˆ’ 1) + 𝐢(π‘₯ + 1) + 𝐷 (π‘₯3
βˆ’ 3π‘₯2
+ 3π‘₯ βˆ’ 1)
1 = 𝐴 (π‘₯3
βˆ’ π‘₯2
βˆ’ π‘₯ + 1) + 𝐡 (π‘₯2
βˆ’ 1) + 𝐢(π‘₯ + 1) + 𝐷 (π‘₯3
βˆ’ 3π‘₯2
+ 3π‘₯ βˆ’ 1) ------ (c)
Equating the coefficients of π‘₯3
on both sides of equation (c), we get
0 = 𝐴 + 𝐷
𝐴 = βˆ’π·
𝐴 = βˆ’ (βˆ’
1
8
)
𝐴 =
1
8
Also, equating the coefficients of π‘₯2
on both sides of equation (c), we get
0 = βˆ’π΄ + 𝐡 βˆ’ 3𝐷
𝐡 = 𝐴 + 3𝐷
𝐡 =
1
8
+ 3 (βˆ’
1
8
)
𝐡 =
1
8
βˆ’
3
8
𝐡 = βˆ’
2
8
𝐡 = βˆ’
1
4
𝐻𝑒𝑛𝑐𝑒, 𝐴 =
1
8
𝐡 = βˆ’
1
4
, 𝐢 =
1
2
and 𝐷 = βˆ’
1
8
Now,
𝐼 = ∫
𝑑π‘₯
(π‘₯βˆ’1)3 (π‘₯+1)
𝐼 = ∫ {
𝐴
(π‘₯βˆ’1)
+
𝐡
(π‘₯βˆ’1)2 +
𝐢
(π‘₯βˆ’1)3 +
𝐷
(π‘₯+1)
} 𝑑π‘₯ Using (a)
𝐼 = ∫
𝐴
(π‘₯βˆ’1)
𝑑π‘₯ + ∫
𝐡
(π‘₯βˆ’1)2 𝑑π‘₯ + ∫
𝐢
(π‘₯βˆ’1)3 𝑑π‘₯ + ∫
𝐷
(π‘₯+1)
𝑑π‘₯
𝐼 = 𝐴 ∫
𝑑π‘₯
(π‘₯βˆ’1)
+ 𝐡 ∫
1
(π‘₯βˆ’1)2 𝑑π‘₯ + 𝐢 ∫
1
(π‘₯βˆ’1)3 𝑑π‘₯ + 𝐷 ∫
𝑑π‘₯
(π‘₯+1)
𝐼 = 𝐴 log(π‘₯ βˆ’ 1) + 𝐡 ∫(π‘₯ βˆ’ 1)βˆ’2
𝑑π‘₯ + 𝐢 ∫(π‘₯ βˆ’ 1)βˆ’3
𝑑π‘₯ + 𝐷 log(π‘₯ + 1)
𝐼 = 𝐴 log(π‘₯ βˆ’ 1) + 𝐷 log(π‘₯ + 1) βˆ’ 𝐡(π‘₯ βˆ’ 1)βˆ’1
βˆ’
𝐢
2
(π‘₯ βˆ’ 1)βˆ’2
𝐼 =
1
8
log(π‘₯ βˆ’ 1) βˆ’
1
8
log(π‘₯ + 1) +
1
4
1
(π‘₯βˆ’1)
βˆ’
1
2
2
ο‚΄
1
(π‘₯βˆ’1)2
𝐼 =
1
8
{log(π‘₯ βˆ’ 1) βˆ’ log(π‘₯ + 1)} +
1
4
{
1
(π‘₯βˆ’1)
βˆ’
1
(π‘₯βˆ’1)2
}
𝐼 =
1
8
log
π‘₯βˆ’1
π‘₯+1
+
1
4
{
π‘₯βˆ’1βˆ’1
(π‘₯βˆ’1)2
}
𝐼 =
1
8
log
π‘₯βˆ’1
π‘₯+1
+
1
4
{
π‘₯βˆ’2
(π‘₯βˆ’1)2
}
(ii) Solution: Let, 𝐼 = ∫
(3π‘₯+2) 𝑑π‘₯
π‘₯ (π‘₯+1)3
Let,
(3π‘₯+2)
π‘₯ (π‘₯+1)3 =
𝐴
π‘₯
+
𝐡
(π‘₯+1)
+
𝐢
(π‘₯+1)2 +
𝐷
(π‘₯+1)3 -------- (a)
(3π‘₯+2)
π‘₯ (π‘₯+1)3 =
𝐴(π‘₯+1)3 + 𝐡π‘₯(π‘₯+1)2 +𝐢 π‘₯(π‘₯+1)+ 𝐷π‘₯
π‘₯ (π‘₯+1)3
(3π‘₯ + 2) = 𝐴(π‘₯ + 1)3
+ 𝐡π‘₯(π‘₯ + 1)2
+ 𝐢 π‘₯(π‘₯ + 1) + 𝐷π‘₯ ------ (b)
Putting, = 0 , π‘₯ = βˆ’1 in equation (b), we get
𝐴 = 2 and 𝐷 = 1
Again, from equation (b), we have
(3π‘₯ + 2) = 𝐴(π‘₯ + 1)3
+ 𝐡π‘₯(π‘₯ + 1)2
+ 𝐢 π‘₯(π‘₯ + 1) + 𝐷π‘₯
(3π‘₯ + 2) = 𝐴(π‘₯3
+ 3π‘₯2
+ 3π‘₯ + 1) + 𝐡(π‘₯3
+ 2π‘₯2
+ π‘₯) + 𝐢 (π‘₯2
+ π‘₯) + 𝐷π‘₯ ------ (c)
Equating the coefficients of π‘₯3
on both sides the equation (c), we get
0 = 𝐴 + 𝐡
𝐡 = βˆ’π΄
𝐡 = βˆ’2
Equating the coefficients of π‘₯2
on both sides the equation (c), we get
0 = 3𝐴 + 2𝐡 + 𝐢
𝐢 = βˆ’3𝐴 βˆ’ 2𝐡
𝐢 = βˆ’3ο‚΄2 βˆ’ 2ο‚΄(βˆ’2)
𝐢 = βˆ’6 + 4
𝐢 = βˆ’2
Hence, 𝐴 = 2 , = βˆ’2 , 𝐢 = βˆ’2 and 𝐷 = 1
Now,
𝐼 = ∫
(3π‘₯+2) 𝑑π‘₯
π‘₯ (π‘₯+1)3
𝐼 = ∫ {
𝐴
π‘₯
+
𝐡
(π‘₯+1)
+
𝐢
(π‘₯+1)2 +
𝐷
(π‘₯+1)3
} 𝑑π‘₯
𝐼 = ∫
𝐴
π‘₯
𝑑π‘₯ + ∫
𝐡
(π‘₯+1)
𝑑π‘₯ + ∫
𝐢
(π‘₯+1)2 𝑑π‘₯ + ∫
𝐷
(π‘₯+1)3 𝑑π‘₯
𝐼 = 𝐴 ∫
𝑑π‘₯
π‘₯
+ 𝐡 ∫
𝑑π‘₯
(π‘₯+1)
+ 𝐢 ∫
1
(π‘₯+1)2 𝑑π‘₯ + 𝐷 ∫
1
(π‘₯+1)3 𝑑π‘₯
𝐼 = 𝐴 ∫
𝑑π‘₯
π‘₯
+ 𝐡 ∫
𝑑π‘₯
(π‘₯+1)
+ 𝐢 ∫(π‘₯ + 1)βˆ’2
𝑑π‘₯ + 𝐷 ∫(π‘₯ + 1)βˆ’3
𝑑π‘₯
𝐼 = 𝐴 log π‘₯ + 𝐡 log(π‘₯ + 1) βˆ’ 𝐢 (π‘₯ + 1)βˆ’1
βˆ’
1
2
𝐷(π‘₯ + 1)βˆ’2
𝐼 = 𝐴 log π‘₯ + 𝐡 log(π‘₯ + 1) βˆ’ 𝐢
1
(π‘₯+1)
βˆ’
1
2
𝐷
1
(π‘₯+1)2
𝐼 = 2 log π‘₯ βˆ’ 2 log(π‘₯ + 1) + 2
1
(π‘₯+1)
βˆ’
1
2
1
(π‘₯+1)2
𝐼 = 2{log π‘₯ βˆ’ log(π‘₯ + 1)} +
2
(π‘₯+1)
βˆ’
1
2(π‘₯+1)2
𝐼 = 2 log
π‘₯
π‘₯+1
+
4(π‘₯+1)βˆ’1
2(π‘₯+1)2
𝐼 = 2 log
π‘₯
π‘₯+1
+
4π‘₯+3
2(π‘₯+1)2
14. (i) ∫
𝑑π‘₯
1βˆ’π‘₯3 (ii) ∫
2+ π‘₯2
1βˆ’π‘₯3 𝑑π‘₯
(i) Solution: Let, 𝐼 = ∫
𝑑π‘₯
1βˆ’π‘₯3
Here, 1 βˆ’ π‘₯3
= (1 βˆ’ π‘₯) (1 + π‘₯ + π‘₯2)
Let,
1
1βˆ’π‘₯3 =
𝐴
1βˆ’π‘₯
+
𝐡π‘₯+𝐢
1+π‘₯+π‘₯2 ------- (a)
1 = 𝐴(1 + π‘₯ + π‘₯2) + (𝐡π‘₯ + 𝐢)(1 βˆ’ π‘₯) -------- (b)
Putting, π‘₯ = 0 and π‘₯ = 1 in (b), we get
For, π‘₯ = 1 , 𝐴 =
1
3
For, π‘₯ = 0
𝐴 + 𝐢 = 1
𝐢 = 1 βˆ’ 𝐴
 𝐢 = 1 βˆ’
1
3
=
2
3
Again, equating the coefficients of π‘₯2
, we get
0 = 𝐴 βˆ’ 𝐡
𝐡 = 𝐴
 𝐡 =
1
3
Now,
𝐼 = ∫
𝑑π‘₯
1βˆ’π‘₯3
𝐼 = ∫ (
𝐴
1βˆ’π‘₯
+
𝐡π‘₯+𝐢
1+π‘₯+π‘₯2
) 𝑑π‘₯ Using (a)
𝐼 = ∫
𝐴
1βˆ’π‘₯
𝑑π‘₯ + ∫
𝐡π‘₯+𝐢
1+π‘₯+π‘₯2 𝑑π‘₯
𝐼 = ∫
1
3
1βˆ’π‘₯
𝑑π‘₯ + ∫
1
3
π‘₯+
2
3
1+π‘₯+π‘₯2 𝑑π‘₯
𝐼 =
1
3
∫
𝑑π‘₯
1βˆ’π‘₯
+
1
3
∫
π‘₯+2
1+π‘₯+π‘₯2 𝑑π‘₯
𝐼 =
1
3
∫
𝑑π‘₯
1βˆ’π‘₯
+
1
3
ο‚΄
1
2
∫
2π‘₯+4
1+π‘₯+π‘₯2 𝑑π‘₯
𝐼 =
1
3
∫
𝑑π‘₯
1βˆ’π‘₯
+
1
6
∫
2π‘₯+1+3
1+π‘₯+π‘₯2 𝑑π‘₯
𝐼 =
1
3
∫
𝑑π‘₯
1βˆ’π‘₯
+
1
6
∫
2π‘₯+1
1+π‘₯+π‘₯2 𝑑π‘₯ +
1
6
∫
3
1+π‘₯+π‘₯2 𝑑π‘₯
𝐼 =
1
3
∫
𝑑π‘₯
1βˆ’π‘₯
+
1
6
∫
2π‘₯+1
1+π‘₯+π‘₯2 𝑑π‘₯ +
1
2
∫
𝑑π‘₯
1+π‘₯+π‘₯2
𝐼 =
1
3
∫
βˆ’π‘‘π‘’
𝑒
+
1
6
∫
𝑑𝑣
𝑣
𝑑π‘₯ +
1
2
∫
𝑑π‘₯
1+π‘₯+π‘₯2
𝐼 = βˆ’
1
3
log 𝑣 +
1
6
log 𝑣 +
1
2
∫
𝑑π‘₯
1+π‘₯+π‘₯2
Putting,
1 βˆ’ π‘₯ = 𝑒
 𝑑π‘₯ = βˆ’π‘‘π‘’
Putting,
1 + π‘₯ + π‘₯2
= 𝑣
 (2π‘₯ + 1) 𝑑π‘₯ = 𝑑𝑣
𝐼 = βˆ’
1
3
log(1 βˆ’ π‘₯) +
1
6
log(1 + π‘₯ + π‘₯2) +
1
2
∫
𝑑π‘₯
1+π‘₯+π‘₯2
𝐼 = βˆ’
1
3
log(1 βˆ’ π‘₯) +
1
3
ο‚΄
1
2
log(1 + π‘₯ + π‘₯2) +
1
2
∫
𝑑π‘₯
1+π‘₯+π‘₯2
𝐼 = βˆ’
1
3
log(1 βˆ’ π‘₯) +
1
3
log(1 + π‘₯ + π‘₯2)
1
2 +
1
2
∫
𝑑π‘₯
1+π‘₯+π‘₯2
𝐼 = βˆ’
1
3
log(1 βˆ’ π‘₯) +
1
3
log(√1 + π‘₯ + π‘₯2) +
1
2
∫
𝑑π‘₯
1+π‘₯+π‘₯2
𝐼 = βˆ’
1
3
{log(1 βˆ’ π‘₯) βˆ’ log √1 + π‘₯ + π‘₯2} +
1
2
∫
𝑑π‘₯
1+π‘₯+π‘₯2
𝐼 = βˆ’
1
3
log
1βˆ’π‘₯
√1+π‘₯+π‘₯2
+
1
2
∫
𝑑π‘₯
1+π‘₯+π‘₯2
𝐼 = βˆ’
1
3
log
1βˆ’π‘₯
√1+π‘₯+π‘₯2
+
1
2
∫
𝑑π‘₯
(π‘₯+
1
2
)
2
+(
√3
2
)
2
𝐼 = βˆ’
1
3
log
1βˆ’π‘₯
√1+π‘₯+π‘₯2
+
1
2
ο‚΄
1
√3
2
tanβˆ’1
(
π‘₯+
1
2
√3
2
)
𝐼 = βˆ’
1
3
log
1βˆ’π‘₯
√1+π‘₯+π‘₯2
+
1
√3
tanβˆ’1 (
2π‘₯+1
√3
)
𝐼 =
1
√3
tanβˆ’1 (
2π‘₯+1
√3
) βˆ’
1
3
log
1βˆ’π‘₯
√1+π‘₯+π‘₯2
(ii) Solution: Let, 𝐼 = ∫
2+ π‘₯2
1βˆ’π‘₯3 𝑑π‘₯
Here, 1 βˆ’ π‘₯3
= (1 βˆ’ π‘₯)(1 + π‘₯ + π‘₯2)
Let,
2+ π‘₯2
1βˆ’π‘₯3 =
𝐴
1βˆ’π‘₯
+
𝐡π‘₯+𝐢
1+π‘₯+π‘₯2 ------- (a)
2 + π‘₯2
= 𝐴(1 + π‘₯ + π‘₯2) + (𝐡π‘₯ + 𝐢)(1 βˆ’ π‘₯)
2 + π‘₯2
= 𝐴(1 + π‘₯ + π‘₯2) + 𝐡(π‘₯ βˆ’ π‘₯2) + 𝐢(1 βˆ’ π‘₯) ------ (b)
Putting, π‘₯ = 1 in (b), we get
3 = 3𝐴  𝐴 = 1
Putting, π‘₯ = 0 in (b), we get
2 = 𝐴 + 𝐢
𝐢 = 2 βˆ’ 𝐴
𝐢 = 2 βˆ’ 1  𝐢 = 1
Equating the coefficients of π‘₯2
on both sides of equation (b), we get
1 = 𝐴 βˆ’ 𝐡
𝐡 = 𝐴 βˆ’ 1
 𝐡 = 1 βˆ’ 1 = 0
Now,
𝐼 = ∫
2+ π‘₯2
1βˆ’π‘₯3 𝑑π‘₯
𝐼 = ∫ (
𝐴
1βˆ’π‘₯
+
𝐡π‘₯+𝐢
1+π‘₯+π‘₯2
) 𝑑π‘₯
𝐼 = ∫
𝐴
1βˆ’π‘₯
𝑑π‘₯ + ∫
𝐡π‘₯+𝐢
1+π‘₯+π‘₯2 𝑑π‘₯
𝐼 = 𝐴 ∫
𝑑π‘₯
1βˆ’π‘₯
+ 𝐢 ∫
𝑑π‘₯
1+π‘₯+π‘₯2 Since, 𝐡 = 0
𝐼 = ∫
𝑑π‘₯
1βˆ’π‘₯
+ ∫
𝑑π‘₯
(π‘₯+
1
2
)
2
+(
√3
2
)
2
𝐼 = βˆ’log(1 βˆ’ π‘₯) +
1
√3
2
tanβˆ’1
(
π‘₯+
1
2
√3
2
)
𝐼 = βˆ’log(1 βˆ’ π‘₯) +
2
√3
tanβˆ’1 (
2π‘₯+1
√3
)
15. (i) ∫
π‘₯
π‘₯4βˆ’1
𝑑π‘₯ (ii) ∫
𝑑π‘₯
π‘₯(π‘₯4βˆ’1)
(i) Solution: Let 𝐼 = ∫
π‘₯
π‘₯4βˆ’1
𝑑π‘₯
𝐼 = ∫
π‘₯
(π‘₯2βˆ’1)(π‘₯2+1)
𝑑π‘₯
Take, π‘₯2
= 𝑒  π‘₯ 𝑑π‘₯ =
1
2
𝑑𝑒
Now,
𝐼 = ∫
π‘₯
(π‘₯2βˆ’1)(π‘₯2+1)
𝑑π‘₯
𝐼 = ∫
1
2
𝑑𝑒
(π‘’βˆ’1)(𝑒+1)
𝐼 =
1
2
∫
𝑑𝑒
(π‘’βˆ’1)(𝑒+1)
Let,
1
(π‘’βˆ’1)(𝑒+1)
=
𝐴
π‘’βˆ’1
+
𝐡
𝑒+1
-------- (a)
1 = 𝐴(𝑒 + 1) + 𝐡 (𝑒 βˆ’ 1) ------ (b)
Putting, 𝑒 = 1 in (b), we get
1 = 2𝐴  𝐴 =
1
2
Putting, 𝑒 = βˆ’1 in (b), we get
1 = βˆ’2𝐡  𝐡 = βˆ’
1
2
Now,
𝐼 =
1
2
∫
𝑑𝑒
(π‘’βˆ’1)(𝑒+1)
𝐼 =
1
2
∫ (
𝐴
π‘’βˆ’1
+
𝐡
𝑒+1
) 𝑑𝑒 Using (a)
𝐼 =
1
2
∫
𝐴
π‘’βˆ’1
𝑑𝑒 +
1
2
∫
𝐡
𝑒+1
𝑑𝑒
𝐼 =
1
2
𝐴 ∫
𝑑𝑒
π‘’βˆ’1
+
1
2
𝐡 ∫
𝑑𝑒
𝑒+1
𝐼 =
1
2
ο‚΄
1
2
log(𝑒 βˆ’ 1) +
1
2
ο‚΄ (βˆ’
1
2
) log(𝑒 + 1)
𝐼 =
1
4
log(𝑒 βˆ’ 1) βˆ’
1
4
log(𝑒 + 1)
𝐼 =
1
4
log(π‘₯2
βˆ’ 1) βˆ’
1
4
log(π‘₯2
+ 1)
𝐼 =
1
4
{log(π‘₯2
βˆ’ 1) βˆ’ log(π‘₯2
+ 1)}
(ii) Solution: Let, 𝐼 = ∫
𝑑π‘₯
π‘₯(π‘₯4βˆ’1)
𝐼 = ∫
π‘₯3𝑑π‘₯
π‘₯3 π‘₯(π‘₯4βˆ’1)
𝐼 = ∫
π‘₯3𝑑π‘₯
π‘₯4 (π‘₯4βˆ’1)
Take, π‘₯4
= 𝑒  π‘₯3
𝑑π‘₯ =
1
4
𝑑𝑒
𝐼 = ∫
1
4
𝑑𝑒
𝑒 (π‘’βˆ’1)
𝐼 =
1
4
∫
𝑑𝑒
𝑒 (π‘’βˆ’1)
Let,
1
𝑒 (π‘’βˆ’1)
=
𝐴
𝑒
+
𝐡
π‘’βˆ’1
-------- (a)
1 = 𝐴(𝑒 βˆ’ 1) + 𝐡𝑒 ------ (b)
Putting, 𝑒 = π‘œ in (b), we get
𝐴 = βˆ’1
Putting, 𝑒 = 1 in (b), we get
𝐡 = 1
Now,
𝐼 =
1
4
∫
𝑑𝑒
𝑒 (π‘’βˆ’1)
𝐼 =
1
4
∫ (
𝐴
𝑒
+
𝐡
π‘’βˆ’1
) 𝑑𝑒
𝐼 =
1
4
∫
𝐴
𝑒
𝑑𝑒 +
1
4
∫
𝐡
π‘’βˆ’1
𝑑𝑒
𝐼 =
1
4
𝐴 ∫
𝑑𝑒
𝑒
+
1
4
𝐡 ∫
𝑑𝑒
π‘’βˆ’1
𝐼 =
1
4
𝐴 log 𝑒 +
1
4
𝐡 log(𝑒 βˆ’ 1)
𝐼 = βˆ’
1
4
log 𝑒 +
1
4
log(𝑒 βˆ’ 1)
𝐼 = βˆ’
1
4
log π‘₯4
+
1
4
log(π‘₯4
βˆ’ 1)
𝐼 = βˆ’
4
4
log π‘₯ +
1
4
log(π‘₯4
βˆ’ 1)
𝐼 = βˆ’log π‘₯ +
1
4
log(π‘₯4
βˆ’ 1)
𝐼 =
1
4
log(π‘₯4
βˆ’ 1) βˆ’ log π‘₯
16. (i) ∫
π‘₯2
1βˆ’π‘₯4 𝑑π‘₯ (ii) ∫
𝑑π‘₯
π‘₯4βˆ’1
(i) Solution: Let, 𝐼 = ∫
π‘₯2
1βˆ’π‘₯4 𝑑π‘₯
𝐼 =
1
2
∫
2π‘₯2
1βˆ’π‘₯4 𝑑π‘₯
𝐼 =
1
2
∫
(1+π‘₯2)βˆ’(1βˆ’π‘₯2)
(1+π‘₯2)(1βˆ’π‘₯2)
𝑑π‘₯
𝐼 =
1
2
∫ (
(1+π‘₯2)
(1+π‘₯2)(1βˆ’π‘₯2)
βˆ’
(1βˆ’π‘₯2)
(1+π‘₯2)(1βˆ’π‘₯2)
) 𝑑π‘₯
𝐼 =
1
2
∫ (
1
(1βˆ’π‘₯2)
βˆ’
1
(1+π‘₯2)
) 𝑑π‘₯
𝐼 =
1
2
∫
1
1βˆ’π‘₯2 𝑑π‘₯ βˆ’
1
2
∫
1
1+π‘₯2 𝑑π‘₯
𝐼 =
1
2
∫
1
(1+π‘₯)(1βˆ’π‘₯)
𝑑π‘₯ βˆ’
1
2
tanβˆ’1
π‘₯
Here,
1
(1+π‘₯)(1βˆ’π‘₯)
=
𝐴
(1+π‘₯)
+
𝐡
(1βˆ’π‘₯)
-------- (a)
1
(1+π‘₯)(1βˆ’π‘₯)
=
𝐴(1βˆ’π‘₯)+ 𝐡 (1+π‘₯)
(1+π‘₯)
1 = 𝐴(1 βˆ’ π‘₯) + 𝐡 (1 + π‘₯) ------- (b)
Putting, π‘₯ = 1 in (b), we get
𝐡 =
1
2
Putting, π‘₯ = βˆ’1 in (b), we get
𝐴 =
1
2
π‘π‘œπ‘€,
𝐼 =
1
2
∫
1
(1+π‘₯)(1βˆ’π‘₯)
𝑑π‘₯ βˆ’
1
2
tanβˆ’1
π‘₯
𝐼 =
1
2
{∫ (
𝐴
(1+π‘₯)
+
𝐡
(1βˆ’π‘₯)
)𝑑π‘₯} βˆ’
1
2
tanβˆ’1
π‘₯ Using (a)
𝐼 =
1
2
{∫
𝐴
(1+π‘₯)
𝑑π‘₯ + ∫
𝐡
(1βˆ’π‘₯)
𝑑π‘₯} βˆ’
1
2
tanβˆ’1
π‘₯
𝐼 =
1
2
{𝐴 ∫
𝑑π‘₯
(1+π‘₯)
+ 𝐡 ∫
𝑑π‘₯
(1βˆ’π‘₯)
} βˆ’
1
2
tanβˆ’1
π‘₯
𝐼 =
1
2
{𝐴 log(1 + π‘₯) βˆ’ 𝐡 log(1 βˆ’ π‘₯)} βˆ’
1
2
tanβˆ’1
π‘₯
𝐼 =
1
2
{
1
2
log(1 + π‘₯) βˆ’
1
2
log(1 βˆ’ π‘₯)} βˆ’
1
2
tanβˆ’1
π‘₯
𝐼 =
1
4
log(1 + π‘₯) βˆ’
1
4
log(1 βˆ’ π‘₯) βˆ’
1
2
tanβˆ’1
π‘₯
𝐼 =
1
4
{log(1 + π‘₯) βˆ’ log(1 βˆ’ π‘₯)} βˆ’
1
2
tanβˆ’1
π‘₯
(ii) Solution: Let , 𝐼 = ∫
𝑑π‘₯
π‘₯4βˆ’1
𝐼 = ∫
𝑑π‘₯
(π‘₯+1)(π‘₯βˆ’1)(π‘₯2+1)
Here,
1
(π‘₯+1)(π‘₯βˆ’1)(π‘₯2+1)
=
𝐴
(π‘₯+1)
+
𝐡
(π‘₯βˆ’1)
+
𝐢π‘₯+𝐷
(π‘₯2+1)
------- (a)
1
(π‘₯+1)(π‘₯βˆ’1)(π‘₯2+1)
=
𝐴(π‘₯βˆ’1)(π‘₯2+1)+ 𝐡(π‘₯+1)(π‘₯2+1)+ (𝐢π‘₯+𝐷) (π‘₯+1)(π‘₯βˆ’1)
(π‘₯+1)(π‘₯βˆ’1)(π‘₯2+1)
1 = 𝐴(π‘₯ βˆ’ 1)(π‘₯2
+ 1) + 𝐡(π‘₯ + 1)(π‘₯2
+ 1) + (𝐢π‘₯ + 𝐷) (π‘₯ + 1)(π‘₯ βˆ’ 1)
1 = 𝐴(π‘₯3
βˆ’ π‘₯2
+ π‘₯ βˆ’ 1) + 𝐡(π‘₯3
+ π‘₯2
+ π‘₯ + 1) + 𝐢 (π‘₯3
βˆ’ π‘₯) + 𝐷(π‘₯2
βˆ’ 1) -----(b)
For, π‘₯ = 1, we have
𝐡 =
1
4
For, π‘₯ = βˆ’1, we have
𝐴 = βˆ’
1
4
For, π‘₯ = 0, we have
1 = βˆ’π΄ + 𝐡 βˆ’ 𝐷
𝐷 =
1
4
+
1
4
βˆ’ 1
𝐷 =
1
2
βˆ’ 1
𝐷 = βˆ’
1
2
Equating the coefficients of π‘₯3
on both sides of (b), we get
0 = 𝐴 + 𝐡 + 𝐢
0 = βˆ’
1
4
+
1
4
+ 𝐢
 𝐢 = 0
Now,
𝐼 = ∫
𝑑π‘₯
(π‘₯+1)(π‘₯βˆ’1)(π‘₯2+1)
𝐼 = ∫ (
𝐴
(π‘₯+1)
+
𝐡
(π‘₯βˆ’1)
+
𝐢π‘₯+𝐷
(π‘₯2+1)
) 𝑑π‘₯ Using (a)
𝐼 = ∫
𝐴
(π‘₯+1)
𝑑π‘₯ + ∫
𝐡
(π‘₯βˆ’1)
𝑑π‘₯ + ∫
𝐢π‘₯+𝐷
(π‘₯2+1)
𝑑π‘₯
𝐼 = 𝐴 ∫
𝑑π‘₯
(π‘₯+1)
+ 𝐡 ∫
𝑑π‘₯
(π‘₯βˆ’1)
+ ∫
𝐷
(π‘₯2+1)
𝑑π‘₯ Since,𝐢 = 0
𝐼 = 𝐴 ∫
𝑑π‘₯
(π‘₯+1)
+ 𝐡 ∫
𝑑π‘₯
(π‘₯βˆ’1)
+ 𝐷 ∫
𝑑π‘₯
(π‘₯2+1)
𝐼 = 𝐴 log(π‘₯ + 1) + 𝐡 log(π‘₯ βˆ’ 1) + 𝐷 tanβˆ’1
π‘₯
𝐼 = βˆ’
1
4
log(π‘₯ + 1) +
1
4
log(π‘₯ βˆ’ 1) βˆ’
1
2
tanβˆ’1
π‘₯
𝐼 =
1
4
log(π‘₯ βˆ’ 1) βˆ’
1
4
log(π‘₯ + 1) βˆ’
1
2
tanβˆ’1
π‘₯
𝐼 =
1
4
{log(π‘₯ βˆ’ 1) βˆ’ log(π‘₯ + 1)} βˆ’
1
2
tanβˆ’1
π‘₯
𝐼 =
1
4
log
π‘₯βˆ’1
π‘₯+1
βˆ’
1
2
tanβˆ’1
π‘₯
17. (i) ∫
π‘₯ 𝑑π‘₯
(π‘₯2+π‘Ž2)(π‘₯2+𝑏2)
(ii) ∫
π‘₯2 𝑑π‘₯
(π‘₯2+π‘Ž2)(π‘₯2+𝑏2)
(i) Solution: Let , 𝐼 = ∫
π‘₯ 𝑑π‘₯
(π‘₯2+π‘Ž2)(π‘₯2+𝑏2)
Take, π‘₯2
= 𝑒  π‘₯ 𝑑π‘₯ =
1
2
𝑑𝑒
𝐼 = ∫
1
2
𝑑𝑒
(𝑒+π‘Ž2)(𝑒+𝑏2)
𝐼 =
1
2
∫
𝑑𝑒
(𝑒+π‘Ž2)(𝑒+𝑏2)
Let,
1
(𝑒+π‘Ž2)(𝑒+𝑏2)
=
𝐴
𝑒+π‘Ž2 +
𝐡
𝑒+𝑏2 ------- (a)
1 = 𝐴(𝑒 + 𝑏2) + 𝐡(𝑒 + π‘Ž2)
Putting, 𝑒 = βˆ’π‘Ž2
in (b), we get
𝐴 =
1
𝑏2βˆ’π‘Ž2 = βˆ’
1
π‘Ž2βˆ’π‘2
Again, putting 𝑒 = βˆ’π‘2
in (b), we get
𝐡 ==
1
π‘Ž2βˆ’π‘2
Now,
𝐼 =
1
2
∫
𝑑𝑒
(𝑒+π‘Ž2)(𝑒+𝑏2)
𝐼 =
1
2
∫ (
𝐴
𝑒+π‘Ž2 +
𝐡
𝑒+𝑏2
) 𝑑𝑒 Using (a)
𝐼 =
1
2
∫
𝐴
𝑒+π‘Ž2 𝑑𝑒 +
1
2
∫
𝐡
𝑒+𝑏2 𝑑𝑒
𝐼 =
1
2
𝐴 ∫
𝑑𝑒
𝑒+π‘Ž2 +
1
2
𝐡 ∫
𝑑𝑒
𝑒+𝑏2
𝐼 =
1
2
𝐴 log(𝑒 + π‘Ž2) +
1
2
𝐡 log(𝑒 + 𝑏2)
𝐼 =
1
2
(βˆ’
1
π‘Ž2βˆ’π‘2
) log(𝑒 + π‘Ž2) +
1
2
(
1
π‘Ž2βˆ’π‘2
)log(𝑒 + 𝑏2)
𝐼 = βˆ’
1
2(π‘Ž2βˆ’π‘2)
log(𝑒 + π‘Ž2) +
1
2(π‘Ž2βˆ’π‘2)
log(𝑒 + 𝑏2)
𝐼 =
1
2(π‘Ž2βˆ’π‘2)
{log(𝑒 + 𝑏2) βˆ’ log(𝑒 + π‘Ž2)}
𝐼 =
1
2(π‘Ž2βˆ’π‘2)
{log
𝑒+𝑏2
𝑒+π‘Ž2
}
𝐼 =
1
2(π‘Ž2βˆ’π‘2)
log
π‘₯2+𝑏2
π‘₯2+𝑏2
(ii) Solution: Let 𝐼 = ∫
π‘₯2 𝑑π‘₯
(π‘₯2+π‘Ž2)(π‘₯2+𝑏2)
Substituting, π‘₯2
= 𝑒 , for a partial fraction, we have
π‘₯2
(π‘₯2+π‘Ž2)(π‘₯2+𝑏2)
=
𝑒
(𝑒+π‘Ž2)(𝑒+𝑏2)
Here,
𝑒
(𝑒+π‘Ž2)(𝑒+𝑏2)
=
𝐴
(𝑒+π‘Ž2)
+
𝐡
(𝑒+𝑏2)
------- (a)
𝑒 = 𝐴(𝑒 + 𝑏2) + 𝐡(𝑒 + π‘Ž2) ------ (b)
Putting, 𝑒 = βˆ’π‘Ž2
in (b), we get
𝐴 =
π‘Ž2
π‘Ž2βˆ’π‘2
Putting, 𝑒 = βˆ’π‘2
in (b), we get
𝐡 = βˆ’
𝑏2
π‘Ž2βˆ’π‘2
Now,
𝐼 = ∫
π‘₯2 𝑑π‘₯
(π‘₯2+π‘Ž2)(π‘₯2+𝑏2)
𝐼 = ∫ (
𝐴
(𝑒+π‘Ž2)
+
𝐡
(𝑒+𝑏2)
) 𝑑π‘₯ Using (a)
𝐼 = ∫ (
𝐴
(π‘₯2+π‘Ž2)
+
𝐡
(π‘₯2+𝑏2)
) 𝑑π‘₯ Since, π‘₯2
= 𝑒
𝐼 = ∫
𝐴
π‘₯2+π‘Ž2 𝑑π‘₯ + ∫
𝐡
π‘₯2+𝑏2 𝑑π‘₯
𝐼 = 𝐴 ∫
𝑑π‘₯
π‘₯2+π‘Ž2 + 𝐡 ∫
𝑑π‘₯
π‘₯2+𝑏2
𝐼 = 𝐴
1
π‘Ž
tanβˆ’1 π‘₯
π‘Ž
+ 𝐡
1
𝑏
tanβˆ’1 π‘₯
𝑏
𝐼 =
π‘Ž2
π‘Ž2βˆ’π‘2 ο‚΄
1
π‘Ž
tanβˆ’1 π‘₯
π‘Ž
βˆ’
𝑏2
π‘Ž2βˆ’π‘2 ο‚΄
1
𝑏
tanβˆ’1 π‘₯
𝑏
𝐼 =
π‘Ž
π‘Ž2βˆ’π‘2 tanβˆ’1 π‘₯
π‘Ž
βˆ’
𝑏
π‘Ž2βˆ’π‘2 tanβˆ’1 π‘₯
𝑏
𝐼 =
1
π‘Ž2βˆ’π‘2
{π‘Ž tanβˆ’1 π‘₯
π‘Ž
βˆ’ 𝑏 tanβˆ’1 π‘₯
𝑏
}
18. (i) ∫
π‘₯3 𝑑π‘₯
(π‘₯2+π‘Ž2)(π‘₯2+𝑏2)
(ii) ∫
π‘₯4 𝑑π‘₯
(π‘₯2+π‘Ž2)(π‘₯2+𝑏2)
(i) Solution: Let 𝐼 = ∫
π‘₯3 𝑑π‘₯
(π‘₯2+π‘Ž2)(π‘₯2+𝑏2)
Let,
π‘₯3
(π‘₯2+π‘Ž2)(π‘₯2+𝑏2)
=
𝐴π‘₯
(π‘₯2+π‘Ž2)
+
𝐡π‘₯
(π‘₯2+𝑏2)
----- (a)
π‘₯3
(π‘₯2+π‘Ž2)(π‘₯2+𝑏2)
=
𝐴π‘₯(π‘₯2+𝑏2)+𝐡π‘₯(π‘₯2+π‘Ž2)
(π‘₯2+π‘Ž2)(π‘₯2+𝑏2)
π‘₯3
= 𝐴π‘₯(π‘₯2
+ 𝑏2) + 𝐡π‘₯(π‘₯2
+ π‘Ž2)
π‘₯3
= 𝐴(π‘₯3
+ 𝑏2
π‘₯) + 𝐡(π‘₯3
+ π‘Ž2
π‘₯) ------- (b)
Equating the coefficients of π‘₯3
on both sides of (b), we get
1 = 𝐴 + 𝐡
 𝐴 = βˆ’1 βˆ’ 𝐡 ------- (i)
Equating the coefficients of π‘₯ on both sides of (b), we get
0 = 𝐴𝑏2
+ π΅π‘Ž2
π΅π‘Ž2
= βˆ’π΄π‘2
𝐡 = βˆ’π΄
𝑏2
π‘Ž2 ------ (ii)
Putting, 𝐡 = βˆ’π΄
𝑏2
π‘Ž2 in (i) , we get
𝐴 = βˆ’1 βˆ’ 𝐡
𝐴 = βˆ’1 + 𝐴
𝑏2
π‘Ž2
𝐴 βˆ’ 𝐴
𝑏2
π‘Ž2 = βˆ’1
𝐴 (1 βˆ’
𝑏2
π‘Ž2
) = βˆ’1
𝐴 (
π‘Ž2βˆ’π‘2
π‘Ž2
) = βˆ’1
𝐴 = βˆ’
π‘Ž2
π‘Ž2βˆ’π‘2
𝐴 =
π‘Ž2
𝑏2βˆ’π‘Ž2
Again, Putting 𝐴 =
π‘Ž2
𝑏2βˆ’π‘Ž2 , in (ii), we get
𝐡 = βˆ’π΄
𝑏2
π‘Ž2
𝐡 = βˆ’
π‘Ž2
𝑏2βˆ’π‘Ž2 ο‚΄
𝑏2
π‘Ž2 = βˆ’
𝑏2
𝑏2βˆ’π‘Ž2
Now,
𝐼 = ∫
π‘₯3 𝑑π‘₯
(π‘₯2+π‘Ž2)(π‘₯2+𝑏2)
𝐼 = ∫ (
𝐴π‘₯
(π‘₯2+π‘Ž2)
+
𝐡π‘₯
(π‘₯2+𝑏2)
) 𝑑π‘₯ Using (a)
𝐼 = ∫
𝐴π‘₯
(π‘₯2+π‘Ž2)
𝑑π‘₯ + ∫
𝐡π‘₯
(π‘₯2+𝑏2)
𝑑π‘₯
𝐼 = 𝐴 ∫
π‘₯ 𝑑π‘₯
(π‘₯2+π‘Ž2)
+ 𝐡 ∫
π‘₯ 𝑑π‘₯
(π‘₯2+π‘Ž2)
Take, π‘₯2
+ π‘Ž2
= 𝑒 and π‘₯2
+ π‘Ž2
= 𝑣
 π‘₯ 𝑑π‘₯ =
1
2
𝑑𝑒 and π‘₯ 𝑑π‘₯ =
1
2
𝑑𝑣
𝐼 = 𝐴 ∫
1
2
𝑑𝑒
𝑒
+ 𝐡 ∫
1
2
𝑑𝑣
𝑣
𝐼 =
1
2
𝐴 ∫
𝑑𝑒
𝑒
+
1
2
𝐡 ∫
𝑑𝑣
𝑣
𝐼 =
1
2
𝐴 log 𝑒 +
1
2
𝐡 log 𝑣
𝐼 =
1
2
𝐴 log(π‘₯2
+ π‘Ž2) +
1
2
𝐡 log(π‘₯2
+ π‘Ž2)
𝐼 =
1
2
ο‚΄
π‘Ž2
𝑏2βˆ’π‘Ž2 log(π‘₯2
+ π‘Ž2) +
1
2
ο‚΄ (βˆ’
𝑏2
𝑏2βˆ’π‘Ž2
) log(π‘₯2
+ π‘Ž2)
𝐼 =
1
2(𝑏2βˆ’π‘Ž2)
{log(π‘₯2
+ π‘Ž2) βˆ’ 𝑏2
log(π‘₯2
+ π‘Ž2) }
(ii) Solution: Let 𝐼 = ∫
π‘₯4 𝑑π‘₯
(π‘₯2+π‘Ž2)(π‘₯2+𝑏2)
𝐼 = ∫
π‘₯4
π‘₯4+ 𝑏2π‘₯2+π‘Ž2π‘₯2+π‘Ž2𝑏2 𝑑π‘₯
𝐼 = ∫ {1 βˆ’ (
𝑏2π‘₯2+π‘Ž2π‘₯2+π‘Ž2𝑏2
π‘₯4+ 𝑏2π‘₯2+π‘Ž2π‘₯2+π‘Ž2𝑏2
)} 𝑑π‘₯ On dividing the numerator by denominator.
𝐼 = ∫ 1 𝑑π‘₯ βˆ’ ∫
𝑏2π‘₯2+π‘Ž2π‘₯2+π‘Ž2𝑏2
π‘₯4+ 𝑏2π‘₯2+π‘Ž2π‘₯2+π‘Ž2𝑏2 𝑑π‘₯
𝐼 = π‘₯ βˆ’ ∫
π‘Ž2(π‘₯2+𝑏2)+𝑏2π‘₯2
(π‘₯2+π‘Ž2)(π‘₯2+𝑏2)
𝑑π‘₯
𝐼 = π‘₯ βˆ’ {∫
π‘Ž2(π‘₯2+𝑏2)
(π‘₯2+π‘Ž2)(π‘₯2+𝑏2)
𝑑π‘₯ + ∫
𝑏2π‘₯2
(π‘₯2+π‘Ž2)(π‘₯2+𝑏2)
𝑑π‘₯}
𝐼 = π‘₯ βˆ’ {∫
π‘Ž2
(π‘₯2+π‘Ž2)
𝑑π‘₯ + 𝑏2
∫
π‘₯2
(π‘₯2+π‘Ž2)(π‘₯2+𝑏2)
𝑑π‘₯}
𝐼 = π‘₯ βˆ’ {π‘Ž2
∫
𝑑π‘₯
(π‘₯2+π‘Ž2)
+ 𝑏2
∫
π‘₯2
(π‘₯2+π‘Ž2)(π‘₯2+𝑏2)
𝑑π‘₯}
𝐼 = π‘₯ βˆ’ {π‘Ž2
ο‚΄
1
π‘Ž
tanβˆ’1 π‘₯
π‘Ž
+ 𝑏2
∫
π‘₯2
(π‘₯2+π‘Ž2)(π‘₯2+𝑏2)
𝑑π‘₯}
𝐼 = π‘₯ βˆ’ {π‘Ž tanβˆ’1 π‘₯
π‘Ž
+ 𝑏2
∫
π‘₯2
(π‘₯2+π‘Ž2)(π‘₯2+𝑏2)
𝑑π‘₯}
𝐼 = π‘₯ βˆ’ π‘Ž tanβˆ’1 π‘₯
π‘Ž
βˆ’ 𝑏2
𝐼1 Where, 𝐼1 = ∫
π‘₯2
(π‘₯2+π‘Ž2)(π‘₯2+𝑏2)
𝑑π‘₯
Here,
𝐼1 = ∫
π‘₯2
(π‘₯2+π‘Ž2)(π‘₯2+𝑏2)
𝑑π‘₯
Substituting, π‘₯2
= 𝑒 , for a partial fraction, we have
π‘₯2
(π‘₯2+π‘Ž2)(π‘₯2+𝑏2)
=
𝑒
(𝑒+π‘Ž2)(𝑒+𝑏2)
Here,
𝑒
(𝑒+π‘Ž2)(𝑒+𝑏2)
=
𝐴
(𝑒+π‘Ž2)
+
𝐡
(𝑒+𝑏2)
------- (a)
𝑒 = 𝐴(𝑒 + 𝑏2) + 𝐡(𝑒 + π‘Ž2) ------ (b)
Putting, 𝑒 = βˆ’π‘Ž2
in (b), we get
𝐴 =
π‘Ž2
π‘Ž2βˆ’π‘2
Putting, 𝑒 = βˆ’π‘2
in (b), we get
𝐡 == βˆ’
𝑏2
π‘Ž2βˆ’π‘2
Now,
𝐼1 = ∫
π‘₯2 𝑑π‘₯
(π‘₯2+π‘Ž2)(π‘₯2+𝑏2)
𝐼1 = ∫ (
𝐴
(𝑒+π‘Ž2)
+
𝐡
(𝑒+𝑏2)
) 𝑑π‘₯ Using (a)
𝐼1 = ∫ (
𝐴
(π‘₯2+π‘Ž2)
+
𝐡
(π‘₯2+𝑏2)
) 𝑑π‘₯ Since, π‘₯2
= 𝑒
𝐼1 = ∫
𝐴
π‘₯2+π‘Ž2 𝑑π‘₯ + ∫
𝐡
π‘₯2+𝑏2 𝑑π‘₯
𝐼1 = 𝐴 ∫
𝑑π‘₯
π‘₯2+π‘Ž2 + 𝐡 ∫
𝑑π‘₯
π‘₯2+𝑏2
𝐼1 = 𝐴
1
π‘Ž
tanβˆ’1 π‘₯
π‘Ž
+ 𝐡
1
𝑏
tanβˆ’1 π‘₯
𝑏
𝐼1 =
π‘Ž2
π‘Ž2βˆ’π‘2 ο‚΄
1
π‘Ž
tanβˆ’1 π‘₯
π‘Ž
βˆ’
𝑏2
π‘Ž2βˆ’π‘2 ο‚΄
1
𝑏
tanβˆ’1 π‘₯
𝑏
𝐼1 =
π‘Ž
π‘Ž2βˆ’π‘2 tanβˆ’1 π‘₯
π‘Ž
βˆ’
𝑏
π‘Ž2βˆ’π‘2 tanβˆ’1 π‘₯
𝑏
𝐼1 =
1
π‘Ž2βˆ’π‘2
{π‘Ž tanβˆ’1 π‘₯
π‘Ž
βˆ’ 𝑏 tanβˆ’1 π‘₯
𝑏
}
π‘‡β„Žπ‘’π‘ ,
𝐼 = π‘₯ βˆ’ π‘Ž tanβˆ’1 π‘₯
π‘Ž
βˆ’ 𝑏2
𝐼1
𝐼 = π‘₯ βˆ’ π‘Ž tanβˆ’1 π‘₯
π‘Ž
βˆ’ 𝑏2 (
1
π‘Ž2βˆ’π‘2
{π‘Ž tanβˆ’1 π‘₯
π‘Ž
βˆ’ 𝑏 tanβˆ’1 π‘₯
𝑏
})
𝐼 = π‘₯ βˆ’ π‘Ž tanβˆ’1 π‘₯
π‘Ž
βˆ’
π‘Žπ‘2
π‘Ž2βˆ’π‘2 tanβˆ’1 π‘₯
π‘Ž
+
𝑏3
π‘Ž2βˆ’π‘2 tanβˆ’1 π‘₯
𝑏
𝐼 = π‘₯ βˆ’ tanβˆ’1 π‘₯
π‘Ž
(π‘Ž +
π‘Žπ‘2
π‘Ž2βˆ’π‘2
) +
𝑏3
π‘Ž2βˆ’π‘2 tanβˆ’1 π‘₯
𝑏
𝐼 = π‘₯ βˆ’ tanβˆ’1 π‘₯
π‘Ž
(
π‘Ž3βˆ’π‘Žπ‘2βˆ“π‘Žπ‘2
π‘Ž2βˆ’π‘2
) +
𝑏3
π‘Ž2βˆ’π‘2 tanβˆ’1 π‘₯
𝑏
𝐼 = π‘₯ βˆ’ tanβˆ’1 π‘₯
π‘Ž
(
π‘Ž3
π‘Ž2βˆ’π‘2
) +
𝑏3
π‘Ž2βˆ’π‘2 tanβˆ’1 π‘₯
𝑏
𝐼 = π‘₯ βˆ’ (
π‘Ž3
π‘Ž2βˆ’π‘2
)tanβˆ’1 π‘₯
π‘Ž
+
𝑏3
π‘Ž2βˆ’π‘2 tanβˆ’1 π‘₯
𝑏
𝐼 = π‘₯ βˆ’
π‘Ž3
βˆ’(𝑏2βˆ’π‘Ž2)
tanβˆ’1 π‘₯
π‘Ž
+
𝑏3
π‘Ž2βˆ’π‘2 tanβˆ’1 π‘₯
𝑏
𝐼 = π‘₯ +
π‘Ž3
𝑏2βˆ’π‘Ž2 tanβˆ’1 π‘₯
π‘Ž
+
𝑏3
π‘Ž2βˆ’π‘2 tanβˆ’1 π‘₯
𝑏
19. ∫
𝑑π‘₯
(π‘₯2 + π‘Ž2)(π‘₯+𝑏)
Solution: Let 𝐼 = ∫
𝑑π‘₯
(π‘₯2 + π‘Ž2)(π‘₯+𝑏)
Let,
1
(π‘₯2 + π‘Ž2)(π‘₯+𝑏)
=
𝐴π‘₯+𝐡
(π‘₯2 + π‘Ž2)
+
𝐢
(π‘₯+𝑏)
------ (a)
1
(π‘₯2 + π‘Ž2)(π‘₯+𝑏)
=
(𝐴π‘₯+𝐡)(π‘₯+𝑏)+ 𝐢 (π‘₯2 + π‘Ž2)
(π‘₯2 + π‘Ž2)
1 = (𝐴π‘₯ + 𝐡)(π‘₯ + 𝑏) + 𝐢 (π‘₯2
+ π‘Ž2)
1 = 𝐴(π‘₯2
+ 𝑏 π‘₯) + 𝐡(π‘₯ + 𝑏) + 𝐢 (π‘₯2
+ π‘Ž2) -------- (b)
Equating the coefficients of π‘₯2
on both sides of equation (b), we get
𝑂 = 𝐴 + 𝐢  𝐴 = βˆ’πΆ ----- (i)
Equating the coefficients of π‘₯2
on both sides of equation (b), we get
𝑂 = 𝑏𝐴 + 𝐡  𝐡 = βˆ’π‘π΄ ------ (ii)
Equating the constant terms on both sides of equation (b), we get
1 = 𝑏𝐡 + π‘Ž2
𝐢 -------- (iii)
Putting 𝐴 = βˆ’πΆ in (ii), we get
𝐡 = 𝑏𝐢
Again, putting 𝐡 = 𝑏𝐢 in (iii)
1 = 𝑏𝐡 + π‘Ž2
𝐢
1 = 𝑏𝑏𝐢 + π‘Ž2
𝐢
1 = 𝑏2
𝐢 + π‘Ž2
𝐢
1 = 𝐢(π‘Ž2
+ 𝑏2)
 𝐢 =
1
π‘Ž2+𝑏2
Putting, 𝐢 =
1
π‘Ž2+𝑏2 in (i)
𝐴 = βˆ’πΆ  𝐴 = βˆ’
1
π‘Ž2+𝑏2
Finally, putting 𝐴 = βˆ’
1
π‘Ž2+𝑏2 in (ii) , we get
𝐡 = βˆ’π‘π΄  𝐡 =
𝑏
π‘Ž2+𝑏2
Now,
𝐼 = ∫
𝑑π‘₯
(π‘₯2 + π‘Ž2)(π‘₯+𝑏)
𝐼 = ∫ {
𝐴π‘₯+𝐡
(π‘₯2 + π‘Ž2)
+
𝐢
(π‘₯+𝑏)
} 𝑑π‘₯
𝐼 = ∫
𝐴π‘₯+𝐡
(π‘₯2 + π‘Ž2)
𝑑π‘₯ + ∫
𝐢
(π‘₯+𝑏)
𝑑π‘₯
𝐼 = ∫
𝐴π‘₯
(π‘₯2 + π‘Ž2)
𝑑π‘₯ + 𝐡 ∫
𝑑π‘₯
(π‘₯2 + π‘Ž2)
+ 𝐢 ∫
𝑑π‘₯
(π‘₯+𝑏)
𝐼 = 𝐴 ∫
π‘₯
(π‘₯2 + π‘Ž2)
𝑑π‘₯ + 𝐡
π‘₯
π‘Ž
tanβˆ’1 π‘₯
π‘Ž
+ 𝐢 log(π‘₯ + 𝑏)
Putting, π‘₯2
+ π‘Ž2
= 𝑒  π‘₯ 𝑑π‘₯ =
1
2
𝑑𝑒
𝐼 = 𝐴 ∫
π‘₯
(π‘₯2 + π‘Ž2)
𝑑π‘₯ + 𝐡
π‘₯
π‘Ž
tanβˆ’1 π‘₯
π‘Ž
+ 𝐢 log(π‘₯ + 𝑏)
𝐼 = 𝐴 ∫
1
2
𝑑𝑒
𝑒
+ 𝐡
π‘₯
π‘Ž
tanβˆ’1 π‘₯
π‘Ž
+ 𝐢 log(π‘₯ + 𝑏)
𝐼 =
1
2
𝐴 ∫
𝑑𝑒
𝑒
+ 𝐡
π‘₯
π‘Ž
tanβˆ’1 π‘₯
π‘Ž
+ 𝐢 log(π‘₯ + 𝑏)
𝐼 =
1
2
𝐴 log 𝑒 + 𝐡
π‘₯
π‘Ž
tanβˆ’1 π‘₯
π‘Ž
+ 𝐢 log(π‘₯ + 𝑏)
𝐼 = 𝐴 log 𝑒
1
2 + 𝐡
π‘₯
π‘Ž
tanβˆ’1 π‘₯
π‘Ž
+ 𝐢 log(π‘₯ + 𝑏)
𝐼 = 𝐴 log βˆšπ‘’ + 𝐡
π‘₯
π‘Ž
tanβˆ’1 π‘₯
π‘Ž
+ 𝐢 log(π‘₯ + 𝑏)
𝐼 = βˆ’
1
π‘Ž2+𝑏2 log √π‘₯2 + π‘Ž2 +
𝑏
π‘Ž2+𝑏2
1
π‘Ž
tanβˆ’1 π‘₯
π‘Ž
+
𝑏
π‘Ž2+𝑏2 log(π‘₯ + 𝑏)
𝐼 =
1
π‘Ž2+𝑏2
(log(π‘₯ + 𝑏) βˆ’ log √π‘₯2 + π‘Ž2) +
𝑏
π‘Ž2+𝑏2
1
π‘Ž
tanβˆ’1 π‘₯
π‘Ž
𝐼 =
1
π‘Ž2+𝑏2 log
(π‘₯+𝑏)
√π‘₯2 + π‘Ž2
+
𝑏
π‘Ž2+𝑏2
1
π‘Ž
tanβˆ’1 π‘₯
π‘Ž
𝐼 =
1
π‘Ž2+𝑏2
{log
(π‘₯+𝑏)
√π‘₯2 + π‘Ž2
+
𝑏
π‘Ž
tanβˆ’1 π‘₯
π‘Ž
}
20. (i) ∫
π‘₯ 𝑑π‘₯
(1+π‘₯)(1+π‘₯2)
(ii) ∫
π‘₯
π‘₯3βˆ’1
𝑑π‘₯
(i) Solution: Let 𝐼 = ∫
π‘₯ 𝑑π‘₯
(1+π‘₯)(1+π‘₯2)
Let,
π‘₯
(1+π‘₯)(1+π‘₯2)
=
𝐴
(1+π‘₯)
+
𝐡π‘₯+𝐢
(1+π‘₯2)
-------- (a)
π‘₯
(1+π‘₯)(1+π‘₯2)
=
𝐴(1+π‘₯2)+ (𝐡π‘₯+𝐢)(1+π‘₯)
(1+π‘₯)(1+π‘₯2)
π‘₯ = 𝐴(1 + π‘₯2) + 𝐡(π‘₯ + π‘₯2) + 𝐢(1 + π‘₯) -------- (b)
For, π‘₯ = 0, we get
0 = 𝐴 + 𝐢 𝐢 = βˆ’π΄ -------- (i)
For, π‘₯ = βˆ’1, we get
βˆ’1 = 2𝐴  𝐴 = βˆ’
1
2
Putting, 𝐴 = βˆ’
1
2
in (i), we get
𝐢 = βˆ’π΄  𝐢 =
1
2
Equating the coefficients of π‘₯2
in both sides of equation (b), we get
0 = 𝐴 + 𝐡
𝐡 = βˆ’π΄
𝐡 =
1
2
Now,
𝐼 = ∫
π‘₯ 𝑑π‘₯
(1+π‘₯)(1+π‘₯2)
𝐼 = ∫ (
𝐴
(1+π‘₯)
+
𝐡π‘₯+𝐢
(1+π‘₯2)
) 𝑑π‘₯ Using (a)
𝐼 = ∫
𝐴
(1+π‘₯)
𝑑π‘₯ + ∫
𝐡π‘₯
(1+π‘₯2)
𝑑π‘₯ + ∫
𝐢
(1+π‘₯2)
𝑑π‘₯
𝐼 = 𝐴 ∫
𝑑π‘₯
(1+π‘₯)
+ 𝐡 ∫
π‘₯ 𝑑π‘₯
(1+π‘₯2)
+ 𝐢 ∫
𝑑π‘₯
(1+π‘₯2)
𝐼 = 𝐴 log(1 + π‘₯) + 𝐡 ∫
π‘₯ 𝑑π‘₯
(1+π‘₯2)
+ 𝐢 tanβˆ’1
π‘₯
𝐼 = 𝐴 log(1 + π‘₯) + 𝐡 log(1 + π‘₯2) + 𝐢 tanβˆ’1
π‘₯
𝐼 = βˆ’
1
2
log(1 + π‘₯) +
1
2
ο‚΄
1
2
log(1 + π‘₯2) +
1
2
tanβˆ’1
π‘₯
𝐼 = βˆ’
1
2
log(1 + π‘₯) +
1
4
log(1 + π‘₯2) +
1
2
tanβˆ’1
π‘₯
(ii) Solution: Let 𝐼 = ∫
π‘₯
π‘₯3βˆ’1
𝑑π‘₯
𝐼 = ∫
π‘₯
(π‘₯βˆ’1)(π‘₯2+π‘₯+1)
𝑑π‘₯
Let,
π‘₯
(π‘₯βˆ’1)(π‘₯2+π‘₯+1)
=
𝐴
(π‘₯βˆ’1)
+
𝐡π‘₯+𝐢
(π‘₯2+π‘₯+1)
------ (a)
π‘₯
(π‘₯βˆ’1)(π‘₯2+π‘₯+1)
=
𝐴(π‘₯2+π‘₯+1)+(𝐡π‘₯+𝐢)(π‘₯βˆ’1)
(π‘₯βˆ’1)(π‘₯2+π‘₯+1)
π‘₯ = 𝐴(π‘₯2
+ π‘₯ + 1) + (𝐡π‘₯ + 𝐢)(π‘₯ βˆ’ 1)
π‘₯ = 𝐴(π‘₯2
+ π‘₯ + 1) + 𝐡(π‘₯2
βˆ’ π‘₯) + 𝐢(π‘₯ βˆ’ 1) ---------- (b)
For, = 1 , we have
1 = 3𝐴  𝐴 =
1
3
For, = 0 , we have
0 = 𝐴 βˆ’ 𝐢
𝐢 = 𝐴
 𝐢 =
1
3
Equating the coefficients of π‘₯2
, on both sides of (b)
0 = 𝐴 + 𝐡
𝐡 = βˆ’π΄
𝐡 = βˆ’
1
3
Now,
𝐼 = ∫
π‘₯
(π‘₯βˆ’1)(π‘₯2+π‘₯+1)
𝑑π‘₯
𝐼 = ∫ {
𝐴
(π‘₯βˆ’1)
+
𝐡π‘₯+𝐢
(π‘₯2+π‘₯+1)
} 𝑑π‘₯
𝐼 = ∫
𝐴
(π‘₯βˆ’1)
𝑑π‘₯ + ∫
𝐡π‘₯+𝐢
(π‘₯2+π‘₯+1)
𝑑π‘₯
𝐼 =
1
3
∫
𝑑π‘₯
(π‘₯βˆ’1)
+ ∫
βˆ’
1
3
π‘₯+
1
3
(π‘₯2+π‘₯+1)
𝑑π‘₯
𝐼 =
1
3
∫
𝑑π‘₯
(π‘₯βˆ’1)
βˆ’
1
3
∫
π‘₯βˆ’1
(π‘₯2+π‘₯+1)
𝑑π‘₯
𝐼 =
1
3
∫
𝑑π‘₯
(π‘₯βˆ’1)
βˆ’
1
6
∫
2π‘₯βˆ’2
(π‘₯2+π‘₯+1)
𝑑π‘₯
𝐼 =
1
3
∫
𝑑π‘₯
(π‘₯βˆ’1)
βˆ’
1
6
∫
2π‘₯+1βˆ’3
(π‘₯2+π‘₯+1)
𝑑π‘₯ +
1
6
∫
3
(π‘₯2+π‘₯+1)
𝑑π‘₯
𝐼 =
1
3
∫
𝑑π‘₯
(π‘₯βˆ’1)
βˆ’
1
6
∫
2π‘₯+1
(π‘₯2+π‘₯+1)
𝑑π‘₯ +
3
6
∫
𝑑π‘₯
(π‘₯2+π‘₯+1)
𝐼 =
1
3
log(π‘₯ βˆ’ 1) βˆ’
1
6
∫
2π‘₯+1
(π‘₯2+π‘₯+1)
𝑑π‘₯ +
1
2
∫
𝑑π‘₯
(π‘₯+
1
2
)
2
+(
√3
2
)
2
Putting, π‘₯2
+ π‘₯ + 1 = 𝑒  (2π‘₯ + 1)𝑑π‘₯ = 𝑑𝑒
𝐼 =
1
3
log(π‘₯ βˆ’ 1) βˆ’
1
6
∫
𝑑𝑒
𝑒
+
1
2
∫
𝑑π‘₯
(π‘₯+
1
2
)
2
+(
√3
2
)
2
𝐼 =
1
3
log(π‘₯ βˆ’ 1) βˆ’
1
6
log 𝑒 +
1
2
ο‚΄
1
√3
2
tanβˆ’1
(
π‘₯+
1
2
√3
2
)
𝐼 =
1
3
log(π‘₯ βˆ’ 1) βˆ’
1
6
log(π‘₯2
+ π‘₯ + 1) +
1
√3
tanβˆ’1 (
2π‘₯+1
√3
)
𝐼 =
1
3
log(π‘₯ βˆ’ 1) βˆ’
1
3
ο‚΄
1
2
log(π‘₯2
+ π‘₯ + 1) +
1
√3
tanβˆ’1 (
2π‘₯+1
√3
)
𝐼 =
1
3
log(π‘₯ βˆ’ 1) βˆ’
1
3
log(π‘₯2
+ π‘₯ + 1)
1
2 +
1
√3
tanβˆ’1 (
2π‘₯+1
√3
)
𝐼 =
1
3
log(π‘₯ βˆ’ 1) βˆ’
1
3
log √π‘₯2 + π‘₯ + 1 +
1
√3
tanβˆ’1 (
2π‘₯+1
√3
)
𝐼 =
1
3
(log(π‘₯ βˆ’ 1) βˆ’ log √π‘₯2 + π‘₯ + 1) +
1
√3
tanβˆ’1 (
2π‘₯+1
√3
)
𝐼 =
1
3
log
π‘₯βˆ’1
√π‘₯2+π‘₯+1
+
1
√3
tanβˆ’1 (
2π‘₯+1
√3
)
21. ∫
(π‘₯2βˆ’1)
π‘₯4+π‘₯2+1
𝑑π‘₯
Solution: 𝐼 = ∫
(π‘₯2βˆ’1)
π‘₯4+π‘₯2+1
𝑑π‘₯
𝐼 = ∫
π‘₯2(1βˆ’
1
π‘₯2)
π‘₯2(π‘₯2+1+
1
π‘₯2)
𝑑π‘₯
𝐼 = ∫
(1βˆ’
1
π‘₯2)
(π‘₯2+1+
1
π‘₯2)
𝑑π‘₯
𝐼 = ∫
(1βˆ’
1
π‘₯2)
(π‘₯+
1
π‘₯
)
2
βˆ’1
𝑑π‘₯
Putting, π‘₯ +
1
π‘₯
= 𝑒  (1 βˆ’
1
π‘₯2
) 𝑑π‘₯ = 𝑑𝑒
𝐼 = ∫
𝑑𝑒
𝑒2βˆ’1
𝐼 = ∫
𝑑𝑒
(𝑒+1)(π‘’βˆ’1)
Let,
1
(𝑒+1)(π‘’βˆ’1)
=
𝐴
(𝑒+1)
+
𝐡
(π‘’βˆ’1)
------ (a)
1
(𝑒+1)(π‘’βˆ’1)
=
𝐴(π‘’βˆ’1)+ 𝐡 (𝑒+1)
(𝑒+1)
1 = 𝐴(𝑒 βˆ’ 1) + 𝐡 (𝑒 + 1) ------ (b)
Putting, 𝑒 = 1 and 𝑒 = βˆ’1 in (b) , we get
𝐴 = βˆ’
1
2
and 𝐡 =
1
2
Now,
𝐼 = ∫
𝑑𝑒
(𝑒+1)(π‘’βˆ’1)
𝐼 = ∫ (
𝐴
(𝑒+1)
+
𝐡
(π‘’βˆ’1)
) 𝑑𝑒
𝐼 = ∫
𝐴
(𝑒+1)
𝑑𝑒 + ∫
𝐡
(π‘’βˆ’1)
𝑑𝑒
𝐼 = 𝐴 ∫
𝑑𝑒
(𝑒+1)
+ 𝐡 ∫
𝑑𝑒
(π‘’βˆ’1)
𝐼 = 𝐴 log(𝑒 + 1) + 𝐡 log(𝑒 βˆ’ 1)
𝐼 = βˆ’
1
2
log(𝑒 + 1) +
1
2
log(𝑒 βˆ’ 1)
𝐼 =
1
2
log(𝑒 βˆ’ 1) βˆ’
1
2
log(𝑒 + 1)
𝐼 =
1
2
log (π‘₯ +
1
π‘₯
βˆ’ 1) βˆ’
1
2
log (π‘₯ +
1
π‘₯
+ 1)
𝐼 =
1
2
log (
π‘₯2βˆ’π‘₯+1
π‘₯
) βˆ’
1
2
log (
π‘₯2+π‘₯+1
π‘₯
)
𝐼 =
1
2
log(π‘₯2
βˆ’ π‘₯ + 1) βˆ’
1
2
log π‘₯ βˆ’
1
2
log(π‘₯2
+ π‘₯ + 1) +
1
2
log π‘₯
𝐼 =
1
2
log(π‘₯2
βˆ’ π‘₯ + 1) βˆ’
1
2
log(π‘₯2
+ π‘₯ + 1)
22. (i) ∫
π‘₯2
π‘₯4βˆ’π‘₯2βˆ’12
𝑑π‘₯ (ii) ∫
π‘₯ 𝑑π‘₯
π‘₯4βˆ’π‘₯2βˆ’2
(i) Solution: Let, 𝐼 = ∫
π‘₯2
π‘₯4βˆ’π‘₯2βˆ’12
𝑑π‘₯
𝐼 = ∫
π‘₯2
π‘₯4βˆ’4π‘₯2+3π‘₯2βˆ’12
𝑑π‘₯
𝐼 = ∫
π‘₯2
π‘₯2(π‘₯2βˆ’4)+3(π‘₯2βˆ’3)
𝑑π‘₯
𝐼 = ∫
π‘₯2
(π‘₯2βˆ’4)(π‘₯2+3)
𝑑π‘₯
Substituting, π‘₯2
= 𝑒 for partial fraction
Here,
π‘₯2
(π‘₯2βˆ’4)(π‘₯2+3)
=
𝑒
(π‘’βˆ’4)(𝑒+3)
Let,
𝑒
(π‘’βˆ’4)(𝑒+3)
=
𝐴
(π‘’βˆ’4)
+
𝐡
(𝑒+3)
------ (a)
𝑒
(π‘’βˆ’4)(𝑒+3)
=
𝐴(𝑒+3)+ 𝐡 (π‘’βˆ’4)
(π‘’βˆ’4)(𝑒+3)
𝑒 = 𝐴(𝑒 + 3) + 𝐡 (𝑒 βˆ’ 4) ------- (b)
Putting, 𝑒 = βˆ’3 in (b), we get
𝐡 =
3
7
Putting, 𝑒 = 4 in (b), we get
𝐴 =
4
7
Now,
𝐼 = ∫
π‘₯2
(π‘₯2βˆ’4)(π‘₯2+3)
𝑑π‘₯
𝐼 = ∫ (
𝐴
(π‘’βˆ’4)
+
𝐡
(𝑒+3)
) 𝑑π‘₯ Using (a)
𝐼 = ∫ (
𝐴
(π‘₯2βˆ’4)
+
𝐡
(π‘₯2+3)
) 𝑑π‘₯
𝐼 = ∫
𝐴
(π‘₯2βˆ’4)
𝑑π‘₯ + ∫
𝐡
(π‘₯2+3)
𝑑π‘₯
𝐼 = 𝐴 ∫
𝑑π‘₯
π‘₯2βˆ’22 + 𝐡 ∫
𝑑π‘₯
π‘₯2+ (√3)
2
𝐼 = 𝐴
1
2ο‚΄2
log |
π‘₯βˆ’2
π‘₯+2
| + 𝐡
1
√3
tanβˆ’1 π‘₯
√3
𝐼 =
4
7
ο‚΄
1
4
log |
π‘₯βˆ’2
π‘₯+2
| +
3
7
ο‚΄
1
√3
tanβˆ’1 π‘₯
√3
𝐼 =
1
7
log |
π‘₯βˆ’2
π‘₯+2
| +
√3
7
tanβˆ’1 π‘₯
√3
(ii) Solution: Let, 𝐼 = ∫
π‘₯ 𝑑π‘₯
π‘₯4βˆ’π‘₯2βˆ’2
𝐼 = ∫
π‘₯ 𝑑π‘₯
(π‘₯2+1)(π‘₯+ √2)(π‘₯βˆ’βˆš2)
Here,
π‘₯
(π‘₯2+1)(π‘₯+ √2)(π‘₯βˆ’βˆš2)
=
𝐴π‘₯+𝐡
(π‘₯2+1)
+
𝐢
(π‘₯+ √2)
+
𝐷
(π‘₯βˆ’βˆš2)
π‘₯
(π‘₯2+1)(π‘₯+ √2)(π‘₯βˆ’βˆš2)
=
(𝐴π‘₯+𝐡)(π‘₯+ √2)(π‘₯βˆ’βˆš2)+ 𝐢(π‘₯2+1)(π‘₯βˆ’βˆš2)+𝐷(π‘₯2+1)(π‘₯+ √2)
(π‘₯2+1)(π‘₯+ √2)(π‘₯βˆ’βˆš2)
π‘₯ = (𝐴π‘₯ + 𝐡)(π‘₯ + √2)(π‘₯ βˆ’ √2) + 𝐢(π‘₯2
+ 1)(π‘₯ βˆ’ √2) + 𝐷(π‘₯2
+ 1)(π‘₯ + √2) -------- (b)
Putting, = √2 , in (b) , we get
𝐷 =
√2
6√2
 𝐷 =
1
6
Putting, = βˆ’βˆš2 , in (b) , we get
𝐢 =
βˆ’βˆš2
6√2
 𝐢 =
1
6
Putting, = 0 , in (b) , we get
0 = 𝐡(βˆ’2) + 𝐢(βˆ’βˆš2) + 𝐷(√2)
2𝐡 = 𝐢(βˆ’βˆš2) + 𝐷(√2)
2𝐡 = βˆ’
1
6
√2 +
1
6
√2
2𝐡 = 0  𝐡 = 0
Equating the coefficients of π‘₯3
, on both sides of (b)
0 = 𝐴 + 𝐢 + 𝐷
𝐡 = βˆ’πΆ βˆ’ 𝐷
𝐡 = βˆ’
1
6
βˆ’
1
6
𝐡 = βˆ’
1
3
Now,
∫
𝑑π‘₯
π‘₯2βˆ’π‘Ž2 =
1
2π‘Ž
log |
π‘₯βˆ’π‘Ž
π‘₯+π‘Ž
|
𝐼 = ∫
π‘₯ 𝑑π‘₯
(π‘₯2+1)(π‘₯+ √2)(π‘₯βˆ’βˆš2)
𝐼 = ∫ (
𝐴π‘₯+𝐡
(π‘₯2+1)
+
𝐢
(π‘₯+ √2)
+
𝐷
(π‘₯βˆ’βˆš2)
) 𝑑π‘₯
𝐼 = ∫ (
𝐴π‘₯
(π‘₯2+1)
+
𝐢
(π‘₯+ √2)
+
𝐷
(π‘₯βˆ’βˆš2)
) 𝑑π‘₯ Since, 𝐡 = 0
𝐼 = ∫
𝐴π‘₯
(π‘₯2+1)
𝑑π‘₯ + ∫
𝐢
(π‘₯+ √2)
𝑑π‘₯ + ∫
𝐷
(π‘₯βˆ’βˆš2)
𝑑π‘₯
𝐼 = 𝐴 ∫
π‘₯ 𝑑π‘₯
(π‘₯2+1)
+ 𝐢 ∫
𝑑π‘₯
(π‘₯+ √2)
+ 𝐷 ∫
𝑑π‘₯
(π‘₯βˆ’βˆš2)
𝐼 = 𝐴
1
2
log(π‘₯2
+ 1) + 𝐢 log(π‘₯ + √2) + 𝐷 log(π‘₯ βˆ’ √2)
𝐼 = βˆ’
1
3
ο‚΄
1
2
log(π‘₯2
+ 1) +
1
6
log(π‘₯ + √2) +
1
6
log(π‘₯ βˆ’ √2)
𝐼 = βˆ’
1
6
log(π‘₯2
+ 1) +
1
6
{log(π‘₯ + √2) + log(π‘₯ βˆ’ √2)}
𝐼 = βˆ’
1
6
log(π‘₯2
+ 1) +
1
6
{log(π‘₯ + √2)(π‘₯ βˆ’ √2)}
𝐼 = βˆ’
1
6
log(π‘₯2
+ 1) +
1
6
{log(π‘₯2
βˆ’ 4)}
𝐼 = βˆ’
1
6
log(π‘₯2
+ 1) +
1
6
log(π‘₯2
βˆ’ 2)
𝐼 =
1
6
{log(π‘₯2
βˆ’ 2) βˆ’ log(π‘₯2
+ 1)}
23. ∫
𝑑π‘₯
(π‘₯4+ π‘₯2+1)2
Solution: Let 𝐼 = ∫
𝑑π‘₯
(π‘₯4+ π‘₯2+1)2
𝐼 = ∫
𝑑π‘₯
{(π‘₯+2)2+1}2
Take, π‘₯ + 2 = tan πœƒ  𝑑π‘₯ = sec2
πœƒ π‘‘πœƒ
Now,
𝐼 = ∫
sec2 πœƒ π‘‘πœƒ
{tan2 πœƒ+1}2
𝐼 = ∫
sec2 πœƒ π‘‘πœƒ
sec4 πœƒ
𝐼 = ∫
π‘‘πœƒ
sec2 πœƒ
𝐼 = ∫ cos2
πœƒ π‘‘πœƒ
𝐼 = ∫
1
2
(1 + cos 2πœƒ) π‘‘πœƒ
𝐼 =
1
2
∫(1 + cos 2πœƒ) π‘‘πœƒ
𝐼 =
1
2
(πœƒ +
sin 2πœƒ
2
)
𝐼 =
1
2
(πœƒ +
2sin πœƒ cosπœƒ
2
)
𝐼 =
1
2
(πœƒ + sin πœƒ cos πœƒ)
𝐼 =
1
2
(tanβˆ’1(π‘₯ + 2) +
π‘₯+2
√π‘₯2+4π‘₯+5
ο‚΄
1
√π‘₯2+4π‘₯+5
)
𝐼 =
1
2
(tanβˆ’1(π‘₯ + 2) +
π‘₯+2
π‘₯2+4π‘₯+5
)
24. ∫
π‘₯2 𝑑π‘₯
(π‘₯2+1)(2π‘₯2+1)
Solution: Let, 𝐼 = ∫
π‘₯2 𝑑π‘₯
(π‘₯2+1)(2π‘₯2+1)
π‘₯2
(π‘₯2+1)(2π‘₯2+1)
=
𝐴π‘₯+𝐡
(π‘₯2+1)
+
𝐢π‘₯+𝐷
(2π‘₯2+1)
------ (a)
π‘₯2
(π‘₯2+1)(2π‘₯2+1)
=
(𝐴π‘₯+𝐡)(2π‘₯2+1)+ (𝐢π‘₯+𝐷)(π‘₯2+1)
(π‘₯2+1)(2π‘₯2+1)
π‘₯2
= (𝐴π‘₯ + 𝐡)(2π‘₯2
+ 1) + (𝐢π‘₯ + 𝐷)(π‘₯2
+ 1)
π‘₯2
= 𝐴(2π‘₯3
+ π‘₯) + 𝐡(2π‘₯2
+ 1) + 𝐢(π‘₯3
+ π‘₯) + 𝐷(π‘₯2
+ 1) --------- (b)
Equating the coefficients of π‘₯3
on both sides of (b), we get
0 = 2𝐴 + 𝐢 𝐢 + 2𝐴 = 0 ------ (i)
Equating the coefficients of π‘₯2
on both sides of (b), we get
1 = 2𝐡 + 𝐷 ------ (ii)
Equating the coefficients of π‘₯ on both sides of (b), we get
0 = 𝐴 + 𝐢  𝐢 = βˆ’π΄ ----- (iii)
We take,
π‘₯ + 2 = tan πœƒ
πœƒ = tanβˆ’1(π‘₯ + 2)
Again, π‘₯ + 2 = tan πœƒ
(π‘₯ + 2)2
= tan2
πœƒ
(π‘₯ + 2)2
=
sin2 πœƒ
cos2 πœƒ
(π‘₯ + 2)2
cos2
πœƒ = sin2
πœƒ
(π‘₯ + 2)2 (1 βˆ’ sin2
πœƒ) = sin2
πœƒ
(π‘₯ + 2)2
βˆ’ (π‘₯ + 2)2
sin2
πœƒ = sin2
πœƒ
(π‘₯ + 2)2
= sin2
πœƒ + (π‘₯ + 2)2
sin2
πœƒ
(π‘₯ + 2)2
= sin2
πœƒ (1 + (π‘₯ + 2)2)
(π‘₯+2)2
(1+(π‘₯+2)2)
= sin2
πœƒ
sin πœƒ =
π‘₯+2
√1+(π‘₯+2)2
sin πœƒ =
π‘₯+2
√π‘₯2+4π‘₯+5
and cos πœƒ =
1
√π‘₯2+4π‘₯+5
Equating the constant terms on both sides of (b), we get
0 = 𝐡 + 𝐷  𝐷 = βˆ’π΅ ----- (iv)
Putting, 𝐷 = βˆ’π΅ in (ii), we get
1 = 2𝐡 + 𝐷
1 = 2𝐡 βˆ’ 𝐡
 𝐡 = 1
Putting 𝐡 = 1 in (iv). We get
𝐷 = βˆ’π΅  𝐷 = βˆ’1
Putting 𝐢 = βˆ’π΄ in (i). We get
𝐢 + 2𝐴 = 0
βˆ’π΄ + 2𝐴 = 0
𝐴 = 0
Putting 𝐴 = 0 in (i) , we get
𝐢 + 2𝐴 = 0
𝐢 + 0 = 0
𝐢 = 0
Now,
𝐼 = ∫
π‘₯2 𝑑π‘₯
(π‘₯2+1)(2π‘₯2+1)
𝐼 = ∫ (
𝐴π‘₯+𝐡
(π‘₯2+1)
+
𝐢π‘₯+𝐷
(2π‘₯2+1)
) 𝑑π‘₯ Using (a)
𝐼 = ∫ (
𝐡
(π‘₯2+1)
+
𝐷
(2π‘₯2+1)
) 𝑑π‘₯ Since, 𝐴 = 0 and 𝐢 = 0
𝐼 = ∫ (
1
(π‘₯2+1)
+
βˆ’1
(2π‘₯2+1)
) 𝑑π‘₯
𝐼 = ∫ (
1
(π‘₯2+1)
βˆ’
1
(2π‘₯2+1)
) 𝑑π‘₯
𝐼 = ∫
1
(π‘₯2+1)
𝑑π‘₯ βˆ’ ∫
1
(2π‘₯2+1)
𝑑π‘₯
𝐼 = tanβˆ’1
π‘₯ βˆ’
1
2
∫
𝑑π‘₯
π‘₯2+
1
2
𝐼 = tanβˆ’1
π‘₯ βˆ’
1
2
∫
𝑑π‘₯
π‘₯2+(
1
√2
)
2
𝐼 = tanβˆ’1
π‘₯ βˆ’
1
2
ο‚΄
1
1
√2
tanβˆ’1
(
π‘₯
1
√2
)
𝐼 = tanβˆ’1
π‘₯ βˆ’
√2
2
tanβˆ’1(√2 π‘₯)
𝐼 = tanβˆ’1
π‘₯ βˆ’
√2
2
ο‚΄
√2
√2
tanβˆ’1(√2 π‘₯)
𝐼 = tanβˆ’1
π‘₯ βˆ’
2
2√2
tanβˆ’1(√2 π‘₯)
𝐼 = tanβˆ’1
π‘₯ βˆ’
1
√2
tanβˆ’1(√2 π‘₯)
25. ∫
𝑑π‘₯
π‘₯(1+π‘₯+π‘₯2+π‘₯3)
Solution: Let 𝐼 = ∫
𝑑π‘₯
π‘₯(1+π‘₯+π‘₯2+π‘₯3)
𝐼 = ∫
𝑑π‘₯
π‘₯(π‘₯+1)(π‘₯2+1)
Let,
𝑑π‘₯
π‘₯(π‘₯+1)(π‘₯2+1)
=
𝐴
π‘₯
+
𝐡
(π‘₯+1)
+
𝐢π‘₯+𝐷
(π‘₯2+1)
---- (a)
1
π‘₯(π‘₯+1)(π‘₯2+1)
=
𝐴(π‘₯+1)(π‘₯2+1)+ 𝐡π‘₯(π‘₯2+1)+(𝐢π‘₯+𝐷)π‘₯(π‘₯+1)
π‘₯ (π‘₯+1)(π‘₯2+1)
1 = 𝐴(π‘₯3
+ π‘₯3
+ π‘₯2
+ 1) + 𝐡(π‘₯3
+ π‘₯) + 𝐢(π‘₯3
+ π‘₯2) + 𝐷(π‘₯2
+ π‘₯) --- (b)
Putting, π‘₯ = βˆ’1 in (b), we get
1 = βˆ’2𝐡  𝐡 = βˆ’
1
2
Putting, π‘₯ = 0 in (b), we get
1 = 𝐴  𝐴 = 1
Equating the coefficients of π‘₯3
on both sides of (b), we get
0 = 𝐴 + 𝐡 + 𝐢
0 = 1 βˆ’
1
2
+ 𝐢
0 =
1
2
+ 𝐢
 𝐢 = βˆ’
1
2
Equating the coefficients of π‘₯2
on both sides of (b), we get
0 = 𝐴 + 𝐢 + 𝐷
0 = 1 βˆ’
1
2
+ 𝐷
0 = βˆ’
1
2
+ 𝐷
𝐷 = βˆ’
1
2
Now,
𝐼 = ∫
𝑑π‘₯
π‘₯(π‘₯+1)(π‘₯2+1)
𝐼 = ∫ (
𝐴
π‘₯
+
𝐡
(π‘₯+1)
+
𝐢π‘₯+𝐷
(π‘₯2+1)
) 𝑑π‘₯
𝐼 = ∫
𝐴
π‘₯
𝑑π‘₯ + ∫
𝐡
(π‘₯+1)
𝑑π‘₯ + ∫
𝐢π‘₯+𝐷
(π‘₯2+1)
𝑑π‘₯
𝐼 = ∫
𝐴
π‘₯
𝑑π‘₯ + ∫
𝐡
(π‘₯+1)
𝑑π‘₯ + ∫
𝐢π‘₯+𝐷
(π‘₯2+1)
𝑑π‘₯ + ∫
𝐷
(π‘₯2+1)
𝑑π‘₯
𝐼 = ∫
𝑑π‘₯
π‘₯
βˆ’
1
2
∫
𝑑π‘₯
(π‘₯+1)
+ ∫
βˆ’
1
2
π‘₯
(π‘₯2+1)
𝑑π‘₯ + ∫
βˆ’
1
2
(π‘₯2+1)
𝑑π‘₯
𝐼 = log π‘₯ βˆ’
1
2
log(π‘₯ + 1) βˆ’
1
2
∫
π‘₯
(π‘₯2+1)
𝑑π‘₯ βˆ’
1
2
∫
𝑑π‘₯
(π‘₯2+1)
𝐼 = log π‘₯ βˆ’
1
2
log(π‘₯ + 1) βˆ’
1
4
∫
2π‘₯
(π‘₯2+1)
𝑑π‘₯ βˆ’
1
2
∫
𝑑π‘₯
(π‘₯2+1)
𝐼 = log π‘₯ βˆ’
1
2
log(π‘₯ + 1) βˆ’
1
4
log(π‘₯2
+ 1) βˆ’
1
2
tanβˆ’1
π‘₯
26. ∫
𝑑π‘₯
π‘₯4+π‘₯2+1
Solution: Let, 𝐼 = ∫
𝑑π‘₯
π‘₯4+π‘₯2+1
𝐼 = ∫
𝑑π‘₯
(π‘₯2+π‘₯+1)(π‘₯2βˆ’π‘₯+1)
Let,
1
(π‘₯2+π‘₯+1)(π‘₯2βˆ’π‘₯+1)
=
𝐴π‘₯+𝐡
(π‘₯2+π‘₯+1)
+
𝐢π‘₯+𝐷
(π‘₯2βˆ’π‘₯+1)
----- (a)
1
(π‘₯2+π‘₯+1)(π‘₯2βˆ’π‘₯+1)
=
(𝐴π‘₯+𝐡)(π‘₯2βˆ’π‘₯+1)+(𝐢π‘₯+𝐷) (π‘₯2+π‘₯+1)
(π‘₯2+π‘₯+1)(π‘₯2βˆ’π‘₯+1)
1 = (𝐴π‘₯ + 𝐡)(π‘₯2
βˆ’ π‘₯ + 1) + (𝐢π‘₯ + 𝐷) (π‘₯2
+ π‘₯ + 1)
1 = 𝐴(π‘₯3
βˆ’ π‘₯2
+ π‘₯) + 𝐡(π‘₯2
βˆ’ π‘₯ + 1) + 𝐢 (π‘₯3
+ π‘₯2
+ π‘₯) + 𝐷(π‘₯2
+ π‘₯ + 1) ------- (b)
Equating the coefficients of π‘₯3
on both sides of equation (b), we get
0 = 𝐴 + 𝐢 𝐴 + 𝐢 = 0 ----- (i)
Equating the coefficients of π‘₯2
on both sides of equation (b), we get
0 = βˆ’π΄ + 𝐡 + 𝐢 + 𝐷 ----- (ii)
Equating the coefficients of π‘₯ on both sides of equation (b), we get
0 = 𝐴 βˆ’ 𝐡 + 𝐢 + 𝐷 -------- (iii)
Equating the constant terms on both sides of equation (b), we get
1 = 𝐡 + 𝐷 ------ (iv)
Adding (ii) and (iii), we get
0 = βˆ’π΄ + 𝐡 + 𝐢 + 𝐷
0 = 𝐴 βˆ’ 𝐡 + 𝐢 + 𝐷
------------------------------------------------
𝐢 + 𝐷 = 0 ----- (v)
Putting, 𝐴 + 𝐢 = 0 in (iii), we get
0 = 𝐴 βˆ’ 𝐡 + 𝐢 + 𝐷
0 = βˆ’π΅ + 𝐷
 𝐷 = 𝐡
Putting 𝐷 = 𝐡 in (iv)
1 = 𝐡 + 𝐷
1 = 𝐡 + 𝐡
1 = 2𝐡
𝐡 =
1
2
π΄π‘™π‘ π‘œ, 𝐷 =
1
2
Putting, 𝐷 =
1
2
in (v)
𝐢 + 𝐷 = 0
𝐢 +
1
2
= 0
𝐢 = βˆ’
1
2
Putting, 𝐡 =
1
2
in (iv)
1 = 𝐡 + 𝐷
1 =
1
2
+ 𝐷
𝐷 =
1
2
Putting, 𝐢 = βˆ’
1
2
in (i)
𝐴 + 𝐢 = 0
𝐴 =
1
2
Now,
𝐼 = ∫
𝑑π‘₯
π‘₯4+π‘₯2+1
𝐼 = ∫ (
𝐴π‘₯+𝐡
(π‘₯2+π‘₯+1)
+
𝐢π‘₯+𝐷
(π‘₯2βˆ’π‘₯+1)
) 𝑑π‘₯ Using (a)
𝐼 = ∫ (
1
2
π‘₯+
1
2
(π‘₯2+π‘₯+1)
+
βˆ’
1
2
π‘₯+
1
2
(π‘₯2βˆ’π‘₯+1)
)𝑑π‘₯
𝐼 = ∫
1
2
π‘₯+
1
2
(π‘₯2+π‘₯+1)
𝑑π‘₯ + ∫
βˆ’
1
2
π‘₯+
1
2
(π‘₯2βˆ’π‘₯+1)
𝑑π‘₯
𝐼 =
1
2
∫
π‘₯+1
(π‘₯2+π‘₯+1)
𝑑π‘₯ +
1
2
∫
βˆ’π‘₯+1
(π‘₯2βˆ’π‘₯+1)
𝑑π‘₯
𝐼 =
1
2
∫
π‘₯+1
(π‘₯2+π‘₯+1)
𝑑π‘₯ βˆ’
1
2
∫
π‘₯βˆ’1
(π‘₯2βˆ’π‘₯+1)
𝑑π‘₯
𝐼 =
1
4
∫
2π‘₯+2
(π‘₯2+π‘₯+1)
𝑑π‘₯ βˆ’
1
4
∫
2π‘₯βˆ’2
(π‘₯2βˆ’π‘₯+1)
𝑑π‘₯
𝐼 =
1
4
∫
2π‘₯+1+1
(π‘₯2+π‘₯+1)
𝑑π‘₯ βˆ’
1
4
∫
2π‘₯βˆ’1βˆ’1
(π‘₯2βˆ’π‘₯+1)
𝑑π‘₯
𝐼 =
1
4
∫ {
2π‘₯+1
(π‘₯2+π‘₯+1)
+
1
(π‘₯2+π‘₯+1)
} 𝑑π‘₯ βˆ’
1
4
∫ {
2π‘₯βˆ’1
(π‘₯2βˆ’π‘₯+1)
βˆ’
1
(π‘₯2βˆ’π‘₯+1)
} 𝑑π‘₯
𝐼 =
1
4
∫
2π‘₯+1
(π‘₯2+π‘₯+1)
𝑑π‘₯ +
1
4
∫
𝑑π‘₯
(π‘₯2+π‘₯+1)
βˆ’
1
4
∫
2π‘₯βˆ’1
(π‘₯2βˆ’π‘₯+1)
𝑑π‘₯ +
1
4
∫
𝑑π‘₯
(π‘₯2βˆ’π‘₯+1)
𝐼 =
1
4
∫
2π‘₯+1
(π‘₯2+π‘₯+1)
𝑑π‘₯ +
1
4
∫
𝑑π‘₯
(π‘₯+
1
2
)
2
+(
√3
2
)
2 βˆ’
1
4
∫
2π‘₯βˆ’1
(π‘₯2βˆ’π‘₯+1)
𝑑π‘₯ +
1
4
∫
𝑑π‘₯
(π‘₯βˆ’
1
2
)
2
+(
√3
2
)
2
𝐼 =
1
4
log(π‘₯2
+ π‘₯ + 1) +
1
4
ο‚΄
1
√3
2
tanβˆ’1
(
π‘₯+
1
2
√3
2
) βˆ’
1
4
log(π‘₯2
βˆ’ π‘₯ + 1) +
1
4
ο‚΄
1
√3
2
tanβˆ’1
(
π‘₯βˆ’
1
2
√3
2
)
𝐼 =
1
4
log(π‘₯2
+ π‘₯ + 1) +
1
4
ο‚΄
2
√3
tanβˆ’1 (
2π‘₯+1
√3
) βˆ’
1
4
log( )(π‘₯2
βˆ’ π‘₯ + 1) +
1
4
ο‚΄
2
√3
tanβˆ’1 (
2π‘₯βˆ’1
√3
)
𝐼 =
1
4
log(π‘₯2
+ π‘₯ + 1) +
1
2√3
tanβˆ’1 (
2π‘₯+1
√3
) βˆ’
1
4
log(π‘₯2
βˆ’ π‘₯ + 1) +
1
2√3
tanβˆ’1 (
2π‘₯βˆ’1
√3
)
𝐼 =
1
4
log(π‘₯2
+ π‘₯ + 1) βˆ’
1
4
log(π‘₯2
βˆ’ π‘₯ + 1) +
1
2√3
tanβˆ’1 (
2π‘₯+1
√3
) +
1
2√3
tanβˆ’1 (
2π‘₯βˆ’1
√3
)
𝐼 =
1
4
log
π‘₯2+π‘₯+1
π‘₯2βˆ’π‘₯+1
+
1
2√3
(tanβˆ’1 (
2π‘₯+1
√3
) + tanβˆ’1 (
2π‘₯βˆ’1
√3
) )
𝐼 =
1
4
log
π‘₯2+π‘₯+1
π‘₯2βˆ’π‘₯+1
+
1
2√3
tanβˆ’1
(
2π‘₯+1
√3
+
2π‘₯βˆ’1
√3
1βˆ’(
2π‘₯+1
√3
)(
2π‘₯βˆ’1
√3
)
)
𝐼 =
1
4
log
π‘₯2+π‘₯+1
π‘₯2βˆ’π‘₯+1
+
1
2√3
tanβˆ’1 (
2π‘₯+1+2π‘₯βˆ’1
√3
1βˆ’(
4π‘₯2βˆ’1
3
)
)
𝐼 =
1
4
log
π‘₯2+π‘₯+1
π‘₯2βˆ’π‘₯+1
+
1
2√3
tanβˆ’1
(
4π‘₯
√3
3βˆ’4π‘₯2+1
3
)
𝐼 =
1
4
log
π‘₯2+π‘₯+1
π‘₯2βˆ’π‘₯+1
+
1
2√3
tanβˆ’1
(
4π‘₯
√3
4βˆ’4π‘₯2
3
)
𝐼 =
1
4
log
π‘₯2+π‘₯+1
π‘₯2βˆ’π‘₯+1
+
1
2√3
tanβˆ’1 (
4π‘₯
√3
ο‚΄
3
4βˆ’4π‘₯2
)
𝐼 =
1
4
log
π‘₯2+π‘₯+1
π‘₯2βˆ’π‘₯+1
+
1
2√3
tanβˆ’1 (
4√3 π‘₯
4(1βˆ’π‘₯2)
)
𝐼 =
1
4
log
π‘₯2+π‘₯+1
π‘₯2βˆ’π‘₯+1
+
1
2√3
tanβˆ’1 (
√3 π‘₯
(1βˆ’π‘₯2)
)
27. (i) ∫
𝑑π‘₯
π‘₯2+1
(ii) ∫
π‘₯2+1
π‘₯4+1
𝑑π‘₯
(i) Solution: Let 𝐼 = ∫
𝑑π‘₯
π‘₯2+1
𝐼 = ∫
𝑑π‘₯
(π‘₯2+π‘₯√2+1)(π‘₯2βˆ’π‘₯√2+1)
Let,
1
(π‘₯2+π‘₯√2+1)(π‘₯2βˆ’π‘₯√2+1)
=
𝐴π‘₯+𝐡
(π‘₯2+π‘₯√2+1)
+
𝐢π‘₯+𝐷
(π‘₯2βˆ’π‘₯√2+1)
----- (a)
1
(π‘₯2+π‘₯√2+1)(π‘₯2βˆ’π‘₯√2+1)
=
(𝐴π‘₯+𝐡)(π‘₯2βˆ’π‘₯√2+1)+(𝐢π‘₯+𝐷)(π‘₯2+π‘₯√2+1)
(π‘₯2+π‘₯√2+1)(π‘₯2βˆ’π‘₯√2+1)
1 = (𝐴π‘₯ + 𝐡)(π‘₯2
βˆ’ π‘₯√2 + 1) + (𝐢π‘₯ + 𝐷)(π‘₯2
+ π‘₯√2 + 1)
1 = 𝐴(π‘₯3
βˆ’ π‘₯2
√2 + π‘₯) + 𝐡(π‘₯2
βˆ’ π‘₯√2 + 1) + 𝐢(π‘₯3
+ π‘₯2
√2 + π‘₯) + 𝐷(π‘₯2
+ π‘₯√2 + 1) ----- (b)
Equating the coefficients of π‘₯3
on both sides of (b), we get
𝐴 + 𝐢 = 0 ------ (i)
Equating the coefficients of π‘₯2
on both sides of (b), we get
𝐡 + 𝐷 + √2 (– 𝐴 + 𝐢) = 0 ------- (ii)
tanβˆ’1
𝐴 + tanβˆ’1
𝐡 = tanβˆ’1
𝐴 + 𝐡
1 βˆ’ 𝐴𝐡
Equating the coefficients of π‘₯ on both sides of (b), we get
𝐡 βˆ’ 𝐷 = 0 ---- (iii)
Equating the constant terms on both sides of (b), we get
𝐡 + 𝐷 = 1 ----- (iv)
Solving (iii) and (iv), we get
𝐡 =
1
2
Putting, 𝐡 =
1
2
in (iii)
𝐡 βˆ’ 𝐷 = 0
𝐷 = 𝐡
𝐷 =
1
2
Putting 𝐡 + 𝐷 = 1 in (ii)
𝐡 + 𝐷 + √2 (– 𝐴 + 𝐢) = 0
1 + √2 (– 𝐴 + 𝐢) = 0
1 + √2 (βˆ’π΄ βˆ’ 𝐴) = 0 Since 𝐴 + 𝐢 = 0 𝐢 = βˆ’π΄
1 βˆ’ 2√2 𝐴 = 0
𝐴 =
1
2√2
Again, from (i), we have
𝐴 + 𝐢 = 0
𝐢 +
1
2√2
= 0
𝐢 = βˆ’
1
2√2
Now,
𝐼 = ∫
𝑑π‘₯
(π‘₯2+π‘₯√2+1)(π‘₯2βˆ’π‘₯√2+1)
𝐼 = ∫ (
𝐴π‘₯+𝐡
(π‘₯2+π‘₯√2+1)
+
𝐢π‘₯+𝐷
(π‘₯2βˆ’π‘₯√2+1)
) 𝑑π‘₯ Using (a)
𝐼 = ∫
𝐴π‘₯+𝐡
(π‘₯2+π‘₯√2+1)
𝑑π‘₯ + ∫
𝐢π‘₯+𝐷
(π‘₯2βˆ’π‘₯√2+1)
𝑑π‘₯
𝐼 = ∫
1
2√2
π‘₯+
1
2
(π‘₯2+π‘₯√2+1)
𝑑π‘₯ + ∫
βˆ’
1
2√2
π‘₯+
1
2
(π‘₯2βˆ’π‘₯√2+1)
𝑑π‘₯
𝐼 =
1
2√2
∫
π‘₯+√2
(π‘₯2+π‘₯√2+1)
𝑑π‘₯ βˆ’
1
2√2
∫
π‘₯βˆ’βˆš2
(π‘₯2βˆ’π‘₯√2+1)
𝑑π‘₯
𝐼 =
1
4√2
∫
2π‘₯+2√2
(π‘₯2+π‘₯√2+1)
𝑑π‘₯ βˆ’
1
4√2
∫
2π‘₯βˆ’2√2
(π‘₯2βˆ’π‘₯√2+1)
𝑑π‘₯
𝐼 = βˆ’
1
4√2
∫
2π‘₯+√2+√2
(π‘₯2+π‘₯√2+1)
𝑑π‘₯ βˆ’
1
4√2
∫
2π‘₯βˆ’βˆš2βˆ’βˆš2
(π‘₯2βˆ’π‘₯√2+1)
𝑑π‘₯
𝐼 = βˆ’
1
4√2
∫
π‘₯+√2
(π‘₯2+π‘₯√2+1)
𝑑π‘₯ +
1
4√2
∫
√2
(π‘₯2+π‘₯√2+1)
𝑑π‘₯ βˆ’
1
4√2
∫
π‘₯βˆ’βˆš2
(π‘₯2βˆ’π‘₯√2+1)
𝑑π‘₯ +
1
4√2
∫
√2
(π‘₯2βˆ’π‘₯√2+1)
𝑑π‘₯
𝐼 = βˆ’
1
4√2
∫
π‘₯+√2
(π‘₯2+π‘₯√2+1)
𝑑π‘₯ +
1
4
∫
𝑑π‘₯
(π‘₯2+π‘₯√2+1)
βˆ’
1
4√2
∫
π‘₯βˆ’βˆš2
(π‘₯2βˆ’π‘₯√2+1)
𝑑π‘₯ +
1
4
∫
𝑑π‘₯
(π‘₯2βˆ’π‘₯√2+1)
𝐼 =
1
4√2
log(π‘₯2
+ π‘₯√2 + 1) +
1
4
∫
𝑑π‘₯
(π‘₯+
√2
2
)
2
+(
1
√2
)
2
βˆ’
1
4√2
log(π‘₯2
βˆ’ π‘₯√2 + 1) +
1
4
∫
𝑑π‘₯
(π‘₯βˆ’
√2
2
)
2
+(
1
√2
)
2
𝐼 =
1
4√2
{log(π‘₯2
+ π‘₯√2 + 1) βˆ’ log(π‘₯2
βˆ’ π‘₯√2 + 1)} +
1
4
ο‚΄
1
1
√2
tanβˆ’1
(
π‘₯+
√2
2
1
√2
) +
1
4
ο‚΄
1
1
√2
tanβˆ’1
(
π‘₯βˆ’
√2
2
1
√2
)
𝐼 =
1
4√2
log
π‘₯2+π‘₯√2+1
π‘₯2βˆ’π‘₯√2+1
+
√2
4
tanβˆ’1 (
2π‘₯+√2
√2
) +
√2
4
tanβˆ’1 (
2π‘₯βˆ’βˆš2
√2
)
𝐼 =
1
4√2
log
π‘₯2+π‘₯√2+1
π‘₯2βˆ’π‘₯√2+1
+
1
2√2
tanβˆ’1 (
2π‘₯+√2
√2
) +
1
2√2
tanβˆ’1 (
2π‘₯βˆ’βˆš2
√2
)
𝐼 =
1
4√2
log
π‘₯2+π‘₯√2+1
π‘₯2βˆ’π‘₯√2+1
+
1
2√2
(tanβˆ’1 (
2π‘₯+√2
√2
) + tanβˆ’1 (
2π‘₯βˆ’βˆš2
√2
))
𝐼 =
1
4√2
log
π‘₯2+π‘₯√2+1
π‘₯2βˆ’π‘₯√2+1
+
1
2√2
(tanβˆ’1 (
2π‘₯+√2
√2
+
2π‘₯βˆ’βˆš2
√2
1βˆ’(
2π‘₯+√2
√2
)(
2π‘₯βˆ’βˆš2
√2
)
))
𝐼 =
1
4√2
log
π‘₯2+π‘₯√2+1
π‘₯2βˆ’π‘₯√2+1
+
1
2√2
(tanβˆ’1 (
2π‘₯+√2 +2π‘₯βˆ’βˆš2
√2
1βˆ’(
4π‘₯2βˆ’2
2
)
))
𝐼 =
1
4√2
log
π‘₯2+π‘₯√2+1
π‘₯2βˆ’π‘₯√2+1
+
1
2√2
(tanβˆ’1 (
2π‘₯+√2 +2π‘₯βˆ’βˆš2
√2
2βˆ’4π‘₯2+2
2
))
𝐼 =
1
4√2
log
π‘₯2+π‘₯√2+1
π‘₯2βˆ’π‘₯√2+1
+
1
2√2
(tanβˆ’1
(
2π‘₯ +2π‘₯
√2
4βˆ’4π‘₯2
2
))
𝐼 =
1
4√2
log
π‘₯2+π‘₯√2+1
π‘₯2βˆ’π‘₯√2+1
+
1
2√2
(tanβˆ’1 (
4π‘₯
√2
ο‚΄
2
4βˆ’4π‘₯2
))
𝐼 =
1
4√2
log
π‘₯2+π‘₯√2+1
π‘₯2βˆ’π‘₯√2+1
+
1
2√2
(tanβˆ’1 (
4π‘₯
√2
ο‚΄
2
4(1βˆ’π‘₯2)
))
𝐼 =
1
4√2
log
π‘₯2+π‘₯√2+1
π‘₯2βˆ’π‘₯√2+1
+
1
2√2
(tanβˆ’1 (
√2 π‘₯
(1βˆ’π‘₯2)
))
𝐼 =
1
4√2
log
π‘₯2+π‘₯√2+1
π‘₯2βˆ’π‘₯√2+1
+
1
2√2
tanβˆ’1 (
√2 π‘₯
1βˆ’π‘₯2
)
(ii) Solution: Let:, 𝐼 = ∫
π‘₯2+1
π‘₯4+1
𝑑π‘₯
𝐼 = ∫
π‘₯2+1
(π‘₯2+π‘₯√2+1)(π‘₯2βˆ’π‘₯√2+1)
𝑑π‘₯
Let,
π‘₯2+1
(π‘₯2+π‘₯√2+1)(π‘₯2βˆ’π‘₯√2+1)
=
𝐴π‘₯+𝐡
(π‘₯2+π‘₯√2+1)
+
𝐢π‘₯+𝐷
(π‘₯2βˆ’π‘₯√2+1)
----- (a)
π‘₯2+1
(π‘₯2+π‘₯√2+1)(π‘₯2βˆ’π‘₯√2+1)
=
(𝐴π‘₯+𝐡)(π‘₯2βˆ’π‘₯√2+1)+(𝐢π‘₯+𝐷)(π‘₯2+π‘₯√2+1)
(π‘₯2+π‘₯√2+1)(π‘₯2βˆ’π‘₯√2+1)
tanβˆ’1
𝐴 + tanβˆ’1
𝐡 = tanβˆ’1 𝐴+𝐡
1βˆ’π΄π΅
π‘₯2
+ 1 = (𝐴π‘₯ + 𝐡)(π‘₯2
βˆ’ π‘₯√2 + 1) + (𝐢π‘₯ + 𝐷)(π‘₯2
+ π‘₯√2 + 1)
π‘₯2
+ 1 = 𝐴(π‘₯3
βˆ’ π‘₯2
√2 + π‘₯) + 𝐡(π‘₯2
βˆ’ π‘₯√2 + 1) + 𝐢(π‘₯3
+ π‘₯2
√2 + π‘₯) + 𝐷(π‘₯2
+ π‘₯√2 + 1) ----(b)
Equating the coefficients of π‘₯3
on both sides of (b), we get
𝐴 + 𝐢 = 0 ------ (i)
Equating the coefficients of π‘₯2
on both sides of (b), we get
𝐡 + 𝐷 + √2 (– 𝐴 + 𝐢) = 1 ------- (ii)
Equating the coefficients of π‘₯ on both sides of (b), we get
𝐡 βˆ’ 𝐷 = 0 ---- (iii)
Equating the constant terms on both sides of (b), we get
𝐡 + 𝐷 = 1 ----- (iv)
Solving (iii) and (iv), we get
𝐡 =
1
2
Putting, 𝐡 =
1
2
in (iii)
𝐡 βˆ’ 𝐷 = 0
𝐷 = 𝐡
𝐷 =
1
2
Putting 𝐡 + 𝐷 = 1 in (ii)
𝐡 + 𝐷 + √2 (– 𝐴 + 𝐢) = 1
1 + √2 (– 𝐴 + 𝐢) = 1
1 + √2 (βˆ’π΄ βˆ’ 𝐴) = 1 Since 𝐴 + 𝐢 = 0 𝐢 = βˆ’π΄
1 βˆ’ 2√2 𝐴 = 1
𝐴 = 0
Again, from (i), we have
𝐴 + 𝐢 = 0
𝐢 + 0 = 0
𝐢 = 0
Now,
𝐼 = ∫
π‘₯2+1
(π‘₯2+π‘₯√2+1)(π‘₯2βˆ’π‘₯√2+1)
𝑑π‘₯
𝐼 = ∫ (
𝐴π‘₯+𝐡
(π‘₯2+π‘₯√2+1)
+
𝐢π‘₯+𝐷
(π‘₯2βˆ’π‘₯√2+1)
) 𝑑π‘₯ Using (a)
𝐼 = ∫ (
𝐡
(π‘₯2+π‘₯√2+1)
+
𝐷
(π‘₯2βˆ’π‘₯√2+1)
) 𝑑π‘₯ Since, 𝐴 = 0, 𝐢 = 0
𝐼 = ∫
𝐡
(π‘₯2+π‘₯√2+1)
𝑑π‘₯ + ∫
𝐷
(π‘₯2βˆ’π‘₯√2+1)
𝑑π‘₯
𝐼 = 𝐡 ∫
𝑑π‘₯
(π‘₯+
√2
2
)
2
+(
1
√2
)
2
+ 𝐷 ∫
𝑑π‘₯
(π‘₯βˆ’
√2
2
)
2
+(
1
√2
)
2
𝐼 = 𝐡
1
1
√2
tanβˆ’1
(
π‘₯+
√2
2
1
√2
) + 𝐷
1
1
√2
tanβˆ’1
(
π‘₯βˆ’
√2
2
1
√2
)
𝐼 = 𝐡
1
1
√2
tanβˆ’1 (
2π‘₯+√2
√2
) + 𝐷
1
1
√2
tanβˆ’1 (2
π‘₯βˆ’βˆš2
√2
)
𝐼 =
1
2
√2 tanβˆ’1 (
2π‘₯+√2
√2
) +
1
2
√2 tanβˆ’1 (
2π‘₯βˆ’βˆš2
√2
)
𝐼 =
1
√2
tanβˆ’1 (
2π‘₯+√2
√2
) +
1
√2
tanβˆ’1 (
2π‘₯βˆ’βˆš2
√2
)
𝐼 =
1
√2
tanβˆ’1 (
2π‘₯+√2
√2
+
2π‘₯βˆ’βˆš2
√2
1βˆ’(
2π‘₯+√2
√2
)(
2π‘₯βˆ’βˆš2
√2
)
)
𝐼 =
1
√2
tanβˆ’1 (
4π‘₯
√2
1βˆ’(
4π‘₯2βˆ’2
2
)
)
𝐼 =
1
√2
tanβˆ’1
(
4π‘₯
√2
2βˆ’4π‘₯2+2
2
)
𝐼 =
1
√2
tanβˆ’1
(
4π‘₯
√2
4βˆ’4π‘₯2
2
)
𝐼 =
1
√2
tanβˆ’1
(
4π‘₯
√2
4(1βˆ’π‘₯2)
2
)
𝐼 =
1
√2
tanβˆ’1 (
4π‘₯
√2
ο‚΄
2
4(1βˆ’π‘₯2)
)
𝐼 =
1
√2
tanβˆ’1 (
√2 π‘₯
1βˆ’π‘₯2
)
28. (i) ∫
𝑑π‘₯
cosπ‘₯ (5+3 cos π‘₯)
(ii) ∫
𝑑π‘₯
sin 2π‘₯βˆ’sin π‘₯
(i) Solution: Let, 𝐼 = ∫
𝑑π‘₯
cosπ‘₯ (5+3 cos π‘₯)
Let,
1
cosπ‘₯ (5+3 cos π‘₯)
=
𝐴
cosπ‘₯
+
𝐡
5+3cos π‘₯
1
cos π‘₯ (5+3 cosπ‘₯)
=
𝐴 (5+3 cos π‘₯)+ 𝐡 cosπ‘₯
cosπ‘₯ (5+3 cos π‘₯)
1 = 𝐴 (5 + 3 cos π‘₯) + 𝐡 cos π‘₯
1 = 5𝐴 + 3 𝐴 cos π‘₯ + 𝐡 cos π‘₯ ------- (b)
tanβˆ’1
𝐴 + tanβˆ’1
𝐡 = tanβˆ’1 𝐴+𝐡
1βˆ’π΄π΅
Equating the coefficients of cos π‘₯ on both sides of equation (b), we get
0 = 3𝐴 + 𝐡
 𝐡 = βˆ’3𝐴 ------ (i)
Equating the constant terms on both sides of equation (b), w e get
1 = 5𝐴
𝐴 =
1
5
------ (ii)
Putting 𝐴 =
1
5
in equation (i), we get
𝐡 = βˆ’3𝐴
𝐡 = βˆ’
3
5
Now,
𝐼 = ∫
𝑑π‘₯
cos π‘₯ (5+3 cosπ‘₯)
𝐼 = ∫ (
𝐴
cos π‘₯
+
𝐡
5+3 cosπ‘₯
) 𝑑π‘₯
𝐼 = ∫
𝐴
cos π‘₯
𝑑π‘₯ + ∫
𝐡
5+3 cos π‘₯
𝑑π‘₯
𝐼 = 𝐴 ∫
1
cos π‘₯
𝑑π‘₯ + 𝐡 ∫
1
5+3 cos π‘₯
𝑑π‘₯
𝐼 = 𝐴 log |tan (
πœ‹
4
+
π‘₯
2
)| + 𝐡 ∫
1
5+3(cos2π‘₯
2
βˆ’sin2π‘₯
2
)
𝑑π‘₯
𝐼 = 𝐴 log |tan (
πœ‹
4
+
π‘₯
2
)| + 𝐡 ∫
1
5(sin2π‘₯
2
+cos2π‘₯
2
)+3 cos2π‘₯
2
βˆ’ 3 sin2π‘₯
2
𝑑π‘₯
𝐼 = 𝐴 log |tan (
πœ‹
4
+
π‘₯
2
)| + 𝐡 ∫
1
5 sin2π‘₯
2
+ 5cos2π‘₯
2
+3 cos2π‘₯
2
βˆ’ 3 sin2π‘₯
2
𝑑π‘₯
𝐼 = 𝐴 log |tan (
πœ‹
4
+
π‘₯
2
)| + 𝐡 ∫
1
2 sin2π‘₯
2
+ 8cos2π‘₯
2
𝑑π‘₯
𝐼 = 𝐴 log |tan (
πœ‹
4
+
π‘₯
2
)| + 𝐡 ∫
1
2 cos2π‘₯
2
(
sin2π‘₯
2
cos2π‘₯
2
+ 4)
𝑑π‘₯
𝐼 = 𝐴 log |tan (
πœ‹
4
+
π‘₯
2
)| + 𝐡 ∫
1
2 cos2π‘₯
2
(tan2π‘₯
2
+ 4)
𝑑π‘₯
𝐼 = 𝐴 log |tan (
πœ‹
4
+
π‘₯
2
)| +
𝐡
2
∫
sec2π‘₯
2
tan2π‘₯
2
+ 4
𝑑π‘₯
Take,tan
π‘₯
2
= 𝑒  sec2 π‘₯
2
𝑑π‘₯ = 2 𝑑𝑒
𝐼 = 𝐴 log |tan (
πœ‹
4
+
π‘₯
2
)| +
𝐡
2
∫
2 𝑑𝑒
𝑒2 + 4
𝐼 = 𝐴 log |tan (
πœ‹
4
+
π‘₯
2
)| + 𝐡 ∫
𝑑𝑒
𝑒2 + 22
𝐼 = 𝐴 log |tan (
πœ‹
4
+
π‘₯
2
)| + 𝐡
1
2
tanβˆ’1 𝑒
2
𝐼 = 𝐴 log |tan (
πœ‹
4
+
π‘₯
2
)| + 𝐡
1
2
tanβˆ’1 𝑒
2
𝐼 = 𝐴 log |tan (
πœ‹
4
+
π‘₯
2
)| + 𝐡
1
2
tanβˆ’1 (
1
2
𝑒)
𝐼 =
1
5
log |tan(
πœ‹
4
+
π‘₯
2
)| βˆ’
3
5
ο‚΄
1
2
tanβˆ’1 (
1
2
tan
π‘₯
2
)
𝐼 =
1
5
log |tan(
πœ‹
4
+
π‘₯
2
)| βˆ’
3
10
tanβˆ’1 (
1
2
tan
π‘₯
2
)
(ii) Solution : Let, 𝐼 = ∫
𝑑π‘₯
sin 2π‘₯βˆ’sin π‘₯
𝐼 = ∫
𝑑π‘₯
2 sin π‘₯ cos π‘₯βˆ’sin π‘₯
Multiplying both denominator and numerator by sin π‘₯, we get
𝐼 = ∫
sin π‘₯ 𝑑π‘₯
2 sin2 π‘₯ cos π‘₯βˆ’ sin2 π‘₯
𝐼 = ∫
sin π‘₯ 𝑑π‘₯
sin2 π‘₯(2 cos π‘₯βˆ’1)
𝐼 = ∫
sin π‘₯ 𝑑π‘₯
βˆ’ sin2 π‘₯(1βˆ’2 cos π‘₯)
𝐼 = ∫
βˆ’ sin π‘₯ 𝑑π‘₯
(1βˆ’cos2 π‘₯)(1βˆ’2cos π‘₯)
Take, 𝑒 = cos π‘₯  βˆ’ sin π‘₯ 𝑑π‘₯ = 𝑑𝑒
𝐼 = ∫
𝑑𝑒
(1βˆ’ 𝑒2)(1βˆ’2𝑒)
𝐼 = ∫
𝑑𝑒
(1+𝑒) (1βˆ’ 𝑒)(1βˆ’2𝑒)
Let,
1
(1+𝑒) (1βˆ’ 𝑒)(1βˆ’2𝑒)
=
𝐴
(1+𝑒)
+
𝐡
(1βˆ’ 𝑒)
+
𝐢
(1βˆ’2𝑒)
---- (a)
1
(1+𝑒) (1βˆ’ 𝑒)(1βˆ’2𝑒)
=
𝐴 (1βˆ’ 𝑒)(1βˆ’2𝑒)+ B (1+𝑒) (1βˆ’2𝑒)+ 𝐢(1+𝑒) (1βˆ’ 𝑒)
(1+𝑒) (1βˆ’ 𝑒)(1βˆ’2𝑒)
1 = 𝐴 (1 βˆ’ 𝑒)(1 βˆ’ 2𝑒) + B (1 + 𝑒) (1 βˆ’ 2𝑒) + 𝐢(1 + 𝑒) (1 βˆ’ 𝑒) ---------- (b)
Putting, 𝑒 = 1 in (b), we get
1 = βˆ’2𝐡
 𝐡 = βˆ’
1
2
Putting, 𝑒 = βˆ’1 in (b), we get
1 = 6𝐴
 𝐴 =
1
6
Putting, 𝑒 =
1
2
in (b), we get
1 =
3
4
𝐢
𝐢 =
4
3
Now,
𝐼 = ∫
𝑑𝑒
(1+𝑒) (1βˆ’ 𝑒)(1βˆ’2𝑒)
𝐼 = ∫ (
𝐴
(1+𝑒)
+
𝐡
(1βˆ’ 𝑒)
+
𝐢
(1βˆ’2𝑒)
)𝑑𝑒 Using (a)
𝐼 = ∫
𝐴
(1+𝑒)
𝑑𝑒 + ∫
𝐡
(1βˆ’ 𝑒)
𝑑𝑒 + ∫
𝐢
(1βˆ’2𝑒)
𝐼 = ∫
𝐴
(1+𝑒)
𝑑𝑒 + ∫
𝐡
(1βˆ’ 𝑒)
𝑑𝑒 + ∫
𝐢
(1βˆ’2𝑒)
𝐼 = 𝐴 ∫
𝑑𝑒
(1+𝑒)
+ 𝐡 ∫
𝑑𝑒
(1βˆ’ 𝑒)
+ 𝐢 ∫
𝑑𝑒
(1βˆ’2𝑒)
𝐼 = 𝐴 log(1 + 𝑒) βˆ’ 𝐡 log(1 βˆ’ 𝑒) βˆ’
𝐢
2
log(1 βˆ’ 2𝑒)
𝐼 =
1
6
log(1 + cos π‘₯) +
1
2
log(1 βˆ’ cos π‘₯) βˆ’
4
3
2
log(1 βˆ’ 2cos π‘₯)
𝐼 =
1
6
log(1 + cos π‘₯) +
1
2
log(1 βˆ’ cos π‘₯) βˆ’
4
6
log(1 βˆ’ 2cos π‘₯)
𝐼 =
1
6
log(1 + cos π‘₯) +
1
2
log(1 βˆ’ cos π‘₯) βˆ’
2
3
log(1 βˆ’ 2 cos π‘₯)
𝐼 =
1
6
log(1 + cos π‘₯) +
1
2
log(1 βˆ’ cos π‘₯) βˆ’
2
3
log(1 βˆ’ 2 cos π‘₯)
𝐼 =
1
6
log(1 + cos π‘₯) +
1
2
log(1 βˆ’ cos π‘₯) βˆ’
2
3
log(1 βˆ’ 2 cos π‘₯) + 𝐢
29. (i) ∫
𝑑π‘₯
1+3𝑒π‘₯+2𝑒2π‘₯ (ii) ∫
𝑒π‘₯ 𝑑π‘₯
𝑒π‘₯βˆ’3π‘’βˆ’π‘₯+2
(i) Solution: Let , 𝐼 = ∫
𝑑π‘₯
1+3𝑒π‘₯+2𝑒2π‘₯
𝐼 = ∫
𝑒π‘₯ 𝑑π‘₯
𝑒π‘₯(1+3𝑒π‘₯+2𝑒2π‘₯)
𝐼 = ∫
𝑒π‘₯ 𝑑π‘₯
𝑒π‘₯+3𝑒2π‘₯+2𝑒3π‘₯
Take, 𝑒π‘₯
= 𝑒  𝑒π‘₯
𝑑π‘₯ = 𝑑𝑒
𝐼 = ∫
𝑑𝑒
𝑒+3𝑒2+2𝑒3
𝐼 = ∫
𝑑𝑒
𝑒(1+3𝑒+2𝑒2)
𝐼 = ∫
𝑑𝑒
𝑒 (1+𝑒)(1+2𝑒)
Let,
𝑑𝑒
𝑒 (1+𝑒)(1+2𝑒)
=
𝐴
𝑒
+
𝐡
(1+𝑒)
+
𝐢
(1+2𝑒)
------ (a)
𝑑𝑒
𝑒 (1+𝑒)(1+2𝑒)
=
𝐴 (1+𝑒)(1+2𝑒)+𝐡 𝑒 (1+2𝑒)+ 𝐢𝑒(1+𝑒)
𝑒 (1+𝑒)(1+2𝑒)
1 = 𝐴 (1 + 𝑒)(1 + 2𝑒) + 𝐡 𝑒 (1 + 2𝑒) + 𝐢 𝑒(1 + 𝑒) ------ (b)
Putting 𝑒 = 0 in (b), we get
𝐴 = 1 ----- (i)
Putting 𝑒 = βˆ’1 in (b), we get
𝐡 = 1 ----- (ii)
Putting 𝑒 = βˆ’
1
2
in (b), we get
𝐢 = βˆ’4
Now,
𝐼 = ∫
𝑑𝑒
𝑒 (1+𝑒)(1+2𝑒)
𝐼 = ∫ (
𝐴
𝑒
+
𝐡
(1+𝑒)
+
𝐢
(1+2𝑒)
) 𝑑𝑒
𝐼 = ∫
𝐴
𝑒
𝑑𝑒 + ∫
𝐡
(1+𝑒)
𝑑𝑒 + ∫
𝐢
(1+2𝑒)
𝑑𝑒
𝐼 = 𝐴 ∫
𝑑𝑒
𝑒
+ 𝐡 ∫
𝑑𝑒
(1+𝑒)
+ 𝐢 ∫
𝑑𝑒
(1+2𝑒)
𝐼 = 𝐴 log 𝑒 + 𝐡 log(1 + 𝑒) +
1
2
𝐢 log(1 + 2𝑒)
𝐼 = log 𝑒π‘₯
+ log(1 + 𝑒π‘₯) +
βˆ’4
2
log(1 + 2𝑒π‘₯)
𝐼 = π‘₯ log 𝑒 + log(1 + 𝑒π‘₯) βˆ’ 2 log(1 + 2𝑒π‘₯)
𝐼 = π‘₯ + log(1 + 𝑒π‘₯) βˆ’ 2 log(1 + 2𝑒π‘₯)
(ii) Let, 𝐼 = ∫
𝑒π‘₯𝑑π‘₯
𝑒π‘₯βˆ’3π‘’βˆ’π‘₯+2
𝐼 = ∫
𝑒π‘₯𝑒π‘₯𝑑π‘₯
𝑒π‘₯ (𝑒π‘₯βˆ’3π‘’βˆ’π‘₯+2)
𝐼 = ∫
𝑒π‘₯𝑒π‘₯𝑑π‘₯
𝑒2π‘₯+2𝑒π‘₯ βˆ’3
Take, 𝑒π‘₯
= 𝑒  𝑒π‘₯
𝑑π‘₯ = 𝑑𝑒
𝐼 = ∫
𝑒 𝑑𝑒
𝑒2+2𝑒 βˆ’3
𝐼 = ∫
𝑒 𝑑𝑒
𝑒2+3π‘’βˆ’π‘’ βˆ’3
𝐼 = ∫
𝑒 𝑑𝑒
𝑒(𝑒+3)βˆ’1(𝑒+3)
𝐼 = ∫
𝑒 𝑑𝑒
(π‘’βˆ’1)(𝑒+3)
Let,
𝑒
(π‘’βˆ’1)(𝑒+3)
=
𝐴
(π‘’βˆ’1)
+
𝐡
(𝑒+3)
----- (a)
𝑒
(π‘’βˆ’1)(𝑒+3)
=
𝐴(𝑒+3)+ 𝐡 (π‘’βˆ’1)
(π‘’βˆ’1)(𝑒+3)
𝑒 = 𝐴(𝑒 + 3) + 𝐡 (𝑒 βˆ’ 1) ----- (b)
Putting, 𝑒 = βˆ’3 in (b), we get
𝐡 =
3
4
Putting, 𝑒 = 1 in (b), we get
𝐴 =
1
4
Now,
𝐼 = ∫
𝑑𝑒
(π‘’βˆ’1)(𝑒+3)
𝐼 = ∫ (
𝐴
(π‘’βˆ’1)
+
𝐡
(𝑒+3)
) 𝑑𝑒
𝐼 = ∫
𝐴
(π‘’βˆ’1)
𝑑𝑒 + ∫
𝐡
(𝑒+3)
𝑑𝑒
𝐼 = 𝐴 ∫
𝑑𝑒
(π‘’βˆ’1)
+ 𝐡 ∫
𝑑𝑒
(𝑒+3)
𝐼 = 𝐴 log(𝑒 βˆ’ 1) + 𝐡 log(𝑒 + 3)
𝐼 =
1
4
log(𝑒π‘₯
βˆ’ 1) +
3
4
log(𝑒π‘₯
+ 3)
𝐼 =
1
4
log(𝑒π‘₯
βˆ’ 1) +
1
4
log(𝑒π‘₯
+ 3)3
𝐼 =
1
4
(log(𝑒π‘₯
βˆ’ 1) + log(𝑒π‘₯
+ 3)3)
𝐼 =
1
4
log{(𝑒π‘₯
βˆ’ 1)(𝑒π‘₯
+ 3)3}
30. ∫
𝑑π‘₯
sin π‘₯ (3+2 cosπ‘₯)
Solution: Let, 𝐼 = ∫
𝑑π‘₯
sin π‘₯ (3+2 cosπ‘₯)
𝐼 = ∫
sin π‘₯ 𝑑π‘₯
sin2 π‘₯ (3+2 cos π‘₯)
On multiplying both numerator and denominator by sin π‘₯
𝐼 = ∫
sin π‘₯ 𝑑π‘₯
(1βˆ’cos2 π‘₯) (3+2 cos π‘₯)
Taking cos π‘₯ = 𝑒  sinπ‘₯ 𝑑π‘₯ = βˆ’π‘‘π‘’
𝐼 = ∫
βˆ’π‘‘π‘’
(1βˆ’u2) (3+2𝑒)
𝐼 = ∫
βˆ’π‘‘π‘’
βˆ’(u2βˆ’1) (3+2𝑒)
𝐼 = ∫
βˆ’π‘‘π‘’
(u2βˆ’1) (3+2𝑒)
𝐼 = ∫
𝑑𝑒
(1+𝑒)(1βˆ’u) (3+2𝑒)
Let,
βˆ’1
(𝑒+1)(uβˆ’1) (3+2𝑒)
=
𝐴
(1+𝑒)
+
𝐡
(1βˆ’π‘’)
+
𝐢
(3+2𝑒)
------- (a)
1
(1+𝑒)(1βˆ’u) (3+2𝑒)
=
𝐴(3+2𝑒)(1βˆ’π‘’)+ 𝐡(1+𝑒)(3+2𝑒)+ 𝐢 (1+𝑒)(1βˆ’π‘’)
(1βˆ’π‘’)(1+𝑒)(3+2𝑒)
βˆ’1 = 𝐴(3 + 2𝑒)(1 βˆ’ 𝑒) + 𝐡(1 + 𝑒)(3 + 2𝑒) + 𝐢 (1 + 𝑒)(1 βˆ’ 𝑒) -------- (b)
Putting, 𝑒 = 1 in (b), we get
1 = 10𝐡
 𝐡 = βˆ’
1
10
Putting, 𝑒 = βˆ’1 in (b), we get
𝐴 = βˆ’
1
2
Putting, 𝑒 = βˆ’
3
2
in (b), we get
𝐢 =
4
5
Now,
𝐼 = ∫
βˆ’π‘‘π‘’
(1+𝑒)(1βˆ’u) (3+2𝑒)
𝐼 = ∫ (
𝐴
(1+𝑒)
+
𝐡
(1βˆ’π‘’)
+
𝐢
(3+2𝑒)
) 𝑑𝑒
𝐼 = ∫
𝐴
(1+𝑒)
𝑑𝑒 + ∫
𝐡
(1βˆ’π‘’)
𝑑𝑒 + ∫
𝐢
(3+2𝑒)
𝑑𝑒
𝐼 = 𝐴 ∫
𝑑𝑒
(1+𝑒)
+ 𝐡 ∫
𝑑𝑒
(1βˆ’π‘’)
+ 𝐢 ∫
𝑑𝑒
(3+2𝑒)
𝐼 = 𝐴 log(1 + 𝑒) βˆ’ 𝐡 log(1 βˆ’ 𝑒) +
1
2
𝐢 log(3 + 2𝑒)
𝐼 = βˆ’
1
2
log(cos π‘₯ + 1) +
1
10
log(1 βˆ’ cos π‘₯) +
1
2
ο‚΄
4
5
log(3 + 2 cos π‘₯)
𝐼 = βˆ’
1
2
log(1 + cos π‘₯) +
1
10
log(1 βˆ’ cos π‘₯) +
2
5
log(3 + 2 cos π‘₯)

More Related Content

Similar to Integration Using Partial Fraction or Rational Fraction ( Fully Solved)

Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Nurkhalifah Anwar
Β 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationRai University
Β 
1 ESO - Unit 04 - Exercises 1.4.3. - Integer Multiplication and Division.
1  ESO - Unit 04 - Exercises 1.4.3. - Integer Multiplication and Division.1  ESO - Unit 04 - Exercises 1.4.3. - Integer Multiplication and Division.
1 ESO - Unit 04 - Exercises 1.4.3. - Integer Multiplication and Division.Gogely The Great
Β 
Integration SPM
Integration SPMIntegration SPM
Integration SPMHanini Hamsan
Β 
Ω…Ω„Ψ²Ω…Ψ© Ψ§Ω„Ψ±ΩŠΨ§ΨΆΩŠΨ§Ψͺ للءف Ψ§Ω„Ψ³Ψ§Ψ―Ψ³ Ψ§Ω„ΨͺΨ·Ψ¨ΩŠΩ‚ΩŠ الفءل Ψ§Ω„Ψ§ΩˆΩ„ Ψ§Ω„Ψ§ΨΉΨ―Ψ§Ψ― Ψ§Ω„Ω…Ψ±ΩƒΨ¨Ψ© 2022
 Ω…Ω„Ψ²Ω…Ψ© Ψ§Ω„Ψ±ΩŠΨ§ΨΆΩŠΨ§Ψͺ للءف Ψ§Ω„Ψ³Ψ§Ψ―Ψ³ Ψ§Ω„ΨͺΨ·Ψ¨ΩŠΩ‚ΩŠ الفءل Ψ§Ω„Ψ§ΩˆΩ„ Ψ§Ω„Ψ§ΨΉΨ―Ψ§Ψ― Ψ§Ω„Ω…Ψ±ΩƒΨ¨Ψ© 2022 Ω…Ω„Ψ²Ω…Ψ© Ψ§Ω„Ψ±ΩŠΨ§ΨΆΩŠΨ§Ψͺ للءف Ψ§Ω„Ψ³Ψ§Ψ―Ψ³ Ψ§Ω„ΨͺΨ·Ψ¨ΩŠΩ‚ΩŠ الفءل Ψ§Ω„Ψ§ΩˆΩ„ Ψ§Ω„Ψ§ΨΉΨ―Ψ§Ψ― Ψ§Ω„Ω…Ψ±ΩƒΨ¨Ψ© 2022
Ω…Ω„Ψ²Ω…Ψ© Ψ§Ω„Ψ±ΩŠΨ§ΨΆΩŠΨ§Ψͺ للءف Ψ§Ω„Ψ³Ψ§Ψ―Ψ³ Ψ§Ω„ΨͺΨ·Ψ¨ΩŠΩ‚ΩŠ الفءل Ψ§Ω„Ψ§ΩˆΩ„ Ψ§Ω„Ψ§ΨΉΨ―Ψ§Ψ― Ψ§Ω„Ω…Ψ±ΩƒΨ¨Ψ© 2022anasKhalaf4
Β 
Ω…Ω„Ψ²Ω…Ψ© Ψ§Ω„Ψ±ΩŠΨ§ΨΆΩŠΨ§Ψͺ للءف Ψ§Ω„Ψ³Ψ§Ψ―Ψ³ Ψ§Ω„Ψ§Ψ­ΩŠΨ§Ψ¦ΩŠ الفءل Ψ§Ω„Ψ§ΩˆΩ„
Ω…Ω„Ψ²Ω…Ψ© Ψ§Ω„Ψ±ΩŠΨ§ΨΆΩŠΨ§Ψͺ للءف Ψ§Ω„Ψ³Ψ§Ψ―Ψ³ Ψ§Ω„Ψ§Ψ­ΩŠΨ§Ψ¦ΩŠ الفءل Ψ§Ω„Ψ§ΩˆΩ„Ω…Ω„Ψ²Ω…Ψ© Ψ§Ω„Ψ±ΩŠΨ§ΨΆΩŠΨ§Ψͺ للءف Ψ§Ω„Ψ³Ψ§Ψ―Ψ³ Ψ§Ω„Ψ§Ψ­ΩŠΨ§Ψ¦ΩŠ الفءل Ψ§Ω„Ψ§ΩˆΩ„
Ω…Ω„Ψ²Ω…Ψ© Ψ§Ω„Ψ±ΩŠΨ§ΨΆΩŠΨ§Ψͺ للءف Ψ§Ω„Ψ³Ψ§Ψ―Ψ³ Ψ§Ω„Ψ§Ψ­ΩŠΨ§Ψ¦ΩŠ الفءل Ψ§Ω„Ψ§ΩˆΩ„anasKhalaf4
Β 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variablesSanthanam Krishnan
Β 
1 ESO - Unit 04 - Exercises 1.4.2. - Adding and Subtracting Integers
1 ESO - Unit 04 - Exercises 1.4.2. - Adding and Subtracting Integers1 ESO - Unit 04 - Exercises 1.4.2. - Adding and Subtracting Integers
1 ESO - Unit 04 - Exercises 1.4.2. - Adding and Subtracting IntegersGogely The Great
Β 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfAnuBajpai5
Β 
КомплСкс Ρ‚ΠΎΠΎ Ρ†ΡƒΠ²Ρ€Π°Π» хичээл-2
КомплСкс Ρ‚ΠΎΠΎ Ρ†ΡƒΠ²Ρ€Π°Π» хичээл-2КомплСкс Ρ‚ΠΎΠΎ Ρ†ΡƒΠ²Ρ€Π°Π» хичээл-2
КомплСкс Ρ‚ΠΎΠΎ Ρ†ΡƒΠ²Ρ€Π°Π» хичээл-2ΠœΠ°Ρ€Ρ‚
Β 
Tugas 5.6 kalkulus aplikasi integral tentu (luas bidang datar)
Tugas 5.6 kalkulus aplikasi integral tentu (luas bidang datar)Tugas 5.6 kalkulus aplikasi integral tentu (luas bidang datar)
Tugas 5.6 kalkulus aplikasi integral tentu (luas bidang datar)Nurkhalifah Anwar
Β 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau
Β 
Functions ppt Dr Frost Maths Mixed questions
Functions ppt Dr Frost Maths Mixed questionsFunctions ppt Dr Frost Maths Mixed questions
Functions ppt Dr Frost Maths Mixed questionsgcutbill
Β 
Hw5sols
Hw5solsHw5sols
Hw5solsDulaj Rox
Β 
taller transformaciones lineales
taller transformaciones linealestaller transformaciones lineales
taller transformaciones linealesemojose107
Β 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSRai University
Β 
FOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxFOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxjyotidighole2
Β 

Similar to Integration Using Partial Fraction or Rational Fraction ( Fully Solved) (20)

Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)Latihan 8.3 Thomas (Kalkulus Integral)
Latihan 8.3 Thomas (Kalkulus Integral)
Β 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
Β 
1 ESO - Unit 04 - Exercises 1.4.3. - Integer Multiplication and Division.
1  ESO - Unit 04 - Exercises 1.4.3. - Integer Multiplication and Division.1  ESO - Unit 04 - Exercises 1.4.3. - Integer Multiplication and Division.
1 ESO - Unit 04 - Exercises 1.4.3. - Integer Multiplication and Division.
Β 
Integration SPM
Integration SPMIntegration SPM
Integration SPM
Β 
Integral calculus
Integral calculusIntegral calculus
Integral calculus
Β 
Ω…Ω„Ψ²Ω…Ψ© Ψ§Ω„Ψ±ΩŠΨ§ΨΆΩŠΨ§Ψͺ للءف Ψ§Ω„Ψ³Ψ§Ψ―Ψ³ Ψ§Ω„ΨͺΨ·Ψ¨ΩŠΩ‚ΩŠ الفءل Ψ§Ω„Ψ§ΩˆΩ„ Ψ§Ω„Ψ§ΨΉΨ―Ψ§Ψ― Ψ§Ω„Ω…Ψ±ΩƒΨ¨Ψ© 2022
 Ω…Ω„Ψ²Ω…Ψ© Ψ§Ω„Ψ±ΩŠΨ§ΨΆΩŠΨ§Ψͺ للءف Ψ§Ω„Ψ³Ψ§Ψ―Ψ³ Ψ§Ω„ΨͺΨ·Ψ¨ΩŠΩ‚ΩŠ الفءل Ψ§Ω„Ψ§ΩˆΩ„ Ψ§Ω„Ψ§ΨΉΨ―Ψ§Ψ― Ψ§Ω„Ω…Ψ±ΩƒΨ¨Ψ© 2022 Ω…Ω„Ψ²Ω…Ψ© Ψ§Ω„Ψ±ΩŠΨ§ΨΆΩŠΨ§Ψͺ للءف Ψ§Ω„Ψ³Ψ§Ψ―Ψ³ Ψ§Ω„ΨͺΨ·Ψ¨ΩŠΩ‚ΩŠ الفءل Ψ§Ω„Ψ§ΩˆΩ„ Ψ§Ω„Ψ§ΨΉΨ―Ψ§Ψ― Ψ§Ω„Ω…Ψ±ΩƒΨ¨Ψ© 2022
Ω…Ω„Ψ²Ω…Ψ© Ψ§Ω„Ψ±ΩŠΨ§ΨΆΩŠΨ§Ψͺ للءف Ψ§Ω„Ψ³Ψ§Ψ―Ψ³ Ψ§Ω„ΨͺΨ·Ψ¨ΩŠΩ‚ΩŠ الفءل Ψ§Ω„Ψ§ΩˆΩ„ Ψ§Ω„Ψ§ΨΉΨ―Ψ§Ψ― Ψ§Ω„Ω…Ψ±ΩƒΨ¨Ψ© 2022
Β 
Ω…Ω„Ψ²Ω…Ψ© Ψ§Ω„Ψ±ΩŠΨ§ΨΆΩŠΨ§Ψͺ للءف Ψ§Ω„Ψ³Ψ§Ψ―Ψ³ Ψ§Ω„Ψ§Ψ­ΩŠΨ§Ψ¦ΩŠ الفءل Ψ§Ω„Ψ§ΩˆΩ„
Ω…Ω„Ψ²Ω…Ψ© Ψ§Ω„Ψ±ΩŠΨ§ΨΆΩŠΨ§Ψͺ للءف Ψ§Ω„Ψ³Ψ§Ψ―Ψ³ Ψ§Ω„Ψ§Ψ­ΩŠΨ§Ψ¦ΩŠ الفءل Ψ§Ω„Ψ§ΩˆΩ„Ω…Ω„Ψ²Ω…Ψ© Ψ§Ω„Ψ±ΩŠΨ§ΨΆΩŠΨ§Ψͺ للءف Ψ§Ω„Ψ³Ψ§Ψ―Ψ³ Ψ§Ω„Ψ§Ψ­ΩŠΨ§Ψ¦ΩŠ الفءل Ψ§Ω„Ψ§ΩˆΩ„
Ω…Ω„Ψ²Ω…Ψ© Ψ§Ω„Ψ±ΩŠΨ§ΨΆΩŠΨ§Ψͺ للءف Ψ§Ω„Ψ³Ψ§Ψ―Ψ³ Ψ§Ω„Ψ§Ψ­ΩŠΨ§Ψ¦ΩŠ الفءل Ψ§Ω„Ψ§ΩˆΩ„
Β 
Functions of severable variables
Functions of severable variablesFunctions of severable variables
Functions of severable variables
Β 
Taller 1 parcial 3
Taller 1 parcial 3Taller 1 parcial 3
Taller 1 parcial 3
Β 
1 ESO - Unit 04 - Exercises 1.4.2. - Adding and Subtracting Integers
1 ESO - Unit 04 - Exercises 1.4.2. - Adding and Subtracting Integers1 ESO - Unit 04 - Exercises 1.4.2. - Adding and Subtracting Integers
1 ESO - Unit 04 - Exercises 1.4.2. - Adding and Subtracting Integers
Β 
Maths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdfMaths-MS_Term2 (1).pdf
Maths-MS_Term2 (1).pdf
Β 
КомплСкс Ρ‚ΠΎΠΎ Ρ†ΡƒΠ²Ρ€Π°Π» хичээл-2
КомплСкс Ρ‚ΠΎΠΎ Ρ†ΡƒΠ²Ρ€Π°Π» хичээл-2КомплСкс Ρ‚ΠΎΠΎ Ρ†ΡƒΠ²Ρ€Π°Π» хичээл-2
КомплСкс Ρ‚ΠΎΠΎ Ρ†ΡƒΠ²Ρ€Π°Π» хичээл-2
Β 
Tugas 5.6 kalkulus aplikasi integral tentu (luas bidang datar)
Tugas 5.6 kalkulus aplikasi integral tentu (luas bidang datar)Tugas 5.6 kalkulus aplikasi integral tentu (luas bidang datar)
Tugas 5.6 kalkulus aplikasi integral tentu (luas bidang datar)
Β 
Calculo
CalculoCalculo
Calculo
Β 
Paul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel ProblemPaul Bleau Calc III Project 2 - Basel Problem
Paul Bleau Calc III Project 2 - Basel Problem
Β 
Functions ppt Dr Frost Maths Mixed questions
Functions ppt Dr Frost Maths Mixed questionsFunctions ppt Dr Frost Maths Mixed questions
Functions ppt Dr Frost Maths Mixed questions
Β 
Hw5sols
Hw5solsHw5sols
Hw5sols
Β 
taller transformaciones lineales
taller transformaciones linealestaller transformaciones lineales
taller transformaciones lineales
Β 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
Β 
FOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptxFOURIER SERIES Presentation of given functions.pptx
FOURIER SERIES Presentation of given functions.pptx
Β 

Recently uploaded

Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
Β 
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
Β 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
Β 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
Β 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)Dr. Mazin Mohamed alkathiri
Β 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
Β 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
Β 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
Β 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
Β 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
Β 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
Β 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
Β 
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdfssuser54595a
Β 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
Β 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
Β 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
Β 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
Β 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
Β 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
Β 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
Β 

Recently uploaded (20)

Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
Β 
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
Β 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
Β 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
Β 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
Β 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
Β 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
Β 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
Β 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
Β 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
Β 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
Β 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
Β 
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAΠ‘Y_INDEX-DM_23-1-final-eng.pdf
Β 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
Β 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
Β 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
Β 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
Β 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
Β 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
Β 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Β 

Integration Using Partial Fraction or Rational Fraction ( Fully Solved)

  • 1. Rational Fractions {π‘€π‘’π‘‘β„Žπ‘œπ‘‘ π‘œπ‘“ π‘π‘Ÿπ‘’π‘Žπ‘˜π‘–π‘›π‘” 𝑒𝑝 π‘–π‘›π‘‘π‘œ π‘π‘Žπ‘Ÿπ‘‘π‘–π‘Žπ‘™ π‘“π‘Ÿπ‘Žπ‘π‘‘π‘–π‘œπ‘›π‘ } Factor in the denominator Corresponding partial fraction (i) (π‘₯ βˆ’ π‘Ž) (ii) (π‘₯ βˆ’ 𝑏)2 (iii) (π‘₯ βˆ’ 𝑐)3 (iv) (π‘Žπ‘₯2 + 𝑏π‘₯ + 𝑐) (i) 𝐴 (π‘₯βˆ’π‘Ž) (ii) 𝐴 (π‘₯βˆ’π‘) + 𝐡 (π‘₯βˆ’π‘)2 (iii) 𝐴 (π‘₯βˆ’π‘) + 𝐡 (π‘₯βˆ’π‘)2 + 𝐢 (π‘₯βˆ’π‘)3 (iv) 𝐴π‘₯+𝐡 (π‘Žπ‘₯2+ 𝑏π‘₯+𝑐) Exercise .A Integrate the following: 1. ∫ (π‘₯βˆ’1)𝑑π‘₯ (π‘₯βˆ’2)(π‘₯βˆ’3) Solution: Let 𝐼 = ∫ (π‘₯βˆ’1)𝑑π‘₯ (π‘₯βˆ’2)(π‘₯βˆ’3) Let (π‘₯βˆ’1) (π‘₯βˆ’2)(π‘₯βˆ’3) = 𝐴 (π‘₯βˆ’2) + 𝐡 (π‘₯βˆ’3) ---------- (a) (π‘₯βˆ’1) (π‘₯βˆ’2)(π‘₯βˆ’3) = 𝐴(π‘₯βˆ’3)+ 𝐡(π‘₯βˆ’2) (π‘₯βˆ’2)(π‘₯βˆ’3)  (π‘₯ βˆ’ 1) = 𝐴(π‘₯ βˆ’ 3) + 𝐡(π‘₯ βˆ’ 2) -------- (b) Putting π‘₯ = 2 and π‘₯ = 3 in equation (b), we get 𝐴 = βˆ’1 and 𝐡 = 2 Now, 𝐼 = ∫ (π‘₯βˆ’1)𝑑π‘₯ (π‘₯βˆ’2)(π‘₯βˆ’3) 𝐼 = ∫ { 𝐴 (π‘₯βˆ’2) + 𝐡 (π‘₯βˆ’3) } 𝑑π‘₯ Using (a) 𝐼 = ∫ 𝐴 (π‘₯βˆ’2) 𝑑π‘₯ + ∫ 𝐡 (π‘₯βˆ’3) 𝑑π‘₯
  • 2. 𝐼 = 𝐴 ∫ 𝑑π‘₯ (π‘₯βˆ’2) + 𝐡 ∫ 𝑑π‘₯ (π‘₯βˆ’3) 𝐼 = 𝐴 log(π‘₯ βˆ’ 2) + 𝐡 log(π‘₯ βˆ’ 3) 𝐼 = βˆ’log(π‘₯ βˆ’ 2) + 2 log(π‘₯ βˆ’ 3) 𝐼 = 2 log(π‘₯ βˆ’ 3) βˆ’ log(π‘₯ βˆ’ 2) 2. ∫ π‘₯ 𝑑π‘₯ (π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘) Solution: Let 𝐼 = ∫ π‘₯ 𝑑π‘₯ (π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘) Let, π‘₯ (π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘) = 𝐴 (π‘₯βˆ’π‘Ž) + 𝐡 (π‘₯βˆ’π‘) ---------- (a) π‘₯ (π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘) = 𝐴(π‘₯βˆ’π‘)+ 𝐡 (π‘₯βˆ’π‘Ž) (π‘₯βˆ’π‘Ž) (π‘₯βˆ’π‘) π‘₯ = 𝐴(π‘₯ βˆ’ 𝑏) + 𝐡 (π‘₯ βˆ’ π‘Ž) ----------- (b) Putting π‘₯ = π‘Ž and π‘₯ = 𝑏 in (b), we get 𝐴 = π‘Ž (π‘Žβˆ’π‘) and 𝐡 = 𝑏 (π‘βˆ’π‘Ž) π‘π‘œπ‘€, 𝐼 = ∫ π‘₯ 𝑑π‘₯ (π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘) 𝐼 = ∫ { 𝐴 (π‘₯βˆ’π‘Ž) + 𝐡 (π‘₯βˆ’π‘) } 𝑑π‘₯ Using (a) 𝐼 = ∫ 𝐴 (π‘₯βˆ’π‘Ž) 𝑑π‘₯ + ∫ 𝐡 (π‘₯βˆ’π‘) 𝑑π‘₯ 𝐼 = 𝐴 ∫ 𝑑π‘₯ (π‘₯βˆ’π‘Ž) + 𝐡 ∫ 𝑑π‘₯ (π‘₯βˆ’π‘) 𝐼 = π‘Ž (π‘Žβˆ’π‘) ∫ 𝑑π‘₯ (π‘₯βˆ’π‘Ž) + 𝑏 (π‘βˆ’π‘Ž) ∫ 𝑑π‘₯ (π‘₯βˆ’π‘) 𝐼 = π‘Ž (π‘Žβˆ’π‘) log(π‘₯ βˆ’ π‘Ž) + 𝑏 βˆ’(π‘Žβˆ’π‘) log(π‘₯ βˆ’ 𝑏) 𝐼 = 1 (π‘Žβˆ’π‘) (π‘Ž log(π‘₯ βˆ’ π‘Ž) βˆ’ 𝑏 log(π‘₯ βˆ’ 𝑏)) 3. ∫ (π‘₯βˆ’1) 𝑑π‘₯ (π‘₯+2)(π‘₯βˆ’3) Solution: Let 𝐼 = ∫ (π‘₯βˆ’1) 𝑑π‘₯ (π‘₯+2)(π‘₯βˆ’3)
  • 3. Let, (π‘₯βˆ’1) (π‘₯+2)(π‘₯βˆ’3) = 𝐴 (π‘₯+2) + 𝐡 (π‘₯βˆ’3) -------- (a) (π‘₯βˆ’1) (π‘₯+2)(π‘₯βˆ’3) = 𝐴(π‘₯βˆ’3)+ 𝐡(π‘₯+2) (π‘₯+2)(π‘₯βˆ’3) (π‘₯ βˆ’ 1) = 𝐴(π‘₯ βˆ’ 3) + 𝐡(π‘₯ + 2) --------- (b) Putting π‘₯ = 3 and π‘₯ = βˆ’2 in equation (b), we get 𝐴 = 3 5 and 𝐡 = 2 5 Now, 𝐼 = ∫ (π‘₯βˆ’1) 𝑑π‘₯ (π‘₯+2)(π‘₯βˆ’3) 𝐼 = ∫ ( 𝐴 (π‘₯+2) + 𝐡 (π‘₯βˆ’3) ) 𝑑π‘₯ Using (a) 𝐼 = ∫ 𝐴 (π‘₯+2) 𝑑π‘₯ + ∫ 𝐡 (π‘₯βˆ’3) 𝑑π‘₯ 𝐼 = 𝐴 ∫ 𝑑π‘₯ (π‘₯+2) + 𝐡 ∫ 𝑑π‘₯ (π‘₯βˆ’3) 𝐼 = 3 5 ∫ 𝑑π‘₯ (π‘₯+2) + 2 5 ∫ 𝑑π‘₯ (π‘₯βˆ’3) 𝐼 = 3 5 log(π‘₯ + 2) + 2 5 log(π‘₯ βˆ’ 3) 𝐼 = 1 5 (3 log(π‘₯ + 2) + 2 log(π‘₯ βˆ’ 3)) 4. (i) ∫ π‘₯ 𝑑π‘₯ π‘₯2βˆ’12π‘₯+35 (ii) ∫ 3π‘₯ 𝑑π‘₯ π‘₯2βˆ’ π‘₯βˆ’2 (i) Solution: Let 𝐼 = ∫ 𝑑π‘₯ π‘₯2βˆ’12π‘₯+35 𝐼 = ∫ π‘₯ 𝑑π‘₯ π‘₯2βˆ’7π‘₯βˆ’5π‘₯+35 𝐼 = ∫ π‘₯ 𝑑π‘₯ π‘₯(π‘₯βˆ’7)βˆ’5(π‘₯βˆ’7) 𝐼 = ∫ π‘₯ 𝑑π‘₯ (π‘₯βˆ’5)(π‘₯βˆ’7) Let, π‘₯ (π‘₯βˆ’5)(π‘₯βˆ’7) = 𝐴 (π‘₯βˆ’5) + 𝐡 (π‘₯βˆ’7) -------- (a) π‘₯ (π‘₯βˆ’5)(π‘₯βˆ’7) = 𝐴 (π‘₯βˆ’7)+ 𝐡 (π‘₯βˆ’5) (π‘₯βˆ’5) π‘₯ = 𝐴 (π‘₯ βˆ’ 7) + 𝐡 (π‘₯ βˆ’ 5) ------------ (b)
  • 4. Putting π‘₯ = 7 and π‘₯ = 5 in equation (b), we get 𝐴 = βˆ’ 5 2 and 𝐡 = 7 2 Now, 𝐼 = ∫ π‘₯ 𝑑π‘₯ (π‘₯βˆ’5)(π‘₯βˆ’7) 𝐼 = ∫ ( 𝐴 (π‘₯βˆ’5) + 𝐡 (π‘₯βˆ’7) ) 𝑑π‘₯ Using (a) 𝐼 = ∫ 𝐴 (π‘₯βˆ’5) 𝑑π‘₯ + ∫ 𝐡 (π‘₯βˆ’7) 𝑑π‘₯ 𝐼 = 𝐴 ∫ 𝑑π‘₯ (π‘₯βˆ’5) + 𝐡 ∫ 𝑑π‘₯ (π‘₯βˆ’7) 𝐼 = βˆ’ 5 2 ∫ 𝑑π‘₯ (π‘₯βˆ’5) + 7 2 ∫ 𝑑π‘₯ (π‘₯βˆ’7) 𝐼 = βˆ’ 5 2 log(π‘₯ βˆ’ 5) + 7 2 log(π‘₯ βˆ’ 7) 𝐼 = 1 2 (7 log(π‘₯ βˆ’ 7) βˆ’5log(π‘₯ βˆ’ 5)) (ii) Solution: Let 𝐼 = ∫ 3π‘₯ 𝑑π‘₯ π‘₯2βˆ’ π‘₯βˆ’2 𝐼 = ∫ 3π‘₯ 𝑑π‘₯ π‘₯2βˆ’2 π‘₯+π‘₯βˆ’2 𝐼 = ∫ 3π‘₯ 𝑑π‘₯ π‘₯(π‘₯βˆ’2)+1(π‘₯βˆ’2) 𝐼 = ∫ 3π‘₯ 𝑑π‘₯ (π‘₯+1)(π‘₯βˆ’2) Let, 3π‘₯ (π‘₯+1)(π‘₯βˆ’2) = 𝐴 (π‘₯+1) + 𝐡 (π‘₯βˆ’2) ------ (a) 3π‘₯ (π‘₯+1)(π‘₯βˆ’2) = 𝐴(π‘₯βˆ’2)+ 𝐡(π‘₯+1) (π‘₯+1)(π‘₯βˆ’2) 3π‘₯ = 𝐴(π‘₯ βˆ’ 2) + 𝐡(π‘₯ + 1) -------- (b) Putting π‘₯ = 2 and π‘₯ = βˆ’1, we get 𝐴 = 1 and 𝐡 = 2 Now, 𝐼 = ∫ 3π‘₯ 𝑑π‘₯ (π‘₯+1)(π‘₯βˆ’2) 𝐼 = ∫ ( 𝐴 (π‘₯+1) + 𝐡 (π‘₯βˆ’2) ) 𝑑π‘₯
  • 5. 𝐼 = ∫ 𝐴 (π‘₯+1) 𝑑π‘₯ + ∫ 𝐡 (π‘₯βˆ’2) 𝑑π‘₯ 𝐼 = 𝐴 ∫ 𝑑π‘₯ (π‘₯+1) + 𝐡 ∫ 𝑑π‘₯ (π‘₯βˆ’2) 𝐼 = ∫ 𝑑π‘₯ (π‘₯+1) + 2 ∫ 𝑑π‘₯ (π‘₯βˆ’2) 𝐼 = log(π‘₯ + 1) + 2 log(π‘₯ βˆ’ 2) 𝐼 = log(π‘₯ + 1) + log(π‘₯ βˆ’ 2)2 𝐼 = log{(π‘₯ βˆ’ 2)2(π‘₯ + 1)} 5. ∫ π‘₯2 𝑑π‘₯ (π‘₯βˆ’1)(π‘₯βˆ’2)(π‘₯βˆ’3) Solution: Let 𝐼 = ∫ π‘₯2 𝑑π‘₯ (π‘₯βˆ’1)(π‘₯βˆ’2)(π‘₯βˆ’3) Let, π‘₯2 (π‘₯βˆ’1)(π‘₯βˆ’2)(π‘₯βˆ’3) = 𝐴 (π‘₯βˆ’1) + 𝐡 (π‘₯βˆ’2) + 𝐢 (π‘₯βˆ’3) -------- (a) π‘₯2 (π‘₯βˆ’1)(π‘₯βˆ’2)(π‘₯βˆ’3) = 𝐴(π‘₯βˆ’2)(π‘₯βˆ’3)+ 𝐡(π‘₯βˆ’1)(π‘₯βˆ’3) + 𝐢(π‘₯βˆ’1)(π‘₯βˆ’2) (π‘₯βˆ’1)(π‘₯βˆ’2)(π‘₯βˆ’3) π‘₯2 = 𝐴(π‘₯ βˆ’ 2)(π‘₯ βˆ’ 3) + 𝐡(π‘₯ βˆ’ 1)(π‘₯ βˆ’ 3) + 𝐢(π‘₯ βˆ’ 1)(π‘₯ βˆ’ 2) -------- (b) Putting π‘₯ = 1 , π‘₯ = 2 and π‘₯ = 3 in equation (b), we get 𝐴 = 1 2 , 𝐡 = βˆ’4 and 𝐢 = 9 2 Now, 𝐼 = ∫ π‘₯2 𝑑π‘₯ (π‘₯βˆ’1)(π‘₯βˆ’2)(π‘₯βˆ’3) 𝐼 = ∫ ( 𝐴 (π‘₯βˆ’1) + 𝐡 (π‘₯βˆ’2) + 𝐢 (π‘₯βˆ’3) ) 𝑑π‘₯ 𝐼 = ∫ 𝐴 (π‘₯βˆ’1) 𝑑π‘₯ + ∫ 𝐡 (π‘₯βˆ’2) 𝑑π‘₯ + ∫ 𝐢 (π‘₯βˆ’3) 𝑑π‘₯ 𝐼 = 𝐴 ∫ 𝑑π‘₯ (π‘₯βˆ’1) + 𝐡 ∫ 𝑑π‘₯ (π‘₯βˆ’2) + 𝐢 ∫ 𝑑π‘₯ (π‘₯βˆ’3) 𝐼 = 𝐴 log(π‘₯ βˆ’ 1) + 𝐡 log(π‘₯ βˆ’ 2) + 𝐢 log(π‘₯ βˆ’ 3) 𝐼 = 1 2 log(π‘₯ βˆ’ 1) βˆ’ 4 log(π‘₯ βˆ’ 2) + 9 2 log(π‘₯ βˆ’ 3) 𝑛 log π‘₯ = log π‘₯𝑛 log 𝐴 + log 𝐡 = log 𝐴𝐡
  • 6. 6. (i) ∫ (2π‘₯+3) 𝑑π‘₯ π‘₯3+π‘₯2βˆ’ 2π‘₯ (ii) ∫ (π‘₯2+1)𝑑π‘₯ π‘₯(π‘₯2βˆ’1) (i) Solution: Let 𝐼 = ∫ (2π‘₯+3) 𝑑π‘₯ π‘₯3+π‘₯2βˆ’ 2π‘₯ 𝐼 = ∫ (2π‘₯+3) 𝑑π‘₯ π‘₯(π‘₯2+π‘₯βˆ’2) 𝐼 = ∫ (2π‘₯+3) 𝑑π‘₯ π‘₯(π‘₯2+2π‘₯βˆ’π‘₯βˆ’2) 𝐼 = ∫ (2π‘₯+3) 𝑑π‘₯ π‘₯{π‘₯(π‘₯+2)βˆ’1(π‘₯+2)} 𝐼 = ∫ (2π‘₯+3) 𝑑π‘₯ π‘₯{(π‘₯βˆ’1)(π‘₯+2)} 𝐼 = ∫ (2π‘₯+3) 𝑑π‘₯ π‘₯ (π‘₯βˆ’1)(π‘₯+2) Let, (2π‘₯+3) π‘₯ (π‘₯βˆ’1)(π‘₯+2) = 𝐴 π‘₯ + 𝐡 (π‘₯βˆ’1) + 𝐢 (π‘₯+2) ------- (a) (2π‘₯+3) π‘₯ (π‘₯βˆ’1)(π‘₯+2) = 𝐴 (π‘₯βˆ’1)(π‘₯+2)+ 𝐡 π‘₯ (π‘₯+2)+ 𝐢 π‘₯ (π‘₯βˆ’1) π‘₯ (π‘₯βˆ’1)(π‘₯+2) (2π‘₯ + 3) = 𝐴 (π‘₯ βˆ’ 1)(π‘₯ + 2) + 𝐡 π‘₯ (π‘₯ + 2) + 𝐢 π‘₯ (π‘₯ βˆ’ 1) ----- (b) Putting, = 1 , π‘₯ = βˆ’2 and π‘₯ = 0 in equation (b), we get 𝐴 = βˆ’ 3 2 , 𝐡 = 5 3 and 𝐢 = βˆ’ 1 6 π‘π‘œπ‘€, 𝐼 = ∫ (2π‘₯+3) 𝑑π‘₯ π‘₯ (π‘₯βˆ’1)(π‘₯+2) 𝐼 = ∫ { 𝐴 π‘₯ + 𝐡 (π‘₯βˆ’1) + 𝐢 (π‘₯+2) } 𝑑π‘₯ 𝐼 = ∫ 𝐴 π‘₯ 𝑑π‘₯ + ∫ 𝐡 (π‘₯βˆ’1) 𝑑π‘₯ + ∫ 𝐢 (π‘₯+2) 𝑑π‘₯ 𝐼 = 𝐴 ∫ 𝑑π‘₯ π‘₯ + 𝐡 ∫ 𝑑π‘₯ (π‘₯βˆ’1) + 𝐢 ∫ 𝑑π‘₯ (π‘₯+2) 𝐼 = 𝐴 log π‘₯ + 𝐡 log(π‘₯ βˆ’ 1) + 𝐢 log(π‘₯ + 2) 𝐼 = βˆ’ 3 2 log π‘₯ + 5 3 log(π‘₯ βˆ’ 1) βˆ’ 1 6 log(π‘₯ + 2) 𝐼 = 5 3 log(π‘₯ βˆ’ 1) βˆ’ 3 2 log π‘₯ βˆ’ 1 6 log(π‘₯ + 2)
  • 7. (ii) Solution: Let 𝐼 = ∫ (π‘₯2+1)𝑑π‘₯ π‘₯(π‘₯2βˆ’1) 𝐼 = ∫ (π‘₯2+1)𝑑π‘₯ π‘₯{(π‘₯+1)(π‘₯βˆ’1)} 𝐼 = ∫ (π‘₯2+1)𝑑π‘₯ π‘₯ (π‘₯+1)(π‘₯βˆ’1) Let, (π‘₯2+1) π‘₯ (π‘₯+1)(π‘₯βˆ’1) = 𝐴 π‘₯ + 𝐡 (π‘₯+1) + 𝐢 (π‘₯βˆ’1) ----------- (a) (π‘₯2+1) π‘₯ (π‘₯+1)(π‘₯βˆ’1) = 𝐴 (π‘₯+1)(π‘₯βˆ’1)+ 𝐡 π‘₯ (π‘₯βˆ’1)+ 𝐢 π‘₯ (π‘₯+1) π‘₯ (π‘₯+1)(π‘₯βˆ’1) (π‘₯2 + 1) = 𝐴 (π‘₯ + 1)(π‘₯ βˆ’ 1) + 𝐡 π‘₯ (π‘₯ βˆ’ 1) + 𝐢 π‘₯ (π‘₯ + 1) ---------- (b) Putting, π‘₯ = 0, π‘₯ = 1 and π‘₯ = βˆ’1 in equation (b), we get 𝐴 = βˆ’1 , 𝐡 = 1 and 𝐢 = 1 Now, 𝐼 = ∫ (π‘₯2+1)𝑑π‘₯ π‘₯ (π‘₯+1)(π‘₯βˆ’1) 𝐼 = ∫ { 𝐴 π‘₯ + 𝐡 (π‘₯+1) + 𝐢 (π‘₯βˆ’1) } 𝑑π‘₯ 𝐼 = ∫ 𝐴 π‘₯ 𝑑π‘₯ + ∫ 𝐡 (π‘₯+1) 𝑑π‘₯ + ∫ 𝐢 (π‘₯βˆ’1) 𝑑π‘₯ 𝐼 = 𝐴 ∫ 𝑑π‘₯ π‘₯ + 𝐡 ∫ 𝑑π‘₯ (π‘₯+1) + 𝐢 ∫ 𝑑π‘₯ (π‘₯βˆ’1) 𝐼 = 𝐴 log π‘₯ + 𝐡 log(π‘₯ + 1) + 𝐢 log(π‘₯ βˆ’ 1) 𝐼 = βˆ’log π‘₯ + log(π‘₯ + 1) + log(π‘₯ βˆ’ 1) 𝐼 = βˆ’log π‘₯ + log{(π‘₯ + 1)(π‘₯ βˆ’ 1)} 𝐼 = βˆ’log π‘₯ + log{(π‘₯2 βˆ’ 1)} 𝐼 = βˆ’log π‘₯ + log(π‘₯2 βˆ’ 1) 𝐼 = log(π‘₯2 βˆ’ 1) βˆ’ log π‘₯ 7. (i) ∫ π‘₯3 𝑑π‘₯ π‘₯2+ 7π‘₯+12 (ii) ∫ (π‘₯βˆ’1)(π‘₯βˆ’5) (π‘₯βˆ’2)(π‘₯βˆ’4) 𝑑π‘₯ log 𝐴 + log 𝐡 = log 𝐴𝐡
  • 8. (i) Solution: Let 𝐼 = ∫ π‘₯3 𝑑π‘₯ π‘₯2+ 7π‘₯+12 𝐼 = ∫ π‘₯3 π‘₯2+ 7π‘₯ + 12 𝑑π‘₯ 𝐼 = ∫ (π‘₯ βˆ’ 7 + 37π‘₯+84 π‘₯2+ 7π‘₯ + 12 ) 𝑑π‘₯ 𝐼 = ∫ π‘₯ 𝑑π‘₯ βˆ’ 7 ∫ 𝑑π‘₯ + ∫ 37π‘₯+84 π‘₯2+ 7π‘₯ + 12 𝑑π‘₯ 𝐼 = 1 2 π‘₯2 βˆ’ 7π‘₯ + ∫ 37π‘₯+84 π‘₯2+ 7π‘₯ + 12 𝑑π‘₯ 𝐼 = 1 2 π‘₯2 βˆ’ 7π‘₯ + ∫ 37π‘₯+84 π‘₯2+ 3π‘₯+4π‘₯+12 𝑑π‘₯ 𝐼 = 1 2 π‘₯2 βˆ’ 7π‘₯ + ∫ 37π‘₯+84 (π‘₯+3)(π‘₯+4) 𝑑π‘₯ Let, 37π‘₯+84 (π‘₯+3)(π‘₯+4) = 𝐴 (π‘₯+3) + 𝐡 (π‘₯+4) ----------- (a) 37π‘₯+84 (π‘₯+3)(π‘₯+4) = 𝐴(π‘₯+4)+ 𝐡 (π‘₯+3) (π‘₯+3) (π‘₯+4) 37π‘₯ + 84 = 𝐴(π‘₯ + 4) + 𝐡 (π‘₯ + 3) ---------- (b) 𝑃𝑒𝑑𝑑𝑖𝑛𝑔, π‘₯ = βˆ’3 and π‘₯ = βˆ’4 in equation (b), we get 𝐴 = βˆ’27 and 𝐡 = 64 Now, 𝐼 = 1 2 π‘₯2 βˆ’ 7π‘₯ + ∫ 37π‘₯+84 (π‘₯+3)(π‘₯+4) 𝑑π‘₯ 𝐼 = 1 2 π‘₯2 βˆ’ 7π‘₯ + ∫ ( 𝐴 (π‘₯+3) + 𝐡 (π‘₯+4) ) 𝑑π‘₯ 𝐼 = 1 2 π‘₯2 βˆ’ 7π‘₯ + ∫ 𝐴 (π‘₯+3) 𝑑π‘₯ + ∫ 𝐡 (π‘₯+4) 𝑑π‘₯ 𝐼 = 1 2 π‘₯2 βˆ’ 7π‘₯ + 𝐴 ∫ 𝑑π‘₯ (π‘₯+3) + 𝐡 ∫ 𝑑π‘₯ (π‘₯+4) 𝐼 = 1 2 π‘₯2 βˆ’ 7π‘₯ + 𝐴 log(π‘₯ + 3) + 𝐡 log(π‘₯ + 4) 𝐼 = 1 2 π‘₯2 βˆ’ 7π‘₯ βˆ’ 27 log(π‘₯ + 3) + 64 log(π‘₯ + 4) (ii) Solution: Let 𝐼 = ∫ (π‘₯βˆ’1)(π‘₯βˆ’5) (π‘₯βˆ’2)(π‘₯βˆ’4) 𝑑π‘₯ 𝐼 = ∫ π‘₯2βˆ’6π‘₯+5 π‘₯2βˆ’6π‘₯+8 𝑑π‘₯ π‘₯2 + 7π‘₯ + 12 ⟌π‘₯3 ( π‘₯ βˆ’ 7 π‘₯3 + 7π‘₯2 + 12π‘₯ _____________________ βˆ’7π‘₯2 βˆ’ 12π‘₯ βˆ’7π‘₯2 βˆ’ 49π‘₯ βˆ’ 84 _________________________ 37π‘₯ + 84
  • 9. 𝐼 = ∫ ( π‘₯2βˆ’6π‘₯+8 π‘₯2βˆ’6π‘₯+8 βˆ’ 3 π‘₯2βˆ’6π‘₯+8 ) 𝑑π‘₯ 𝐼 = ∫ (1 βˆ’ 3 π‘₯2βˆ’6π‘₯+8 ) 𝑑π‘₯ 𝐼 = ∫ 1 𝑑π‘₯ βˆ’ ∫ 3 π‘₯2βˆ’6π‘₯+8 𝑑π‘₯ 𝐼 = π‘₯ βˆ’ 3 ∫ 1 π‘₯2βˆ’6π‘₯+8 𝑑π‘₯ 𝐼 = π‘₯ βˆ’ 3 ∫ 1 (π‘₯βˆ’2)(π‘₯βˆ’4) 𝑑π‘₯ Take, 1 (π‘₯βˆ’2)(π‘₯βˆ’4) = 𝐴 (π‘₯βˆ’2) + 𝐡 (π‘₯βˆ’4) ----------- (a) 1 (π‘₯βˆ’2)(π‘₯βˆ’4) = 𝐴 (π‘₯βˆ’4) +𝐡 (π‘₯βˆ’2) (π‘₯βˆ’2) 1 = 𝐴 (π‘₯ βˆ’ 4) + 𝐡 (π‘₯ βˆ’ 2) ------------- (b) Putting, π‘₯ = 2 and π‘₯ = 4, we get 𝐴 = βˆ’ 1 2 and 𝐡 = 1 2 Now, 𝐼 = π‘₯ βˆ’ 3 ∫ 1 (π‘₯βˆ’2)(π‘₯βˆ’4) 𝑑π‘₯ 𝐼 = π‘₯ βˆ’ 3 ∫ { 𝐴 (π‘₯βˆ’2) + 𝐡 (π‘₯βˆ’4) } 𝑑π‘₯ Using (a) 𝐼 = π‘₯ βˆ’ 3 {∫ 𝐴 (π‘₯βˆ’2) 𝑑π‘₯ + ∫ 𝐡 (π‘₯βˆ’4) 𝑑π‘₯} 𝐼 = π‘₯ βˆ’ 3 {𝐴∫ 𝑑π‘₯ (π‘₯βˆ’2) + 𝐡 ∫ 𝑑π‘₯ (π‘₯βˆ’4) } 𝐼 = π‘₯ βˆ’ 3{𝐴 log(π‘₯ + 2) + 𝐡 log(π‘₯ βˆ’ 4)} 𝐼 = π‘₯ βˆ’ 3 {βˆ’ 1 2 log(π‘₯ + 2) + 1 2 log(π‘₯ βˆ’ 4)} 𝐼 = π‘₯ βˆ’ 3 2 {βˆ’log(π‘₯ + 2) + log(π‘₯ βˆ’ 4)} 𝐼 = π‘₯ βˆ’ 3 2 {log(π‘₯ βˆ’ 4) βˆ’ log(π‘₯ βˆ’ 2)} 𝐼 = π‘₯ βˆ’ 3 2 log π‘₯βˆ’4 π‘₯βˆ’2 8. (i) ∫ 1βˆ’3π‘₯2 3π‘₯βˆ’π‘₯3 𝑑π‘₯ (ii) ∫ π‘₯ 𝑑π‘₯ (3βˆ’π‘₯)(3+2π‘₯) log 𝐴 βˆ’ log 𝐡 = log 𝐴 𝐡
  • 10. (i) Solution: Let 𝐼 = ∫ 1βˆ’3π‘₯2 3π‘₯βˆ’π‘₯3 𝑑π‘₯ 𝐼 = ∫ 1 3π‘₯βˆ’π‘₯3 𝑑π‘₯ βˆ’ ∫ 3π‘₯2 3π‘₯βˆ’π‘₯3 𝑑π‘₯ 𝐼 = ∫ 1 π‘₯(3βˆ’π‘₯2) 𝑑π‘₯ βˆ’ ∫ 3π‘₯2 π‘₯(3βˆ’π‘₯2) 𝑑π‘₯ 𝐼 = ∫ 1 π‘₯(√3 +π‘₯)(√π‘₯βˆ’3) 𝑑π‘₯ βˆ’ 3 ∫ π‘₯ 3βˆ’π‘₯2 𝑑π‘₯ 𝐼 = 𝐼1 βˆ’ 3𝐼2 Where, 𝐼1 = ∫ 1 π‘₯(√3 +π‘₯)(√π‘₯βˆ’3) 𝑑π‘₯ and 𝐼2 = ∫ π‘₯ 3βˆ’π‘₯2 𝑑π‘₯ Here, 𝐼1 = ∫ 1 π‘₯(√3 +π‘₯)(√3βˆ’π‘₯) 𝑑π‘₯ Let, 1 π‘₯(√3 +π‘₯)(√3βˆ’π‘₯) = 𝐴 π‘₯ + 𝐡 (√3 +π‘₯) + 𝐢 (√3βˆ’π‘₯) ------------ (b) 1 π‘₯(√3 +π‘₯)(√π‘₯βˆ’3) = 𝐴(√3 +π‘₯)(√3βˆ’π‘₯)+ 𝐡 π‘₯(√π‘₯βˆ’3)+ 𝐢 π‘₯(√3 +π‘₯) π‘₯(√3 +π‘₯)(3βˆ’π‘₯) 1 = 𝐴(√3 + π‘₯)(√3 βˆ’ π‘₯) + 𝐡 π‘₯(√3 βˆ’ π‘₯) + 𝐢 π‘₯(√3 + π‘₯) ------------ (b) Putting, π‘₯ = 0 , π‘₯ = √3 and π‘₯ = βˆ’βˆš3 in equation (b) , we get 𝐴 = 1 3 , 𝐡 = βˆ’ 1 6 and 𝐢 = 1 6 Now, 𝐼1 = ∫ 1 π‘₯(√3 +π‘₯)(√3βˆ’π‘₯) 𝑑π‘₯ 𝐼1 = ∫ { 𝐴 π‘₯ + 𝐡 (√3 +π‘₯) + 𝐢 (√3βˆ’π‘₯) } 𝑑π‘₯ 𝐼1 = ∫ 𝐴 π‘₯ 𝑑π‘₯ + ∫ 𝐡 (√3 +π‘₯) 𝑑π‘₯ + ∫ 𝐢 (√3βˆ’π‘₯) 𝑑π‘₯ 𝐼1 = 𝐴 ∫ 𝑑π‘₯ π‘₯ + 𝐡 ∫ 𝑑π‘₯ (√3 +π‘₯) + 𝐢 ∫ 𝑑π‘₯ (√3βˆ’π‘₯) 𝐼1 = 𝐴 log π‘₯ + 𝐡 log(√3 + π‘₯) + 𝐢 ∫ 𝑑π‘₯ (√3βˆ’π‘₯) 𝐼1 = 𝐴 log π‘₯ + 𝐡 log(√3 + π‘₯) + 𝐢 ∫ 𝑑π‘₯ (√3βˆ’π‘₯) 𝐼1 = 𝐴 log π‘₯ + 𝐡 log(√3 + π‘₯) βˆ’ 𝐢 log(√3 βˆ’ π‘₯) 𝐼1 = 1 3 log π‘₯ βˆ’ 1 6 log(√3 + π‘₯) βˆ’ 1 6 log(√3 βˆ’ π‘₯) 𝐼1 = 1 3 log π‘₯ βˆ’ 1 6 [log(√3 + π‘₯) + log(√3 βˆ’ π‘₯)]
  • 11. 𝐼1 = 1 3 log π‘₯ βˆ’ 1 6 [log{(√3 + π‘₯)(√3 βˆ’ π‘₯)}] 𝐼1 = 1 3 log π‘₯ βˆ’ 1 6 [log{(3 βˆ’ π‘₯2)}] 𝐼1 = 1 3 log π‘₯ βˆ’ 1 6 log{(3 βˆ’ π‘₯2)} 𝐼1 = 1 3 log π‘₯ βˆ’ 1 6 log(3 βˆ’ π‘₯2) And 𝐼2 = ∫ π‘₯ 3βˆ’π‘₯2 𝑑π‘₯ Taking, 3 βˆ’ π‘₯2 = 𝑒  π‘₯ 𝑑π‘₯ = βˆ’ 1 2 𝑑𝑒 𝐼2 = ∫ βˆ’ 1 2 𝑑𝑒 𝑒 𝐼2 = βˆ’ 1 2 ∫ 𝑑𝑒 𝑒 𝐼2 = βˆ’ 1 2 log 𝑒 𝐼2 = βˆ’ 1 2 log(3 βˆ’ π‘₯2) π‘‡β„Žπ‘’π‘ , 𝐼 = 𝐼1 βˆ’ 3𝐼2 𝐼 = 1 3 log π‘₯ βˆ’ 1 6 log(3 βˆ’ π‘₯2) βˆ’ 3 (βˆ’ 1 2 log(3 βˆ’ π‘₯2)) 𝐼 = 1 3 log π‘₯ βˆ’ 1 6 log(3 βˆ’ π‘₯2) + 3 2 log(3 βˆ’ π‘₯2) 𝐼 = 1 3 log π‘₯ + 4 3 log(3 βˆ’ π‘₯2) 𝐼 = 1 3 {log π‘₯ + 4 log(3 βˆ’ π‘₯2)} 𝐼 = 1 3 {log π‘₯ + log(3 βˆ’ π‘₯2)4} 𝐼 = 1 3 log{π‘₯(3 βˆ’ π‘₯2)4} (ii) Solution: Let 𝐼 = ∫ π‘₯ 𝑑π‘₯ (3βˆ’π‘₯)(3+2π‘₯) Let, π‘₯ (3βˆ’π‘₯)(3+2π‘₯) = 𝐴 (3βˆ’π‘₯) + 𝐡 (3+2π‘₯) -------- (a) π‘₯ (3βˆ’π‘₯)(3+2π‘₯) = 𝐴(3+2π‘₯)+ 𝐡(3βˆ’π‘₯) (3βˆ’π‘₯)(3+2π‘₯) 𝑛 log π‘₯ = log π‘₯𝑛 log 𝐴 + log 𝐡 = log 𝐴𝐡
  • 12. π‘₯ = 𝐴(3 + 2π‘₯) + 𝐡(3 βˆ’ π‘₯) ------------ (b) P𝑒𝑑𝑑𝑖𝑛𝑔 π‘₯ = 3 and π‘₯ = βˆ’ 3 2 in equation (b), we get 𝐴 = 1 3 and 𝐡 = βˆ’ 1 3 Now, 𝐼 = ∫ π‘₯ 𝑑π‘₯ (3βˆ’π‘₯)(3+2π‘₯) 𝐼 = ∫ { 𝐴 (3βˆ’π‘₯) + 𝐡 (3+2π‘₯) } 𝑑π‘₯ 𝐼 = ∫ 𝐴 (3βˆ’π‘₯) 𝑑π‘₯ + ∫ 𝐡 (3+2π‘₯) 𝑑π‘₯ 𝐼 = 𝐴 ∫ 𝑑π‘₯ (3βˆ’π‘₯) + 𝐡 ∫ 𝑑π‘₯ (3+2π‘₯) π‘‡π‘Žπ‘˜π‘’, 3 βˆ’ π‘₯ = 𝑒  𝑑π‘₯ = βˆ’π‘‘π‘’ and 3 + 2π‘₯ = 𝑣  𝑑π‘₯ = 1 2 𝑑𝑣 𝐼 = 𝐴 ∫ βˆ’ 𝑑𝑒 𝑒 + 𝐡 ∫ 1 2 𝑑𝑣 𝑣 𝐼 = βˆ’π΄ ∫ 𝑑𝑒 𝑒 + 1 2 𝐡 ∫ 𝑑𝑣 𝑣 𝐼 = βˆ’π΄ log 𝑒 + 1 2 𝐡 log 𝑣 𝐼 = βˆ’π΄ log(3 βˆ’ π‘₯) + 1 2 𝐡 log(3 + 2π‘₯) 𝐼 = βˆ’ 1 3 log(3 βˆ’ π‘₯) + 1 2 ο‚΄ (βˆ’ 1 3 ) log(3 + 2π‘₯) 𝐼 = βˆ’ 1 3 log(3 βˆ’ π‘₯) βˆ’ 1 6 log(3 + 2π‘₯) 9. (i) ∫ π‘₯2 𝑑π‘₯ (π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘)(π‘₯βˆ’π‘) (ii) ∫ 𝑑π‘₯ (π‘₯βˆ’π‘Ž)2 (π‘₯βˆ’π‘) (iii) ∫ 𝑑π‘₯ (π‘₯βˆ’2)2(π‘₯βˆ’1)3 (iv) ∫ 𝑑π‘₯ (π‘₯+1)2(π‘₯+2)3 (i) Solution: Let 𝐼 = ∫ π‘₯2 𝑑π‘₯ (π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘)(π‘₯βˆ’π‘) Let, π‘₯2 (π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘)(π‘₯βˆ’π‘) = 𝐴 (π‘₯βˆ’π‘Ž) + 𝐡 (π‘₯βˆ’π‘) + 𝐢 (π‘₯βˆ’π‘) ------------- (a) π‘₯2 (π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘)(π‘₯βˆ’π‘) = 𝐴(π‘₯βˆ’π‘)(π‘₯βˆ’π‘) (π‘₯βˆ’π‘Ž) + 𝐡(π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘) (π‘₯βˆ’π‘) + 𝐢(π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘) (π‘₯βˆ’π‘) π‘₯2 (π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘)(π‘₯βˆ’π‘) = 𝐴(π‘₯βˆ’π‘)(π‘₯βˆ’π‘)+ 𝐡(π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘)+𝐢(π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘) (π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘)(π‘₯βˆ’π‘)
  • 13. π‘₯2 = 𝐴(π‘₯ βˆ’ 𝑏)(π‘₯ βˆ’ 𝑐) + 𝐡(π‘₯ βˆ’ π‘Ž)(π‘₯ βˆ’ 𝑐) + 𝐢(π‘₯ βˆ’ π‘Ž)(π‘₯ βˆ’ 𝑏) --------- (b) Putting, π‘₯ = π‘Ž , π‘₯ = 𝑏 and π‘₯ = 𝑐 in equation (b), we get 𝐴 = π‘Ž2 (π‘Žβˆ’π‘)(π‘Žβˆ’π‘) , 𝐡 = 𝑏2 (π‘βˆ’π‘Ž)(π‘βˆ’π‘) and 𝐢 = 𝑐2 (π‘βˆ’π‘Ž)(π‘βˆ’π‘) Now, 𝐼 = ∫ π‘₯2 𝑑π‘₯ (π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘)(π‘₯βˆ’π‘) 𝐼 = ∫ { 𝐴 (π‘₯βˆ’π‘Ž) + 𝐡 (π‘₯βˆ’π‘) + 𝐢 (π‘₯βˆ’π‘) } 𝑑π‘₯ 𝐼 = ∫ 𝐴 (π‘₯βˆ’π‘Ž) 𝑑π‘₯ + ∫ 𝐡 (π‘₯βˆ’π‘) 𝑑π‘₯ + ∫ 𝐢 (π‘₯βˆ’π‘) 𝑑π‘₯ 𝐼 = 𝐴 ∫ 𝑑π‘₯ (π‘₯βˆ’π‘Ž) + 𝐡 ∫ 𝑑π‘₯ (π‘₯βˆ’π‘) + 𝐢 ∫ 𝑑π‘₯ (π‘₯βˆ’π‘) 𝐼 = 𝐴 log(π‘₯ βˆ’ π‘Ž) + 𝐡 log(π‘₯ βˆ’ 𝑏) + 𝐢 log(π‘₯ βˆ’ 𝑐) 𝐼 = π‘Ž2 (π‘Žβˆ’π‘)(π‘Žβˆ’π‘) log(π‘₯ βˆ’ π‘Ž) + 𝑏2 (π‘βˆ’π‘Ž)(π‘βˆ’π‘) log(π‘₯ βˆ’ 𝑏) + 𝑐2 (π‘βˆ’π‘Ž)(π‘βˆ’π‘) log(π‘₯ βˆ’ 𝑐) (ii) Solution: Let, 𝐼 = ∫ 𝑑π‘₯ (π‘₯βˆ’π‘Ž)2 (π‘₯βˆ’π‘) Let, 1 (π‘₯βˆ’π‘Ž)2 (π‘₯βˆ’π‘) = 𝐴 (π‘₯βˆ’π‘Ž) + 𝐡 (π‘₯βˆ’π‘Ž)2 + 𝐢 (π‘₯βˆ’π‘) --------- (a) 1 (π‘₯βˆ’π‘Ž)2 (π‘₯βˆ’π‘) = 𝐴 (π‘₯βˆ’π‘Ž)(π‘₯βˆ’π‘)+ 𝐡(π‘₯βˆ’π‘)+ 𝐢 (π‘₯βˆ’π‘Ž)2 (π‘₯βˆ’π‘Ž)2 (π‘₯βˆ’π‘) 1 = 𝐴 (π‘₯ βˆ’ π‘Ž)(π‘₯ βˆ’ 𝑏) + 𝐡(π‘₯ βˆ’ 𝑏) + 𝐢 (π‘₯ βˆ’ π‘Ž)2 --------- (b) Putting π‘₯ = π‘Ž and π‘₯ = 𝑏 in equation (b), we get 𝐡 = 1 π‘Žβˆ’π‘ and 𝐢 = 1 (π‘βˆ’π‘Ž)2 -------- (c) π΄π‘”π‘Žπ‘–π‘›, From equation (b), we have 1 = 𝐴 (π‘₯ βˆ’ π‘Ž)(π‘₯ βˆ’ 𝑏) + 𝐡(π‘₯ βˆ’ 𝑏) + 𝐢 (π‘₯ βˆ’ π‘Ž)2 1 = 𝐴 (π‘₯2 βˆ’ (π‘Ž + 𝑏)π‘₯ + π‘Žπ‘) + 𝐡π‘₯ βˆ’ 𝑏𝐡 + 𝐢 (π‘₯2 βˆ’ 2π‘Žπ‘₯ + π‘Ž2) 1 = 𝐴 π‘₯2 βˆ’ (π‘Ž + 𝑏)𝐴π‘₯ + π‘Žπ‘π΄ + 𝐡π‘₯ βˆ’ 𝑏𝐡 + 𝐢 π‘₯2 βˆ’ 2π‘ŽπΆπ‘₯ + π‘Ž2 𝐢 ---- (d) Equating the constant terms on both sides of equation (d), we get 1 = π‘Žπ‘π΄ βˆ’ 𝑏𝐡 + π‘Ž2 𝐢 1 = π‘Žπ‘π΄ βˆ’ 𝑏 1 π‘Žβˆ’π‘ + π‘Ž2 ο‚΄ 1 (π‘βˆ’π‘Ž)2 Using (c)
  • 14. 1 = π‘Žπ‘π΄ βˆ’ 𝑏 π‘Žβˆ’π‘ + π‘Ž2 (π‘βˆ’π‘Ž)2 π‘Žπ‘π΄ βˆ’ 𝑏 π‘Žβˆ’π‘ + π‘Ž2 (π‘βˆ’π‘Ž)2 = 1 π‘Žπ‘π΄ + π‘Ž2 (π‘βˆ’π‘Ž)2 = 1 + 𝑏 π‘Žβˆ’π‘ π‘Žπ‘π΄ + π‘Ž2 (π‘βˆ’π‘Ž)2 = π‘Ž+π‘βˆ’π‘ π‘Žβˆ’π‘ π‘Žπ‘π΄ + π‘Ž2 (π‘βˆ’π‘Ž)2 = π‘Ž π‘Žβˆ’π‘ π‘Žπ‘π΄ = π‘Ž π‘Žβˆ’π‘ βˆ’ π‘Ž2 (π‘βˆ’π‘Ž)2 π‘Žπ‘π΄ = π‘Ž π‘Žβˆ’π‘ βˆ’ π‘Ž2 (π‘Žβˆ’π‘)2 π‘Žπ‘π΄ = π‘Ž(π‘Žβˆ’π‘)βˆ’π‘Ž2 (π‘Žβˆ’π‘)2 π‘Žπ‘π΄ = π‘Ž2βˆ’π‘Žπ‘βˆ’π‘Ž2 (π‘Žβˆ’π‘)2 π‘Žπ‘π΄ = βˆ’π‘Žπ‘ (π‘Žβˆ’π‘)2  𝐴 = βˆ’1 (π‘Žβˆ’π‘)2 Now, 𝐼 = ∫ 𝑑π‘₯ (π‘₯βˆ’π‘Ž)2 (π‘₯βˆ’π‘) 𝐼 = ∫ { 𝐴 (π‘₯βˆ’π‘Ž) + 𝐡 (π‘₯βˆ’π‘Ž)2 + 𝐢 (π‘₯βˆ’π‘) } 𝑑π‘₯ 𝐼 = ∫ 𝐴 (π‘₯βˆ’π‘Ž) 𝑑π‘₯ + ∫ 𝐡 (π‘₯βˆ’π‘Ž)2 𝑑π‘₯ + ∫ 𝐢 (π‘₯βˆ’π‘) 𝑑π‘₯ 𝐼 = 𝐴 ∫ 𝑑π‘₯ (π‘₯βˆ’π‘Ž) + 𝐡 ∫ 1 (π‘₯βˆ’π‘Ž)2 𝑑π‘₯ + 𝐢 ∫ 𝑑π‘₯ (π‘₯βˆ’π‘) 𝐼 = 𝐴 ∫ 𝑑π‘₯ (π‘₯βˆ’π‘Ž) + 𝐡 ∫(π‘₯ βˆ’ π‘Ž)βˆ’2 𝑑π‘₯ + 𝐢 ∫ 𝑑π‘₯ (π‘₯βˆ’π‘) 𝐼 = 𝐴 log(π‘₯ βˆ’ π‘Ž) βˆ’ 𝐡(π‘₯ βˆ’ π‘Ž)βˆ’1 + 𝐢 log(π‘₯ βˆ’ 𝑏) 𝐼 = βˆ’ 1 (π‘Žβˆ’π‘)2 log(π‘₯ βˆ’ π‘Ž) βˆ’ 1 π‘Žβˆ’π‘ 1 (π‘₯βˆ’π‘Ž) + 1 (π‘βˆ’π‘Ž)2 log(π‘₯ βˆ’ 𝑏) 𝐼 = 1 (π‘Žβˆ’π‘)2 {log(π‘₯ βˆ’ 𝑏) βˆ’ log(π‘₯ βˆ’ π‘Ž)} βˆ’ 1 π‘Žβˆ’π‘ 1 (π‘₯βˆ’π‘Ž) 𝐼 = 1 (π‘Žβˆ’π‘)2 {log π‘₯βˆ’π‘ π‘₯βˆ’π‘Ž } βˆ’ 1 π‘Žβˆ’π‘ 1 (π‘₯βˆ’π‘Ž) 𝐼 = 1 (π‘Žβˆ’π‘)2 log π‘₯βˆ’π‘ π‘₯βˆ’π‘Ž βˆ’ 1 βˆ’(π‘βˆ’π‘Ž) 1 (π‘₯βˆ’π‘Ž)
  • 15. 𝐼 = 1 (π‘Žβˆ’π‘)2 log π‘₯βˆ’π‘ π‘₯βˆ’π‘Ž + 1 (π‘βˆ’π‘Ž) 1 (π‘₯βˆ’π‘Ž) 𝐼 = 1 (π‘Žβˆ’π‘)2 log π‘₯βˆ’π‘ π‘₯βˆ’π‘Ž + 1 (π‘βˆ’π‘Ž)(π‘₯βˆ’π‘Ž) (iii) Solution: Let 𝐼 = ∫ 𝑑π‘₯ (π‘₯βˆ’2)2(π‘₯βˆ’1)3 {Integral of the form ∫ 𝒅𝒙 (π’™βˆ’π’‚)π’Ž(π’™βˆ’π’ƒ)𝒏 , can be evaluated by putting 𝒙 βˆ’ 𝒂 = 𝒖(𝒙 βˆ’ 𝒃)}. Let, π‘₯ βˆ’ 2 = 𝑒(π‘₯ βˆ’ 1) and differentiating with respect to π‘₯, we get π‘₯ βˆ’ 2 = 𝑒π‘₯ βˆ’ 𝑒 π‘₯ βˆ’ 𝑒π‘₯ = 2 βˆ’ 𝑒 π‘₯(1 βˆ’ 𝑒) = 2 βˆ’ 𝑒  π‘₯ = 2βˆ’π‘’ 1βˆ’π‘’ -------- (a) Differentiating with respect to 𝑒, we get 𝑑π‘₯ 𝑑𝑒 = (1βˆ’π‘’) 𝑑 𝑑𝑒 (2βˆ’π‘’)βˆ’(2βˆ’π‘’) 𝑑 𝑑𝑒 (1βˆ’π‘’) (1βˆ’π‘’)2 𝑑π‘₯ 𝑑𝑒 = βˆ’(1βˆ’π‘’)+(2βˆ’π‘’) (1βˆ’π‘’)2 𝑑π‘₯ 𝑑𝑒 = βˆ’1+𝑒+2βˆ’π‘’ (1βˆ’π‘’)2 𝑑π‘₯ 𝑑𝑒 = 1 (1βˆ’π‘’)2 𝑑π‘₯ = 𝑑𝑒 (1βˆ’π‘’)2 Now, 𝐼 = ∫ 𝑑π‘₯ (π‘₯βˆ’2)2(π‘₯βˆ’1)3 𝐼 = ∫ 𝑑𝑒 (1βˆ’π‘’)2 ( 2βˆ’π‘’ 1βˆ’π‘’ βˆ’2) 2 ( 2βˆ’π‘’ 1βˆ’π‘’ βˆ’1) 3 Since, π‘₯ = 2βˆ’π‘’ 1βˆ’π‘’ 𝐼 = ∫ 𝑑𝑒 (1βˆ’π‘’)2 ( 2βˆ’π‘’βˆ’2(1βˆ’π‘’) 1βˆ’π‘’ βˆ’) 2 ( 2βˆ’π‘’βˆ’(1βˆ’π‘’) 1βˆ’π‘’ ) 3 𝐼 = ∫ 𝑑𝑒 (1βˆ’π‘’)2 ( 2βˆ’π‘’βˆ’2+2𝑒 1βˆ’π‘’ βˆ’) 2 ( 2βˆ’π‘’βˆ’1+𝑒 1βˆ’π‘’ ) 3
  • 16. 𝐼 = ∫ 𝑑𝑒 (1βˆ’π‘’)2 𝑒2 (1βˆ’π‘’)2 1 (1βˆ’π‘’)3 𝐼 = ∫ 𝑑𝑒 (1βˆ’π‘’)2 𝑒2 (1βˆ’π‘’)5 𝐼 = ∫ 𝑑𝑒 (1βˆ’π‘’)2 ο‚΄ (1βˆ’π‘’)5 𝑒2 𝐼 = ∫ (1βˆ’π‘’)3 𝑒2 𝑑𝑒 𝐼 = ∫ 1βˆ’3𝑒+3𝑒2βˆ’π‘’3 𝑒2 𝑑𝑒 𝐼 = ∫ 1 𝑒2 𝑑𝑒 βˆ’ ∫ 3𝑒 𝑒2 𝑑𝑒 + ∫ 3𝑒2 𝑒2 𝑑𝑒 βˆ’ ∫ 𝑒3 𝑒2 𝑑𝑒 𝐼 = ∫ π‘’βˆ’2 𝑑𝑒 βˆ’ 3 ∫ 1 𝑒 𝑑𝑒 + 3 ∫ 1 𝑑𝑒 βˆ’ ∫ 𝑒 𝑑𝑒 𝐼 = βˆ’ 1 𝑒 βˆ’ 3 log 𝑒 + 3𝑒 βˆ’ 1 2 𝑒2 We take, π‘₯ βˆ’ 2 = 𝑒(π‘₯ βˆ’ 1)  𝑒 = π‘₯βˆ’2 π‘₯βˆ’1 Thus, 𝐼 = βˆ’ 1 𝑒 βˆ’ 3 log 𝑒 + 3𝑒 βˆ’ 1 2 𝑒2 𝐼 = βˆ’ 1 π‘₯βˆ’2 π‘₯βˆ’1 βˆ’ 3 log π‘₯βˆ’2 π‘₯βˆ’1 + 3 π‘₯βˆ’2 π‘₯βˆ’1 βˆ’ 1 2 ( π‘₯βˆ’2 π‘₯βˆ’1 ) 2 𝐼 = βˆ’ π‘₯βˆ’1 π‘₯βˆ’2 βˆ’ 3 log π‘₯βˆ’2 π‘₯βˆ’1 + 3 π‘₯βˆ’2 π‘₯βˆ’1 βˆ’ 1 2 ( π‘₯βˆ’2 π‘₯βˆ’1 ) 2 (iv) Solution: Let 𝐼 = ∫ 𝑑π‘₯ (π‘₯+1)2(π‘₯+2)3 Let, π‘₯ + 1 = 𝑒(π‘₯ + 2) π‘₯ + 1 = 𝑒π‘₯ + 2𝑒 π‘₯ βˆ’ 𝑒π‘₯ = 2𝑒 βˆ’ 1 π‘₯(1 βˆ’ 𝑒) = 2𝑒 βˆ’ 1  π‘₯ = 2π‘’βˆ’1 1βˆ’π‘’
  • 17. Differentiating with respect to 𝑒 , we get 𝑑π‘₯ 𝑑𝑒 = (1βˆ’π‘’) 𝑑 𝑑𝑒 (2π‘’βˆ’1)βˆ’(2π‘’βˆ’1) 𝑑 𝑑𝑒 (1βˆ’π‘’) (1βˆ’π‘’)2 𝑑π‘₯ 𝑑𝑒 = 2(1βˆ’π‘’)+(2π‘’βˆ’1) (1βˆ’π‘’)2 𝑑π‘₯ 𝑑𝑒 = 2βˆ’2𝑒+2π‘’βˆ’1 (1βˆ’π‘’)2 𝑑π‘₯ 𝑑𝑒 = 1 (1βˆ’π‘’)2  𝑑π‘₯ = 𝑑𝑒 (1βˆ’π‘’)2 Now, 𝐼 = ∫ 𝑑π‘₯ (π‘₯+1)2(π‘₯+2)3 𝐼 = ∫ 𝑑𝑒 (1βˆ’π‘’)2 ( 2π‘’βˆ’1 1βˆ’π‘’ +1) 2 ( 2π‘’βˆ’1 1βˆ’π‘’ +2) 3 Since, π‘₯ = 2π‘’βˆ’1 1βˆ’π‘’ 𝐼 = ∫ 𝑑𝑒 (1βˆ’π‘’)2 ( 2π‘’βˆ’1+1βˆ’u 1βˆ’π‘’ ) 2 ( 2π‘’βˆ’1+2βˆ’2𝑒 1βˆ’π‘’ ) 3 𝐼 = ∫ 𝑑𝑒 (1βˆ’π‘’)2 ( u 1βˆ’π‘’ ) 2 ( 1 1βˆ’π‘’ ) 3 𝐼 = ∫ 𝑑𝑒 (1βˆ’π‘’)2 𝑒2 (1βˆ’π‘’)2ο‚΄ 1 (1βˆ’π‘’)3 𝐼 = ∫ 𝑑𝑒 (1βˆ’π‘’)2 𝑒2 (1βˆ’π‘’)5 𝐼 = ∫ 𝑑𝑒 (1βˆ’π‘’)2 ο‚΄ (1βˆ’π‘’)5 𝑒2 𝐼 = ∫ (1βˆ’π‘’)3 𝑒2 𝑑𝑒 𝐼 = ∫ 1βˆ’3𝑒+3𝑒2βˆ’π‘’3 𝑒2 𝑑𝑒 𝐼 = ∫ 1 𝑒2 𝑑𝑒 βˆ’ ∫ 3𝑒 𝑒2 𝑑𝑒 + 3 ∫ 𝑒2 𝑒2 𝑑𝑒 βˆ’ ∫ 𝑒3 𝑒2 𝑑𝑒 𝐼 = ∫ π‘’βˆ’2 𝑑𝑒 βˆ’ 3 ∫ 1 𝑒 𝑑𝑒 + 3 ∫ 1 𝑑𝑒 βˆ’ ∫ 𝑒 𝑑𝑒 𝐼 = βˆ’π‘’βˆ’1 βˆ’ 3 log 𝑒 + 3𝑒 βˆ’ 1 2 𝑒2 𝐼 = βˆ’ 1 𝑒 βˆ’ 3 log 𝑒 + 3𝑒 βˆ’ 1 2 𝑒2
  • 18. We take, π‘₯ + 1 = 𝑒(π‘₯ + 2)  𝑒 = π‘₯+1 π‘₯+2 𝐼 = βˆ’ 1 π‘₯+1 π‘₯+2 βˆ’ 3 log π‘₯+1 π‘₯+2 + 3 π‘₯+1 π‘₯+2 βˆ’ 1 2 ( π‘₯+1 π‘₯+2 ) 2 𝐼 = βˆ’ π‘₯+2 π‘₯+1 βˆ’ 3 log π‘₯+1 π‘₯+2 + 3 π‘₯+1 π‘₯+2 βˆ’ 1 2 ( π‘₯+1 π‘₯+2 ) 2 10. (i) ∫ π‘₯2 𝑑π‘₯ (π‘₯+1)(π‘₯+2)2 (ii) ∫ (3βˆ’π‘₯) π‘₯2+π‘₯3 𝑑π‘₯ Solution: Let, 𝐼 = ∫ π‘₯2 𝑑π‘₯ (π‘₯+1)(π‘₯+2)2 Let, π‘₯2 (π‘₯+1)(π‘₯+2)2 = 𝐴 (π‘₯+1) + 𝐡 (π‘₯+2) + 𝐢 (π‘₯+2)2 ------ (a) π‘₯2 (π‘₯+1)(π‘₯+2)2 = 𝐴(π‘₯+2)2+𝐡(π‘₯+1)(π‘₯+2)+ 𝐢 (π‘₯+1) (π‘₯+1)(π‘₯+2)2 π‘₯2 = 𝐴(π‘₯ + 2)2 + 𝐡(π‘₯ + 1)(π‘₯ + 2) + 𝐢 (π‘₯ + 1) ----------- (b) Putting, π‘₯ = βˆ’1 and π‘₯ = βˆ’2 in equation (b), we get 𝐴 = 1 , 𝐢 = βˆ’4 Again, from (b), we have π‘₯2 = 𝐴(π‘₯2 + 4π‘₯ + 4) + 𝐡(π‘₯2 + 3π‘₯ + 2) + 𝐢 (π‘₯ + 1) ----- (c) Equating the coefficient of π‘₯2 on both sides of equation (c), we get 1 = 𝐴 + 𝐡 1 = 1 + 𝐡 Since, 𝐴 = 1  𝐡 = 0 Now, 𝐼 = ∫ π‘₯2 𝑑π‘₯ (π‘₯+1)(π‘₯+2)2 𝐼 = ∫ { 𝐴 (π‘₯+1) + 𝐡 (π‘₯+2) + 𝐢 (π‘₯+2)2 } 𝑑π‘₯ Using (a) 𝐼 = ∫ 𝐴 (π‘₯+1) 𝑑π‘₯ + ∫ 𝐡 (π‘₯+2) 𝑑π‘₯ + ∫ 𝐢 (π‘₯+2)2 𝑑π‘₯ 𝐼 = 𝐴 ∫ 𝑑π‘₯ (π‘₯+1) + 𝐡 ∫ 𝑑π‘₯ (π‘₯+2) + 𝐢 ∫ 𝑑π‘₯ (π‘₯+2)2
  • 19. 𝐼 = 𝐴 log(π‘₯ + 1) + 𝐡 log(π‘₯ + 2) + 𝐢 ∫(π‘₯ + 2)βˆ’2 𝑑π‘₯ 𝐼 = 𝐴 log(π‘₯ + 1) + 𝐡 log(π‘₯ + 2) βˆ’ 𝐢(π‘₯ + 2)βˆ’1 𝐼 = log(π‘₯ + 1) + 0ο‚΄ log(π‘₯ + 2) βˆ’ (βˆ’4) 1 (π‘₯+2) 𝐼 = log(π‘₯ + 1) + 4 (π‘₯+2) (iii) Solution: Let 𝐼 = ∫ (3βˆ’π‘₯) π‘₯2+π‘₯3 𝑑π‘₯ 𝐼 = ∫ (3βˆ’π‘₯) π‘₯2(1+π‘₯) 𝑑π‘₯ Let, (3βˆ’π‘₯) π‘₯2(1+π‘₯) = 𝐴 π‘₯ + 𝐡 π‘₯2 + 𝐢 (1+π‘₯) ------- (a) (3βˆ’π‘₯) π‘₯2(1+π‘₯) = 𝐴π‘₯(1+π‘₯)+ 𝐡(1+π‘₯)+ 𝐢π‘₯2 π‘₯2(1+π‘₯) (3 βˆ’ π‘₯) = 𝐴π‘₯(1 + π‘₯) + 𝐡(1 + π‘₯) + 𝐢π‘₯2 -------- (b) Putting, π‘₯ = 0 and π‘₯ = βˆ’1 in equation (b), we get 𝐡 = 3 and 𝐢 = 4 Again, From (b), we have (3 βˆ’ π‘₯) = 𝐴π‘₯(1 + π‘₯) + 𝐡(1 + π‘₯) + 𝐢π‘₯2 (3 βˆ’ π‘₯) = 𝐴(π‘₯ + π‘₯2) + 𝐡(1 + π‘₯) + 𝐢π‘₯2 Comparing the coefficients of π‘₯2 on both sides of equation (c), we get 0 = 𝐴 + 𝐢 𝐴 = βˆ’πΆ  𝐴 = βˆ’4 Now, 𝐼 = ∫ (3βˆ’π‘₯) π‘₯2(1+π‘₯) 𝑑π‘₯ 𝐼 = ∫ { 𝐴 π‘₯ + 𝐡 π‘₯2 + 𝐢 (1+π‘₯) } 𝑑π‘₯ Using (a) 𝐼 = ∫ 𝐴 π‘₯ 𝑑π‘₯ + ∫ 𝐡 π‘₯2 𝑑π‘₯ + ∫ 𝐢 (1+π‘₯) 𝑑π‘₯ 𝐼 = 𝐴 ∫ 𝑑π‘₯ π‘₯ + 𝐡 ∫ π‘₯βˆ’2 𝑑π‘₯ + 𝐢 ∫ 𝑑π‘₯ (1+π‘₯) 𝐼 = 𝐴 log π‘₯ βˆ’ 𝐡 π‘₯βˆ’1 + 𝐢 log(1 + π‘₯)
  • 20. 𝐼 = 𝐴 log π‘₯ βˆ’ 𝐡 π‘₯ + 𝐢 log(1 + π‘₯) 𝐼 = βˆ’4 log π‘₯ βˆ’ 3 π‘₯ + 4 log(1 + π‘₯) 11. (i) ∫ 𝑑π‘₯ π‘₯3βˆ’π‘₯2βˆ’π‘₯+1 (ii) ∫ 𝑑π‘₯ π‘₯ (π‘₯+1)2 (i) Solution: Let, 𝐼 = ∫ 𝑑π‘₯ π‘₯3βˆ’π‘₯2βˆ’π‘₯+1 𝐼 = ∫ 𝑑π‘₯ π‘₯2(π‘₯βˆ’1)βˆ’π‘₯+1 𝐼 = ∫ 𝑑π‘₯ π‘₯2(π‘₯βˆ’1)βˆ’1(π‘₯βˆ’1) 𝐼 = ∫ 𝑑π‘₯ (π‘₯βˆ’1)(π‘₯2βˆ’1) 𝐼 = ∫ 𝑑π‘₯ (π‘₯βˆ’1)(π‘₯βˆ’1)(π‘₯+1) 𝐼 = ∫ 𝑑π‘₯ (π‘₯+1) (π‘₯βˆ’1)2 Let, 1 (π‘₯+1) (π‘₯βˆ’1)2 = 𝐴 (π‘₯+1) + 𝐡 (π‘₯βˆ’1) + 𝐢 (π‘₯βˆ’1)2 ------- (a) 1 (π‘₯+1) (π‘₯βˆ’1)2 = 𝐴(π‘₯βˆ’1)2+ 𝐡(π‘₯βˆ’1)(π‘₯+1)+ 𝐢(π‘₯+1) (π‘₯+1) (π‘₯βˆ’1)2 1 = 𝐴(π‘₯ βˆ’ 1)2 + 𝐡(π‘₯ βˆ’ 1)(π‘₯ + 1) + 𝐢(π‘₯ + 1) -------- (b) Putting, π‘₯ = 1 and π‘₯ = βˆ’1 in equation (b), we get 𝐢 = 1 2 and 𝐴 = 1 4 Again, from (b), we have 1 = 𝐴(π‘₯ βˆ’ 1)2 + 𝐡(π‘₯ βˆ’ 1)(π‘₯ + 1) + 𝐢(π‘₯ + 1) 1 = 𝐴 (π‘₯2 βˆ’ 2π‘₯ + 1) + 𝐡(π‘₯2 βˆ’ 1) + 𝐢(π‘₯ + 1) -------- (c) Equating the constant terms on both sides of equation (c), we get 1 = 𝐴 βˆ’ 𝐡 + 𝐢 1 = 1 4 βˆ’ 𝐡 + 1 2 1 = 3 4 βˆ’ 𝐡 𝐡 = 3 4 βˆ’ 1 𝐡 = βˆ’ 1 4
  • 21. Now, 𝐼 = ∫ 𝑑π‘₯ (π‘₯+1) (π‘₯βˆ’1)2 𝐼 = ∫ { 𝐴 (π‘₯+1) + 𝐡 (π‘₯βˆ’1) + 𝐢 (π‘₯βˆ’1)2 } 𝑑π‘₯ Using (a) 𝐼 = ∫ 𝐴 (π‘₯+1) 𝑑π‘₯ + ∫ 𝐡 (π‘₯βˆ’1) 𝑑π‘₯ + ∫ 𝐢 (π‘₯βˆ’1)2 𝑑π‘₯ 𝐼 = 𝐴 ∫ 𝑑π‘₯ (π‘₯+1) + 𝐡 ∫ 𝑑π‘₯ (π‘₯βˆ’1) + 𝐢 ∫ 1 (π‘₯βˆ’1)2 𝑑π‘₯ 𝐼 = 𝐴 log(π‘₯ + 1) + 𝐡 log(π‘₯ βˆ’ 1) + 𝐢 ∫(π‘₯ βˆ’ 1)βˆ’2 𝑑π‘₯ 𝐼 = 𝐴 log(π‘₯ + 1) + 𝐡 log(π‘₯ βˆ’ 1) βˆ’ 𝐢 (π‘₯ βˆ’ 1)βˆ’1 𝐼 = 𝐴 log(π‘₯ + 1) + 𝐡 log(π‘₯ βˆ’ 1) βˆ’ 𝐢 (π‘₯βˆ’1) 𝐼 = 1 4 log(π‘₯ + 1) βˆ’ 1 4 log(π‘₯ βˆ’ 1) βˆ’ 1 2 (π‘₯βˆ’1) 𝐼 = 1 4 {log(π‘₯ + 1) βˆ’ log(π‘₯ βˆ’ 1)} βˆ’ 1 2 (π‘₯βˆ’1) 𝐼 = 1 4 log π‘₯+1 π‘₯βˆ’1 βˆ’ 1 2 (π‘₯βˆ’1) (ii) Solution: Let, 𝐼 = ∫ 𝑑π‘₯ π‘₯ (π‘₯+1)2 Let, 1 π‘₯ (π‘₯+1)2 = 𝐴 π‘₯ + 𝐡 (π‘₯+1) + 𝐢 (π‘₯+1)2 ----- (a) 1 π‘₯ (π‘₯+1)2 = 𝐴(π‘₯+1)2+ 𝐡 π‘₯ (π‘₯+1)+ 𝐢π‘₯ π‘₯ (π‘₯+1)2 1 = 𝐴(π‘₯ + 1)2 + 𝐡 π‘₯ (π‘₯ + 1) + 𝐢π‘₯ ------- (b) Putting, π‘₯ = 0 and π‘₯ = βˆ’1 in equation (b), we get 𝐴 = 1 and 𝐢 = βˆ’1 Again, from (b), we have 1 = 𝐴(π‘₯ + 1)2 + 𝐡 π‘₯ (π‘₯ + 1) + 𝐢π‘₯ 1 = 𝐴(π‘₯2 + 2π‘₯ + 1) + 𝐡 (π‘₯2 + π‘₯) + 𝐢π‘₯ ------ (c) Equating the coefficients of π‘₯2 on both sides of equation (c), we get 0 = 𝐴 + 𝐡 𝐡 = βˆ’π΄ 𝐡 = βˆ’1
  • 22. Now, 𝐼 = ∫ 𝑑π‘₯ π‘₯ (π‘₯+1)2 𝐼 = ∫ { 𝐴 π‘₯ + 𝐡 (π‘₯+1) + 𝐢 (π‘₯+1)2 } 𝑑π‘₯ 𝐼 = ∫ 𝐴 π‘₯ 𝑑π‘₯ + ∫ 𝐡 (π‘₯+1) 𝑑π‘₯ + ∫ 𝐢 (π‘₯+1)2 𝑑π‘₯ 𝐼 = 𝐡 ∫ 𝑑π‘₯ π‘₯ + 𝐡 ∫ 𝑑π‘₯ (π‘₯+1) + 𝐢 ∫ 1 (π‘₯+1)2 𝑑π‘₯ 𝐼 = 𝐴 log π‘₯ + 𝐡 log(π‘₯ + 1) + 𝐢 ∫(π‘₯ + 1)βˆ’2 𝑑π‘₯ 𝐼 = 𝐴 log π‘₯ + 𝐡 log(π‘₯ + 1) βˆ’ 𝐢(π‘₯ + 1)βˆ’1 𝐼 = log π‘₯ βˆ’ log(π‘₯ + 1) βˆ’ βˆ’1 (π‘₯+1) 𝐼 = log π‘₯ π‘₯+1 + 1 (π‘₯+1) 12. (i) ∫ 𝑑π‘₯ (π‘₯2βˆ’1)2 (ii) ∫ (π‘₯+1) 𝑑π‘₯ (π‘₯βˆ’1)2(π‘₯+2)2 (i) Solution: Let 𝐼 = ∫ 𝑑π‘₯ (π‘₯2βˆ’1)2 𝐼 = ∫ 𝑑π‘₯ (π‘₯2βˆ’1)(π‘₯2βˆ’1) 𝐼 = ∫ 𝑑π‘₯ (π‘₯+1)(π‘₯βˆ’1)(π‘₯+1)(π‘₯βˆ’1) 𝐼 = ∫ 𝑑π‘₯ (π‘₯+1)2(π‘₯βˆ’1)2 Let, 1 (π‘₯+1)2(π‘₯βˆ’1)2 = 𝐴 (π‘₯+1) + 𝐡 (π‘₯+1)2 + 𝐢 (π‘₯βˆ’1) + 𝐷 (π‘₯βˆ’1)2 -------- (a) 1 (π‘₯+1)2(π‘₯βˆ’1)2 = 𝐴(π‘₯+1) (π‘₯βˆ’1)2+ 𝐡(π‘₯βˆ’1)2+ 𝐢(π‘₯βˆ’1) (π‘₯+1)2+ 𝐷 (π‘₯+1)2 (π‘₯+1)2(π‘₯βˆ’1)2 1 = 𝐴(π‘₯ + 1) (π‘₯ βˆ’ 1)2 + 𝐡(π‘₯ βˆ’ 1)2 + 𝐢(π‘₯ βˆ’ 1) (π‘₯ + 1)2 + 𝐷 (π‘₯ + 1)2 --------- (b) Putting, π‘₯ = 1 and π‘₯ = βˆ’1, we get 𝐷 = 1 4 and 𝐡 = 1 4 Again, from (b), we have 1 = 𝐴(π‘₯ + 1) (π‘₯ βˆ’ 1)2 + 𝐡(π‘₯ βˆ’ 1)2 + 𝐢(π‘₯ βˆ’ 1) (π‘₯ + 1)2 + 𝐷 (π‘₯ + 1)2 1 = 𝐴(π‘₯ + 1) (π‘₯2 βˆ’ 2π‘₯ + 1) + 𝐡(π‘₯2 βˆ’ 2π‘₯ + 1) + 𝐢(π‘₯ βˆ’ 1) (π‘₯2 + 2π‘₯ + 1) + 𝐷 (π‘₯2 + 2π‘₯ + 1)
  • 23. 1 = 𝐴 (π‘₯3 βˆ’ π‘₯2 βˆ’ π‘₯ + 1) + 𝐡(π‘₯2 βˆ’ 2π‘₯ + 1) + 𝐢 (π‘₯3 + π‘₯2 βˆ’ π‘₯ βˆ’ 1) + 𝐷 (π‘₯2 + 2π‘₯ + 1) ---- (c) Equating the constant terms on both sides of equation (c), we get 1 = 𝐴 + 𝐡 βˆ’ 𝐢 + 𝐷 1 = 𝐴 + 1 4 βˆ’ 𝐢 + 1 4 1 = 𝐴 βˆ’ 𝐢 + 1 2 𝐴 βˆ’ 𝐢 = 1 2 𝐴 = 𝐢 + 1 2 ------- (d) Again, equating the coefficients of π‘₯2 on both sides of equation (c), we get 0 = βˆ’π΄β€” 2𝐡 βˆ’ 𝐢 + 2𝐷  𝐢 = βˆ’π΄ βˆ’ 2𝐡 + 2𝐷 --------- (e) Solving (d) and (e), we get 𝐢 = βˆ’ 1 4 Again, putting 𝐢 = βˆ’ 1 4 in (d), we get 𝐴 = 1 4 Now, 𝐼 = ∫ 𝑑π‘₯ (π‘₯+1)2(π‘₯βˆ’1)2 𝐼 = ∫ { 𝐴 (π‘₯+1) + 𝐡 (π‘₯+1)2 + 𝐢 (π‘₯βˆ’1) + 𝐷 (π‘₯βˆ’1)2 } 𝑑π‘₯ Using (a) 𝐼 = ∫ 𝐴 (π‘₯+1) 𝑑π‘₯ + ∫ 𝐡 (π‘₯+1)2 𝑑π‘₯ + ∫ 𝐢 (π‘₯βˆ’1) 𝑑π‘₯ + ∫ 𝐷 (π‘₯βˆ’1)2 𝑑π‘₯ 𝐼 = 𝐴 ∫ 𝑑π‘₯ (π‘₯+1) + 𝐡 ∫(π‘₯ + 1)βˆ’2 𝑑π‘₯ + 𝐢 ∫ 𝑑π‘₯ (π‘₯βˆ’1) + 𝐷 ∫(π‘₯ βˆ’ 1)βˆ’2 𝑑π‘₯ 𝐼 = 𝐴 log(π‘₯ + 1) βˆ’ 𝐡(π‘₯ + 1)βˆ’1 + 𝐢 log(π‘₯ βˆ’ 1 ) βˆ’ 𝐷(π‘₯ βˆ’ 1)βˆ’1 𝐼 = 𝐴 log(π‘₯ + 1) βˆ’ 𝐡 (π‘₯+1) + 𝐢 log(π‘₯ βˆ’ 1 ) βˆ’ 𝐷 (π‘₯βˆ’1) 𝐼 = 1 4 log(π‘₯ + 1) βˆ’ 1 4 (π‘₯+1) βˆ’ 1 4 log(π‘₯ βˆ’ 1 ) βˆ’ 1 4 (π‘₯βˆ’1) 𝐼 = 1 4 {log(π‘₯ + 1) βˆ’ log(π‘₯ βˆ’ 1)} βˆ’ 1 4(π‘₯+1) βˆ’ 1 4(π‘₯βˆ’1) 𝐼 = 1 4 log π‘₯+1 π‘₯βˆ’1 βˆ’ 1 4 ( (π‘₯βˆ’1)+(π‘₯+1) (π‘₯+1)(π‘₯βˆ’1) )
  • 24. 𝐼 = 1 4 log π‘₯+1 π‘₯βˆ’1 βˆ’ 1 4 ( 2π‘₯ π‘₯2βˆ’1 ) 𝐼 = 1 4 log π‘₯+1 π‘₯βˆ’1 βˆ’ 1 2 ( π‘₯ π‘₯2βˆ’1 ) (ii) Solution: Let 𝐼 = ∫ (π‘₯+1) 𝑑π‘₯ (π‘₯βˆ’1)2(π‘₯+2)2 Let, (π‘₯+1) (π‘₯βˆ’1)2(π‘₯+2)2 = 𝐴 (π‘₯βˆ’1) + 𝐡 (π‘₯βˆ’1)2 + 𝐢 (π‘₯+2) + 𝐷 (π‘₯+2)2 ------- (b) (π‘₯+1) (π‘₯βˆ’1)2(π‘₯+2)2 = 𝐴(π‘₯βˆ’1)(π‘₯+2)2+ 𝐡(π‘₯+2)2+ 𝐢 (π‘₯βˆ’1)2(π‘₯+2)+ 𝐷 (π‘₯βˆ’1)2 (π‘₯βˆ’1)2(π‘₯+2)2 (π‘₯ + 1) = 𝐴(π‘₯ βˆ’ 1)(π‘₯ + 2)2 + 𝐡(π‘₯ + 2)2 + 𝐢 (π‘₯ βˆ’ 1)2(π‘₯ + 2) + 𝐷 (π‘₯ βˆ’ 1)2 ----- (c) Putting, π‘₯ = 1 and π‘₯ = βˆ’2 in equation (c), we get 𝐡 = 2 9 and 𝐷 = βˆ’ 1 9 Again, from (c), we have (π‘₯ + 1) = 𝐴(π‘₯ βˆ’ 1)(π‘₯ + 2)2 + 𝐡(π‘₯ + 2)2 + 𝐢 (π‘₯ βˆ’ 1)2(π‘₯ + 2) + 𝐷 (π‘₯ βˆ’ 1)2 π‘₯ + 1 = 𝐴(π‘₯ βˆ’ 1)(π‘₯2 + 4π‘₯ + 4) + 𝐡(π‘₯2 + 4π‘₯ + 4) + 𝐢 (π‘₯2 βˆ’ 2π‘₯ + 1)(π‘₯ + 2) + 𝐷 (π‘₯2 βˆ’ 2π‘₯ + 1) π‘₯ + 1 = 𝐴(π‘₯3 + 3π‘₯2 βˆ’ 4) + 𝐡(π‘₯2 + 4π‘₯ + 4) + 𝐢 (π‘₯3 βˆ’ 3π‘₯ + 2) + 𝐷 (π‘₯2 βˆ’ 2π‘₯ + 1) ----- (d) Equating the coefficients of π‘₯ on both sides of equation (d), we get 1 = 4𝐡 βˆ’ 3𝐢 βˆ’ 2𝐷 1 = 4ο‚΄ 2 9 βˆ’ 3𝐢 βˆ’ 2 (βˆ’ 1 9 ) 1 = 8 9 + 2 9 βˆ’ 3𝐢 1 = 10 9 βˆ’ 3𝐢 3𝐢 = 10 9 βˆ’ 1 3𝐢 = 1 9 𝐢 = 1 27 Again, equating the coefficients of π‘₯3 on both sides of (d), we get 0 = 𝐴 + 𝐢 𝐴 = βˆ’πΆ
  • 25. 𝐴 = βˆ’ 1 27 𝐻𝑒𝑛𝑐𝑒, 𝐴 = βˆ’ 1 27 , , = 2 9 , 𝐢 = 1 27 and 𝐷 = βˆ’ 1 9 Now, 𝐼 = ∫ (π‘₯+1) 𝑑π‘₯ (π‘₯βˆ’1)2(π‘₯+2)2 𝐼 = ∫ { 𝐴 (π‘₯βˆ’1) + 𝐡 (π‘₯βˆ’1)2 + 𝐢 (π‘₯+2) + 𝐷 (π‘₯+2)2 } 𝑑π‘₯ 𝐼 = ∫ 𝐴 (π‘₯βˆ’1) 𝑑π‘₯ + ∫ 𝐡 (π‘₯βˆ’1)2 𝑑π‘₯ + ∫ 𝐢 (π‘₯+2) 𝑑π‘₯ + ∫ 𝐷 (π‘₯+2)2 𝑑π‘₯ 𝐼 = 𝐴 log(π‘₯ βˆ’ 1) + 𝐡 ∫(π‘₯ βˆ’ 1)βˆ’2 𝑑π‘₯ + 𝐢 log(π‘₯ + 2) + 𝐷 ∫(π‘₯ + 2)βˆ’2 𝑑π‘₯ 𝐼 = 𝐴 log(π‘₯ βˆ’ 1) βˆ’ 𝐡(π‘₯ βˆ’ 1)βˆ’1 + 𝐢 log(π‘₯ + 2) βˆ’ 𝐷 (π‘₯ + 2)βˆ’1 𝐼 = 𝐴 log(π‘₯ βˆ’ 1) βˆ’ 𝐡 (π‘₯βˆ’1) + 𝐢 log(π‘₯ + 2) βˆ’ 𝐷 (π‘₯+2) 𝐼 = βˆ’ 1 27 log(π‘₯ βˆ’ 1) βˆ’ 2 9 (π‘₯βˆ’1) + 1 27 log(π‘₯ + 2) βˆ’ βˆ’ 1 9 (π‘₯+2) 𝐼 = βˆ’ 1 27 {log(π‘₯ βˆ’ 1) βˆ’ log(π‘₯ + 2)} + 1 9 { 1 (π‘₯+2) βˆ’ 2 (π‘₯βˆ’1) } 𝐼 = βˆ’ 1 27 log π‘₯βˆ’1 π‘₯+2 + 1 9 { 1 (π‘₯+2) βˆ’ 2 (π‘₯βˆ’1) } 𝐼 = 1 9 { 1 (π‘₯+2) βˆ’ 2 (π‘₯βˆ’1) } βˆ’ 1 27 log π‘₯βˆ’1 π‘₯+2 𝐼 = 1 9 { 1 (π‘₯+2) βˆ’ 2 (π‘₯βˆ’1) βˆ’ 1 3 log π‘₯βˆ’1 π‘₯+2 } 13. (i) ∫ 𝑑π‘₯ (π‘₯βˆ’1)3 (π‘₯+1) (ii) ∫ (3π‘₯+2) 𝑑π‘₯ π‘₯ (π‘₯+1)3 (i) Solution: Let 𝐼 = ∫ 𝑑π‘₯ (π‘₯βˆ’1)3 (π‘₯+1) Let, 1 (π‘₯βˆ’1)3 (π‘₯+1) = 𝐴 (π‘₯βˆ’1) + 𝐡 (π‘₯βˆ’1)2 + 𝐢 (π‘₯βˆ’1)3 + 𝐷 (π‘₯+1) -------- (a) 1 (π‘₯βˆ’1)3 (π‘₯+1) = 𝐴 (π‘₯βˆ’1)2 (π‘₯+1)+ 𝐡 (π‘₯βˆ’1) (π‘₯+1)+ 𝐢(π‘₯+1)+ 𝐷 (π‘₯βˆ’1)3 (π‘₯βˆ’1)3 (π‘₯+1) 1 = 𝐴 (π‘₯ βˆ’ 1)2 (π‘₯ + 1) + 𝐡 (π‘₯ βˆ’ 1) (π‘₯ + 1) + 𝐢(π‘₯ + 1) + 𝐷 (π‘₯ βˆ’ 1)3 ----- (b) Putting, π‘₯ = 1 and π‘₯ = βˆ’1 in equation (b), we get
  • 26. 𝐢 = 1 2 and 𝐷 = βˆ’ 1 8 Again, from equation (b), we have 1 = 𝐴 (π‘₯ βˆ’ 1)2 (π‘₯ + 1) + 𝐡 (π‘₯ βˆ’ 1) (π‘₯ + 1) + 𝐢(π‘₯ + 1) + 𝐷 (π‘₯ βˆ’ 1)3 1 = 𝐴 (π‘₯2 βˆ’ 2π‘₯ + 1) (π‘₯ + 1) + 𝐡 (π‘₯2 βˆ’ 1) + 𝐢(π‘₯ + 1) + 𝐷 (π‘₯3 βˆ’ 3π‘₯2 + 3π‘₯ βˆ’ 1) 1 = 𝐴 (π‘₯3 βˆ’ π‘₯2 βˆ’ π‘₯ + 1) + 𝐡 (π‘₯2 βˆ’ 1) + 𝐢(π‘₯ + 1) + 𝐷 (π‘₯3 βˆ’ 3π‘₯2 + 3π‘₯ βˆ’ 1) ------ (c) Equating the coefficients of π‘₯3 on both sides of equation (c), we get 0 = 𝐴 + 𝐷 𝐴 = βˆ’π· 𝐴 = βˆ’ (βˆ’ 1 8 ) 𝐴 = 1 8 Also, equating the coefficients of π‘₯2 on both sides of equation (c), we get 0 = βˆ’π΄ + 𝐡 βˆ’ 3𝐷 𝐡 = 𝐴 + 3𝐷 𝐡 = 1 8 + 3 (βˆ’ 1 8 ) 𝐡 = 1 8 βˆ’ 3 8 𝐡 = βˆ’ 2 8 𝐡 = βˆ’ 1 4 𝐻𝑒𝑛𝑐𝑒, 𝐴 = 1 8 𝐡 = βˆ’ 1 4 , 𝐢 = 1 2 and 𝐷 = βˆ’ 1 8 Now, 𝐼 = ∫ 𝑑π‘₯ (π‘₯βˆ’1)3 (π‘₯+1) 𝐼 = ∫ { 𝐴 (π‘₯βˆ’1) + 𝐡 (π‘₯βˆ’1)2 + 𝐢 (π‘₯βˆ’1)3 + 𝐷 (π‘₯+1) } 𝑑π‘₯ Using (a) 𝐼 = ∫ 𝐴 (π‘₯βˆ’1) 𝑑π‘₯ + ∫ 𝐡 (π‘₯βˆ’1)2 𝑑π‘₯ + ∫ 𝐢 (π‘₯βˆ’1)3 𝑑π‘₯ + ∫ 𝐷 (π‘₯+1) 𝑑π‘₯ 𝐼 = 𝐴 ∫ 𝑑π‘₯ (π‘₯βˆ’1) + 𝐡 ∫ 1 (π‘₯βˆ’1)2 𝑑π‘₯ + 𝐢 ∫ 1 (π‘₯βˆ’1)3 𝑑π‘₯ + 𝐷 ∫ 𝑑π‘₯ (π‘₯+1) 𝐼 = 𝐴 log(π‘₯ βˆ’ 1) + 𝐡 ∫(π‘₯ βˆ’ 1)βˆ’2 𝑑π‘₯ + 𝐢 ∫(π‘₯ βˆ’ 1)βˆ’3 𝑑π‘₯ + 𝐷 log(π‘₯ + 1)
  • 27. 𝐼 = 𝐴 log(π‘₯ βˆ’ 1) + 𝐷 log(π‘₯ + 1) βˆ’ 𝐡(π‘₯ βˆ’ 1)βˆ’1 βˆ’ 𝐢 2 (π‘₯ βˆ’ 1)βˆ’2 𝐼 = 1 8 log(π‘₯ βˆ’ 1) βˆ’ 1 8 log(π‘₯ + 1) + 1 4 1 (π‘₯βˆ’1) βˆ’ 1 2 2 ο‚΄ 1 (π‘₯βˆ’1)2 𝐼 = 1 8 {log(π‘₯ βˆ’ 1) βˆ’ log(π‘₯ + 1)} + 1 4 { 1 (π‘₯βˆ’1) βˆ’ 1 (π‘₯βˆ’1)2 } 𝐼 = 1 8 log π‘₯βˆ’1 π‘₯+1 + 1 4 { π‘₯βˆ’1βˆ’1 (π‘₯βˆ’1)2 } 𝐼 = 1 8 log π‘₯βˆ’1 π‘₯+1 + 1 4 { π‘₯βˆ’2 (π‘₯βˆ’1)2 } (ii) Solution: Let, 𝐼 = ∫ (3π‘₯+2) 𝑑π‘₯ π‘₯ (π‘₯+1)3 Let, (3π‘₯+2) π‘₯ (π‘₯+1)3 = 𝐴 π‘₯ + 𝐡 (π‘₯+1) + 𝐢 (π‘₯+1)2 + 𝐷 (π‘₯+1)3 -------- (a) (3π‘₯+2) π‘₯ (π‘₯+1)3 = 𝐴(π‘₯+1)3 + 𝐡π‘₯(π‘₯+1)2 +𝐢 π‘₯(π‘₯+1)+ 𝐷π‘₯ π‘₯ (π‘₯+1)3 (3π‘₯ + 2) = 𝐴(π‘₯ + 1)3 + 𝐡π‘₯(π‘₯ + 1)2 + 𝐢 π‘₯(π‘₯ + 1) + 𝐷π‘₯ ------ (b) Putting, = 0 , π‘₯ = βˆ’1 in equation (b), we get 𝐴 = 2 and 𝐷 = 1 Again, from equation (b), we have (3π‘₯ + 2) = 𝐴(π‘₯ + 1)3 + 𝐡π‘₯(π‘₯ + 1)2 + 𝐢 π‘₯(π‘₯ + 1) + 𝐷π‘₯ (3π‘₯ + 2) = 𝐴(π‘₯3 + 3π‘₯2 + 3π‘₯ + 1) + 𝐡(π‘₯3 + 2π‘₯2 + π‘₯) + 𝐢 (π‘₯2 + π‘₯) + 𝐷π‘₯ ------ (c) Equating the coefficients of π‘₯3 on both sides the equation (c), we get 0 = 𝐴 + 𝐡 𝐡 = βˆ’π΄ 𝐡 = βˆ’2 Equating the coefficients of π‘₯2 on both sides the equation (c), we get 0 = 3𝐴 + 2𝐡 + 𝐢 𝐢 = βˆ’3𝐴 βˆ’ 2𝐡 𝐢 = βˆ’3ο‚΄2 βˆ’ 2ο‚΄(βˆ’2) 𝐢 = βˆ’6 + 4 𝐢 = βˆ’2
  • 28. Hence, 𝐴 = 2 , = βˆ’2 , 𝐢 = βˆ’2 and 𝐷 = 1 Now, 𝐼 = ∫ (3π‘₯+2) 𝑑π‘₯ π‘₯ (π‘₯+1)3 𝐼 = ∫ { 𝐴 π‘₯ + 𝐡 (π‘₯+1) + 𝐢 (π‘₯+1)2 + 𝐷 (π‘₯+1)3 } 𝑑π‘₯ 𝐼 = ∫ 𝐴 π‘₯ 𝑑π‘₯ + ∫ 𝐡 (π‘₯+1) 𝑑π‘₯ + ∫ 𝐢 (π‘₯+1)2 𝑑π‘₯ + ∫ 𝐷 (π‘₯+1)3 𝑑π‘₯ 𝐼 = 𝐴 ∫ 𝑑π‘₯ π‘₯ + 𝐡 ∫ 𝑑π‘₯ (π‘₯+1) + 𝐢 ∫ 1 (π‘₯+1)2 𝑑π‘₯ + 𝐷 ∫ 1 (π‘₯+1)3 𝑑π‘₯ 𝐼 = 𝐴 ∫ 𝑑π‘₯ π‘₯ + 𝐡 ∫ 𝑑π‘₯ (π‘₯+1) + 𝐢 ∫(π‘₯ + 1)βˆ’2 𝑑π‘₯ + 𝐷 ∫(π‘₯ + 1)βˆ’3 𝑑π‘₯ 𝐼 = 𝐴 log π‘₯ + 𝐡 log(π‘₯ + 1) βˆ’ 𝐢 (π‘₯ + 1)βˆ’1 βˆ’ 1 2 𝐷(π‘₯ + 1)βˆ’2 𝐼 = 𝐴 log π‘₯ + 𝐡 log(π‘₯ + 1) βˆ’ 𝐢 1 (π‘₯+1) βˆ’ 1 2 𝐷 1 (π‘₯+1)2 𝐼 = 2 log π‘₯ βˆ’ 2 log(π‘₯ + 1) + 2 1 (π‘₯+1) βˆ’ 1 2 1 (π‘₯+1)2 𝐼 = 2{log π‘₯ βˆ’ log(π‘₯ + 1)} + 2 (π‘₯+1) βˆ’ 1 2(π‘₯+1)2 𝐼 = 2 log π‘₯ π‘₯+1 + 4(π‘₯+1)βˆ’1 2(π‘₯+1)2 𝐼 = 2 log π‘₯ π‘₯+1 + 4π‘₯+3 2(π‘₯+1)2 14. (i) ∫ 𝑑π‘₯ 1βˆ’π‘₯3 (ii) ∫ 2+ π‘₯2 1βˆ’π‘₯3 𝑑π‘₯ (i) Solution: Let, 𝐼 = ∫ 𝑑π‘₯ 1βˆ’π‘₯3 Here, 1 βˆ’ π‘₯3 = (1 βˆ’ π‘₯) (1 + π‘₯ + π‘₯2) Let, 1 1βˆ’π‘₯3 = 𝐴 1βˆ’π‘₯ + 𝐡π‘₯+𝐢 1+π‘₯+π‘₯2 ------- (a) 1 = 𝐴(1 + π‘₯ + π‘₯2) + (𝐡π‘₯ + 𝐢)(1 βˆ’ π‘₯) -------- (b) Putting, π‘₯ = 0 and π‘₯ = 1 in (b), we get For, π‘₯ = 1 , 𝐴 = 1 3
  • 29. For, π‘₯ = 0 𝐴 + 𝐢 = 1 𝐢 = 1 βˆ’ 𝐴  𝐢 = 1 βˆ’ 1 3 = 2 3 Again, equating the coefficients of π‘₯2 , we get 0 = 𝐴 βˆ’ 𝐡 𝐡 = 𝐴  𝐡 = 1 3 Now, 𝐼 = ∫ 𝑑π‘₯ 1βˆ’π‘₯3 𝐼 = ∫ ( 𝐴 1βˆ’π‘₯ + 𝐡π‘₯+𝐢 1+π‘₯+π‘₯2 ) 𝑑π‘₯ Using (a) 𝐼 = ∫ 𝐴 1βˆ’π‘₯ 𝑑π‘₯ + ∫ 𝐡π‘₯+𝐢 1+π‘₯+π‘₯2 𝑑π‘₯ 𝐼 = ∫ 1 3 1βˆ’π‘₯ 𝑑π‘₯ + ∫ 1 3 π‘₯+ 2 3 1+π‘₯+π‘₯2 𝑑π‘₯ 𝐼 = 1 3 ∫ 𝑑π‘₯ 1βˆ’π‘₯ + 1 3 ∫ π‘₯+2 1+π‘₯+π‘₯2 𝑑π‘₯ 𝐼 = 1 3 ∫ 𝑑π‘₯ 1βˆ’π‘₯ + 1 3 ο‚΄ 1 2 ∫ 2π‘₯+4 1+π‘₯+π‘₯2 𝑑π‘₯ 𝐼 = 1 3 ∫ 𝑑π‘₯ 1βˆ’π‘₯ + 1 6 ∫ 2π‘₯+1+3 1+π‘₯+π‘₯2 𝑑π‘₯ 𝐼 = 1 3 ∫ 𝑑π‘₯ 1βˆ’π‘₯ + 1 6 ∫ 2π‘₯+1 1+π‘₯+π‘₯2 𝑑π‘₯ + 1 6 ∫ 3 1+π‘₯+π‘₯2 𝑑π‘₯ 𝐼 = 1 3 ∫ 𝑑π‘₯ 1βˆ’π‘₯ + 1 6 ∫ 2π‘₯+1 1+π‘₯+π‘₯2 𝑑π‘₯ + 1 2 ∫ 𝑑π‘₯ 1+π‘₯+π‘₯2 𝐼 = 1 3 ∫ βˆ’π‘‘π‘’ 𝑒 + 1 6 ∫ 𝑑𝑣 𝑣 𝑑π‘₯ + 1 2 ∫ 𝑑π‘₯ 1+π‘₯+π‘₯2 𝐼 = βˆ’ 1 3 log 𝑣 + 1 6 log 𝑣 + 1 2 ∫ 𝑑π‘₯ 1+π‘₯+π‘₯2 Putting, 1 βˆ’ π‘₯ = 𝑒  𝑑π‘₯ = βˆ’π‘‘π‘’ Putting, 1 + π‘₯ + π‘₯2 = 𝑣  (2π‘₯ + 1) 𝑑π‘₯ = 𝑑𝑣
  • 30. 𝐼 = βˆ’ 1 3 log(1 βˆ’ π‘₯) + 1 6 log(1 + π‘₯ + π‘₯2) + 1 2 ∫ 𝑑π‘₯ 1+π‘₯+π‘₯2 𝐼 = βˆ’ 1 3 log(1 βˆ’ π‘₯) + 1 3 ο‚΄ 1 2 log(1 + π‘₯ + π‘₯2) + 1 2 ∫ 𝑑π‘₯ 1+π‘₯+π‘₯2 𝐼 = βˆ’ 1 3 log(1 βˆ’ π‘₯) + 1 3 log(1 + π‘₯ + π‘₯2) 1 2 + 1 2 ∫ 𝑑π‘₯ 1+π‘₯+π‘₯2 𝐼 = βˆ’ 1 3 log(1 βˆ’ π‘₯) + 1 3 log(√1 + π‘₯ + π‘₯2) + 1 2 ∫ 𝑑π‘₯ 1+π‘₯+π‘₯2 𝐼 = βˆ’ 1 3 {log(1 βˆ’ π‘₯) βˆ’ log √1 + π‘₯ + π‘₯2} + 1 2 ∫ 𝑑π‘₯ 1+π‘₯+π‘₯2 𝐼 = βˆ’ 1 3 log 1βˆ’π‘₯ √1+π‘₯+π‘₯2 + 1 2 ∫ 𝑑π‘₯ 1+π‘₯+π‘₯2 𝐼 = βˆ’ 1 3 log 1βˆ’π‘₯ √1+π‘₯+π‘₯2 + 1 2 ∫ 𝑑π‘₯ (π‘₯+ 1 2 ) 2 +( √3 2 ) 2 𝐼 = βˆ’ 1 3 log 1βˆ’π‘₯ √1+π‘₯+π‘₯2 + 1 2 ο‚΄ 1 √3 2 tanβˆ’1 ( π‘₯+ 1 2 √3 2 ) 𝐼 = βˆ’ 1 3 log 1βˆ’π‘₯ √1+π‘₯+π‘₯2 + 1 √3 tanβˆ’1 ( 2π‘₯+1 √3 ) 𝐼 = 1 √3 tanβˆ’1 ( 2π‘₯+1 √3 ) βˆ’ 1 3 log 1βˆ’π‘₯ √1+π‘₯+π‘₯2 (ii) Solution: Let, 𝐼 = ∫ 2+ π‘₯2 1βˆ’π‘₯3 𝑑π‘₯ Here, 1 βˆ’ π‘₯3 = (1 βˆ’ π‘₯)(1 + π‘₯ + π‘₯2) Let, 2+ π‘₯2 1βˆ’π‘₯3 = 𝐴 1βˆ’π‘₯ + 𝐡π‘₯+𝐢 1+π‘₯+π‘₯2 ------- (a) 2 + π‘₯2 = 𝐴(1 + π‘₯ + π‘₯2) + (𝐡π‘₯ + 𝐢)(1 βˆ’ π‘₯) 2 + π‘₯2 = 𝐴(1 + π‘₯ + π‘₯2) + 𝐡(π‘₯ βˆ’ π‘₯2) + 𝐢(1 βˆ’ π‘₯) ------ (b) Putting, π‘₯ = 1 in (b), we get 3 = 3𝐴  𝐴 = 1 Putting, π‘₯ = 0 in (b), we get 2 = 𝐴 + 𝐢 𝐢 = 2 βˆ’ 𝐴 𝐢 = 2 βˆ’ 1  𝐢 = 1 Equating the coefficients of π‘₯2 on both sides of equation (b), we get 1 = 𝐴 βˆ’ 𝐡
  • 31. 𝐡 = 𝐴 βˆ’ 1  𝐡 = 1 βˆ’ 1 = 0 Now, 𝐼 = ∫ 2+ π‘₯2 1βˆ’π‘₯3 𝑑π‘₯ 𝐼 = ∫ ( 𝐴 1βˆ’π‘₯ + 𝐡π‘₯+𝐢 1+π‘₯+π‘₯2 ) 𝑑π‘₯ 𝐼 = ∫ 𝐴 1βˆ’π‘₯ 𝑑π‘₯ + ∫ 𝐡π‘₯+𝐢 1+π‘₯+π‘₯2 𝑑π‘₯ 𝐼 = 𝐴 ∫ 𝑑π‘₯ 1βˆ’π‘₯ + 𝐢 ∫ 𝑑π‘₯ 1+π‘₯+π‘₯2 Since, 𝐡 = 0 𝐼 = ∫ 𝑑π‘₯ 1βˆ’π‘₯ + ∫ 𝑑π‘₯ (π‘₯+ 1 2 ) 2 +( √3 2 ) 2 𝐼 = βˆ’log(1 βˆ’ π‘₯) + 1 √3 2 tanβˆ’1 ( π‘₯+ 1 2 √3 2 ) 𝐼 = βˆ’log(1 βˆ’ π‘₯) + 2 √3 tanβˆ’1 ( 2π‘₯+1 √3 ) 15. (i) ∫ π‘₯ π‘₯4βˆ’1 𝑑π‘₯ (ii) ∫ 𝑑π‘₯ π‘₯(π‘₯4βˆ’1) (i) Solution: Let 𝐼 = ∫ π‘₯ π‘₯4βˆ’1 𝑑π‘₯ 𝐼 = ∫ π‘₯ (π‘₯2βˆ’1)(π‘₯2+1) 𝑑π‘₯ Take, π‘₯2 = 𝑒  π‘₯ 𝑑π‘₯ = 1 2 𝑑𝑒 Now, 𝐼 = ∫ π‘₯ (π‘₯2βˆ’1)(π‘₯2+1) 𝑑π‘₯ 𝐼 = ∫ 1 2 𝑑𝑒 (π‘’βˆ’1)(𝑒+1) 𝐼 = 1 2 ∫ 𝑑𝑒 (π‘’βˆ’1)(𝑒+1) Let, 1 (π‘’βˆ’1)(𝑒+1) = 𝐴 π‘’βˆ’1 + 𝐡 𝑒+1 -------- (a) 1 = 𝐴(𝑒 + 1) + 𝐡 (𝑒 βˆ’ 1) ------ (b) Putting, 𝑒 = 1 in (b), we get 1 = 2𝐴  𝐴 = 1 2
  • 32. Putting, 𝑒 = βˆ’1 in (b), we get 1 = βˆ’2𝐡  𝐡 = βˆ’ 1 2 Now, 𝐼 = 1 2 ∫ 𝑑𝑒 (π‘’βˆ’1)(𝑒+1) 𝐼 = 1 2 ∫ ( 𝐴 π‘’βˆ’1 + 𝐡 𝑒+1 ) 𝑑𝑒 Using (a) 𝐼 = 1 2 ∫ 𝐴 π‘’βˆ’1 𝑑𝑒 + 1 2 ∫ 𝐡 𝑒+1 𝑑𝑒 𝐼 = 1 2 𝐴 ∫ 𝑑𝑒 π‘’βˆ’1 + 1 2 𝐡 ∫ 𝑑𝑒 𝑒+1 𝐼 = 1 2 ο‚΄ 1 2 log(𝑒 βˆ’ 1) + 1 2 ο‚΄ (βˆ’ 1 2 ) log(𝑒 + 1) 𝐼 = 1 4 log(𝑒 βˆ’ 1) βˆ’ 1 4 log(𝑒 + 1) 𝐼 = 1 4 log(π‘₯2 βˆ’ 1) βˆ’ 1 4 log(π‘₯2 + 1) 𝐼 = 1 4 {log(π‘₯2 βˆ’ 1) βˆ’ log(π‘₯2 + 1)} (ii) Solution: Let, 𝐼 = ∫ 𝑑π‘₯ π‘₯(π‘₯4βˆ’1) 𝐼 = ∫ π‘₯3𝑑π‘₯ π‘₯3 π‘₯(π‘₯4βˆ’1) 𝐼 = ∫ π‘₯3𝑑π‘₯ π‘₯4 (π‘₯4βˆ’1) Take, π‘₯4 = 𝑒  π‘₯3 𝑑π‘₯ = 1 4 𝑑𝑒 𝐼 = ∫ 1 4 𝑑𝑒 𝑒 (π‘’βˆ’1) 𝐼 = 1 4 ∫ 𝑑𝑒 𝑒 (π‘’βˆ’1) Let, 1 𝑒 (π‘’βˆ’1) = 𝐴 𝑒 + 𝐡 π‘’βˆ’1 -------- (a) 1 = 𝐴(𝑒 βˆ’ 1) + 𝐡𝑒 ------ (b) Putting, 𝑒 = π‘œ in (b), we get 𝐴 = βˆ’1 Putting, 𝑒 = 1 in (b), we get
  • 33. 𝐡 = 1 Now, 𝐼 = 1 4 ∫ 𝑑𝑒 𝑒 (π‘’βˆ’1) 𝐼 = 1 4 ∫ ( 𝐴 𝑒 + 𝐡 π‘’βˆ’1 ) 𝑑𝑒 𝐼 = 1 4 ∫ 𝐴 𝑒 𝑑𝑒 + 1 4 ∫ 𝐡 π‘’βˆ’1 𝑑𝑒 𝐼 = 1 4 𝐴 ∫ 𝑑𝑒 𝑒 + 1 4 𝐡 ∫ 𝑑𝑒 π‘’βˆ’1 𝐼 = 1 4 𝐴 log 𝑒 + 1 4 𝐡 log(𝑒 βˆ’ 1) 𝐼 = βˆ’ 1 4 log 𝑒 + 1 4 log(𝑒 βˆ’ 1) 𝐼 = βˆ’ 1 4 log π‘₯4 + 1 4 log(π‘₯4 βˆ’ 1) 𝐼 = βˆ’ 4 4 log π‘₯ + 1 4 log(π‘₯4 βˆ’ 1) 𝐼 = βˆ’log π‘₯ + 1 4 log(π‘₯4 βˆ’ 1) 𝐼 = 1 4 log(π‘₯4 βˆ’ 1) βˆ’ log π‘₯ 16. (i) ∫ π‘₯2 1βˆ’π‘₯4 𝑑π‘₯ (ii) ∫ 𝑑π‘₯ π‘₯4βˆ’1 (i) Solution: Let, 𝐼 = ∫ π‘₯2 1βˆ’π‘₯4 𝑑π‘₯ 𝐼 = 1 2 ∫ 2π‘₯2 1βˆ’π‘₯4 𝑑π‘₯ 𝐼 = 1 2 ∫ (1+π‘₯2)βˆ’(1βˆ’π‘₯2) (1+π‘₯2)(1βˆ’π‘₯2) 𝑑π‘₯ 𝐼 = 1 2 ∫ ( (1+π‘₯2) (1+π‘₯2)(1βˆ’π‘₯2) βˆ’ (1βˆ’π‘₯2) (1+π‘₯2)(1βˆ’π‘₯2) ) 𝑑π‘₯ 𝐼 = 1 2 ∫ ( 1 (1βˆ’π‘₯2) βˆ’ 1 (1+π‘₯2) ) 𝑑π‘₯ 𝐼 = 1 2 ∫ 1 1βˆ’π‘₯2 𝑑π‘₯ βˆ’ 1 2 ∫ 1 1+π‘₯2 𝑑π‘₯ 𝐼 = 1 2 ∫ 1 (1+π‘₯)(1βˆ’π‘₯) 𝑑π‘₯ βˆ’ 1 2 tanβˆ’1 π‘₯ Here, 1 (1+π‘₯)(1βˆ’π‘₯) = 𝐴 (1+π‘₯) + 𝐡 (1βˆ’π‘₯) -------- (a)
  • 34. 1 (1+π‘₯)(1βˆ’π‘₯) = 𝐴(1βˆ’π‘₯)+ 𝐡 (1+π‘₯) (1+π‘₯) 1 = 𝐴(1 βˆ’ π‘₯) + 𝐡 (1 + π‘₯) ------- (b) Putting, π‘₯ = 1 in (b), we get 𝐡 = 1 2 Putting, π‘₯ = βˆ’1 in (b), we get 𝐴 = 1 2 π‘π‘œπ‘€, 𝐼 = 1 2 ∫ 1 (1+π‘₯)(1βˆ’π‘₯) 𝑑π‘₯ βˆ’ 1 2 tanβˆ’1 π‘₯ 𝐼 = 1 2 {∫ ( 𝐴 (1+π‘₯) + 𝐡 (1βˆ’π‘₯) )𝑑π‘₯} βˆ’ 1 2 tanβˆ’1 π‘₯ Using (a) 𝐼 = 1 2 {∫ 𝐴 (1+π‘₯) 𝑑π‘₯ + ∫ 𝐡 (1βˆ’π‘₯) 𝑑π‘₯} βˆ’ 1 2 tanβˆ’1 π‘₯ 𝐼 = 1 2 {𝐴 ∫ 𝑑π‘₯ (1+π‘₯) + 𝐡 ∫ 𝑑π‘₯ (1βˆ’π‘₯) } βˆ’ 1 2 tanβˆ’1 π‘₯ 𝐼 = 1 2 {𝐴 log(1 + π‘₯) βˆ’ 𝐡 log(1 βˆ’ π‘₯)} βˆ’ 1 2 tanβˆ’1 π‘₯ 𝐼 = 1 2 { 1 2 log(1 + π‘₯) βˆ’ 1 2 log(1 βˆ’ π‘₯)} βˆ’ 1 2 tanβˆ’1 π‘₯ 𝐼 = 1 4 log(1 + π‘₯) βˆ’ 1 4 log(1 βˆ’ π‘₯) βˆ’ 1 2 tanβˆ’1 π‘₯ 𝐼 = 1 4 {log(1 + π‘₯) βˆ’ log(1 βˆ’ π‘₯)} βˆ’ 1 2 tanβˆ’1 π‘₯ (ii) Solution: Let , 𝐼 = ∫ 𝑑π‘₯ π‘₯4βˆ’1 𝐼 = ∫ 𝑑π‘₯ (π‘₯+1)(π‘₯βˆ’1)(π‘₯2+1) Here, 1 (π‘₯+1)(π‘₯βˆ’1)(π‘₯2+1) = 𝐴 (π‘₯+1) + 𝐡 (π‘₯βˆ’1) + 𝐢π‘₯+𝐷 (π‘₯2+1) ------- (a) 1 (π‘₯+1)(π‘₯βˆ’1)(π‘₯2+1) = 𝐴(π‘₯βˆ’1)(π‘₯2+1)+ 𝐡(π‘₯+1)(π‘₯2+1)+ (𝐢π‘₯+𝐷) (π‘₯+1)(π‘₯βˆ’1) (π‘₯+1)(π‘₯βˆ’1)(π‘₯2+1) 1 = 𝐴(π‘₯ βˆ’ 1)(π‘₯2 + 1) + 𝐡(π‘₯ + 1)(π‘₯2 + 1) + (𝐢π‘₯ + 𝐷) (π‘₯ + 1)(π‘₯ βˆ’ 1) 1 = 𝐴(π‘₯3 βˆ’ π‘₯2 + π‘₯ βˆ’ 1) + 𝐡(π‘₯3 + π‘₯2 + π‘₯ + 1) + 𝐢 (π‘₯3 βˆ’ π‘₯) + 𝐷(π‘₯2 βˆ’ 1) -----(b) For, π‘₯ = 1, we have 𝐡 = 1 4
  • 35. For, π‘₯ = βˆ’1, we have 𝐴 = βˆ’ 1 4 For, π‘₯ = 0, we have 1 = βˆ’π΄ + 𝐡 βˆ’ 𝐷 𝐷 = 1 4 + 1 4 βˆ’ 1 𝐷 = 1 2 βˆ’ 1 𝐷 = βˆ’ 1 2 Equating the coefficients of π‘₯3 on both sides of (b), we get 0 = 𝐴 + 𝐡 + 𝐢 0 = βˆ’ 1 4 + 1 4 + 𝐢  𝐢 = 0 Now, 𝐼 = ∫ 𝑑π‘₯ (π‘₯+1)(π‘₯βˆ’1)(π‘₯2+1) 𝐼 = ∫ ( 𝐴 (π‘₯+1) + 𝐡 (π‘₯βˆ’1) + 𝐢π‘₯+𝐷 (π‘₯2+1) ) 𝑑π‘₯ Using (a) 𝐼 = ∫ 𝐴 (π‘₯+1) 𝑑π‘₯ + ∫ 𝐡 (π‘₯βˆ’1) 𝑑π‘₯ + ∫ 𝐢π‘₯+𝐷 (π‘₯2+1) 𝑑π‘₯ 𝐼 = 𝐴 ∫ 𝑑π‘₯ (π‘₯+1) + 𝐡 ∫ 𝑑π‘₯ (π‘₯βˆ’1) + ∫ 𝐷 (π‘₯2+1) 𝑑π‘₯ Since,𝐢 = 0 𝐼 = 𝐴 ∫ 𝑑π‘₯ (π‘₯+1) + 𝐡 ∫ 𝑑π‘₯ (π‘₯βˆ’1) + 𝐷 ∫ 𝑑π‘₯ (π‘₯2+1) 𝐼 = 𝐴 log(π‘₯ + 1) + 𝐡 log(π‘₯ βˆ’ 1) + 𝐷 tanβˆ’1 π‘₯ 𝐼 = βˆ’ 1 4 log(π‘₯ + 1) + 1 4 log(π‘₯ βˆ’ 1) βˆ’ 1 2 tanβˆ’1 π‘₯ 𝐼 = 1 4 log(π‘₯ βˆ’ 1) βˆ’ 1 4 log(π‘₯ + 1) βˆ’ 1 2 tanβˆ’1 π‘₯ 𝐼 = 1 4 {log(π‘₯ βˆ’ 1) βˆ’ log(π‘₯ + 1)} βˆ’ 1 2 tanβˆ’1 π‘₯ 𝐼 = 1 4 log π‘₯βˆ’1 π‘₯+1 βˆ’ 1 2 tanβˆ’1 π‘₯ 17. (i) ∫ π‘₯ 𝑑π‘₯ (π‘₯2+π‘Ž2)(π‘₯2+𝑏2) (ii) ∫ π‘₯2 𝑑π‘₯ (π‘₯2+π‘Ž2)(π‘₯2+𝑏2)
  • 36. (i) Solution: Let , 𝐼 = ∫ π‘₯ 𝑑π‘₯ (π‘₯2+π‘Ž2)(π‘₯2+𝑏2) Take, π‘₯2 = 𝑒  π‘₯ 𝑑π‘₯ = 1 2 𝑑𝑒 𝐼 = ∫ 1 2 𝑑𝑒 (𝑒+π‘Ž2)(𝑒+𝑏2) 𝐼 = 1 2 ∫ 𝑑𝑒 (𝑒+π‘Ž2)(𝑒+𝑏2) Let, 1 (𝑒+π‘Ž2)(𝑒+𝑏2) = 𝐴 𝑒+π‘Ž2 + 𝐡 𝑒+𝑏2 ------- (a) 1 = 𝐴(𝑒 + 𝑏2) + 𝐡(𝑒 + π‘Ž2) Putting, 𝑒 = βˆ’π‘Ž2 in (b), we get 𝐴 = 1 𝑏2βˆ’π‘Ž2 = βˆ’ 1 π‘Ž2βˆ’π‘2 Again, putting 𝑒 = βˆ’π‘2 in (b), we get 𝐡 == 1 π‘Ž2βˆ’π‘2 Now, 𝐼 = 1 2 ∫ 𝑑𝑒 (𝑒+π‘Ž2)(𝑒+𝑏2) 𝐼 = 1 2 ∫ ( 𝐴 𝑒+π‘Ž2 + 𝐡 𝑒+𝑏2 ) 𝑑𝑒 Using (a) 𝐼 = 1 2 ∫ 𝐴 𝑒+π‘Ž2 𝑑𝑒 + 1 2 ∫ 𝐡 𝑒+𝑏2 𝑑𝑒 𝐼 = 1 2 𝐴 ∫ 𝑑𝑒 𝑒+π‘Ž2 + 1 2 𝐡 ∫ 𝑑𝑒 𝑒+𝑏2 𝐼 = 1 2 𝐴 log(𝑒 + π‘Ž2) + 1 2 𝐡 log(𝑒 + 𝑏2) 𝐼 = 1 2 (βˆ’ 1 π‘Ž2βˆ’π‘2 ) log(𝑒 + π‘Ž2) + 1 2 ( 1 π‘Ž2βˆ’π‘2 )log(𝑒 + 𝑏2) 𝐼 = βˆ’ 1 2(π‘Ž2βˆ’π‘2) log(𝑒 + π‘Ž2) + 1 2(π‘Ž2βˆ’π‘2) log(𝑒 + 𝑏2) 𝐼 = 1 2(π‘Ž2βˆ’π‘2) {log(𝑒 + 𝑏2) βˆ’ log(𝑒 + π‘Ž2)} 𝐼 = 1 2(π‘Ž2βˆ’π‘2) {log 𝑒+𝑏2 𝑒+π‘Ž2 } 𝐼 = 1 2(π‘Ž2βˆ’π‘2) log π‘₯2+𝑏2 π‘₯2+𝑏2
  • 37. (ii) Solution: Let 𝐼 = ∫ π‘₯2 𝑑π‘₯ (π‘₯2+π‘Ž2)(π‘₯2+𝑏2) Substituting, π‘₯2 = 𝑒 , for a partial fraction, we have π‘₯2 (π‘₯2+π‘Ž2)(π‘₯2+𝑏2) = 𝑒 (𝑒+π‘Ž2)(𝑒+𝑏2) Here, 𝑒 (𝑒+π‘Ž2)(𝑒+𝑏2) = 𝐴 (𝑒+π‘Ž2) + 𝐡 (𝑒+𝑏2) ------- (a) 𝑒 = 𝐴(𝑒 + 𝑏2) + 𝐡(𝑒 + π‘Ž2) ------ (b) Putting, 𝑒 = βˆ’π‘Ž2 in (b), we get 𝐴 = π‘Ž2 π‘Ž2βˆ’π‘2 Putting, 𝑒 = βˆ’π‘2 in (b), we get 𝐡 = βˆ’ 𝑏2 π‘Ž2βˆ’π‘2 Now, 𝐼 = ∫ π‘₯2 𝑑π‘₯ (π‘₯2+π‘Ž2)(π‘₯2+𝑏2) 𝐼 = ∫ ( 𝐴 (𝑒+π‘Ž2) + 𝐡 (𝑒+𝑏2) ) 𝑑π‘₯ Using (a) 𝐼 = ∫ ( 𝐴 (π‘₯2+π‘Ž2) + 𝐡 (π‘₯2+𝑏2) ) 𝑑π‘₯ Since, π‘₯2 = 𝑒 𝐼 = ∫ 𝐴 π‘₯2+π‘Ž2 𝑑π‘₯ + ∫ 𝐡 π‘₯2+𝑏2 𝑑π‘₯ 𝐼 = 𝐴 ∫ 𝑑π‘₯ π‘₯2+π‘Ž2 + 𝐡 ∫ 𝑑π‘₯ π‘₯2+𝑏2 𝐼 = 𝐴 1 π‘Ž tanβˆ’1 π‘₯ π‘Ž + 𝐡 1 𝑏 tanβˆ’1 π‘₯ 𝑏 𝐼 = π‘Ž2 π‘Ž2βˆ’π‘2 ο‚΄ 1 π‘Ž tanβˆ’1 π‘₯ π‘Ž βˆ’ 𝑏2 π‘Ž2βˆ’π‘2 ο‚΄ 1 𝑏 tanβˆ’1 π‘₯ 𝑏 𝐼 = π‘Ž π‘Ž2βˆ’π‘2 tanβˆ’1 π‘₯ π‘Ž βˆ’ 𝑏 π‘Ž2βˆ’π‘2 tanβˆ’1 π‘₯ 𝑏 𝐼 = 1 π‘Ž2βˆ’π‘2 {π‘Ž tanβˆ’1 π‘₯ π‘Ž βˆ’ 𝑏 tanβˆ’1 π‘₯ 𝑏 } 18. (i) ∫ π‘₯3 𝑑π‘₯ (π‘₯2+π‘Ž2)(π‘₯2+𝑏2) (ii) ∫ π‘₯4 𝑑π‘₯ (π‘₯2+π‘Ž2)(π‘₯2+𝑏2) (i) Solution: Let 𝐼 = ∫ π‘₯3 𝑑π‘₯ (π‘₯2+π‘Ž2)(π‘₯2+𝑏2)
  • 38. Let, π‘₯3 (π‘₯2+π‘Ž2)(π‘₯2+𝑏2) = 𝐴π‘₯ (π‘₯2+π‘Ž2) + 𝐡π‘₯ (π‘₯2+𝑏2) ----- (a) π‘₯3 (π‘₯2+π‘Ž2)(π‘₯2+𝑏2) = 𝐴π‘₯(π‘₯2+𝑏2)+𝐡π‘₯(π‘₯2+π‘Ž2) (π‘₯2+π‘Ž2)(π‘₯2+𝑏2) π‘₯3 = 𝐴π‘₯(π‘₯2 + 𝑏2) + 𝐡π‘₯(π‘₯2 + π‘Ž2) π‘₯3 = 𝐴(π‘₯3 + 𝑏2 π‘₯) + 𝐡(π‘₯3 + π‘Ž2 π‘₯) ------- (b) Equating the coefficients of π‘₯3 on both sides of (b), we get 1 = 𝐴 + 𝐡  𝐴 = βˆ’1 βˆ’ 𝐡 ------- (i) Equating the coefficients of π‘₯ on both sides of (b), we get 0 = 𝐴𝑏2 + π΅π‘Ž2 π΅π‘Ž2 = βˆ’π΄π‘2 𝐡 = βˆ’π΄ 𝑏2 π‘Ž2 ------ (ii) Putting, 𝐡 = βˆ’π΄ 𝑏2 π‘Ž2 in (i) , we get 𝐴 = βˆ’1 βˆ’ 𝐡 𝐴 = βˆ’1 + 𝐴 𝑏2 π‘Ž2 𝐴 βˆ’ 𝐴 𝑏2 π‘Ž2 = βˆ’1 𝐴 (1 βˆ’ 𝑏2 π‘Ž2 ) = βˆ’1 𝐴 ( π‘Ž2βˆ’π‘2 π‘Ž2 ) = βˆ’1 𝐴 = βˆ’ π‘Ž2 π‘Ž2βˆ’π‘2 𝐴 = π‘Ž2 𝑏2βˆ’π‘Ž2 Again, Putting 𝐴 = π‘Ž2 𝑏2βˆ’π‘Ž2 , in (ii), we get 𝐡 = βˆ’π΄ 𝑏2 π‘Ž2 𝐡 = βˆ’ π‘Ž2 𝑏2βˆ’π‘Ž2 ο‚΄ 𝑏2 π‘Ž2 = βˆ’ 𝑏2 𝑏2βˆ’π‘Ž2 Now,
  • 39. 𝐼 = ∫ π‘₯3 𝑑π‘₯ (π‘₯2+π‘Ž2)(π‘₯2+𝑏2) 𝐼 = ∫ ( 𝐴π‘₯ (π‘₯2+π‘Ž2) + 𝐡π‘₯ (π‘₯2+𝑏2) ) 𝑑π‘₯ Using (a) 𝐼 = ∫ 𝐴π‘₯ (π‘₯2+π‘Ž2) 𝑑π‘₯ + ∫ 𝐡π‘₯ (π‘₯2+𝑏2) 𝑑π‘₯ 𝐼 = 𝐴 ∫ π‘₯ 𝑑π‘₯ (π‘₯2+π‘Ž2) + 𝐡 ∫ π‘₯ 𝑑π‘₯ (π‘₯2+π‘Ž2) Take, π‘₯2 + π‘Ž2 = 𝑒 and π‘₯2 + π‘Ž2 = 𝑣  π‘₯ 𝑑π‘₯ = 1 2 𝑑𝑒 and π‘₯ 𝑑π‘₯ = 1 2 𝑑𝑣 𝐼 = 𝐴 ∫ 1 2 𝑑𝑒 𝑒 + 𝐡 ∫ 1 2 𝑑𝑣 𝑣 𝐼 = 1 2 𝐴 ∫ 𝑑𝑒 𝑒 + 1 2 𝐡 ∫ 𝑑𝑣 𝑣 𝐼 = 1 2 𝐴 log 𝑒 + 1 2 𝐡 log 𝑣 𝐼 = 1 2 𝐴 log(π‘₯2 + π‘Ž2) + 1 2 𝐡 log(π‘₯2 + π‘Ž2) 𝐼 = 1 2 ο‚΄ π‘Ž2 𝑏2βˆ’π‘Ž2 log(π‘₯2 + π‘Ž2) + 1 2 ο‚΄ (βˆ’ 𝑏2 𝑏2βˆ’π‘Ž2 ) log(π‘₯2 + π‘Ž2) 𝐼 = 1 2(𝑏2βˆ’π‘Ž2) {log(π‘₯2 + π‘Ž2) βˆ’ 𝑏2 log(π‘₯2 + π‘Ž2) } (ii) Solution: Let 𝐼 = ∫ π‘₯4 𝑑π‘₯ (π‘₯2+π‘Ž2)(π‘₯2+𝑏2) 𝐼 = ∫ π‘₯4 π‘₯4+ 𝑏2π‘₯2+π‘Ž2π‘₯2+π‘Ž2𝑏2 𝑑π‘₯ 𝐼 = ∫ {1 βˆ’ ( 𝑏2π‘₯2+π‘Ž2π‘₯2+π‘Ž2𝑏2 π‘₯4+ 𝑏2π‘₯2+π‘Ž2π‘₯2+π‘Ž2𝑏2 )} 𝑑π‘₯ On dividing the numerator by denominator. 𝐼 = ∫ 1 𝑑π‘₯ βˆ’ ∫ 𝑏2π‘₯2+π‘Ž2π‘₯2+π‘Ž2𝑏2 π‘₯4+ 𝑏2π‘₯2+π‘Ž2π‘₯2+π‘Ž2𝑏2 𝑑π‘₯ 𝐼 = π‘₯ βˆ’ ∫ π‘Ž2(π‘₯2+𝑏2)+𝑏2π‘₯2 (π‘₯2+π‘Ž2)(π‘₯2+𝑏2) 𝑑π‘₯ 𝐼 = π‘₯ βˆ’ {∫ π‘Ž2(π‘₯2+𝑏2) (π‘₯2+π‘Ž2)(π‘₯2+𝑏2) 𝑑π‘₯ + ∫ 𝑏2π‘₯2 (π‘₯2+π‘Ž2)(π‘₯2+𝑏2) 𝑑π‘₯} 𝐼 = π‘₯ βˆ’ {∫ π‘Ž2 (π‘₯2+π‘Ž2) 𝑑π‘₯ + 𝑏2 ∫ π‘₯2 (π‘₯2+π‘Ž2)(π‘₯2+𝑏2) 𝑑π‘₯} 𝐼 = π‘₯ βˆ’ {π‘Ž2 ∫ 𝑑π‘₯ (π‘₯2+π‘Ž2) + 𝑏2 ∫ π‘₯2 (π‘₯2+π‘Ž2)(π‘₯2+𝑏2) 𝑑π‘₯} 𝐼 = π‘₯ βˆ’ {π‘Ž2 ο‚΄ 1 π‘Ž tanβˆ’1 π‘₯ π‘Ž + 𝑏2 ∫ π‘₯2 (π‘₯2+π‘Ž2)(π‘₯2+𝑏2) 𝑑π‘₯}
  • 40. 𝐼 = π‘₯ βˆ’ {π‘Ž tanβˆ’1 π‘₯ π‘Ž + 𝑏2 ∫ π‘₯2 (π‘₯2+π‘Ž2)(π‘₯2+𝑏2) 𝑑π‘₯} 𝐼 = π‘₯ βˆ’ π‘Ž tanβˆ’1 π‘₯ π‘Ž βˆ’ 𝑏2 𝐼1 Where, 𝐼1 = ∫ π‘₯2 (π‘₯2+π‘Ž2)(π‘₯2+𝑏2) 𝑑π‘₯ Here, 𝐼1 = ∫ π‘₯2 (π‘₯2+π‘Ž2)(π‘₯2+𝑏2) 𝑑π‘₯ Substituting, π‘₯2 = 𝑒 , for a partial fraction, we have π‘₯2 (π‘₯2+π‘Ž2)(π‘₯2+𝑏2) = 𝑒 (𝑒+π‘Ž2)(𝑒+𝑏2) Here, 𝑒 (𝑒+π‘Ž2)(𝑒+𝑏2) = 𝐴 (𝑒+π‘Ž2) + 𝐡 (𝑒+𝑏2) ------- (a) 𝑒 = 𝐴(𝑒 + 𝑏2) + 𝐡(𝑒 + π‘Ž2) ------ (b) Putting, 𝑒 = βˆ’π‘Ž2 in (b), we get 𝐴 = π‘Ž2 π‘Ž2βˆ’π‘2 Putting, 𝑒 = βˆ’π‘2 in (b), we get 𝐡 == βˆ’ 𝑏2 π‘Ž2βˆ’π‘2 Now, 𝐼1 = ∫ π‘₯2 𝑑π‘₯ (π‘₯2+π‘Ž2)(π‘₯2+𝑏2) 𝐼1 = ∫ ( 𝐴 (𝑒+π‘Ž2) + 𝐡 (𝑒+𝑏2) ) 𝑑π‘₯ Using (a) 𝐼1 = ∫ ( 𝐴 (π‘₯2+π‘Ž2) + 𝐡 (π‘₯2+𝑏2) ) 𝑑π‘₯ Since, π‘₯2 = 𝑒 𝐼1 = ∫ 𝐴 π‘₯2+π‘Ž2 𝑑π‘₯ + ∫ 𝐡 π‘₯2+𝑏2 𝑑π‘₯ 𝐼1 = 𝐴 ∫ 𝑑π‘₯ π‘₯2+π‘Ž2 + 𝐡 ∫ 𝑑π‘₯ π‘₯2+𝑏2 𝐼1 = 𝐴 1 π‘Ž tanβˆ’1 π‘₯ π‘Ž + 𝐡 1 𝑏 tanβˆ’1 π‘₯ 𝑏 𝐼1 = π‘Ž2 π‘Ž2βˆ’π‘2 ο‚΄ 1 π‘Ž tanβˆ’1 π‘₯ π‘Ž βˆ’ 𝑏2 π‘Ž2βˆ’π‘2 ο‚΄ 1 𝑏 tanβˆ’1 π‘₯ 𝑏 𝐼1 = π‘Ž π‘Ž2βˆ’π‘2 tanβˆ’1 π‘₯ π‘Ž βˆ’ 𝑏 π‘Ž2βˆ’π‘2 tanβˆ’1 π‘₯ 𝑏 𝐼1 = 1 π‘Ž2βˆ’π‘2 {π‘Ž tanβˆ’1 π‘₯ π‘Ž βˆ’ 𝑏 tanβˆ’1 π‘₯ 𝑏 }
  • 41. π‘‡β„Žπ‘’π‘ , 𝐼 = π‘₯ βˆ’ π‘Ž tanβˆ’1 π‘₯ π‘Ž βˆ’ 𝑏2 𝐼1 𝐼 = π‘₯ βˆ’ π‘Ž tanβˆ’1 π‘₯ π‘Ž βˆ’ 𝑏2 ( 1 π‘Ž2βˆ’π‘2 {π‘Ž tanβˆ’1 π‘₯ π‘Ž βˆ’ 𝑏 tanβˆ’1 π‘₯ 𝑏 }) 𝐼 = π‘₯ βˆ’ π‘Ž tanβˆ’1 π‘₯ π‘Ž βˆ’ π‘Žπ‘2 π‘Ž2βˆ’π‘2 tanβˆ’1 π‘₯ π‘Ž + 𝑏3 π‘Ž2βˆ’π‘2 tanβˆ’1 π‘₯ 𝑏 𝐼 = π‘₯ βˆ’ tanβˆ’1 π‘₯ π‘Ž (π‘Ž + π‘Žπ‘2 π‘Ž2βˆ’π‘2 ) + 𝑏3 π‘Ž2βˆ’π‘2 tanβˆ’1 π‘₯ 𝑏 𝐼 = π‘₯ βˆ’ tanβˆ’1 π‘₯ π‘Ž ( π‘Ž3βˆ’π‘Žπ‘2βˆ“π‘Žπ‘2 π‘Ž2βˆ’π‘2 ) + 𝑏3 π‘Ž2βˆ’π‘2 tanβˆ’1 π‘₯ 𝑏 𝐼 = π‘₯ βˆ’ tanβˆ’1 π‘₯ π‘Ž ( π‘Ž3 π‘Ž2βˆ’π‘2 ) + 𝑏3 π‘Ž2βˆ’π‘2 tanβˆ’1 π‘₯ 𝑏 𝐼 = π‘₯ βˆ’ ( π‘Ž3 π‘Ž2βˆ’π‘2 )tanβˆ’1 π‘₯ π‘Ž + 𝑏3 π‘Ž2βˆ’π‘2 tanβˆ’1 π‘₯ 𝑏 𝐼 = π‘₯ βˆ’ π‘Ž3 βˆ’(𝑏2βˆ’π‘Ž2) tanβˆ’1 π‘₯ π‘Ž + 𝑏3 π‘Ž2βˆ’π‘2 tanβˆ’1 π‘₯ 𝑏 𝐼 = π‘₯ + π‘Ž3 𝑏2βˆ’π‘Ž2 tanβˆ’1 π‘₯ π‘Ž + 𝑏3 π‘Ž2βˆ’π‘2 tanβˆ’1 π‘₯ 𝑏 19. ∫ 𝑑π‘₯ (π‘₯2 + π‘Ž2)(π‘₯+𝑏) Solution: Let 𝐼 = ∫ 𝑑π‘₯ (π‘₯2 + π‘Ž2)(π‘₯+𝑏) Let, 1 (π‘₯2 + π‘Ž2)(π‘₯+𝑏) = 𝐴π‘₯+𝐡 (π‘₯2 + π‘Ž2) + 𝐢 (π‘₯+𝑏) ------ (a) 1 (π‘₯2 + π‘Ž2)(π‘₯+𝑏) = (𝐴π‘₯+𝐡)(π‘₯+𝑏)+ 𝐢 (π‘₯2 + π‘Ž2) (π‘₯2 + π‘Ž2) 1 = (𝐴π‘₯ + 𝐡)(π‘₯ + 𝑏) + 𝐢 (π‘₯2 + π‘Ž2) 1 = 𝐴(π‘₯2 + 𝑏 π‘₯) + 𝐡(π‘₯ + 𝑏) + 𝐢 (π‘₯2 + π‘Ž2) -------- (b) Equating the coefficients of π‘₯2 on both sides of equation (b), we get 𝑂 = 𝐴 + 𝐢  𝐴 = βˆ’πΆ ----- (i) Equating the coefficients of π‘₯2 on both sides of equation (b), we get 𝑂 = 𝑏𝐴 + 𝐡  𝐡 = βˆ’π‘π΄ ------ (ii) Equating the constant terms on both sides of equation (b), we get 1 = 𝑏𝐡 + π‘Ž2 𝐢 -------- (iii) Putting 𝐴 = βˆ’πΆ in (ii), we get
  • 42. 𝐡 = 𝑏𝐢 Again, putting 𝐡 = 𝑏𝐢 in (iii) 1 = 𝑏𝐡 + π‘Ž2 𝐢 1 = 𝑏𝑏𝐢 + π‘Ž2 𝐢 1 = 𝑏2 𝐢 + π‘Ž2 𝐢 1 = 𝐢(π‘Ž2 + 𝑏2)  𝐢 = 1 π‘Ž2+𝑏2 Putting, 𝐢 = 1 π‘Ž2+𝑏2 in (i) 𝐴 = βˆ’πΆ  𝐴 = βˆ’ 1 π‘Ž2+𝑏2 Finally, putting 𝐴 = βˆ’ 1 π‘Ž2+𝑏2 in (ii) , we get 𝐡 = βˆ’π‘π΄  𝐡 = 𝑏 π‘Ž2+𝑏2 Now, 𝐼 = ∫ 𝑑π‘₯ (π‘₯2 + π‘Ž2)(π‘₯+𝑏) 𝐼 = ∫ { 𝐴π‘₯+𝐡 (π‘₯2 + π‘Ž2) + 𝐢 (π‘₯+𝑏) } 𝑑π‘₯ 𝐼 = ∫ 𝐴π‘₯+𝐡 (π‘₯2 + π‘Ž2) 𝑑π‘₯ + ∫ 𝐢 (π‘₯+𝑏) 𝑑π‘₯ 𝐼 = ∫ 𝐴π‘₯ (π‘₯2 + π‘Ž2) 𝑑π‘₯ + 𝐡 ∫ 𝑑π‘₯ (π‘₯2 + π‘Ž2) + 𝐢 ∫ 𝑑π‘₯ (π‘₯+𝑏) 𝐼 = 𝐴 ∫ π‘₯ (π‘₯2 + π‘Ž2) 𝑑π‘₯ + 𝐡 π‘₯ π‘Ž tanβˆ’1 π‘₯ π‘Ž + 𝐢 log(π‘₯ + 𝑏) Putting, π‘₯2 + π‘Ž2 = 𝑒  π‘₯ 𝑑π‘₯ = 1 2 𝑑𝑒 𝐼 = 𝐴 ∫ π‘₯ (π‘₯2 + π‘Ž2) 𝑑π‘₯ + 𝐡 π‘₯ π‘Ž tanβˆ’1 π‘₯ π‘Ž + 𝐢 log(π‘₯ + 𝑏) 𝐼 = 𝐴 ∫ 1 2 𝑑𝑒 𝑒 + 𝐡 π‘₯ π‘Ž tanβˆ’1 π‘₯ π‘Ž + 𝐢 log(π‘₯ + 𝑏) 𝐼 = 1 2 𝐴 ∫ 𝑑𝑒 𝑒 + 𝐡 π‘₯ π‘Ž tanβˆ’1 π‘₯ π‘Ž + 𝐢 log(π‘₯ + 𝑏) 𝐼 = 1 2 𝐴 log 𝑒 + 𝐡 π‘₯ π‘Ž tanβˆ’1 π‘₯ π‘Ž + 𝐢 log(π‘₯ + 𝑏) 𝐼 = 𝐴 log 𝑒 1 2 + 𝐡 π‘₯ π‘Ž tanβˆ’1 π‘₯ π‘Ž + 𝐢 log(π‘₯ + 𝑏)
  • 43. 𝐼 = 𝐴 log βˆšπ‘’ + 𝐡 π‘₯ π‘Ž tanβˆ’1 π‘₯ π‘Ž + 𝐢 log(π‘₯ + 𝑏) 𝐼 = βˆ’ 1 π‘Ž2+𝑏2 log √π‘₯2 + π‘Ž2 + 𝑏 π‘Ž2+𝑏2 1 π‘Ž tanβˆ’1 π‘₯ π‘Ž + 𝑏 π‘Ž2+𝑏2 log(π‘₯ + 𝑏) 𝐼 = 1 π‘Ž2+𝑏2 (log(π‘₯ + 𝑏) βˆ’ log √π‘₯2 + π‘Ž2) + 𝑏 π‘Ž2+𝑏2 1 π‘Ž tanβˆ’1 π‘₯ π‘Ž 𝐼 = 1 π‘Ž2+𝑏2 log (π‘₯+𝑏) √π‘₯2 + π‘Ž2 + 𝑏 π‘Ž2+𝑏2 1 π‘Ž tanβˆ’1 π‘₯ π‘Ž 𝐼 = 1 π‘Ž2+𝑏2 {log (π‘₯+𝑏) √π‘₯2 + π‘Ž2 + 𝑏 π‘Ž tanβˆ’1 π‘₯ π‘Ž } 20. (i) ∫ π‘₯ 𝑑π‘₯ (1+π‘₯)(1+π‘₯2) (ii) ∫ π‘₯ π‘₯3βˆ’1 𝑑π‘₯ (i) Solution: Let 𝐼 = ∫ π‘₯ 𝑑π‘₯ (1+π‘₯)(1+π‘₯2) Let, π‘₯ (1+π‘₯)(1+π‘₯2) = 𝐴 (1+π‘₯) + 𝐡π‘₯+𝐢 (1+π‘₯2) -------- (a) π‘₯ (1+π‘₯)(1+π‘₯2) = 𝐴(1+π‘₯2)+ (𝐡π‘₯+𝐢)(1+π‘₯) (1+π‘₯)(1+π‘₯2) π‘₯ = 𝐴(1 + π‘₯2) + 𝐡(π‘₯ + π‘₯2) + 𝐢(1 + π‘₯) -------- (b) For, π‘₯ = 0, we get 0 = 𝐴 + 𝐢 𝐢 = βˆ’π΄ -------- (i) For, π‘₯ = βˆ’1, we get βˆ’1 = 2𝐴  𝐴 = βˆ’ 1 2 Putting, 𝐴 = βˆ’ 1 2 in (i), we get 𝐢 = βˆ’π΄  𝐢 = 1 2 Equating the coefficients of π‘₯2 in both sides of equation (b), we get 0 = 𝐴 + 𝐡 𝐡 = βˆ’π΄ 𝐡 = 1 2 Now, 𝐼 = ∫ π‘₯ 𝑑π‘₯ (1+π‘₯)(1+π‘₯2) 𝐼 = ∫ ( 𝐴 (1+π‘₯) + 𝐡π‘₯+𝐢 (1+π‘₯2) ) 𝑑π‘₯ Using (a)
  • 44. 𝐼 = ∫ 𝐴 (1+π‘₯) 𝑑π‘₯ + ∫ 𝐡π‘₯ (1+π‘₯2) 𝑑π‘₯ + ∫ 𝐢 (1+π‘₯2) 𝑑π‘₯ 𝐼 = 𝐴 ∫ 𝑑π‘₯ (1+π‘₯) + 𝐡 ∫ π‘₯ 𝑑π‘₯ (1+π‘₯2) + 𝐢 ∫ 𝑑π‘₯ (1+π‘₯2) 𝐼 = 𝐴 log(1 + π‘₯) + 𝐡 ∫ π‘₯ 𝑑π‘₯ (1+π‘₯2) + 𝐢 tanβˆ’1 π‘₯ 𝐼 = 𝐴 log(1 + π‘₯) + 𝐡 log(1 + π‘₯2) + 𝐢 tanβˆ’1 π‘₯ 𝐼 = βˆ’ 1 2 log(1 + π‘₯) + 1 2 ο‚΄ 1 2 log(1 + π‘₯2) + 1 2 tanβˆ’1 π‘₯ 𝐼 = βˆ’ 1 2 log(1 + π‘₯) + 1 4 log(1 + π‘₯2) + 1 2 tanβˆ’1 π‘₯ (ii) Solution: Let 𝐼 = ∫ π‘₯ π‘₯3βˆ’1 𝑑π‘₯ 𝐼 = ∫ π‘₯ (π‘₯βˆ’1)(π‘₯2+π‘₯+1) 𝑑π‘₯ Let, π‘₯ (π‘₯βˆ’1)(π‘₯2+π‘₯+1) = 𝐴 (π‘₯βˆ’1) + 𝐡π‘₯+𝐢 (π‘₯2+π‘₯+1) ------ (a) π‘₯ (π‘₯βˆ’1)(π‘₯2+π‘₯+1) = 𝐴(π‘₯2+π‘₯+1)+(𝐡π‘₯+𝐢)(π‘₯βˆ’1) (π‘₯βˆ’1)(π‘₯2+π‘₯+1) π‘₯ = 𝐴(π‘₯2 + π‘₯ + 1) + (𝐡π‘₯ + 𝐢)(π‘₯ βˆ’ 1) π‘₯ = 𝐴(π‘₯2 + π‘₯ + 1) + 𝐡(π‘₯2 βˆ’ π‘₯) + 𝐢(π‘₯ βˆ’ 1) ---------- (b) For, = 1 , we have 1 = 3𝐴  𝐴 = 1 3 For, = 0 , we have 0 = 𝐴 βˆ’ 𝐢 𝐢 = 𝐴  𝐢 = 1 3 Equating the coefficients of π‘₯2 , on both sides of (b) 0 = 𝐴 + 𝐡 𝐡 = βˆ’π΄ 𝐡 = βˆ’ 1 3 Now, 𝐼 = ∫ π‘₯ (π‘₯βˆ’1)(π‘₯2+π‘₯+1) 𝑑π‘₯
  • 45. 𝐼 = ∫ { 𝐴 (π‘₯βˆ’1) + 𝐡π‘₯+𝐢 (π‘₯2+π‘₯+1) } 𝑑π‘₯ 𝐼 = ∫ 𝐴 (π‘₯βˆ’1) 𝑑π‘₯ + ∫ 𝐡π‘₯+𝐢 (π‘₯2+π‘₯+1) 𝑑π‘₯ 𝐼 = 1 3 ∫ 𝑑π‘₯ (π‘₯βˆ’1) + ∫ βˆ’ 1 3 π‘₯+ 1 3 (π‘₯2+π‘₯+1) 𝑑π‘₯ 𝐼 = 1 3 ∫ 𝑑π‘₯ (π‘₯βˆ’1) βˆ’ 1 3 ∫ π‘₯βˆ’1 (π‘₯2+π‘₯+1) 𝑑π‘₯ 𝐼 = 1 3 ∫ 𝑑π‘₯ (π‘₯βˆ’1) βˆ’ 1 6 ∫ 2π‘₯βˆ’2 (π‘₯2+π‘₯+1) 𝑑π‘₯ 𝐼 = 1 3 ∫ 𝑑π‘₯ (π‘₯βˆ’1) βˆ’ 1 6 ∫ 2π‘₯+1βˆ’3 (π‘₯2+π‘₯+1) 𝑑π‘₯ + 1 6 ∫ 3 (π‘₯2+π‘₯+1) 𝑑π‘₯ 𝐼 = 1 3 ∫ 𝑑π‘₯ (π‘₯βˆ’1) βˆ’ 1 6 ∫ 2π‘₯+1 (π‘₯2+π‘₯+1) 𝑑π‘₯ + 3 6 ∫ 𝑑π‘₯ (π‘₯2+π‘₯+1) 𝐼 = 1 3 log(π‘₯ βˆ’ 1) βˆ’ 1 6 ∫ 2π‘₯+1 (π‘₯2+π‘₯+1) 𝑑π‘₯ + 1 2 ∫ 𝑑π‘₯ (π‘₯+ 1 2 ) 2 +( √3 2 ) 2 Putting, π‘₯2 + π‘₯ + 1 = 𝑒  (2π‘₯ + 1)𝑑π‘₯ = 𝑑𝑒 𝐼 = 1 3 log(π‘₯ βˆ’ 1) βˆ’ 1 6 ∫ 𝑑𝑒 𝑒 + 1 2 ∫ 𝑑π‘₯ (π‘₯+ 1 2 ) 2 +( √3 2 ) 2 𝐼 = 1 3 log(π‘₯ βˆ’ 1) βˆ’ 1 6 log 𝑒 + 1 2 ο‚΄ 1 √3 2 tanβˆ’1 ( π‘₯+ 1 2 √3 2 ) 𝐼 = 1 3 log(π‘₯ βˆ’ 1) βˆ’ 1 6 log(π‘₯2 + π‘₯ + 1) + 1 √3 tanβˆ’1 ( 2π‘₯+1 √3 ) 𝐼 = 1 3 log(π‘₯ βˆ’ 1) βˆ’ 1 3 ο‚΄ 1 2 log(π‘₯2 + π‘₯ + 1) + 1 √3 tanβˆ’1 ( 2π‘₯+1 √3 ) 𝐼 = 1 3 log(π‘₯ βˆ’ 1) βˆ’ 1 3 log(π‘₯2 + π‘₯ + 1) 1 2 + 1 √3 tanβˆ’1 ( 2π‘₯+1 √3 ) 𝐼 = 1 3 log(π‘₯ βˆ’ 1) βˆ’ 1 3 log √π‘₯2 + π‘₯ + 1 + 1 √3 tanβˆ’1 ( 2π‘₯+1 √3 ) 𝐼 = 1 3 (log(π‘₯ βˆ’ 1) βˆ’ log √π‘₯2 + π‘₯ + 1) + 1 √3 tanβˆ’1 ( 2π‘₯+1 √3 ) 𝐼 = 1 3 log π‘₯βˆ’1 √π‘₯2+π‘₯+1 + 1 √3 tanβˆ’1 ( 2π‘₯+1 √3 ) 21. ∫ (π‘₯2βˆ’1) π‘₯4+π‘₯2+1 𝑑π‘₯ Solution: 𝐼 = ∫ (π‘₯2βˆ’1) π‘₯4+π‘₯2+1 𝑑π‘₯
  • 46. 𝐼 = ∫ π‘₯2(1βˆ’ 1 π‘₯2) π‘₯2(π‘₯2+1+ 1 π‘₯2) 𝑑π‘₯ 𝐼 = ∫ (1βˆ’ 1 π‘₯2) (π‘₯2+1+ 1 π‘₯2) 𝑑π‘₯ 𝐼 = ∫ (1βˆ’ 1 π‘₯2) (π‘₯+ 1 π‘₯ ) 2 βˆ’1 𝑑π‘₯ Putting, π‘₯ + 1 π‘₯ = 𝑒  (1 βˆ’ 1 π‘₯2 ) 𝑑π‘₯ = 𝑑𝑒 𝐼 = ∫ 𝑑𝑒 𝑒2βˆ’1 𝐼 = ∫ 𝑑𝑒 (𝑒+1)(π‘’βˆ’1) Let, 1 (𝑒+1)(π‘’βˆ’1) = 𝐴 (𝑒+1) + 𝐡 (π‘’βˆ’1) ------ (a) 1 (𝑒+1)(π‘’βˆ’1) = 𝐴(π‘’βˆ’1)+ 𝐡 (𝑒+1) (𝑒+1) 1 = 𝐴(𝑒 βˆ’ 1) + 𝐡 (𝑒 + 1) ------ (b) Putting, 𝑒 = 1 and 𝑒 = βˆ’1 in (b) , we get 𝐴 = βˆ’ 1 2 and 𝐡 = 1 2 Now, 𝐼 = ∫ 𝑑𝑒 (𝑒+1)(π‘’βˆ’1) 𝐼 = ∫ ( 𝐴 (𝑒+1) + 𝐡 (π‘’βˆ’1) ) 𝑑𝑒 𝐼 = ∫ 𝐴 (𝑒+1) 𝑑𝑒 + ∫ 𝐡 (π‘’βˆ’1) 𝑑𝑒 𝐼 = 𝐴 ∫ 𝑑𝑒 (𝑒+1) + 𝐡 ∫ 𝑑𝑒 (π‘’βˆ’1) 𝐼 = 𝐴 log(𝑒 + 1) + 𝐡 log(𝑒 βˆ’ 1) 𝐼 = βˆ’ 1 2 log(𝑒 + 1) + 1 2 log(𝑒 βˆ’ 1) 𝐼 = 1 2 log(𝑒 βˆ’ 1) βˆ’ 1 2 log(𝑒 + 1) 𝐼 = 1 2 log (π‘₯ + 1 π‘₯ βˆ’ 1) βˆ’ 1 2 log (π‘₯ + 1 π‘₯ + 1) 𝐼 = 1 2 log ( π‘₯2βˆ’π‘₯+1 π‘₯ ) βˆ’ 1 2 log ( π‘₯2+π‘₯+1 π‘₯ ) 𝐼 = 1 2 log(π‘₯2 βˆ’ π‘₯ + 1) βˆ’ 1 2 log π‘₯ βˆ’ 1 2 log(π‘₯2 + π‘₯ + 1) + 1 2 log π‘₯
  • 47. 𝐼 = 1 2 log(π‘₯2 βˆ’ π‘₯ + 1) βˆ’ 1 2 log(π‘₯2 + π‘₯ + 1) 22. (i) ∫ π‘₯2 π‘₯4βˆ’π‘₯2βˆ’12 𝑑π‘₯ (ii) ∫ π‘₯ 𝑑π‘₯ π‘₯4βˆ’π‘₯2βˆ’2 (i) Solution: Let, 𝐼 = ∫ π‘₯2 π‘₯4βˆ’π‘₯2βˆ’12 𝑑π‘₯ 𝐼 = ∫ π‘₯2 π‘₯4βˆ’4π‘₯2+3π‘₯2βˆ’12 𝑑π‘₯ 𝐼 = ∫ π‘₯2 π‘₯2(π‘₯2βˆ’4)+3(π‘₯2βˆ’3) 𝑑π‘₯ 𝐼 = ∫ π‘₯2 (π‘₯2βˆ’4)(π‘₯2+3) 𝑑π‘₯ Substituting, π‘₯2 = 𝑒 for partial fraction Here, π‘₯2 (π‘₯2βˆ’4)(π‘₯2+3) = 𝑒 (π‘’βˆ’4)(𝑒+3) Let, 𝑒 (π‘’βˆ’4)(𝑒+3) = 𝐴 (π‘’βˆ’4) + 𝐡 (𝑒+3) ------ (a) 𝑒 (π‘’βˆ’4)(𝑒+3) = 𝐴(𝑒+3)+ 𝐡 (π‘’βˆ’4) (π‘’βˆ’4)(𝑒+3) 𝑒 = 𝐴(𝑒 + 3) + 𝐡 (𝑒 βˆ’ 4) ------- (b) Putting, 𝑒 = βˆ’3 in (b), we get 𝐡 = 3 7 Putting, 𝑒 = 4 in (b), we get 𝐴 = 4 7 Now, 𝐼 = ∫ π‘₯2 (π‘₯2βˆ’4)(π‘₯2+3) 𝑑π‘₯ 𝐼 = ∫ ( 𝐴 (π‘’βˆ’4) + 𝐡 (𝑒+3) ) 𝑑π‘₯ Using (a) 𝐼 = ∫ ( 𝐴 (π‘₯2βˆ’4) + 𝐡 (π‘₯2+3) ) 𝑑π‘₯ 𝐼 = ∫ 𝐴 (π‘₯2βˆ’4) 𝑑π‘₯ + ∫ 𝐡 (π‘₯2+3) 𝑑π‘₯ 𝐼 = 𝐴 ∫ 𝑑π‘₯ π‘₯2βˆ’22 + 𝐡 ∫ 𝑑π‘₯ π‘₯2+ (√3) 2
  • 48. 𝐼 = 𝐴 1 2ο‚΄2 log | π‘₯βˆ’2 π‘₯+2 | + 𝐡 1 √3 tanβˆ’1 π‘₯ √3 𝐼 = 4 7 ο‚΄ 1 4 log | π‘₯βˆ’2 π‘₯+2 | + 3 7 ο‚΄ 1 √3 tanβˆ’1 π‘₯ √3 𝐼 = 1 7 log | π‘₯βˆ’2 π‘₯+2 | + √3 7 tanβˆ’1 π‘₯ √3 (ii) Solution: Let, 𝐼 = ∫ π‘₯ 𝑑π‘₯ π‘₯4βˆ’π‘₯2βˆ’2 𝐼 = ∫ π‘₯ 𝑑π‘₯ (π‘₯2+1)(π‘₯+ √2)(π‘₯βˆ’βˆš2) Here, π‘₯ (π‘₯2+1)(π‘₯+ √2)(π‘₯βˆ’βˆš2) = 𝐴π‘₯+𝐡 (π‘₯2+1) + 𝐢 (π‘₯+ √2) + 𝐷 (π‘₯βˆ’βˆš2) π‘₯ (π‘₯2+1)(π‘₯+ √2)(π‘₯βˆ’βˆš2) = (𝐴π‘₯+𝐡)(π‘₯+ √2)(π‘₯βˆ’βˆš2)+ 𝐢(π‘₯2+1)(π‘₯βˆ’βˆš2)+𝐷(π‘₯2+1)(π‘₯+ √2) (π‘₯2+1)(π‘₯+ √2)(π‘₯βˆ’βˆš2) π‘₯ = (𝐴π‘₯ + 𝐡)(π‘₯ + √2)(π‘₯ βˆ’ √2) + 𝐢(π‘₯2 + 1)(π‘₯ βˆ’ √2) + 𝐷(π‘₯2 + 1)(π‘₯ + √2) -------- (b) Putting, = √2 , in (b) , we get 𝐷 = √2 6√2  𝐷 = 1 6 Putting, = βˆ’βˆš2 , in (b) , we get 𝐢 = βˆ’βˆš2 6√2  𝐢 = 1 6 Putting, = 0 , in (b) , we get 0 = 𝐡(βˆ’2) + 𝐢(βˆ’βˆš2) + 𝐷(√2) 2𝐡 = 𝐢(βˆ’βˆš2) + 𝐷(√2) 2𝐡 = βˆ’ 1 6 √2 + 1 6 √2 2𝐡 = 0  𝐡 = 0 Equating the coefficients of π‘₯3 , on both sides of (b) 0 = 𝐴 + 𝐢 + 𝐷 𝐡 = βˆ’πΆ βˆ’ 𝐷 𝐡 = βˆ’ 1 6 βˆ’ 1 6 𝐡 = βˆ’ 1 3 Now, ∫ 𝑑π‘₯ π‘₯2βˆ’π‘Ž2 = 1 2π‘Ž log | π‘₯βˆ’π‘Ž π‘₯+π‘Ž |
  • 49. 𝐼 = ∫ π‘₯ 𝑑π‘₯ (π‘₯2+1)(π‘₯+ √2)(π‘₯βˆ’βˆš2) 𝐼 = ∫ ( 𝐴π‘₯+𝐡 (π‘₯2+1) + 𝐢 (π‘₯+ √2) + 𝐷 (π‘₯βˆ’βˆš2) ) 𝑑π‘₯ 𝐼 = ∫ ( 𝐴π‘₯ (π‘₯2+1) + 𝐢 (π‘₯+ √2) + 𝐷 (π‘₯βˆ’βˆš2) ) 𝑑π‘₯ Since, 𝐡 = 0 𝐼 = ∫ 𝐴π‘₯ (π‘₯2+1) 𝑑π‘₯ + ∫ 𝐢 (π‘₯+ √2) 𝑑π‘₯ + ∫ 𝐷 (π‘₯βˆ’βˆš2) 𝑑π‘₯ 𝐼 = 𝐴 ∫ π‘₯ 𝑑π‘₯ (π‘₯2+1) + 𝐢 ∫ 𝑑π‘₯ (π‘₯+ √2) + 𝐷 ∫ 𝑑π‘₯ (π‘₯βˆ’βˆš2) 𝐼 = 𝐴 1 2 log(π‘₯2 + 1) + 𝐢 log(π‘₯ + √2) + 𝐷 log(π‘₯ βˆ’ √2) 𝐼 = βˆ’ 1 3 ο‚΄ 1 2 log(π‘₯2 + 1) + 1 6 log(π‘₯ + √2) + 1 6 log(π‘₯ βˆ’ √2) 𝐼 = βˆ’ 1 6 log(π‘₯2 + 1) + 1 6 {log(π‘₯ + √2) + log(π‘₯ βˆ’ √2)} 𝐼 = βˆ’ 1 6 log(π‘₯2 + 1) + 1 6 {log(π‘₯ + √2)(π‘₯ βˆ’ √2)} 𝐼 = βˆ’ 1 6 log(π‘₯2 + 1) + 1 6 {log(π‘₯2 βˆ’ 4)} 𝐼 = βˆ’ 1 6 log(π‘₯2 + 1) + 1 6 log(π‘₯2 βˆ’ 2) 𝐼 = 1 6 {log(π‘₯2 βˆ’ 2) βˆ’ log(π‘₯2 + 1)} 23. ∫ 𝑑π‘₯ (π‘₯4+ π‘₯2+1)2 Solution: Let 𝐼 = ∫ 𝑑π‘₯ (π‘₯4+ π‘₯2+1)2 𝐼 = ∫ 𝑑π‘₯ {(π‘₯+2)2+1}2 Take, π‘₯ + 2 = tan πœƒ  𝑑π‘₯ = sec2 πœƒ π‘‘πœƒ Now, 𝐼 = ∫ sec2 πœƒ π‘‘πœƒ {tan2 πœƒ+1}2 𝐼 = ∫ sec2 πœƒ π‘‘πœƒ sec4 πœƒ 𝐼 = ∫ π‘‘πœƒ sec2 πœƒ
  • 50. 𝐼 = ∫ cos2 πœƒ π‘‘πœƒ 𝐼 = ∫ 1 2 (1 + cos 2πœƒ) π‘‘πœƒ 𝐼 = 1 2 ∫(1 + cos 2πœƒ) π‘‘πœƒ 𝐼 = 1 2 (πœƒ + sin 2πœƒ 2 ) 𝐼 = 1 2 (πœƒ + 2sin πœƒ cosπœƒ 2 ) 𝐼 = 1 2 (πœƒ + sin πœƒ cos πœƒ) 𝐼 = 1 2 (tanβˆ’1(π‘₯ + 2) + π‘₯+2 √π‘₯2+4π‘₯+5 ο‚΄ 1 √π‘₯2+4π‘₯+5 ) 𝐼 = 1 2 (tanβˆ’1(π‘₯ + 2) + π‘₯+2 π‘₯2+4π‘₯+5 ) 24. ∫ π‘₯2 𝑑π‘₯ (π‘₯2+1)(2π‘₯2+1) Solution: Let, 𝐼 = ∫ π‘₯2 𝑑π‘₯ (π‘₯2+1)(2π‘₯2+1) π‘₯2 (π‘₯2+1)(2π‘₯2+1) = 𝐴π‘₯+𝐡 (π‘₯2+1) + 𝐢π‘₯+𝐷 (2π‘₯2+1) ------ (a) π‘₯2 (π‘₯2+1)(2π‘₯2+1) = (𝐴π‘₯+𝐡)(2π‘₯2+1)+ (𝐢π‘₯+𝐷)(π‘₯2+1) (π‘₯2+1)(2π‘₯2+1) π‘₯2 = (𝐴π‘₯ + 𝐡)(2π‘₯2 + 1) + (𝐢π‘₯ + 𝐷)(π‘₯2 + 1) π‘₯2 = 𝐴(2π‘₯3 + π‘₯) + 𝐡(2π‘₯2 + 1) + 𝐢(π‘₯3 + π‘₯) + 𝐷(π‘₯2 + 1) --------- (b) Equating the coefficients of π‘₯3 on both sides of (b), we get 0 = 2𝐴 + 𝐢 𝐢 + 2𝐴 = 0 ------ (i) Equating the coefficients of π‘₯2 on both sides of (b), we get 1 = 2𝐡 + 𝐷 ------ (ii) Equating the coefficients of π‘₯ on both sides of (b), we get 0 = 𝐴 + 𝐢  𝐢 = βˆ’π΄ ----- (iii) We take, π‘₯ + 2 = tan πœƒ πœƒ = tanβˆ’1(π‘₯ + 2) Again, π‘₯ + 2 = tan πœƒ (π‘₯ + 2)2 = tan2 πœƒ (π‘₯ + 2)2 = sin2 πœƒ cos2 πœƒ (π‘₯ + 2)2 cos2 πœƒ = sin2 πœƒ (π‘₯ + 2)2 (1 βˆ’ sin2 πœƒ) = sin2 πœƒ (π‘₯ + 2)2 βˆ’ (π‘₯ + 2)2 sin2 πœƒ = sin2 πœƒ (π‘₯ + 2)2 = sin2 πœƒ + (π‘₯ + 2)2 sin2 πœƒ (π‘₯ + 2)2 = sin2 πœƒ (1 + (π‘₯ + 2)2) (π‘₯+2)2 (1+(π‘₯+2)2) = sin2 πœƒ sin πœƒ = π‘₯+2 √1+(π‘₯+2)2 sin πœƒ = π‘₯+2 √π‘₯2+4π‘₯+5 and cos πœƒ = 1 √π‘₯2+4π‘₯+5
  • 51. Equating the constant terms on both sides of (b), we get 0 = 𝐡 + 𝐷  𝐷 = βˆ’π΅ ----- (iv) Putting, 𝐷 = βˆ’π΅ in (ii), we get 1 = 2𝐡 + 𝐷 1 = 2𝐡 βˆ’ 𝐡  𝐡 = 1 Putting 𝐡 = 1 in (iv). We get 𝐷 = βˆ’π΅  𝐷 = βˆ’1 Putting 𝐢 = βˆ’π΄ in (i). We get 𝐢 + 2𝐴 = 0 βˆ’π΄ + 2𝐴 = 0 𝐴 = 0 Putting 𝐴 = 0 in (i) , we get 𝐢 + 2𝐴 = 0 𝐢 + 0 = 0 𝐢 = 0 Now, 𝐼 = ∫ π‘₯2 𝑑π‘₯ (π‘₯2+1)(2π‘₯2+1) 𝐼 = ∫ ( 𝐴π‘₯+𝐡 (π‘₯2+1) + 𝐢π‘₯+𝐷 (2π‘₯2+1) ) 𝑑π‘₯ Using (a) 𝐼 = ∫ ( 𝐡 (π‘₯2+1) + 𝐷 (2π‘₯2+1) ) 𝑑π‘₯ Since, 𝐴 = 0 and 𝐢 = 0 𝐼 = ∫ ( 1 (π‘₯2+1) + βˆ’1 (2π‘₯2+1) ) 𝑑π‘₯ 𝐼 = ∫ ( 1 (π‘₯2+1) βˆ’ 1 (2π‘₯2+1) ) 𝑑π‘₯ 𝐼 = ∫ 1 (π‘₯2+1) 𝑑π‘₯ βˆ’ ∫ 1 (2π‘₯2+1) 𝑑π‘₯ 𝐼 = tanβˆ’1 π‘₯ βˆ’ 1 2 ∫ 𝑑π‘₯ π‘₯2+ 1 2
  • 52. 𝐼 = tanβˆ’1 π‘₯ βˆ’ 1 2 ∫ 𝑑π‘₯ π‘₯2+( 1 √2 ) 2 𝐼 = tanβˆ’1 π‘₯ βˆ’ 1 2 ο‚΄ 1 1 √2 tanβˆ’1 ( π‘₯ 1 √2 ) 𝐼 = tanβˆ’1 π‘₯ βˆ’ √2 2 tanβˆ’1(√2 π‘₯) 𝐼 = tanβˆ’1 π‘₯ βˆ’ √2 2 ο‚΄ √2 √2 tanβˆ’1(√2 π‘₯) 𝐼 = tanβˆ’1 π‘₯ βˆ’ 2 2√2 tanβˆ’1(√2 π‘₯) 𝐼 = tanβˆ’1 π‘₯ βˆ’ 1 √2 tanβˆ’1(√2 π‘₯) 25. ∫ 𝑑π‘₯ π‘₯(1+π‘₯+π‘₯2+π‘₯3) Solution: Let 𝐼 = ∫ 𝑑π‘₯ π‘₯(1+π‘₯+π‘₯2+π‘₯3) 𝐼 = ∫ 𝑑π‘₯ π‘₯(π‘₯+1)(π‘₯2+1) Let, 𝑑π‘₯ π‘₯(π‘₯+1)(π‘₯2+1) = 𝐴 π‘₯ + 𝐡 (π‘₯+1) + 𝐢π‘₯+𝐷 (π‘₯2+1) ---- (a) 1 π‘₯(π‘₯+1)(π‘₯2+1) = 𝐴(π‘₯+1)(π‘₯2+1)+ 𝐡π‘₯(π‘₯2+1)+(𝐢π‘₯+𝐷)π‘₯(π‘₯+1) π‘₯ (π‘₯+1)(π‘₯2+1) 1 = 𝐴(π‘₯3 + π‘₯3 + π‘₯2 + 1) + 𝐡(π‘₯3 + π‘₯) + 𝐢(π‘₯3 + π‘₯2) + 𝐷(π‘₯2 + π‘₯) --- (b) Putting, π‘₯ = βˆ’1 in (b), we get 1 = βˆ’2𝐡  𝐡 = βˆ’ 1 2 Putting, π‘₯ = 0 in (b), we get 1 = 𝐴  𝐴 = 1 Equating the coefficients of π‘₯3 on both sides of (b), we get 0 = 𝐴 + 𝐡 + 𝐢 0 = 1 βˆ’ 1 2 + 𝐢 0 = 1 2 + 𝐢  𝐢 = βˆ’ 1 2 Equating the coefficients of π‘₯2 on both sides of (b), we get
  • 53. 0 = 𝐴 + 𝐢 + 𝐷 0 = 1 βˆ’ 1 2 + 𝐷 0 = βˆ’ 1 2 + 𝐷 𝐷 = βˆ’ 1 2 Now, 𝐼 = ∫ 𝑑π‘₯ π‘₯(π‘₯+1)(π‘₯2+1) 𝐼 = ∫ ( 𝐴 π‘₯ + 𝐡 (π‘₯+1) + 𝐢π‘₯+𝐷 (π‘₯2+1) ) 𝑑π‘₯ 𝐼 = ∫ 𝐴 π‘₯ 𝑑π‘₯ + ∫ 𝐡 (π‘₯+1) 𝑑π‘₯ + ∫ 𝐢π‘₯+𝐷 (π‘₯2+1) 𝑑π‘₯ 𝐼 = ∫ 𝐴 π‘₯ 𝑑π‘₯ + ∫ 𝐡 (π‘₯+1) 𝑑π‘₯ + ∫ 𝐢π‘₯+𝐷 (π‘₯2+1) 𝑑π‘₯ + ∫ 𝐷 (π‘₯2+1) 𝑑π‘₯ 𝐼 = ∫ 𝑑π‘₯ π‘₯ βˆ’ 1 2 ∫ 𝑑π‘₯ (π‘₯+1) + ∫ βˆ’ 1 2 π‘₯ (π‘₯2+1) 𝑑π‘₯ + ∫ βˆ’ 1 2 (π‘₯2+1) 𝑑π‘₯ 𝐼 = log π‘₯ βˆ’ 1 2 log(π‘₯ + 1) βˆ’ 1 2 ∫ π‘₯ (π‘₯2+1) 𝑑π‘₯ βˆ’ 1 2 ∫ 𝑑π‘₯ (π‘₯2+1) 𝐼 = log π‘₯ βˆ’ 1 2 log(π‘₯ + 1) βˆ’ 1 4 ∫ 2π‘₯ (π‘₯2+1) 𝑑π‘₯ βˆ’ 1 2 ∫ 𝑑π‘₯ (π‘₯2+1) 𝐼 = log π‘₯ βˆ’ 1 2 log(π‘₯ + 1) βˆ’ 1 4 log(π‘₯2 + 1) βˆ’ 1 2 tanβˆ’1 π‘₯ 26. ∫ 𝑑π‘₯ π‘₯4+π‘₯2+1 Solution: Let, 𝐼 = ∫ 𝑑π‘₯ π‘₯4+π‘₯2+1 𝐼 = ∫ 𝑑π‘₯ (π‘₯2+π‘₯+1)(π‘₯2βˆ’π‘₯+1) Let, 1 (π‘₯2+π‘₯+1)(π‘₯2βˆ’π‘₯+1) = 𝐴π‘₯+𝐡 (π‘₯2+π‘₯+1) + 𝐢π‘₯+𝐷 (π‘₯2βˆ’π‘₯+1) ----- (a) 1 (π‘₯2+π‘₯+1)(π‘₯2βˆ’π‘₯+1) = (𝐴π‘₯+𝐡)(π‘₯2βˆ’π‘₯+1)+(𝐢π‘₯+𝐷) (π‘₯2+π‘₯+1) (π‘₯2+π‘₯+1)(π‘₯2βˆ’π‘₯+1) 1 = (𝐴π‘₯ + 𝐡)(π‘₯2 βˆ’ π‘₯ + 1) + (𝐢π‘₯ + 𝐷) (π‘₯2 + π‘₯ + 1) 1 = 𝐴(π‘₯3 βˆ’ π‘₯2 + π‘₯) + 𝐡(π‘₯2 βˆ’ π‘₯ + 1) + 𝐢 (π‘₯3 + π‘₯2 + π‘₯) + 𝐷(π‘₯2 + π‘₯ + 1) ------- (b) Equating the coefficients of π‘₯3 on both sides of equation (b), we get 0 = 𝐴 + 𝐢 𝐴 + 𝐢 = 0 ----- (i)
  • 54. Equating the coefficients of π‘₯2 on both sides of equation (b), we get 0 = βˆ’π΄ + 𝐡 + 𝐢 + 𝐷 ----- (ii) Equating the coefficients of π‘₯ on both sides of equation (b), we get 0 = 𝐴 βˆ’ 𝐡 + 𝐢 + 𝐷 -------- (iii) Equating the constant terms on both sides of equation (b), we get 1 = 𝐡 + 𝐷 ------ (iv) Adding (ii) and (iii), we get 0 = βˆ’π΄ + 𝐡 + 𝐢 + 𝐷 0 = 𝐴 βˆ’ 𝐡 + 𝐢 + 𝐷 ------------------------------------------------ 𝐢 + 𝐷 = 0 ----- (v) Putting, 𝐴 + 𝐢 = 0 in (iii), we get 0 = 𝐴 βˆ’ 𝐡 + 𝐢 + 𝐷 0 = βˆ’π΅ + 𝐷  𝐷 = 𝐡 Putting 𝐷 = 𝐡 in (iv) 1 = 𝐡 + 𝐷 1 = 𝐡 + 𝐡 1 = 2𝐡 𝐡 = 1 2 π΄π‘™π‘ π‘œ, 𝐷 = 1 2 Putting, 𝐷 = 1 2 in (v) 𝐢 + 𝐷 = 0 𝐢 + 1 2 = 0 𝐢 = βˆ’ 1 2 Putting, 𝐡 = 1 2 in (iv) 1 = 𝐡 + 𝐷
  • 55. 1 = 1 2 + 𝐷 𝐷 = 1 2 Putting, 𝐢 = βˆ’ 1 2 in (i) 𝐴 + 𝐢 = 0 𝐴 = 1 2 Now, 𝐼 = ∫ 𝑑π‘₯ π‘₯4+π‘₯2+1 𝐼 = ∫ ( 𝐴π‘₯+𝐡 (π‘₯2+π‘₯+1) + 𝐢π‘₯+𝐷 (π‘₯2βˆ’π‘₯+1) ) 𝑑π‘₯ Using (a) 𝐼 = ∫ ( 1 2 π‘₯+ 1 2 (π‘₯2+π‘₯+1) + βˆ’ 1 2 π‘₯+ 1 2 (π‘₯2βˆ’π‘₯+1) )𝑑π‘₯ 𝐼 = ∫ 1 2 π‘₯+ 1 2 (π‘₯2+π‘₯+1) 𝑑π‘₯ + ∫ βˆ’ 1 2 π‘₯+ 1 2 (π‘₯2βˆ’π‘₯+1) 𝑑π‘₯ 𝐼 = 1 2 ∫ π‘₯+1 (π‘₯2+π‘₯+1) 𝑑π‘₯ + 1 2 ∫ βˆ’π‘₯+1 (π‘₯2βˆ’π‘₯+1) 𝑑π‘₯ 𝐼 = 1 2 ∫ π‘₯+1 (π‘₯2+π‘₯+1) 𝑑π‘₯ βˆ’ 1 2 ∫ π‘₯βˆ’1 (π‘₯2βˆ’π‘₯+1) 𝑑π‘₯ 𝐼 = 1 4 ∫ 2π‘₯+2 (π‘₯2+π‘₯+1) 𝑑π‘₯ βˆ’ 1 4 ∫ 2π‘₯βˆ’2 (π‘₯2βˆ’π‘₯+1) 𝑑π‘₯ 𝐼 = 1 4 ∫ 2π‘₯+1+1 (π‘₯2+π‘₯+1) 𝑑π‘₯ βˆ’ 1 4 ∫ 2π‘₯βˆ’1βˆ’1 (π‘₯2βˆ’π‘₯+1) 𝑑π‘₯ 𝐼 = 1 4 ∫ { 2π‘₯+1 (π‘₯2+π‘₯+1) + 1 (π‘₯2+π‘₯+1) } 𝑑π‘₯ βˆ’ 1 4 ∫ { 2π‘₯βˆ’1 (π‘₯2βˆ’π‘₯+1) βˆ’ 1 (π‘₯2βˆ’π‘₯+1) } 𝑑π‘₯ 𝐼 = 1 4 ∫ 2π‘₯+1 (π‘₯2+π‘₯+1) 𝑑π‘₯ + 1 4 ∫ 𝑑π‘₯ (π‘₯2+π‘₯+1) βˆ’ 1 4 ∫ 2π‘₯βˆ’1 (π‘₯2βˆ’π‘₯+1) 𝑑π‘₯ + 1 4 ∫ 𝑑π‘₯ (π‘₯2βˆ’π‘₯+1) 𝐼 = 1 4 ∫ 2π‘₯+1 (π‘₯2+π‘₯+1) 𝑑π‘₯ + 1 4 ∫ 𝑑π‘₯ (π‘₯+ 1 2 ) 2 +( √3 2 ) 2 βˆ’ 1 4 ∫ 2π‘₯βˆ’1 (π‘₯2βˆ’π‘₯+1) 𝑑π‘₯ + 1 4 ∫ 𝑑π‘₯ (π‘₯βˆ’ 1 2 ) 2 +( √3 2 ) 2 𝐼 = 1 4 log(π‘₯2 + π‘₯ + 1) + 1 4 ο‚΄ 1 √3 2 tanβˆ’1 ( π‘₯+ 1 2 √3 2 ) βˆ’ 1 4 log(π‘₯2 βˆ’ π‘₯ + 1) + 1 4 ο‚΄ 1 √3 2 tanβˆ’1 ( π‘₯βˆ’ 1 2 √3 2 ) 𝐼 = 1 4 log(π‘₯2 + π‘₯ + 1) + 1 4 ο‚΄ 2 √3 tanβˆ’1 ( 2π‘₯+1 √3 ) βˆ’ 1 4 log( )(π‘₯2 βˆ’ π‘₯ + 1) + 1 4 ο‚΄ 2 √3 tanβˆ’1 ( 2π‘₯βˆ’1 √3 ) 𝐼 = 1 4 log(π‘₯2 + π‘₯ + 1) + 1 2√3 tanβˆ’1 ( 2π‘₯+1 √3 ) βˆ’ 1 4 log(π‘₯2 βˆ’ π‘₯ + 1) + 1 2√3 tanβˆ’1 ( 2π‘₯βˆ’1 √3 )
  • 56. 𝐼 = 1 4 log(π‘₯2 + π‘₯ + 1) βˆ’ 1 4 log(π‘₯2 βˆ’ π‘₯ + 1) + 1 2√3 tanβˆ’1 ( 2π‘₯+1 √3 ) + 1 2√3 tanβˆ’1 ( 2π‘₯βˆ’1 √3 ) 𝐼 = 1 4 log π‘₯2+π‘₯+1 π‘₯2βˆ’π‘₯+1 + 1 2√3 (tanβˆ’1 ( 2π‘₯+1 √3 ) + tanβˆ’1 ( 2π‘₯βˆ’1 √3 ) ) 𝐼 = 1 4 log π‘₯2+π‘₯+1 π‘₯2βˆ’π‘₯+1 + 1 2√3 tanβˆ’1 ( 2π‘₯+1 √3 + 2π‘₯βˆ’1 √3 1βˆ’( 2π‘₯+1 √3 )( 2π‘₯βˆ’1 √3 ) ) 𝐼 = 1 4 log π‘₯2+π‘₯+1 π‘₯2βˆ’π‘₯+1 + 1 2√3 tanβˆ’1 ( 2π‘₯+1+2π‘₯βˆ’1 √3 1βˆ’( 4π‘₯2βˆ’1 3 ) ) 𝐼 = 1 4 log π‘₯2+π‘₯+1 π‘₯2βˆ’π‘₯+1 + 1 2√3 tanβˆ’1 ( 4π‘₯ √3 3βˆ’4π‘₯2+1 3 ) 𝐼 = 1 4 log π‘₯2+π‘₯+1 π‘₯2βˆ’π‘₯+1 + 1 2√3 tanβˆ’1 ( 4π‘₯ √3 4βˆ’4π‘₯2 3 ) 𝐼 = 1 4 log π‘₯2+π‘₯+1 π‘₯2βˆ’π‘₯+1 + 1 2√3 tanβˆ’1 ( 4π‘₯ √3 ο‚΄ 3 4βˆ’4π‘₯2 ) 𝐼 = 1 4 log π‘₯2+π‘₯+1 π‘₯2βˆ’π‘₯+1 + 1 2√3 tanβˆ’1 ( 4√3 π‘₯ 4(1βˆ’π‘₯2) ) 𝐼 = 1 4 log π‘₯2+π‘₯+1 π‘₯2βˆ’π‘₯+1 + 1 2√3 tanβˆ’1 ( √3 π‘₯ (1βˆ’π‘₯2) ) 27. (i) ∫ 𝑑π‘₯ π‘₯2+1 (ii) ∫ π‘₯2+1 π‘₯4+1 𝑑π‘₯ (i) Solution: Let 𝐼 = ∫ 𝑑π‘₯ π‘₯2+1 𝐼 = ∫ 𝑑π‘₯ (π‘₯2+π‘₯√2+1)(π‘₯2βˆ’π‘₯√2+1) Let, 1 (π‘₯2+π‘₯√2+1)(π‘₯2βˆ’π‘₯√2+1) = 𝐴π‘₯+𝐡 (π‘₯2+π‘₯√2+1) + 𝐢π‘₯+𝐷 (π‘₯2βˆ’π‘₯√2+1) ----- (a) 1 (π‘₯2+π‘₯√2+1)(π‘₯2βˆ’π‘₯√2+1) = (𝐴π‘₯+𝐡)(π‘₯2βˆ’π‘₯√2+1)+(𝐢π‘₯+𝐷)(π‘₯2+π‘₯√2+1) (π‘₯2+π‘₯√2+1)(π‘₯2βˆ’π‘₯√2+1) 1 = (𝐴π‘₯ + 𝐡)(π‘₯2 βˆ’ π‘₯√2 + 1) + (𝐢π‘₯ + 𝐷)(π‘₯2 + π‘₯√2 + 1) 1 = 𝐴(π‘₯3 βˆ’ π‘₯2 √2 + π‘₯) + 𝐡(π‘₯2 βˆ’ π‘₯√2 + 1) + 𝐢(π‘₯3 + π‘₯2 √2 + π‘₯) + 𝐷(π‘₯2 + π‘₯√2 + 1) ----- (b) Equating the coefficients of π‘₯3 on both sides of (b), we get 𝐴 + 𝐢 = 0 ------ (i) Equating the coefficients of π‘₯2 on both sides of (b), we get 𝐡 + 𝐷 + √2 (– 𝐴 + 𝐢) = 0 ------- (ii) tanβˆ’1 𝐴 + tanβˆ’1 𝐡 = tanβˆ’1 𝐴 + 𝐡 1 βˆ’ 𝐴𝐡
  • 57. Equating the coefficients of π‘₯ on both sides of (b), we get 𝐡 βˆ’ 𝐷 = 0 ---- (iii) Equating the constant terms on both sides of (b), we get 𝐡 + 𝐷 = 1 ----- (iv) Solving (iii) and (iv), we get 𝐡 = 1 2 Putting, 𝐡 = 1 2 in (iii) 𝐡 βˆ’ 𝐷 = 0 𝐷 = 𝐡 𝐷 = 1 2 Putting 𝐡 + 𝐷 = 1 in (ii) 𝐡 + 𝐷 + √2 (– 𝐴 + 𝐢) = 0 1 + √2 (– 𝐴 + 𝐢) = 0 1 + √2 (βˆ’π΄ βˆ’ 𝐴) = 0 Since 𝐴 + 𝐢 = 0 𝐢 = βˆ’π΄ 1 βˆ’ 2√2 𝐴 = 0 𝐴 = 1 2√2 Again, from (i), we have 𝐴 + 𝐢 = 0 𝐢 + 1 2√2 = 0 𝐢 = βˆ’ 1 2√2 Now, 𝐼 = ∫ 𝑑π‘₯ (π‘₯2+π‘₯√2+1)(π‘₯2βˆ’π‘₯√2+1) 𝐼 = ∫ ( 𝐴π‘₯+𝐡 (π‘₯2+π‘₯√2+1) + 𝐢π‘₯+𝐷 (π‘₯2βˆ’π‘₯√2+1) ) 𝑑π‘₯ Using (a) 𝐼 = ∫ 𝐴π‘₯+𝐡 (π‘₯2+π‘₯√2+1) 𝑑π‘₯ + ∫ 𝐢π‘₯+𝐷 (π‘₯2βˆ’π‘₯√2+1) 𝑑π‘₯ 𝐼 = ∫ 1 2√2 π‘₯+ 1 2 (π‘₯2+π‘₯√2+1) 𝑑π‘₯ + ∫ βˆ’ 1 2√2 π‘₯+ 1 2 (π‘₯2βˆ’π‘₯√2+1) 𝑑π‘₯ 𝐼 = 1 2√2 ∫ π‘₯+√2 (π‘₯2+π‘₯√2+1) 𝑑π‘₯ βˆ’ 1 2√2 ∫ π‘₯βˆ’βˆš2 (π‘₯2βˆ’π‘₯√2+1) 𝑑π‘₯ 𝐼 = 1 4√2 ∫ 2π‘₯+2√2 (π‘₯2+π‘₯√2+1) 𝑑π‘₯ βˆ’ 1 4√2 ∫ 2π‘₯βˆ’2√2 (π‘₯2βˆ’π‘₯√2+1) 𝑑π‘₯ 𝐼 = βˆ’ 1 4√2 ∫ 2π‘₯+√2+√2 (π‘₯2+π‘₯√2+1) 𝑑π‘₯ βˆ’ 1 4√2 ∫ 2π‘₯βˆ’βˆš2βˆ’βˆš2 (π‘₯2βˆ’π‘₯√2+1) 𝑑π‘₯ 𝐼 = βˆ’ 1 4√2 ∫ π‘₯+√2 (π‘₯2+π‘₯√2+1) 𝑑π‘₯ + 1 4√2 ∫ √2 (π‘₯2+π‘₯√2+1) 𝑑π‘₯ βˆ’ 1 4√2 ∫ π‘₯βˆ’βˆš2 (π‘₯2βˆ’π‘₯√2+1) 𝑑π‘₯ + 1 4√2 ∫ √2 (π‘₯2βˆ’π‘₯√2+1) 𝑑π‘₯ 𝐼 = βˆ’ 1 4√2 ∫ π‘₯+√2 (π‘₯2+π‘₯√2+1) 𝑑π‘₯ + 1 4 ∫ 𝑑π‘₯ (π‘₯2+π‘₯√2+1) βˆ’ 1 4√2 ∫ π‘₯βˆ’βˆš2 (π‘₯2βˆ’π‘₯√2+1) 𝑑π‘₯ + 1 4 ∫ 𝑑π‘₯ (π‘₯2βˆ’π‘₯√2+1)
  • 58. 𝐼 = 1 4√2 log(π‘₯2 + π‘₯√2 + 1) + 1 4 ∫ 𝑑π‘₯ (π‘₯+ √2 2 ) 2 +( 1 √2 ) 2 βˆ’ 1 4√2 log(π‘₯2 βˆ’ π‘₯√2 + 1) + 1 4 ∫ 𝑑π‘₯ (π‘₯βˆ’ √2 2 ) 2 +( 1 √2 ) 2 𝐼 = 1 4√2 {log(π‘₯2 + π‘₯√2 + 1) βˆ’ log(π‘₯2 βˆ’ π‘₯√2 + 1)} + 1 4 ο‚΄ 1 1 √2 tanβˆ’1 ( π‘₯+ √2 2 1 √2 ) + 1 4 ο‚΄ 1 1 √2 tanβˆ’1 ( π‘₯βˆ’ √2 2 1 √2 ) 𝐼 = 1 4√2 log π‘₯2+π‘₯√2+1 π‘₯2βˆ’π‘₯√2+1 + √2 4 tanβˆ’1 ( 2π‘₯+√2 √2 ) + √2 4 tanβˆ’1 ( 2π‘₯βˆ’βˆš2 √2 ) 𝐼 = 1 4√2 log π‘₯2+π‘₯√2+1 π‘₯2βˆ’π‘₯√2+1 + 1 2√2 tanβˆ’1 ( 2π‘₯+√2 √2 ) + 1 2√2 tanβˆ’1 ( 2π‘₯βˆ’βˆš2 √2 ) 𝐼 = 1 4√2 log π‘₯2+π‘₯√2+1 π‘₯2βˆ’π‘₯√2+1 + 1 2√2 (tanβˆ’1 ( 2π‘₯+√2 √2 ) + tanβˆ’1 ( 2π‘₯βˆ’βˆš2 √2 )) 𝐼 = 1 4√2 log π‘₯2+π‘₯√2+1 π‘₯2βˆ’π‘₯√2+1 + 1 2√2 (tanβˆ’1 ( 2π‘₯+√2 √2 + 2π‘₯βˆ’βˆš2 √2 1βˆ’( 2π‘₯+√2 √2 )( 2π‘₯βˆ’βˆš2 √2 ) )) 𝐼 = 1 4√2 log π‘₯2+π‘₯√2+1 π‘₯2βˆ’π‘₯√2+1 + 1 2√2 (tanβˆ’1 ( 2π‘₯+√2 +2π‘₯βˆ’βˆš2 √2 1βˆ’( 4π‘₯2βˆ’2 2 ) )) 𝐼 = 1 4√2 log π‘₯2+π‘₯√2+1 π‘₯2βˆ’π‘₯√2+1 + 1 2√2 (tanβˆ’1 ( 2π‘₯+√2 +2π‘₯βˆ’βˆš2 √2 2βˆ’4π‘₯2+2 2 )) 𝐼 = 1 4√2 log π‘₯2+π‘₯√2+1 π‘₯2βˆ’π‘₯√2+1 + 1 2√2 (tanβˆ’1 ( 2π‘₯ +2π‘₯ √2 4βˆ’4π‘₯2 2 )) 𝐼 = 1 4√2 log π‘₯2+π‘₯√2+1 π‘₯2βˆ’π‘₯√2+1 + 1 2√2 (tanβˆ’1 ( 4π‘₯ √2 ο‚΄ 2 4βˆ’4π‘₯2 )) 𝐼 = 1 4√2 log π‘₯2+π‘₯√2+1 π‘₯2βˆ’π‘₯√2+1 + 1 2√2 (tanβˆ’1 ( 4π‘₯ √2 ο‚΄ 2 4(1βˆ’π‘₯2) )) 𝐼 = 1 4√2 log π‘₯2+π‘₯√2+1 π‘₯2βˆ’π‘₯√2+1 + 1 2√2 (tanβˆ’1 ( √2 π‘₯ (1βˆ’π‘₯2) )) 𝐼 = 1 4√2 log π‘₯2+π‘₯√2+1 π‘₯2βˆ’π‘₯√2+1 + 1 2√2 tanβˆ’1 ( √2 π‘₯ 1βˆ’π‘₯2 ) (ii) Solution: Let:, 𝐼 = ∫ π‘₯2+1 π‘₯4+1 𝑑π‘₯ 𝐼 = ∫ π‘₯2+1 (π‘₯2+π‘₯√2+1)(π‘₯2βˆ’π‘₯√2+1) 𝑑π‘₯ Let, π‘₯2+1 (π‘₯2+π‘₯√2+1)(π‘₯2βˆ’π‘₯√2+1) = 𝐴π‘₯+𝐡 (π‘₯2+π‘₯√2+1) + 𝐢π‘₯+𝐷 (π‘₯2βˆ’π‘₯√2+1) ----- (a) π‘₯2+1 (π‘₯2+π‘₯√2+1)(π‘₯2βˆ’π‘₯√2+1) = (𝐴π‘₯+𝐡)(π‘₯2βˆ’π‘₯√2+1)+(𝐢π‘₯+𝐷)(π‘₯2+π‘₯√2+1) (π‘₯2+π‘₯√2+1)(π‘₯2βˆ’π‘₯√2+1) tanβˆ’1 𝐴 + tanβˆ’1 𝐡 = tanβˆ’1 𝐴+𝐡 1βˆ’π΄π΅
  • 59. π‘₯2 + 1 = (𝐴π‘₯ + 𝐡)(π‘₯2 βˆ’ π‘₯√2 + 1) + (𝐢π‘₯ + 𝐷)(π‘₯2 + π‘₯√2 + 1) π‘₯2 + 1 = 𝐴(π‘₯3 βˆ’ π‘₯2 √2 + π‘₯) + 𝐡(π‘₯2 βˆ’ π‘₯√2 + 1) + 𝐢(π‘₯3 + π‘₯2 √2 + π‘₯) + 𝐷(π‘₯2 + π‘₯√2 + 1) ----(b) Equating the coefficients of π‘₯3 on both sides of (b), we get 𝐴 + 𝐢 = 0 ------ (i) Equating the coefficients of π‘₯2 on both sides of (b), we get 𝐡 + 𝐷 + √2 (– 𝐴 + 𝐢) = 1 ------- (ii) Equating the coefficients of π‘₯ on both sides of (b), we get 𝐡 βˆ’ 𝐷 = 0 ---- (iii) Equating the constant terms on both sides of (b), we get 𝐡 + 𝐷 = 1 ----- (iv) Solving (iii) and (iv), we get 𝐡 = 1 2 Putting, 𝐡 = 1 2 in (iii) 𝐡 βˆ’ 𝐷 = 0 𝐷 = 𝐡 𝐷 = 1 2 Putting 𝐡 + 𝐷 = 1 in (ii) 𝐡 + 𝐷 + √2 (– 𝐴 + 𝐢) = 1 1 + √2 (– 𝐴 + 𝐢) = 1 1 + √2 (βˆ’π΄ βˆ’ 𝐴) = 1 Since 𝐴 + 𝐢 = 0 𝐢 = βˆ’π΄ 1 βˆ’ 2√2 𝐴 = 1 𝐴 = 0 Again, from (i), we have 𝐴 + 𝐢 = 0 𝐢 + 0 = 0 𝐢 = 0 Now, 𝐼 = ∫ π‘₯2+1 (π‘₯2+π‘₯√2+1)(π‘₯2βˆ’π‘₯√2+1) 𝑑π‘₯ 𝐼 = ∫ ( 𝐴π‘₯+𝐡 (π‘₯2+π‘₯√2+1) + 𝐢π‘₯+𝐷 (π‘₯2βˆ’π‘₯√2+1) ) 𝑑π‘₯ Using (a) 𝐼 = ∫ ( 𝐡 (π‘₯2+π‘₯√2+1) + 𝐷 (π‘₯2βˆ’π‘₯√2+1) ) 𝑑π‘₯ Since, 𝐴 = 0, 𝐢 = 0 𝐼 = ∫ 𝐡 (π‘₯2+π‘₯√2+1) 𝑑π‘₯ + ∫ 𝐷 (π‘₯2βˆ’π‘₯√2+1) 𝑑π‘₯ 𝐼 = 𝐡 ∫ 𝑑π‘₯ (π‘₯+ √2 2 ) 2 +( 1 √2 ) 2 + 𝐷 ∫ 𝑑π‘₯ (π‘₯βˆ’ √2 2 ) 2 +( 1 √2 ) 2
  • 60. 𝐼 = 𝐡 1 1 √2 tanβˆ’1 ( π‘₯+ √2 2 1 √2 ) + 𝐷 1 1 √2 tanβˆ’1 ( π‘₯βˆ’ √2 2 1 √2 ) 𝐼 = 𝐡 1 1 √2 tanβˆ’1 ( 2π‘₯+√2 √2 ) + 𝐷 1 1 √2 tanβˆ’1 (2 π‘₯βˆ’βˆš2 √2 ) 𝐼 = 1 2 √2 tanβˆ’1 ( 2π‘₯+√2 √2 ) + 1 2 √2 tanβˆ’1 ( 2π‘₯βˆ’βˆš2 √2 ) 𝐼 = 1 √2 tanβˆ’1 ( 2π‘₯+√2 √2 ) + 1 √2 tanβˆ’1 ( 2π‘₯βˆ’βˆš2 √2 ) 𝐼 = 1 √2 tanβˆ’1 ( 2π‘₯+√2 √2 + 2π‘₯βˆ’βˆš2 √2 1βˆ’( 2π‘₯+√2 √2 )( 2π‘₯βˆ’βˆš2 √2 ) ) 𝐼 = 1 √2 tanβˆ’1 ( 4π‘₯ √2 1βˆ’( 4π‘₯2βˆ’2 2 ) ) 𝐼 = 1 √2 tanβˆ’1 ( 4π‘₯ √2 2βˆ’4π‘₯2+2 2 ) 𝐼 = 1 √2 tanβˆ’1 ( 4π‘₯ √2 4βˆ’4π‘₯2 2 ) 𝐼 = 1 √2 tanβˆ’1 ( 4π‘₯ √2 4(1βˆ’π‘₯2) 2 ) 𝐼 = 1 √2 tanβˆ’1 ( 4π‘₯ √2 ο‚΄ 2 4(1βˆ’π‘₯2) ) 𝐼 = 1 √2 tanβˆ’1 ( √2 π‘₯ 1βˆ’π‘₯2 ) 28. (i) ∫ 𝑑π‘₯ cosπ‘₯ (5+3 cos π‘₯) (ii) ∫ 𝑑π‘₯ sin 2π‘₯βˆ’sin π‘₯ (i) Solution: Let, 𝐼 = ∫ 𝑑π‘₯ cosπ‘₯ (5+3 cos π‘₯) Let, 1 cosπ‘₯ (5+3 cos π‘₯) = 𝐴 cosπ‘₯ + 𝐡 5+3cos π‘₯ 1 cos π‘₯ (5+3 cosπ‘₯) = 𝐴 (5+3 cos π‘₯)+ 𝐡 cosπ‘₯ cosπ‘₯ (5+3 cos π‘₯) 1 = 𝐴 (5 + 3 cos π‘₯) + 𝐡 cos π‘₯ 1 = 5𝐴 + 3 𝐴 cos π‘₯ + 𝐡 cos π‘₯ ------- (b) tanβˆ’1 𝐴 + tanβˆ’1 𝐡 = tanβˆ’1 𝐴+𝐡 1βˆ’π΄π΅
  • 61. Equating the coefficients of cos π‘₯ on both sides of equation (b), we get 0 = 3𝐴 + 𝐡  𝐡 = βˆ’3𝐴 ------ (i) Equating the constant terms on both sides of equation (b), w e get 1 = 5𝐴 𝐴 = 1 5 ------ (ii) Putting 𝐴 = 1 5 in equation (i), we get 𝐡 = βˆ’3𝐴 𝐡 = βˆ’ 3 5 Now, 𝐼 = ∫ 𝑑π‘₯ cos π‘₯ (5+3 cosπ‘₯) 𝐼 = ∫ ( 𝐴 cos π‘₯ + 𝐡 5+3 cosπ‘₯ ) 𝑑π‘₯ 𝐼 = ∫ 𝐴 cos π‘₯ 𝑑π‘₯ + ∫ 𝐡 5+3 cos π‘₯ 𝑑π‘₯ 𝐼 = 𝐴 ∫ 1 cos π‘₯ 𝑑π‘₯ + 𝐡 ∫ 1 5+3 cos π‘₯ 𝑑π‘₯ 𝐼 = 𝐴 log |tan ( πœ‹ 4 + π‘₯ 2 )| + 𝐡 ∫ 1 5+3(cos2π‘₯ 2 βˆ’sin2π‘₯ 2 ) 𝑑π‘₯ 𝐼 = 𝐴 log |tan ( πœ‹ 4 + π‘₯ 2 )| + 𝐡 ∫ 1 5(sin2π‘₯ 2 +cos2π‘₯ 2 )+3 cos2π‘₯ 2 βˆ’ 3 sin2π‘₯ 2 𝑑π‘₯ 𝐼 = 𝐴 log |tan ( πœ‹ 4 + π‘₯ 2 )| + 𝐡 ∫ 1 5 sin2π‘₯ 2 + 5cos2π‘₯ 2 +3 cos2π‘₯ 2 βˆ’ 3 sin2π‘₯ 2 𝑑π‘₯ 𝐼 = 𝐴 log |tan ( πœ‹ 4 + π‘₯ 2 )| + 𝐡 ∫ 1 2 sin2π‘₯ 2 + 8cos2π‘₯ 2 𝑑π‘₯ 𝐼 = 𝐴 log |tan ( πœ‹ 4 + π‘₯ 2 )| + 𝐡 ∫ 1 2 cos2π‘₯ 2 ( sin2π‘₯ 2 cos2π‘₯ 2 + 4) 𝑑π‘₯ 𝐼 = 𝐴 log |tan ( πœ‹ 4 + π‘₯ 2 )| + 𝐡 ∫ 1 2 cos2π‘₯ 2 (tan2π‘₯ 2 + 4) 𝑑π‘₯ 𝐼 = 𝐴 log |tan ( πœ‹ 4 + π‘₯ 2 )| + 𝐡 2 ∫ sec2π‘₯ 2 tan2π‘₯ 2 + 4 𝑑π‘₯ Take,tan π‘₯ 2 = 𝑒  sec2 π‘₯ 2 𝑑π‘₯ = 2 𝑑𝑒
  • 62. 𝐼 = 𝐴 log |tan ( πœ‹ 4 + π‘₯ 2 )| + 𝐡 2 ∫ 2 𝑑𝑒 𝑒2 + 4 𝐼 = 𝐴 log |tan ( πœ‹ 4 + π‘₯ 2 )| + 𝐡 ∫ 𝑑𝑒 𝑒2 + 22 𝐼 = 𝐴 log |tan ( πœ‹ 4 + π‘₯ 2 )| + 𝐡 1 2 tanβˆ’1 𝑒 2 𝐼 = 𝐴 log |tan ( πœ‹ 4 + π‘₯ 2 )| + 𝐡 1 2 tanβˆ’1 𝑒 2 𝐼 = 𝐴 log |tan ( πœ‹ 4 + π‘₯ 2 )| + 𝐡 1 2 tanβˆ’1 ( 1 2 𝑒) 𝐼 = 1 5 log |tan( πœ‹ 4 + π‘₯ 2 )| βˆ’ 3 5 ο‚΄ 1 2 tanβˆ’1 ( 1 2 tan π‘₯ 2 ) 𝐼 = 1 5 log |tan( πœ‹ 4 + π‘₯ 2 )| βˆ’ 3 10 tanβˆ’1 ( 1 2 tan π‘₯ 2 ) (ii) Solution : Let, 𝐼 = ∫ 𝑑π‘₯ sin 2π‘₯βˆ’sin π‘₯ 𝐼 = ∫ 𝑑π‘₯ 2 sin π‘₯ cos π‘₯βˆ’sin π‘₯ Multiplying both denominator and numerator by sin π‘₯, we get 𝐼 = ∫ sin π‘₯ 𝑑π‘₯ 2 sin2 π‘₯ cos π‘₯βˆ’ sin2 π‘₯ 𝐼 = ∫ sin π‘₯ 𝑑π‘₯ sin2 π‘₯(2 cos π‘₯βˆ’1) 𝐼 = ∫ sin π‘₯ 𝑑π‘₯ βˆ’ sin2 π‘₯(1βˆ’2 cos π‘₯) 𝐼 = ∫ βˆ’ sin π‘₯ 𝑑π‘₯ (1βˆ’cos2 π‘₯)(1βˆ’2cos π‘₯) Take, 𝑒 = cos π‘₯  βˆ’ sin π‘₯ 𝑑π‘₯ = 𝑑𝑒 𝐼 = ∫ 𝑑𝑒 (1βˆ’ 𝑒2)(1βˆ’2𝑒) 𝐼 = ∫ 𝑑𝑒 (1+𝑒) (1βˆ’ 𝑒)(1βˆ’2𝑒) Let, 1 (1+𝑒) (1βˆ’ 𝑒)(1βˆ’2𝑒) = 𝐴 (1+𝑒) + 𝐡 (1βˆ’ 𝑒) + 𝐢 (1βˆ’2𝑒) ---- (a) 1 (1+𝑒) (1βˆ’ 𝑒)(1βˆ’2𝑒) = 𝐴 (1βˆ’ 𝑒)(1βˆ’2𝑒)+ B (1+𝑒) (1βˆ’2𝑒)+ 𝐢(1+𝑒) (1βˆ’ 𝑒) (1+𝑒) (1βˆ’ 𝑒)(1βˆ’2𝑒) 1 = 𝐴 (1 βˆ’ 𝑒)(1 βˆ’ 2𝑒) + B (1 + 𝑒) (1 βˆ’ 2𝑒) + 𝐢(1 + 𝑒) (1 βˆ’ 𝑒) ---------- (b) Putting, 𝑒 = 1 in (b), we get 1 = βˆ’2𝐡
  • 63.  𝐡 = βˆ’ 1 2 Putting, 𝑒 = βˆ’1 in (b), we get 1 = 6𝐴  𝐴 = 1 6 Putting, 𝑒 = 1 2 in (b), we get 1 = 3 4 𝐢 𝐢 = 4 3 Now, 𝐼 = ∫ 𝑑𝑒 (1+𝑒) (1βˆ’ 𝑒)(1βˆ’2𝑒) 𝐼 = ∫ ( 𝐴 (1+𝑒) + 𝐡 (1βˆ’ 𝑒) + 𝐢 (1βˆ’2𝑒) )𝑑𝑒 Using (a) 𝐼 = ∫ 𝐴 (1+𝑒) 𝑑𝑒 + ∫ 𝐡 (1βˆ’ 𝑒) 𝑑𝑒 + ∫ 𝐢 (1βˆ’2𝑒) 𝐼 = ∫ 𝐴 (1+𝑒) 𝑑𝑒 + ∫ 𝐡 (1βˆ’ 𝑒) 𝑑𝑒 + ∫ 𝐢 (1βˆ’2𝑒) 𝐼 = 𝐴 ∫ 𝑑𝑒 (1+𝑒) + 𝐡 ∫ 𝑑𝑒 (1βˆ’ 𝑒) + 𝐢 ∫ 𝑑𝑒 (1βˆ’2𝑒) 𝐼 = 𝐴 log(1 + 𝑒) βˆ’ 𝐡 log(1 βˆ’ 𝑒) βˆ’ 𝐢 2 log(1 βˆ’ 2𝑒) 𝐼 = 1 6 log(1 + cos π‘₯) + 1 2 log(1 βˆ’ cos π‘₯) βˆ’ 4 3 2 log(1 βˆ’ 2cos π‘₯) 𝐼 = 1 6 log(1 + cos π‘₯) + 1 2 log(1 βˆ’ cos π‘₯) βˆ’ 4 6 log(1 βˆ’ 2cos π‘₯) 𝐼 = 1 6 log(1 + cos π‘₯) + 1 2 log(1 βˆ’ cos π‘₯) βˆ’ 2 3 log(1 βˆ’ 2 cos π‘₯) 𝐼 = 1 6 log(1 + cos π‘₯) + 1 2 log(1 βˆ’ cos π‘₯) βˆ’ 2 3 log(1 βˆ’ 2 cos π‘₯) 𝐼 = 1 6 log(1 + cos π‘₯) + 1 2 log(1 βˆ’ cos π‘₯) βˆ’ 2 3 log(1 βˆ’ 2 cos π‘₯) + 𝐢 29. (i) ∫ 𝑑π‘₯ 1+3𝑒π‘₯+2𝑒2π‘₯ (ii) ∫ 𝑒π‘₯ 𝑑π‘₯ 𝑒π‘₯βˆ’3π‘’βˆ’π‘₯+2 (i) Solution: Let , 𝐼 = ∫ 𝑑π‘₯ 1+3𝑒π‘₯+2𝑒2π‘₯ 𝐼 = ∫ 𝑒π‘₯ 𝑑π‘₯ 𝑒π‘₯(1+3𝑒π‘₯+2𝑒2π‘₯)
  • 64. 𝐼 = ∫ 𝑒π‘₯ 𝑑π‘₯ 𝑒π‘₯+3𝑒2π‘₯+2𝑒3π‘₯ Take, 𝑒π‘₯ = 𝑒  𝑒π‘₯ 𝑑π‘₯ = 𝑑𝑒 𝐼 = ∫ 𝑑𝑒 𝑒+3𝑒2+2𝑒3 𝐼 = ∫ 𝑑𝑒 𝑒(1+3𝑒+2𝑒2) 𝐼 = ∫ 𝑑𝑒 𝑒 (1+𝑒)(1+2𝑒) Let, 𝑑𝑒 𝑒 (1+𝑒)(1+2𝑒) = 𝐴 𝑒 + 𝐡 (1+𝑒) + 𝐢 (1+2𝑒) ------ (a) 𝑑𝑒 𝑒 (1+𝑒)(1+2𝑒) = 𝐴 (1+𝑒)(1+2𝑒)+𝐡 𝑒 (1+2𝑒)+ 𝐢𝑒(1+𝑒) 𝑒 (1+𝑒)(1+2𝑒) 1 = 𝐴 (1 + 𝑒)(1 + 2𝑒) + 𝐡 𝑒 (1 + 2𝑒) + 𝐢 𝑒(1 + 𝑒) ------ (b) Putting 𝑒 = 0 in (b), we get 𝐴 = 1 ----- (i) Putting 𝑒 = βˆ’1 in (b), we get 𝐡 = 1 ----- (ii) Putting 𝑒 = βˆ’ 1 2 in (b), we get 𝐢 = βˆ’4 Now, 𝐼 = ∫ 𝑑𝑒 𝑒 (1+𝑒)(1+2𝑒) 𝐼 = ∫ ( 𝐴 𝑒 + 𝐡 (1+𝑒) + 𝐢 (1+2𝑒) ) 𝑑𝑒 𝐼 = ∫ 𝐴 𝑒 𝑑𝑒 + ∫ 𝐡 (1+𝑒) 𝑑𝑒 + ∫ 𝐢 (1+2𝑒) 𝑑𝑒 𝐼 = 𝐴 ∫ 𝑑𝑒 𝑒 + 𝐡 ∫ 𝑑𝑒 (1+𝑒) + 𝐢 ∫ 𝑑𝑒 (1+2𝑒) 𝐼 = 𝐴 log 𝑒 + 𝐡 log(1 + 𝑒) + 1 2 𝐢 log(1 + 2𝑒) 𝐼 = log 𝑒π‘₯ + log(1 + 𝑒π‘₯) + βˆ’4 2 log(1 + 2𝑒π‘₯) 𝐼 = π‘₯ log 𝑒 + log(1 + 𝑒π‘₯) βˆ’ 2 log(1 + 2𝑒π‘₯) 𝐼 = π‘₯ + log(1 + 𝑒π‘₯) βˆ’ 2 log(1 + 2𝑒π‘₯)
  • 65. (ii) Let, 𝐼 = ∫ 𝑒π‘₯𝑑π‘₯ 𝑒π‘₯βˆ’3π‘’βˆ’π‘₯+2 𝐼 = ∫ 𝑒π‘₯𝑒π‘₯𝑑π‘₯ 𝑒π‘₯ (𝑒π‘₯βˆ’3π‘’βˆ’π‘₯+2) 𝐼 = ∫ 𝑒π‘₯𝑒π‘₯𝑑π‘₯ 𝑒2π‘₯+2𝑒π‘₯ βˆ’3 Take, 𝑒π‘₯ = 𝑒  𝑒π‘₯ 𝑑π‘₯ = 𝑑𝑒 𝐼 = ∫ 𝑒 𝑑𝑒 𝑒2+2𝑒 βˆ’3 𝐼 = ∫ 𝑒 𝑑𝑒 𝑒2+3π‘’βˆ’π‘’ βˆ’3 𝐼 = ∫ 𝑒 𝑑𝑒 𝑒(𝑒+3)βˆ’1(𝑒+3) 𝐼 = ∫ 𝑒 𝑑𝑒 (π‘’βˆ’1)(𝑒+3) Let, 𝑒 (π‘’βˆ’1)(𝑒+3) = 𝐴 (π‘’βˆ’1) + 𝐡 (𝑒+3) ----- (a) 𝑒 (π‘’βˆ’1)(𝑒+3) = 𝐴(𝑒+3)+ 𝐡 (π‘’βˆ’1) (π‘’βˆ’1)(𝑒+3) 𝑒 = 𝐴(𝑒 + 3) + 𝐡 (𝑒 βˆ’ 1) ----- (b) Putting, 𝑒 = βˆ’3 in (b), we get 𝐡 = 3 4 Putting, 𝑒 = 1 in (b), we get 𝐴 = 1 4 Now, 𝐼 = ∫ 𝑑𝑒 (π‘’βˆ’1)(𝑒+3) 𝐼 = ∫ ( 𝐴 (π‘’βˆ’1) + 𝐡 (𝑒+3) ) 𝑑𝑒 𝐼 = ∫ 𝐴 (π‘’βˆ’1) 𝑑𝑒 + ∫ 𝐡 (𝑒+3) 𝑑𝑒 𝐼 = 𝐴 ∫ 𝑑𝑒 (π‘’βˆ’1) + 𝐡 ∫ 𝑑𝑒 (𝑒+3) 𝐼 = 𝐴 log(𝑒 βˆ’ 1) + 𝐡 log(𝑒 + 3) 𝐼 = 1 4 log(𝑒π‘₯ βˆ’ 1) + 3 4 log(𝑒π‘₯ + 3) 𝐼 = 1 4 log(𝑒π‘₯ βˆ’ 1) + 1 4 log(𝑒π‘₯ + 3)3
  • 66. 𝐼 = 1 4 (log(𝑒π‘₯ βˆ’ 1) + log(𝑒π‘₯ + 3)3) 𝐼 = 1 4 log{(𝑒π‘₯ βˆ’ 1)(𝑒π‘₯ + 3)3} 30. ∫ 𝑑π‘₯ sin π‘₯ (3+2 cosπ‘₯) Solution: Let, 𝐼 = ∫ 𝑑π‘₯ sin π‘₯ (3+2 cosπ‘₯) 𝐼 = ∫ sin π‘₯ 𝑑π‘₯ sin2 π‘₯ (3+2 cos π‘₯) On multiplying both numerator and denominator by sin π‘₯ 𝐼 = ∫ sin π‘₯ 𝑑π‘₯ (1βˆ’cos2 π‘₯) (3+2 cos π‘₯) Taking cos π‘₯ = 𝑒  sinπ‘₯ 𝑑π‘₯ = βˆ’π‘‘π‘’ 𝐼 = ∫ βˆ’π‘‘π‘’ (1βˆ’u2) (3+2𝑒) 𝐼 = ∫ βˆ’π‘‘π‘’ βˆ’(u2βˆ’1) (3+2𝑒) 𝐼 = ∫ βˆ’π‘‘π‘’ (u2βˆ’1) (3+2𝑒) 𝐼 = ∫ 𝑑𝑒 (1+𝑒)(1βˆ’u) (3+2𝑒) Let, βˆ’1 (𝑒+1)(uβˆ’1) (3+2𝑒) = 𝐴 (1+𝑒) + 𝐡 (1βˆ’π‘’) + 𝐢 (3+2𝑒) ------- (a) 1 (1+𝑒)(1βˆ’u) (3+2𝑒) = 𝐴(3+2𝑒)(1βˆ’π‘’)+ 𝐡(1+𝑒)(3+2𝑒)+ 𝐢 (1+𝑒)(1βˆ’π‘’) (1βˆ’π‘’)(1+𝑒)(3+2𝑒) βˆ’1 = 𝐴(3 + 2𝑒)(1 βˆ’ 𝑒) + 𝐡(1 + 𝑒)(3 + 2𝑒) + 𝐢 (1 + 𝑒)(1 βˆ’ 𝑒) -------- (b) Putting, 𝑒 = 1 in (b), we get 1 = 10𝐡  𝐡 = βˆ’ 1 10 Putting, 𝑒 = βˆ’1 in (b), we get 𝐴 = βˆ’ 1 2 Putting, 𝑒 = βˆ’ 3 2 in (b), we get 𝐢 = 4 5 Now,
  • 67. 𝐼 = ∫ βˆ’π‘‘π‘’ (1+𝑒)(1βˆ’u) (3+2𝑒) 𝐼 = ∫ ( 𝐴 (1+𝑒) + 𝐡 (1βˆ’π‘’) + 𝐢 (3+2𝑒) ) 𝑑𝑒 𝐼 = ∫ 𝐴 (1+𝑒) 𝑑𝑒 + ∫ 𝐡 (1βˆ’π‘’) 𝑑𝑒 + ∫ 𝐢 (3+2𝑒) 𝑑𝑒 𝐼 = 𝐴 ∫ 𝑑𝑒 (1+𝑒) + 𝐡 ∫ 𝑑𝑒 (1βˆ’π‘’) + 𝐢 ∫ 𝑑𝑒 (3+2𝑒) 𝐼 = 𝐴 log(1 + 𝑒) βˆ’ 𝐡 log(1 βˆ’ 𝑒) + 1 2 𝐢 log(3 + 2𝑒) 𝐼 = βˆ’ 1 2 log(cos π‘₯ + 1) + 1 10 log(1 βˆ’ cos π‘₯) + 1 2 ο‚΄ 4 5 log(3 + 2 cos π‘₯) 𝐼 = βˆ’ 1 2 log(1 + cos π‘₯) + 1 10 log(1 βˆ’ cos π‘₯) + 2 5 log(3 + 2 cos π‘₯)