SlideShare a Scribd company logo
1 of 30
EEEC6430310 ELECTROMAGNETIC FIELDS AND WAVES
Maxwell’s Equation
FACULTY OF ENGINEERING AND COMPUTER TECHNOLOGY
BENG (HONS) IN ELECTRICALAND ELECTRONIC ENGINEERING
Ravandran Muttiah BEng (Hons) MSc MIET
Maxwell’s Equation
I. Maxwell’s Equation For Linear Media
𝛻 × 𝑬 = −𝜇
𝜕𝑯
𝜕𝑡
Faraday′
s Law
𝛻 × 𝑯 = 𝑱 + 𝜀
𝜕𝑬
𝜕𝑡
Ampere′
s Law
𝛻 ∙ 𝑬 =
𝜌f
𝜀
Gauss′
s Law
𝛻 ∙ 𝑯 = 0 Gauss′
s Law
where, 𝛻 = vector differential (del) operator
𝑬 = electric field intensity
𝑯 = magnetic field intensity
𝑱 = electric current density
𝜌f = free electric charge density
1
2
II. Pointing’s Theorem
A. Power Flow And Electromagnetic Energy
𝛻 ∙ 𝑬 × 𝑯 = 𝑯 ∙ 𝛻 × 𝑬 − 𝑬 ∙ 𝛻 × 𝑯
= −𝜇𝑯 ∙
𝜕𝑯
𝜕𝑡
− 𝑬 ∙ 𝑱 + 𝜀
𝜕𝑬
𝜕𝑡
= −
𝜇
2
𝜕
𝜕𝑡
𝑯 2
−
𝜀
2
𝜕
𝜕𝑡
𝑬 2
− 𝑬 ∙ 𝑱
𝛻 ∙ 𝑬 × 𝑯 +
𝜕
𝜕𝑡
1
2
𝜀 𝑬 2
+
1
2
𝜇 𝑯 2
= −𝑬 ∙ 𝑱
3
V
𝛻 ∙ 𝑬 × 𝑯 d𝑉 =
S
𝑬 × 𝑯 ∙ d𝑺
S
𝑬 × 𝑯 ∙ d𝒂 +
d
d𝑡 V
1
2
𝜀 𝑬 2
+
1
2
𝜇 𝑯 2
d𝑉 = −
𝑉
𝑬 ∙ 𝑱 d𝑉
𝑺 = 𝑬 × 𝑯 Poynting Vector
Watt
m2
𝑊 = V
1
2
𝜀 𝑬 2
+
1
2
𝜇 𝑯 2
d𝑉 Electromagnetic Stored Energy
𝑃d = V
𝑬 ∙ 𝑱 d𝑉 Power dissipated if 𝐽 ∙ 𝑬 > 0
e.g., 𝑱 = 𝜎𝑬 ⇒ 𝐽 ∙ 𝑬 = 𝜎 𝑬 𝟐
Power source if 𝐽 ∙ 𝑬 < 0
𝑃out =
S
𝑬 × 𝑯 ∙ d𝒂 =
S
𝑺 ∙ d𝒂
𝑃out +
d𝑊
d𝑡
= −𝑃d
𝑤e =
1
2
𝜀 𝑬 2
Electric energy density in
Joules
m3
𝑤m =
1
2
𝜇 𝑯 2
Magnetic energy density in
Joules
m3
4
Figure 1: The circuit power into an N terminal network 𝑘=1
𝑁
𝑉𝑘𝐼𝑘 equals the
electromagnetic power flow into the surface surrounding the network, − s
𝑬 × 𝑯 · d𝑺
B. Power In Electric Circuits
E
H
𝑆 = 𝐸 × 𝐻
𝑉1
𝑉2
𝑉3
𝑉𝑁−1
𝑉𝑁
𝐼1
𝐼2
𝐼3
𝐼𝑁−1
𝐼𝑁
𝑆
5
Outside circuit elements
C
𝑬 ∙ d𝒍 ≈ 0, 𝛻 × 𝑬 = 0 ⇒ 𝑬 = −𝛻Ф (Kirchoff’s Voltage Law 𝑘 𝑣𝑘 = 0)
𝛻 × 𝑯 = 𝑱 ⇒ 𝛻 ∙ 𝑱 = 0, S
𝑱 ∙ d𝑺 = 0 (Kirchoff’s Current Law 𝑘 𝑖𝑘 = 0)
𝑃in = −
S
𝑬 × 𝑯 ∙ d𝑺
= −
V
𝛻 ∙ 𝑬 × 𝑯 d𝑉
𝛻 ∙ 𝑬 × 𝑯 = 𝑯 ∙ 𝛻 × 𝑬 − 𝑬 ∙ 𝛻 × 𝑯 = −𝑬 ∙ 𝑱 = 𝛻Ф ∙ 𝑱
𝛻 ∙ 𝑱Ф = Ф𝛻 ∙ 𝑱 + 𝑱 ∙ 𝛻Ф
𝛻 ∙ 𝑬 × 𝑯 = 𝑱 ∙ 𝛻Ф = 𝛻 ∙ Ф𝑱
𝑃in = −
V
𝛻 ∙ 𝑬 × 𝑯 d𝑉 = −
V
𝛻 ∙ 𝑱Ф d𝑉 = −
S
𝑱Ф ∙ d𝑺
On 𝑆, Ф = voltages on each wire, 𝑱 is non-zero only on wires.
𝑃in = −
S
𝑱Ф ∙ d𝑺 = −
𝑘=1
𝑁
𝑣𝑘
S
𝑱 ∙ d𝑺 =
𝑘=1
𝑁
𝑣𝑘𝑖𝑘
0
0
−𝑖𝑘
C. Complex Poynting’s Theorem (Sinusoidal Steady State, ej𝜔𝑡
)
6
𝑬 𝒓, 𝑡 = Re 𝑬 𝒓 ej𝜔𝑡
=
1
2
𝑬∗
𝒓 ej𝜔𝑡
+ 𝑬∗
𝒓 e−j𝜔𝑡
𝑯 𝒓, 𝑡 = Re 𝑯 𝒓 ej𝜔𝑡
=
1
2
𝑯∗
𝒓 ej𝜔𝑡
+ 𝑯∗
𝒓 e−j𝜔𝑡
The real part of a complex number is
one-half of the sum of the number
and its complex conjugate
7
Maxwell’s Equations In Sinusoidal Steady State
𝛻 × 𝑬 𝒓 = −j𝜔𝜇𝑯 𝒓
𝛻 × 𝑯 𝒓 = 𝑱 𝒓 + j𝜔𝜀 𝒓
𝛻 ∙ 𝑬 𝒓 =
𝝆f 𝒓
𝜀
𝛻 ∙ 𝑯 𝒓 = 0
8
𝑺 𝒓, 𝑡 = 𝑬 𝒓, 𝑡 × 𝑯 𝒓, 𝑡
=
1
4
𝑬 𝒓 ej𝜔𝑡
+ 𝑬 𝒓 e−j𝜔𝑡
× 𝑯 𝒓 ej𝜔𝑡
+ 𝑯∗
𝒓 e−j𝜔𝑡
=
1
4
𝑬 𝒓 × 𝑯 𝒓 e2j𝜔𝑡
+𝑬∗
𝒓 × 𝑯 𝒓 + 𝑬 𝒓 × 𝑯∗
𝒓 + 𝑬∗
𝒓 × 𝑯∗
𝒓 e−2j𝜔𝑡
𝑺 =
1
4
𝑬∗
𝒓 × 𝑯 𝒓 + 𝑬 𝒓 × 𝑯∗
𝒓
=
1
2
Re 𝑬 𝒓 × 𝑯∗
𝒓
=
1
2
Re 𝑬∗
𝒓 × 𝑯 𝒓
(A complex number plus its complex conjugate is twice the real part of that number)
9
𝑺 =
1
2
Re 𝑬 𝒓 × 𝑯∗
𝒓
𝛻 ∙ 𝑺 = 𝛻 ∙
1
2
𝑬 𝒓 × 𝑯∗
𝒓 =
1
2
𝑯∗
𝒓 ∙ 𝛻 × 𝑬 𝒓 − 𝑬 𝒓 ∙ 𝛻 × 𝑯∗
𝒓
=
1
2
𝑯∗
𝒓 −j𝜔𝜇𝑯 𝒓 − 𝑬 𝒓 ∙ 𝑱∗
𝒓 − j𝜔𝜀𝑬∗
𝒓
=
1
2
−j𝜔𝜇 𝑯 𝒓 2
+ j𝜔𝜀 𝑬 𝒓 2
−
1
2
𝑬 𝒓 ∙ 𝑱∗
𝒓
𝑤m =
1
4
𝜇 𝑯 𝒓 2
, 𝑤e =
1
4
𝜀 𝑬 𝒓 2
𝑷d =
1
2
𝑬 𝒓 ∙ 𝑱∗
𝒓
𝛻 ∙ 𝑺 + 2j𝜔 𝑤m − 𝑤e = −𝑷d
III. Transverse Electromagnetic Waves (𝑱 = 0, 𝜌f = 0)
10
The great success of Maxwell’s equations lies partly in the simple prediction of
electromagnetic waves and their simple characterization of materials in terms of
conductivity 𝜎, permittivity 𝜀, and permeability 𝜇. In vacuum we find 𝜎 = 0, 𝜀 = 𝜀o
and 𝜇 = 𝜇o. Therefore, 𝑱 = 𝜎𝑬 = 0 and 𝜌f = 0.
A. Wave Equation
𝛻 × 𝑬 = −𝜇
𝜕𝑯
𝜕𝑡
𝛻 × 𝑯 = 𝜀
𝜕𝑬
𝜕𝑡
𝛻 ∙ 𝑬 = 0
𝛻 ∙ 𝑯 = 0
In contrast the nano-structure of media can be quite complex and requires quantum
mechanics and for its full explanation. Fortunately, simple classical approximations
to atoms and molecules suffice to understand the origin of 𝜎, 𝜀 and 𝜇.
11
𝛻 × 𝛻 × 𝑬 = −𝜇
𝜕
𝜕𝑡
𝛻 × 𝐻 = −𝜇
𝜕
𝜕𝑡
𝜀
𝜕𝑬
𝜕𝑡
𝛻 × 𝛻 × 𝑬 = 𝛻 𝛻 ∙ 𝑬 − 𝛻2
𝑬 = −𝜀𝜇
𝜕2
𝑬
𝜕𝑡2
Wave equation,
𝛻2
𝑬 =
1
𝑐2
𝜕2
𝑬
𝜕𝑡2
where, 𝑐 =
1
𝜀𝜇
is the velocity of the electromagnetic wave. In free space (i.e.
vacuum), 𝜇 = 𝜇o = 4π × 10−7 henries
m
and 𝜀 = 𝜀o ≈
10−9
36π
farads
m
, which leads to
𝑐o =
1
𝜀o𝜇o
≈ 3 × 108 m
s
. Similarly,
𝛻 × 𝛻 × 𝑯 = 𝛻 𝛻 ∙ 𝑯 − 𝛻2
𝑯 = 𝜀
𝜕
𝜕𝑡
𝛻 × 𝑬 = −𝜀𝜇
𝜕2
𝑯
𝜕𝑡2
𝛻2
𝑯 =
1
𝑐2
𝜕2
𝑯
𝜕𝑡2
, 𝑐 =
1
𝜀𝜇
0
0
12
x
z
y
𝜀1, 𝜇1
𝐸𝑥− = Re 𝑬𝑥− 𝑧 ej𝜔𝑡
𝐻𝑦− = Re 𝑯y− 𝑧 ej𝜔𝑡
𝐻𝑦+ = Re 𝑯y+ 𝑧 ej𝜔𝑡
𝐸𝑥+ = Re 𝑬𝑥+ 𝑧 ej𝜔𝑡
𝐾𝑥+ = Re 𝑲0 𝑧 ej𝜔𝑡
𝜀2, 𝜇2
B. Plane Waves
𝐸𝑥 𝑧, 𝑡 = Re 𝑬𝑥 𝑧 ej𝜔𝑡
d2
𝑬𝑥
d𝑧2 = −
𝜔2
𝑐2 𝑬𝑥
d2𝑬𝑥
d𝑧2
+ 𝑘2𝑬𝑥 = 0
13
where we have,
𝑘2
=
𝜔2
𝑐2
= 𝜔2
𝜀𝜇
𝑘 =
2π
𝜆
is the wavenumber, 𝜆 is the wavelength
𝑘 = ±
𝜔
𝑐
⇒ 𝜔 = 𝑘𝑐
𝜔 = 2π𝑓 =
2π
𝜆
𝑐 ⇒ 𝑓𝜆 = 𝑐
𝑬𝑥 = 𝐴1ej𝑘𝑧
+ 𝐴2e−j𝑘𝑧
𝐸𝑥 = Re 𝐴1ej 𝜔𝑡+𝑘𝑧
+ 𝐴2ej 𝜔𝑡−𝑘𝑧
For the wave in the −𝑧 direction we have:
𝜔𝑡 + 𝑘𝑧 = constant, 𝜔d𝑡 + 𝑘d𝑧 = 0
d𝑧
d𝑡
= −
𝜔
𝑘
= −𝑐
travelling wave in the
− 𝑧 direction
travelling wave in
the +𝑧 direction
14
For the wave in the +𝑧 direction we have:
𝜔𝑡 − 𝑧 = constant, 𝜔d𝑡 − 𝑘d𝑧 = 0,
d𝑧
d𝑡
=
𝜔
𝑘
= +𝑐
𝑬𝑥 𝑧 =
𝑬𝑥+e−j𝑘𝑧
𝑧 > 0
𝑬𝑥−ej𝑘𝑧
𝑧 < 0
𝛻 × 𝑬 = −𝜇
𝜕𝑯
𝜕𝑡
⇒
d𝑬𝑥
d𝑧
= −j𝜔𝜇𝑯𝑦 ⇒ 𝑯𝑦 = −
1
j𝜔𝜇
d𝑬𝑥
d𝑧
𝛻 × 𝑯 = 𝜀
𝜕𝑬
𝜕𝑡
⇒
d𝑯𝑦
d𝑧
= −j𝜔𝜀𝑬𝑥
𝑯𝑦 =
𝑘
𝜔𝜇
𝑬𝑥+e−j𝑘𝑧
𝑧 > 0
−
𝑘
𝜔𝜇
𝑬𝑥−ej𝑘𝑧
𝑧 < 0
𝑘
𝜔𝜇
=
𝜔 𝜀𝜇
𝜔𝜇
=
𝜀
𝜇
, 𝜂 =
𝜇
𝜀
is the wave impedance
𝑯𝑦 =
𝑬𝑥+
𝜂
e−j𝑘𝑧
𝑧 > 0
−
𝑬𝑥−
𝜂
ej𝑘𝑧
𝑧 < 0
15
Now we look at the boundary conditions:
𝑬𝑥 𝑧 = 0+, 𝑡 = 𝑬𝑥 𝑧 = 0−, 𝑡 ⇒ 𝑬𝑥+ = 𝑬𝑥−
𝑯𝑦 𝑧 = 0−, 𝑡 − 𝑯𝑦 𝑧 = 0+, 𝑡 = 𝑲𝑥 𝑧 = 0, 𝑡 ⇒
−𝑬𝑥− − 𝑬𝑥+
𝜂
= 𝑲0
𝑬𝑥+ = 𝑬𝑥− = −
𝜂𝑲0
2
𝑬𝑥 𝑧 =
−
𝜂𝑲0
2
e−j𝑘𝑧
𝑧 > 0
−
𝜂𝑲0
2
ej𝑘𝑧
𝑧 < 0
𝑯𝑦 𝑧 =
−
𝑲0
2
e−j𝑘𝑧
𝑧 > 0
𝑲0
2
ej𝑘𝑧
𝑧 < 0
𝑺 =
1
2
𝑬 × 𝑯∗
=
𝜂𝐾0
2
8
𝒊𝑧 𝑧 > 0
−
𝜂𝐾0
2
8
𝒊𝑧 𝑧 < 0
(𝑲0 real)
16
𝐸𝑥 𝑧, 𝑡 = Re 𝑬𝑥 𝑧 ej𝜔𝑡
=
−
𝜂𝑲0
2
cos 𝜔𝑡 − 𝑘𝑧 𝑧 > 0
−
𝜂𝑲0
2
cos 𝜔𝑡 + 𝑘𝑧 𝑧 < 0
𝐻𝑦 𝑧, 𝑡 = Re 𝑯𝑦 𝑧 ej𝜔𝑡
=
−
𝑲0
2
cos 𝜔𝑡 − 𝑘𝑧 𝑧 > 0
𝑲0
2
cos 𝜔𝑡 + 𝑘𝑧 𝑧 < 0
𝑆𝑧 = 𝐸𝑥𝐻𝑦 =
𝜂𝐾0
2
4
cos2
𝜔𝑡 − 𝑘𝑧 𝑧 > 0
−
𝜂𝐾0
2
4
cos2
𝜔𝑡 + 𝑘𝑧 𝑧 < 0
𝑆𝑧 =
𝜂𝐾0
2
8
𝑧 > 0
−
𝜂𝐾0
2
8
𝑧 < 0
17
C. Normal Incidence Onto A Perfect Conductor
Incident Fields: 𝑬i 𝑧, 𝑡 = Re 𝑬iej 𝜔𝑡−𝑘𝑧
𝒊𝑥
𝑯i 𝑧, 𝑡 = Re
𝑬i
𝜂
ej 𝜔𝑡−𝑘𝑧
𝒊𝑦
Reflected Fields: 𝑬r 𝑧, 𝑡 = Re 𝑬rej 𝜔𝑡+𝑘𝑧
𝒊𝑥
𝑯r 𝑧, 𝑡 = Re −
𝑬r
𝜂
ej 𝜔𝑡+𝑘𝑧
𝒊𝑦
𝑘 = 𝜔 𝜀𝜇, 𝜂 =
𝜇
𝜀
The boundary conditions require that,
𝐸𝑥 𝑧 = 0, 𝑡 = 𝐸𝑥, i 𝑧 = 0, 𝑡 + 𝐸𝑥, r 𝑧 = 0, 𝑡 = 0
𝑬i + 𝑬r = 0 ⇒ 𝑬r = −𝑬i
18
Figure 2: Time varying electromagnetic phenomena differ only in the scaling of time
(frequency) and size (wavelength). In linear dielectric media the frequency and
wavelength are related as 𝑓λ = 𝑐 (𝜔 = 𝑘𝑐), where 𝑐 =
1
𝜀𝜇
is the velocity of light in the
medium.
sin 𝑘z
𝜆 =
2π
𝑘
𝑇 =
2π
𝜔
2π
𝑘
2π
𝜔
𝑧
𝑡
π
𝜔
π
𝑘
−1
−1
1
1 sin 𝜔𝑡
0 102
104 106
108 1010
1012
1014 1016 1018
1020
Circuit Theory Microwaves
f (Hz)
Visible Light Ultraviolet X-Rays Gamma Rays
Power Infrared (Heat)
Radio and Television
AM FM
3 × 106
λ meters 3 × 104 3 × 102 3 3 × 10−2
3 × 10−4
3 × 10−6 3 × 10−8
3 × 10−10 3 × 10−12
19
For 𝑬i = 𝐸i real we have:
𝐸𝑥 𝑧, 𝑡 = 𝐸𝑥, i 𝑧, 𝑡 + 𝐸𝑥, r 𝑧, 𝑡 = Re 𝑬i e−j𝑘𝑧
− ej𝑘𝑧
ej𝜔𝑡
= 2𝐸i sin 𝑘𝑧 sin 𝜔𝑡
𝐻𝑦 𝑧, 𝑡 = 𝐻𝑦, i 𝑧, 𝑡 + 𝐻𝑦, r 𝑧, 𝑡 = Re
𝑬i
𝜂
e−j𝑘𝑧
− ej𝑘𝑧
ej𝜔𝑡
=
2𝐸i
𝜂
cos 𝑘𝑧 cos 𝜔𝑡
𝐾𝑧 𝑧 = 0, 𝑡 = 𝐻𝑦 𝑧 = 0, 𝑡 =
2𝐸i
𝜂
cos 𝜔𝑡
Radiation pressure in free space 𝜇 = 𝜇o, 𝜀 = 𝜀o
Force𝑧
Area 𝑧=0
=
1
2
𝑲 × 𝜇o𝑯 =
1
2
𝜇o𝐾𝑥𝐻𝑦
𝑧=0
𝒊𝑧 =
1
2
𝜇o𝐻𝑦
2
𝑧 = 0 𝒊𝑧
=
2𝜇o𝐸i
2
𝜂o
2 cos2
𝜔𝑡 𝒊𝑧
=
2𝜇o
𝜂o
𝜀o
𝐸i
2
cos2
𝜔𝑡 𝒊𝑧
= 2𝜀o 𝐸i
2
cos2
𝜔𝑡 𝒊𝑧
20
Figure 3: A uniform plane wave normally incident upon a perfect conductor has zero
electric field at the conducting surface thus requiring a reflected wave. The source of this
reflected wave is the surface current at 𝑧 = 0, which equals the magnetic field there. The
total electric and magnetic fields are 90° out of phase in time and space.
x
z
y
𝐸i = Re 𝑬iej 𝜔𝑡−𝑘𝑧
𝒊𝑥
𝐻i = Re
𝑬i
𝑍o
ej 𝜔𝑡−𝑘𝑧
𝒊𝑦
𝑘 =
𝜔
𝑐
𝒊𝑧
𝐻r = Re −
𝑬r
𝑍o
ej 𝜔𝑡+𝑘𝑧
𝒊𝑦
𝐸r = Re 𝑬rej 𝜔𝑡+𝑘𝑧
𝒊𝑥
𝑘r = −
𝜔
c1
𝒊𝑧
𝜀o, 𝜇o 𝜂o = 𝑍o=
𝜇o
𝜀o
𝐻𝑦 𝑠, 𝑡 =
2𝑬i
𝑍o
cos 𝑘𝑠 cos 𝜔𝑡
𝐸𝑥 𝑠, 𝑡 = 2𝑬isin 𝑘𝑠 sin 𝜔𝑡
𝜎 → ∞
21
Figure 4: A uniform plane wave normally incident upon a dielectric interface separating
two different materials has part of its power reflected and part transmitted.
IV. Normal Incidence Onto A Dielectric
x
z
y
𝜀1, 𝜇1 𝜂1 = 𝑍1 =
𝜇1
𝜀1
, 𝑐1 =
1
𝜀1𝜇1
𝜀2, 𝜇2 𝑍2 =
𝜇2
𝜀2
, 𝑐2 =
1
𝜀2𝜇2
𝐸i = Re 𝑬iej 𝜔𝑡−𝑘1𝑧
𝒊𝑥
𝐸t = Re 𝑬tej 𝜔𝑡−𝑘2𝑧
𝒊𝑥
𝐻t = Re
𝑬t
𝑍2
ej 𝜔𝑡−𝑘2𝑧
𝒊𝑦
𝐻r = Re −
𝑬r
𝑍1
ej 𝜔𝑡+𝑘1𝑧
𝒊𝑦
𝐻i = Re
𝑬i
𝑍1
ej 𝜔𝑡−𝑘1𝑧
𝒊𝑦
𝐸r = Re 𝑬rej 𝜔𝑡+𝑘1𝑧
𝒊𝑥
𝑘i = 𝑘1𝒊𝑧 =
𝜔
𝑐1
𝒊𝑧
𝑘r = −𝑘1𝒊𝑧 =
−𝜔
𝑐1
𝒊𝑧
𝑘t = 𝑘2𝒊𝑧 =
𝜔
𝑐2
𝒊𝑧
22
𝑬i 𝑧, 𝑡 = Re 𝑬iej 𝜔𝑡−𝑘1𝑧
𝑖𝑥 , 𝑘1 = 𝜔 𝜀1𝜇1
𝑯i 𝑧, 𝑡 = Re
𝑯i
𝜂1
ej 𝜔𝑡−𝑘1𝑧
𝑖𝑦 , 𝜂1 = 𝜔
𝜇1
𝜀1
𝑬r 𝑧, 𝑡 = Re 𝑬rej 𝜔𝑡+𝑘1𝑧
𝑖𝑥
𝑯r 𝑧, 𝑡 = Re −
𝑬r
𝜂1
ej 𝜔𝑡+𝑘1𝑧
𝑖𝑦
𝑬t 𝑧, 𝑡 = Re 𝑬tej 𝜔𝑡−𝑘2𝑧
𝑖𝑥 , 𝑘2 = 𝜔 𝜀2𝜇2
𝑯t 𝑧, 𝑡 = Re
𝑬t
𝜂2
ej 𝜔𝑡−𝑘2𝑧
𝑖𝑦 , 𝜂2 = 𝜔
𝜇2
𝜀2
23
𝐸𝑥 𝑧 = 0− = 𝐸𝑥 𝑧 = 0+ ⇒ 𝑬i + 𝑬r = 𝑬t
𝐻𝑦 𝑧 = 0− = 𝐻𝑦 𝑧 = 0+ ⇒
𝑬i − 𝑬r
𝜂1
=
𝑬t
𝜂2
𝑅 =
𝐸r
𝐸i
=
𝜂2 − 𝜂1
𝜂1 + 𝜂2
is the Reflection coefficient
𝑇 =
𝐸t
𝐸i
=
2𝜂2
𝜂1 + 𝜂2
is the Transmission coefficient
1 + 𝑅 = 𝑇
24
𝑆𝑧, i =
1
2
Re 𝑬𝑥 𝑧 𝑯𝑦
∗
𝑧
=
1
2𝜂1
Re 𝑬ie−j𝑘1𝑧
+ 𝑬rej𝑘1𝑧
𝑬i
∗
ej𝑘1𝑧
− 𝑬r
∗
e−j𝑘1𝑧
=
1
2𝜂1
𝑬i
2
− 𝑬r
2
+
1
2𝜂1
Re 𝑬r𝑬i
∗
e2j𝑘1𝑧
− 𝑬r
∗
𝑬ie−2j𝑘1𝑧
=
1
2𝜂1
𝑬i
2
− 𝑬r
2
=
𝑬i
2
2𝜂1
1 − 𝑅2
𝑆𝑧, t =
1
2𝜂2
𝑬t
2
=
𝑬i
2
𝑇2
2𝜂2
=
𝑬i
2
1 − 𝑅2
2𝜂2
= 𝑆𝑧, i
pure imaginary
25
V. Lossy Dielectrics, 𝑱 = 𝜎𝑬
Ampere′
s Law: 𝛻 × 𝑯 = 𝑱 + 𝜀
𝜕𝑬
𝜕𝑡
= 𝜎𝑬 + 𝜀
𝜕𝑬
𝜕𝑡
For ej𝜔𝑡
fields,
𝛻 × 𝑯 = j𝜔𝜀 + 𝜎 𝑬
= j𝜔𝜀 1 +
𝜎
j𝜔𝜀
𝑬
where, 𝜎 = conductivity of a medium (
Siemens
m
)
26
Define complex permittivity by 𝜺 = 𝜀 1 +
𝜎
j𝜔𝜀
. Then complex amplitude
solutions are the same as real amplitude solutions if we replace 𝜀 by 𝜺:
𝑘 = 𝜔 𝜺𝜇
𝜂 =
𝜇
𝜺
=
𝜇
𝜀 1 +
𝜎
j𝜔𝜀
𝑘 = 𝜔 𝜀𝜇 1 +
𝜎
j𝜔𝜀
27
A. Low Loss Limit:
𝜎
𝜔𝜀
≪ 1
𝑘 = 𝜔 𝜀𝜇 1 +
𝜎
j𝜔𝜀
≈ 𝜔 𝜀𝜇 1 +
1
2
𝜎
j𝜔𝜀
≈ 𝜔 𝜀𝜇 −
j𝜎
2
𝜇
𝜀
≈ 𝜔 𝜀𝜇 − j
𝜎𝜂
2
e−j𝑘𝑧
= e−j𝜔 𝜀𝜇𝑧
e
−j −j
𝜎𝜂
2
𝑧
= e−j𝜔 𝜀𝜇𝑧
e−
𝜎𝜂
2
𝑧
slow exponential decay
28
B. Large Loss Limit:
𝜎
𝜔𝜀
≫ 1
𝑘 = 𝜔 𝜀𝜇 1 +
𝜎
j𝜔𝜀
≈ 𝜔 𝜀𝜇
𝜎
𝜔𝜀
−j we know that,
𝜔
𝜔
= 𝜔
≈
𝜔𝜇𝜎
2
1 − j
≈
1 − j
𝛿
𝛿 =
2
𝜔𝜇𝜎
is the skin depth
e−j𝑘𝑧
= e
−j
1−j 𝑧
𝛿 = e
−j
𝑧
𝛿 e
−
𝑧
𝛿
fast exponential decay
1 − j
2
(1) Markus Zahn, Electromagnetics and Applications, Massachusetts
Institute of Technology: MIT Open Course Ware, 2005.
References
29

More Related Content

What's hot

Coherent and Non-coherent detection of ASK, FSK AND QASK
Coherent and Non-coherent detection of ASK, FSK AND QASKCoherent and Non-coherent detection of ASK, FSK AND QASK
Coherent and Non-coherent detection of ASK, FSK AND QASKnaimish12
 
Negative feedback Amplifiers
Negative feedback AmplifiersNegative feedback Amplifiers
Negative feedback AmplifiersYeshudas Muttu
 
Electromagnetic fields: Review of vector algebra
Electromagnetic fields: Review of vector algebraElectromagnetic fields: Review of vector algebra
Electromagnetic fields: Review of vector algebraDr.SHANTHI K.G
 
M-ary Modulation, noise modelling, bandwidth, Bandpass Modulation
M-ary Modulation, noise modelling, bandwidth, Bandpass ModulationM-ary Modulation, noise modelling, bandwidth, Bandpass Modulation
M-ary Modulation, noise modelling, bandwidth, Bandpass ModulationDrAimalKhan
 
Solved problems in waveguides
Solved problems in waveguidesSolved problems in waveguides
Solved problems in waveguidessubhashinivec
 
DIGITAL SIGNAL PROCESSING: Sampling and Reconstruction on MATLAB
DIGITAL SIGNAL PROCESSING: Sampling and Reconstruction on MATLABDIGITAL SIGNAL PROCESSING: Sampling and Reconstruction on MATLAB
DIGITAL SIGNAL PROCESSING: Sampling and Reconstruction on MATLABMartin Wachiye Wafula
 
Transfer function, determination of transfer function in mechanical and elect...
Transfer function, determination of transfer function in mechanical and elect...Transfer function, determination of transfer function in mechanical and elect...
Transfer function, determination of transfer function in mechanical and elect...Saad Mohammad Araf
 
Auto correlation and cross-correlation
Auto correlation and cross-correlationAuto correlation and cross-correlation
Auto correlation and cross-correlationMrinmoy Majumder
 
104623 time division multiplexing (transmitter, receiver,commutator)
104623 time  division multiplexing (transmitter, receiver,commutator)104623 time  division multiplexing (transmitter, receiver,commutator)
104623 time division multiplexing (transmitter, receiver,commutator)Devyani Gera
 
Op amp application as Oscillator
Op amp application as Oscillator Op amp application as Oscillator
Op amp application as Oscillator veeravanithaD
 
Signal classification of signal
Signal classification of signalSignal classification of signal
Signal classification of signal001Abhishek1
 
Control system stability routh hurwitz criterion
Control system stability routh hurwitz criterionControl system stability routh hurwitz criterion
Control system stability routh hurwitz criterionNilesh Bhaskarrao Bahadure
 
DSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital FiltersDSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital FiltersAmr E. Mohamed
 
Rectangular waveguides
Rectangular waveguidesRectangular waveguides
Rectangular waveguideskhan yaseen
 
Rlc circuits and differential equations1
Rlc circuits and differential equations1Rlc circuits and differential equations1
Rlc circuits and differential equations1Ghanima Eyleeuhs
 
signal & system inverse z-transform
signal & system inverse z-transformsignal & system inverse z-transform
signal & system inverse z-transformmihir jain
 

What's hot (20)

Coherent and Non-coherent detection of ASK, FSK AND QASK
Coherent and Non-coherent detection of ASK, FSK AND QASKCoherent and Non-coherent detection of ASK, FSK AND QASK
Coherent and Non-coherent detection of ASK, FSK AND QASK
 
Negative feedback Amplifiers
Negative feedback AmplifiersNegative feedback Amplifiers
Negative feedback Amplifiers
 
Electromagnetic fields: Review of vector algebra
Electromagnetic fields: Review of vector algebraElectromagnetic fields: Review of vector algebra
Electromagnetic fields: Review of vector algebra
 
M-ary Modulation, noise modelling, bandwidth, Bandpass Modulation
M-ary Modulation, noise modelling, bandwidth, Bandpass ModulationM-ary Modulation, noise modelling, bandwidth, Bandpass Modulation
M-ary Modulation, noise modelling, bandwidth, Bandpass Modulation
 
Solved problems in waveguides
Solved problems in waveguidesSolved problems in waveguides
Solved problems in waveguides
 
DIGITAL SIGNAL PROCESSING: Sampling and Reconstruction on MATLAB
DIGITAL SIGNAL PROCESSING: Sampling and Reconstruction on MATLABDIGITAL SIGNAL PROCESSING: Sampling and Reconstruction on MATLAB
DIGITAL SIGNAL PROCESSING: Sampling and Reconstruction on MATLAB
 
Transfer function, determination of transfer function in mechanical and elect...
Transfer function, determination of transfer function in mechanical and elect...Transfer function, determination of transfer function in mechanical and elect...
Transfer function, determination of transfer function in mechanical and elect...
 
Auto correlation and cross-correlation
Auto correlation and cross-correlationAuto correlation and cross-correlation
Auto correlation and cross-correlation
 
Z Transform
Z TransformZ Transform
Z Transform
 
signal flow graph
signal flow graphsignal flow graph
signal flow graph
 
104623 time division multiplexing (transmitter, receiver,commutator)
104623 time  division multiplexing (transmitter, receiver,commutator)104623 time  division multiplexing (transmitter, receiver,commutator)
104623 time division multiplexing (transmitter, receiver,commutator)
 
Op amp application as Oscillator
Op amp application as Oscillator Op amp application as Oscillator
Op amp application as Oscillator
 
Signal classification of signal
Signal classification of signalSignal classification of signal
Signal classification of signal
 
HANDOFF
HANDOFFHANDOFF
HANDOFF
 
Control system stability routh hurwitz criterion
Control system stability routh hurwitz criterionControl system stability routh hurwitz criterion
Control system stability routh hurwitz criterion
 
DSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital FiltersDSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 05 - Digital Filters
 
Rectangular waveguides
Rectangular waveguidesRectangular waveguides
Rectangular waveguides
 
Butterworth filter
Butterworth filterButterworth filter
Butterworth filter
 
Rlc circuits and differential equations1
Rlc circuits and differential equations1Rlc circuits and differential equations1
Rlc circuits and differential equations1
 
signal & system inverse z-transform
signal & system inverse z-transformsignal & system inverse z-transform
signal & system inverse z-transform
 

Similar to Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equation

Reflection & Refraction.pptx
Reflection & Refraction.pptxReflection & Refraction.pptx
Reflection & Refraction.pptxPaulBoro1
 
Easy Plasma Theory BS Math helping notespdf
Easy Plasma Theory BS Math helping notespdfEasy Plasma Theory BS Math helping notespdf
Easy Plasma Theory BS Math helping notespdfAreeshaNoor9
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Dipole Arrays
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Dipole ArraysLecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Dipole Arrays
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Dipole ArraysAIMST University
 
7). mechanical waves (finished)
7). mechanical waves (finished)7). mechanical waves (finished)
7). mechanical waves (finished)PhysicsLover
 
An Introduction to Microwave Imaging
An Introduction to Microwave ImagingAn Introduction to Microwave Imaging
An Introduction to Microwave ImagingHwa Pyung Kim
 
AC- circuits (combination).pdf
AC- circuits (combination).pdfAC- circuits (combination).pdf
AC- circuits (combination).pdfMTharunKumar3
 
Ac_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxAc_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxLucasMogaka
 
Ac_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxAc_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxLucasMogaka
 
Field exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionField exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionBaaselMedhat
 
Other RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxOther RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxDrOmarShAlyozbaky
 
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...RohitNukte
 
ME421-SDF (Forced) part 2.pdf
ME421-SDF (Forced) part 2.pdfME421-SDF (Forced) part 2.pdf
ME421-SDF (Forced) part 2.pdfJohnathan41
 
تطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضليةتطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضليةMohammedRazzaqSalman
 
Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxHebaEng
 

Similar to Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equation (20)

Reflection & Refraction.pptx
Reflection & Refraction.pptxReflection & Refraction.pptx
Reflection & Refraction.pptx
 
Waveguides
WaveguidesWaveguides
Waveguides
 
LC oscillations.pdf
LC oscillations.pdfLC oscillations.pdf
LC oscillations.pdf
 
Ac/AC conveter
Ac/AC conveterAc/AC conveter
Ac/AC conveter
 
Easy Plasma Theory BS Math helping notespdf
Easy Plasma Theory BS Math helping notespdfEasy Plasma Theory BS Math helping notespdf
Easy Plasma Theory BS Math helping notespdf
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Dipole Arrays
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Dipole ArraysLecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Dipole Arrays
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Dipole Arrays
 
7). mechanical waves (finished)
7). mechanical waves (finished)7). mechanical waves (finished)
7). mechanical waves (finished)
 
Resonance.pdf
Resonance.pdfResonance.pdf
Resonance.pdf
 
An Introduction to Microwave Imaging
An Introduction to Microwave ImagingAn Introduction to Microwave Imaging
An Introduction to Microwave Imaging
 
Ondas Gravitacionales (en ingles)
Ondas Gravitacionales (en ingles)Ondas Gravitacionales (en ingles)
Ondas Gravitacionales (en ingles)
 
AC- circuits (combination).pdf
AC- circuits (combination).pdfAC- circuits (combination).pdf
AC- circuits (combination).pdf
 
Ac_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxAc_steady_state_analyis.pptx
Ac_steady_state_analyis.pptx
 
Ac_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxAc_steady_state_analyis.pptx
Ac_steady_state_analyis.pptx
 
Field exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solutionField exams mxq proplems engineering with solution
Field exams mxq proplems engineering with solution
 
Network analysis unit 2
Network analysis unit 2Network analysis unit 2
Network analysis unit 2
 
Other RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxOther RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptx
 
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
 
ME421-SDF (Forced) part 2.pdf
ME421-SDF (Forced) part 2.pdfME421-SDF (Forced) part 2.pdf
ME421-SDF (Forced) part 2.pdf
 
تطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضليةتطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضلية
 
Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsx
 

More from AIMST University

Future Generation of Mobile and Satellite Communication Technology
Future Generation of Mobile and Satellite Communication TechnologyFuture Generation of Mobile and Satellite Communication Technology
Future Generation of Mobile and Satellite Communication TechnologyAIMST University
 
Research Cluster - Wireless Communications for 5G/6G
Research Cluster - Wireless Communications for 5G/6GResearch Cluster - Wireless Communications for 5G/6G
Research Cluster - Wireless Communications for 5G/6GAIMST University
 
1G, 2G, 3G, 4G, and 5G Technology
1G, 2G, 3G, 4G, and 5G Technology1G, 2G, 3G, 4G, and 5G Technology
1G, 2G, 3G, 4G, and 5G TechnologyAIMST University
 
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith ChartLecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith ChartAIMST University
 
Mini Project 2 - Wien Bridge Oscillator
Mini Project 2 - Wien Bridge OscillatorMini Project 2 - Wien Bridge Oscillator
Mini Project 2 - Wien Bridge OscillatorAIMST University
 
Experiment 1 - Frequency Determination Using The Lissajous Polar
Experiment 1 - Frequency Determination Using The Lissajous PolarExperiment 1 - Frequency Determination Using The Lissajous Polar
Experiment 1 - Frequency Determination Using The Lissajous PolarAIMST University
 
Experiment 2 - Phase Determination Using The Lissajous Polar
Experiment 2 - Phase Determination Using The Lissajous PolarExperiment 2 - Phase Determination Using The Lissajous Polar
Experiment 2 - Phase Determination Using The Lissajous PolarAIMST University
 
Experiment 3 - Dynamic Characteristic of Thermistor
Experiment 3 - Dynamic Characteristic of ThermistorExperiment 3 - Dynamic Characteristic of Thermistor
Experiment 3 - Dynamic Characteristic of ThermistorAIMST University
 
Mini Project 1 - Wheatstone Bridge Light Detector
Mini Project 1 - Wheatstone Bridge Light DetectorMini Project 1 - Wheatstone Bridge Light Detector
Mini Project 1 - Wheatstone Bridge Light DetectorAIMST University
 
Lecture Notes: EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
Lecture Notes:  EEEE6490345 RF And Microwave Electronics - Radio Communicatio...Lecture Notes:  EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
Lecture Notes: EEEE6490345 RF And Microwave Electronics - Radio Communicatio...AIMST University
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrumentation
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - InstrumentationLecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrumentation
Lecture Notes: EEEC6430312 Measurements And Instrumentation - InstrumentationAIMST University
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Fundamentals O...
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Fundamentals O...Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Fundamentals O...
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Fundamentals O...AIMST University
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrument Typ...
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrument Typ...Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrument Typ...
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrument Typ...AIMST University
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Errors During ...
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Errors During ...Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Errors During ...
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Errors During ...AIMST University
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Transmission LineLecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Transmission LineAIMST University
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...AIMST University
 
Lecture Notes: EEEC6440315 Communication Systems - Time Frequency Analysis -...
Lecture Notes:  EEEC6440315 Communication Systems - Time Frequency Analysis -...Lecture Notes:  EEEC6440315 Communication Systems - Time Frequency Analysis -...
Lecture Notes: EEEC6440315 Communication Systems - Time Frequency Analysis -...AIMST University
 
Mini Project 1: Impedance Matching With A Single Stub Tuner
Mini Project 1:  Impedance Matching With A Single Stub TunerMini Project 1:  Impedance Matching With A Single Stub Tuner
Mini Project 1: Impedance Matching With A Single Stub TunerAIMST University
 
Lecture Notes: EEEC6440315 Communication Systems - Spectral Analysis
Lecture Notes:  EEEC6440315 Communication Systems - Spectral AnalysisLecture Notes:  EEEC6440315 Communication Systems - Spectral Analysis
Lecture Notes: EEEC6440315 Communication Systems - Spectral AnalysisAIMST University
 
Lecture Notes: EEEC6440315 Communication Systems - Spectral Efficiency
Lecture Notes:  EEEC6440315 Communication Systems - Spectral EfficiencyLecture Notes:  EEEC6440315 Communication Systems - Spectral Efficiency
Lecture Notes: EEEC6440315 Communication Systems - Spectral EfficiencyAIMST University
 

More from AIMST University (20)

Future Generation of Mobile and Satellite Communication Technology
Future Generation of Mobile and Satellite Communication TechnologyFuture Generation of Mobile and Satellite Communication Technology
Future Generation of Mobile and Satellite Communication Technology
 
Research Cluster - Wireless Communications for 5G/6G
Research Cluster - Wireless Communications for 5G/6GResearch Cluster - Wireless Communications for 5G/6G
Research Cluster - Wireless Communications for 5G/6G
 
1G, 2G, 3G, 4G, and 5G Technology
1G, 2G, 3G, 4G, and 5G Technology1G, 2G, 3G, 4G, and 5G Technology
1G, 2G, 3G, 4G, and 5G Technology
 
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith ChartLecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
Lecture Notes - EEEC6430310 Electromagnetic Fields and Waves - Smith Chart
 
Mini Project 2 - Wien Bridge Oscillator
Mini Project 2 - Wien Bridge OscillatorMini Project 2 - Wien Bridge Oscillator
Mini Project 2 - Wien Bridge Oscillator
 
Experiment 1 - Frequency Determination Using The Lissajous Polar
Experiment 1 - Frequency Determination Using The Lissajous PolarExperiment 1 - Frequency Determination Using The Lissajous Polar
Experiment 1 - Frequency Determination Using The Lissajous Polar
 
Experiment 2 - Phase Determination Using The Lissajous Polar
Experiment 2 - Phase Determination Using The Lissajous PolarExperiment 2 - Phase Determination Using The Lissajous Polar
Experiment 2 - Phase Determination Using The Lissajous Polar
 
Experiment 3 - Dynamic Characteristic of Thermistor
Experiment 3 - Dynamic Characteristic of ThermistorExperiment 3 - Dynamic Characteristic of Thermistor
Experiment 3 - Dynamic Characteristic of Thermistor
 
Mini Project 1 - Wheatstone Bridge Light Detector
Mini Project 1 - Wheatstone Bridge Light DetectorMini Project 1 - Wheatstone Bridge Light Detector
Mini Project 1 - Wheatstone Bridge Light Detector
 
Lecture Notes: EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
Lecture Notes:  EEEE6490345 RF And Microwave Electronics - Radio Communicatio...Lecture Notes:  EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
Lecture Notes: EEEE6490345 RF And Microwave Electronics - Radio Communicatio...
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrumentation
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - InstrumentationLecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrumentation
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrumentation
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Fundamentals O...
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Fundamentals O...Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Fundamentals O...
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Fundamentals O...
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrument Typ...
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrument Typ...Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Instrument Typ...
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Instrument Typ...
 
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Errors During ...
Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Errors During ...Lecture Notes:  EEEC6430312 Measurements And Instrumentation - Errors During ...
Lecture Notes: EEEC6430312 Measurements And Instrumentation - Errors During ...
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Transmission LineLecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Transmission Line
 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Cylindrical Ca...
 
Lecture Notes: EEEC6440315 Communication Systems - Time Frequency Analysis -...
Lecture Notes:  EEEC6440315 Communication Systems - Time Frequency Analysis -...Lecture Notes:  EEEC6440315 Communication Systems - Time Frequency Analysis -...
Lecture Notes: EEEC6440315 Communication Systems - Time Frequency Analysis -...
 
Mini Project 1: Impedance Matching With A Single Stub Tuner
Mini Project 1:  Impedance Matching With A Single Stub TunerMini Project 1:  Impedance Matching With A Single Stub Tuner
Mini Project 1: Impedance Matching With A Single Stub Tuner
 
Lecture Notes: EEEC6440315 Communication Systems - Spectral Analysis
Lecture Notes:  EEEC6440315 Communication Systems - Spectral AnalysisLecture Notes:  EEEC6440315 Communication Systems - Spectral Analysis
Lecture Notes: EEEC6440315 Communication Systems - Spectral Analysis
 
Lecture Notes: EEEC6440315 Communication Systems - Spectral Efficiency
Lecture Notes:  EEEC6440315 Communication Systems - Spectral EfficiencyLecture Notes:  EEEC6440315 Communication Systems - Spectral Efficiency
Lecture Notes: EEEC6440315 Communication Systems - Spectral Efficiency
 

Recently uploaded

Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxPooja Bhuva
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Pooja Bhuva
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsSandeep D Chaudhary
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxCeline George
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxDr. Sarita Anand
 
How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17Celine George
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfSherif Taha
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxPooja Bhuva
 
dusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningdusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningMarc Dusseiller Dusjagr
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSAnaAcapella
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...Nguyen Thanh Tu Collection
 
Tatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsTatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsNbelano25
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfDr Vijay Vishwakarma
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17Celine George
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structuredhanjurrannsibayan2
 

Recently uploaded (20)

Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & Systems
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
dusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learningdusjagr & nano talk on open tools for agriculture research and learning
dusjagr & nano talk on open tools for agriculture research and learning
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
Tatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsTatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf arts
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 

Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equation

  • 1. EEEC6430310 ELECTROMAGNETIC FIELDS AND WAVES Maxwell’s Equation FACULTY OF ENGINEERING AND COMPUTER TECHNOLOGY BENG (HONS) IN ELECTRICALAND ELECTRONIC ENGINEERING Ravandran Muttiah BEng (Hons) MSc MIET
  • 2. Maxwell’s Equation I. Maxwell’s Equation For Linear Media 𝛻 × 𝑬 = −𝜇 𝜕𝑯 𝜕𝑡 Faraday′ s Law 𝛻 × 𝑯 = 𝑱 + 𝜀 𝜕𝑬 𝜕𝑡 Ampere′ s Law 𝛻 ∙ 𝑬 = 𝜌f 𝜀 Gauss′ s Law 𝛻 ∙ 𝑯 = 0 Gauss′ s Law where, 𝛻 = vector differential (del) operator 𝑬 = electric field intensity 𝑯 = magnetic field intensity 𝑱 = electric current density 𝜌f = free electric charge density 1
  • 3. 2 II. Pointing’s Theorem A. Power Flow And Electromagnetic Energy 𝛻 ∙ 𝑬 × 𝑯 = 𝑯 ∙ 𝛻 × 𝑬 − 𝑬 ∙ 𝛻 × 𝑯 = −𝜇𝑯 ∙ 𝜕𝑯 𝜕𝑡 − 𝑬 ∙ 𝑱 + 𝜀 𝜕𝑬 𝜕𝑡 = − 𝜇 2 𝜕 𝜕𝑡 𝑯 2 − 𝜀 2 𝜕 𝜕𝑡 𝑬 2 − 𝑬 ∙ 𝑱 𝛻 ∙ 𝑬 × 𝑯 + 𝜕 𝜕𝑡 1 2 𝜀 𝑬 2 + 1 2 𝜇 𝑯 2 = −𝑬 ∙ 𝑱
  • 4. 3 V 𝛻 ∙ 𝑬 × 𝑯 d𝑉 = S 𝑬 × 𝑯 ∙ d𝑺 S 𝑬 × 𝑯 ∙ d𝒂 + d d𝑡 V 1 2 𝜀 𝑬 2 + 1 2 𝜇 𝑯 2 d𝑉 = − 𝑉 𝑬 ∙ 𝑱 d𝑉 𝑺 = 𝑬 × 𝑯 Poynting Vector Watt m2 𝑊 = V 1 2 𝜀 𝑬 2 + 1 2 𝜇 𝑯 2 d𝑉 Electromagnetic Stored Energy 𝑃d = V 𝑬 ∙ 𝑱 d𝑉 Power dissipated if 𝐽 ∙ 𝑬 > 0 e.g., 𝑱 = 𝜎𝑬 ⇒ 𝐽 ∙ 𝑬 = 𝜎 𝑬 𝟐 Power source if 𝐽 ∙ 𝑬 < 0 𝑃out = S 𝑬 × 𝑯 ∙ d𝒂 = S 𝑺 ∙ d𝒂 𝑃out + d𝑊 d𝑡 = −𝑃d 𝑤e = 1 2 𝜀 𝑬 2 Electric energy density in Joules m3 𝑤m = 1 2 𝜇 𝑯 2 Magnetic energy density in Joules m3
  • 5. 4 Figure 1: The circuit power into an N terminal network 𝑘=1 𝑁 𝑉𝑘𝐼𝑘 equals the electromagnetic power flow into the surface surrounding the network, − s 𝑬 × 𝑯 · d𝑺 B. Power In Electric Circuits E H 𝑆 = 𝐸 × 𝐻 𝑉1 𝑉2 𝑉3 𝑉𝑁−1 𝑉𝑁 𝐼1 𝐼2 𝐼3 𝐼𝑁−1 𝐼𝑁 𝑆
  • 6. 5 Outside circuit elements C 𝑬 ∙ d𝒍 ≈ 0, 𝛻 × 𝑬 = 0 ⇒ 𝑬 = −𝛻Ф (Kirchoff’s Voltage Law 𝑘 𝑣𝑘 = 0) 𝛻 × 𝑯 = 𝑱 ⇒ 𝛻 ∙ 𝑱 = 0, S 𝑱 ∙ d𝑺 = 0 (Kirchoff’s Current Law 𝑘 𝑖𝑘 = 0) 𝑃in = − S 𝑬 × 𝑯 ∙ d𝑺 = − V 𝛻 ∙ 𝑬 × 𝑯 d𝑉 𝛻 ∙ 𝑬 × 𝑯 = 𝑯 ∙ 𝛻 × 𝑬 − 𝑬 ∙ 𝛻 × 𝑯 = −𝑬 ∙ 𝑱 = 𝛻Ф ∙ 𝑱 𝛻 ∙ 𝑱Ф = Ф𝛻 ∙ 𝑱 + 𝑱 ∙ 𝛻Ф 𝛻 ∙ 𝑬 × 𝑯 = 𝑱 ∙ 𝛻Ф = 𝛻 ∙ Ф𝑱 𝑃in = − V 𝛻 ∙ 𝑬 × 𝑯 d𝑉 = − V 𝛻 ∙ 𝑱Ф d𝑉 = − S 𝑱Ф ∙ d𝑺 On 𝑆, Ф = voltages on each wire, 𝑱 is non-zero only on wires. 𝑃in = − S 𝑱Ф ∙ d𝑺 = − 𝑘=1 𝑁 𝑣𝑘 S 𝑱 ∙ d𝑺 = 𝑘=1 𝑁 𝑣𝑘𝑖𝑘 0 0 −𝑖𝑘
  • 7. C. Complex Poynting’s Theorem (Sinusoidal Steady State, ej𝜔𝑡 ) 6 𝑬 𝒓, 𝑡 = Re 𝑬 𝒓 ej𝜔𝑡 = 1 2 𝑬∗ 𝒓 ej𝜔𝑡 + 𝑬∗ 𝒓 e−j𝜔𝑡 𝑯 𝒓, 𝑡 = Re 𝑯 𝒓 ej𝜔𝑡 = 1 2 𝑯∗ 𝒓 ej𝜔𝑡 + 𝑯∗ 𝒓 e−j𝜔𝑡 The real part of a complex number is one-half of the sum of the number and its complex conjugate
  • 8. 7 Maxwell’s Equations In Sinusoidal Steady State 𝛻 × 𝑬 𝒓 = −j𝜔𝜇𝑯 𝒓 𝛻 × 𝑯 𝒓 = 𝑱 𝒓 + j𝜔𝜀 𝒓 𝛻 ∙ 𝑬 𝒓 = 𝝆f 𝒓 𝜀 𝛻 ∙ 𝑯 𝒓 = 0
  • 9. 8 𝑺 𝒓, 𝑡 = 𝑬 𝒓, 𝑡 × 𝑯 𝒓, 𝑡 = 1 4 𝑬 𝒓 ej𝜔𝑡 + 𝑬 𝒓 e−j𝜔𝑡 × 𝑯 𝒓 ej𝜔𝑡 + 𝑯∗ 𝒓 e−j𝜔𝑡 = 1 4 𝑬 𝒓 × 𝑯 𝒓 e2j𝜔𝑡 +𝑬∗ 𝒓 × 𝑯 𝒓 + 𝑬 𝒓 × 𝑯∗ 𝒓 + 𝑬∗ 𝒓 × 𝑯∗ 𝒓 e−2j𝜔𝑡 𝑺 = 1 4 𝑬∗ 𝒓 × 𝑯 𝒓 + 𝑬 𝒓 × 𝑯∗ 𝒓 = 1 2 Re 𝑬 𝒓 × 𝑯∗ 𝒓 = 1 2 Re 𝑬∗ 𝒓 × 𝑯 𝒓 (A complex number plus its complex conjugate is twice the real part of that number)
  • 10. 9 𝑺 = 1 2 Re 𝑬 𝒓 × 𝑯∗ 𝒓 𝛻 ∙ 𝑺 = 𝛻 ∙ 1 2 𝑬 𝒓 × 𝑯∗ 𝒓 = 1 2 𝑯∗ 𝒓 ∙ 𝛻 × 𝑬 𝒓 − 𝑬 𝒓 ∙ 𝛻 × 𝑯∗ 𝒓 = 1 2 𝑯∗ 𝒓 −j𝜔𝜇𝑯 𝒓 − 𝑬 𝒓 ∙ 𝑱∗ 𝒓 − j𝜔𝜀𝑬∗ 𝒓 = 1 2 −j𝜔𝜇 𝑯 𝒓 2 + j𝜔𝜀 𝑬 𝒓 2 − 1 2 𝑬 𝒓 ∙ 𝑱∗ 𝒓 𝑤m = 1 4 𝜇 𝑯 𝒓 2 , 𝑤e = 1 4 𝜀 𝑬 𝒓 2 𝑷d = 1 2 𝑬 𝒓 ∙ 𝑱∗ 𝒓 𝛻 ∙ 𝑺 + 2j𝜔 𝑤m − 𝑤e = −𝑷d
  • 11. III. Transverse Electromagnetic Waves (𝑱 = 0, 𝜌f = 0) 10 The great success of Maxwell’s equations lies partly in the simple prediction of electromagnetic waves and their simple characterization of materials in terms of conductivity 𝜎, permittivity 𝜀, and permeability 𝜇. In vacuum we find 𝜎 = 0, 𝜀 = 𝜀o and 𝜇 = 𝜇o. Therefore, 𝑱 = 𝜎𝑬 = 0 and 𝜌f = 0. A. Wave Equation 𝛻 × 𝑬 = −𝜇 𝜕𝑯 𝜕𝑡 𝛻 × 𝑯 = 𝜀 𝜕𝑬 𝜕𝑡 𝛻 ∙ 𝑬 = 0 𝛻 ∙ 𝑯 = 0 In contrast the nano-structure of media can be quite complex and requires quantum mechanics and for its full explanation. Fortunately, simple classical approximations to atoms and molecules suffice to understand the origin of 𝜎, 𝜀 and 𝜇.
  • 12. 11 𝛻 × 𝛻 × 𝑬 = −𝜇 𝜕 𝜕𝑡 𝛻 × 𝐻 = −𝜇 𝜕 𝜕𝑡 𝜀 𝜕𝑬 𝜕𝑡 𝛻 × 𝛻 × 𝑬 = 𝛻 𝛻 ∙ 𝑬 − 𝛻2 𝑬 = −𝜀𝜇 𝜕2 𝑬 𝜕𝑡2 Wave equation, 𝛻2 𝑬 = 1 𝑐2 𝜕2 𝑬 𝜕𝑡2 where, 𝑐 = 1 𝜀𝜇 is the velocity of the electromagnetic wave. In free space (i.e. vacuum), 𝜇 = 𝜇o = 4π × 10−7 henries m and 𝜀 = 𝜀o ≈ 10−9 36π farads m , which leads to 𝑐o = 1 𝜀o𝜇o ≈ 3 × 108 m s . Similarly, 𝛻 × 𝛻 × 𝑯 = 𝛻 𝛻 ∙ 𝑯 − 𝛻2 𝑯 = 𝜀 𝜕 𝜕𝑡 𝛻 × 𝑬 = −𝜀𝜇 𝜕2 𝑯 𝜕𝑡2 𝛻2 𝑯 = 1 𝑐2 𝜕2 𝑯 𝜕𝑡2 , 𝑐 = 1 𝜀𝜇 0 0
  • 13. 12 x z y 𝜀1, 𝜇1 𝐸𝑥− = Re 𝑬𝑥− 𝑧 ej𝜔𝑡 𝐻𝑦− = Re 𝑯y− 𝑧 ej𝜔𝑡 𝐻𝑦+ = Re 𝑯y+ 𝑧 ej𝜔𝑡 𝐸𝑥+ = Re 𝑬𝑥+ 𝑧 ej𝜔𝑡 𝐾𝑥+ = Re 𝑲0 𝑧 ej𝜔𝑡 𝜀2, 𝜇2 B. Plane Waves 𝐸𝑥 𝑧, 𝑡 = Re 𝑬𝑥 𝑧 ej𝜔𝑡 d2 𝑬𝑥 d𝑧2 = − 𝜔2 𝑐2 𝑬𝑥 d2𝑬𝑥 d𝑧2 + 𝑘2𝑬𝑥 = 0
  • 14. 13 where we have, 𝑘2 = 𝜔2 𝑐2 = 𝜔2 𝜀𝜇 𝑘 = 2π 𝜆 is the wavenumber, 𝜆 is the wavelength 𝑘 = ± 𝜔 𝑐 ⇒ 𝜔 = 𝑘𝑐 𝜔 = 2π𝑓 = 2π 𝜆 𝑐 ⇒ 𝑓𝜆 = 𝑐 𝑬𝑥 = 𝐴1ej𝑘𝑧 + 𝐴2e−j𝑘𝑧 𝐸𝑥 = Re 𝐴1ej 𝜔𝑡+𝑘𝑧 + 𝐴2ej 𝜔𝑡−𝑘𝑧 For the wave in the −𝑧 direction we have: 𝜔𝑡 + 𝑘𝑧 = constant, 𝜔d𝑡 + 𝑘d𝑧 = 0 d𝑧 d𝑡 = − 𝜔 𝑘 = −𝑐 travelling wave in the − 𝑧 direction travelling wave in the +𝑧 direction
  • 15. 14 For the wave in the +𝑧 direction we have: 𝜔𝑡 − 𝑧 = constant, 𝜔d𝑡 − 𝑘d𝑧 = 0, d𝑧 d𝑡 = 𝜔 𝑘 = +𝑐 𝑬𝑥 𝑧 = 𝑬𝑥+e−j𝑘𝑧 𝑧 > 0 𝑬𝑥−ej𝑘𝑧 𝑧 < 0 𝛻 × 𝑬 = −𝜇 𝜕𝑯 𝜕𝑡 ⇒ d𝑬𝑥 d𝑧 = −j𝜔𝜇𝑯𝑦 ⇒ 𝑯𝑦 = − 1 j𝜔𝜇 d𝑬𝑥 d𝑧 𝛻 × 𝑯 = 𝜀 𝜕𝑬 𝜕𝑡 ⇒ d𝑯𝑦 d𝑧 = −j𝜔𝜀𝑬𝑥 𝑯𝑦 = 𝑘 𝜔𝜇 𝑬𝑥+e−j𝑘𝑧 𝑧 > 0 − 𝑘 𝜔𝜇 𝑬𝑥−ej𝑘𝑧 𝑧 < 0 𝑘 𝜔𝜇 = 𝜔 𝜀𝜇 𝜔𝜇 = 𝜀 𝜇 , 𝜂 = 𝜇 𝜀 is the wave impedance 𝑯𝑦 = 𝑬𝑥+ 𝜂 e−j𝑘𝑧 𝑧 > 0 − 𝑬𝑥− 𝜂 ej𝑘𝑧 𝑧 < 0
  • 16. 15 Now we look at the boundary conditions: 𝑬𝑥 𝑧 = 0+, 𝑡 = 𝑬𝑥 𝑧 = 0−, 𝑡 ⇒ 𝑬𝑥+ = 𝑬𝑥− 𝑯𝑦 𝑧 = 0−, 𝑡 − 𝑯𝑦 𝑧 = 0+, 𝑡 = 𝑲𝑥 𝑧 = 0, 𝑡 ⇒ −𝑬𝑥− − 𝑬𝑥+ 𝜂 = 𝑲0 𝑬𝑥+ = 𝑬𝑥− = − 𝜂𝑲0 2 𝑬𝑥 𝑧 = − 𝜂𝑲0 2 e−j𝑘𝑧 𝑧 > 0 − 𝜂𝑲0 2 ej𝑘𝑧 𝑧 < 0 𝑯𝑦 𝑧 = − 𝑲0 2 e−j𝑘𝑧 𝑧 > 0 𝑲0 2 ej𝑘𝑧 𝑧 < 0 𝑺 = 1 2 𝑬 × 𝑯∗ = 𝜂𝐾0 2 8 𝒊𝑧 𝑧 > 0 − 𝜂𝐾0 2 8 𝒊𝑧 𝑧 < 0 (𝑲0 real)
  • 17. 16 𝐸𝑥 𝑧, 𝑡 = Re 𝑬𝑥 𝑧 ej𝜔𝑡 = − 𝜂𝑲0 2 cos 𝜔𝑡 − 𝑘𝑧 𝑧 > 0 − 𝜂𝑲0 2 cos 𝜔𝑡 + 𝑘𝑧 𝑧 < 0 𝐻𝑦 𝑧, 𝑡 = Re 𝑯𝑦 𝑧 ej𝜔𝑡 = − 𝑲0 2 cos 𝜔𝑡 − 𝑘𝑧 𝑧 > 0 𝑲0 2 cos 𝜔𝑡 + 𝑘𝑧 𝑧 < 0 𝑆𝑧 = 𝐸𝑥𝐻𝑦 = 𝜂𝐾0 2 4 cos2 𝜔𝑡 − 𝑘𝑧 𝑧 > 0 − 𝜂𝐾0 2 4 cos2 𝜔𝑡 + 𝑘𝑧 𝑧 < 0 𝑆𝑧 = 𝜂𝐾0 2 8 𝑧 > 0 − 𝜂𝐾0 2 8 𝑧 < 0
  • 18. 17 C. Normal Incidence Onto A Perfect Conductor Incident Fields: 𝑬i 𝑧, 𝑡 = Re 𝑬iej 𝜔𝑡−𝑘𝑧 𝒊𝑥 𝑯i 𝑧, 𝑡 = Re 𝑬i 𝜂 ej 𝜔𝑡−𝑘𝑧 𝒊𝑦 Reflected Fields: 𝑬r 𝑧, 𝑡 = Re 𝑬rej 𝜔𝑡+𝑘𝑧 𝒊𝑥 𝑯r 𝑧, 𝑡 = Re − 𝑬r 𝜂 ej 𝜔𝑡+𝑘𝑧 𝒊𝑦 𝑘 = 𝜔 𝜀𝜇, 𝜂 = 𝜇 𝜀 The boundary conditions require that, 𝐸𝑥 𝑧 = 0, 𝑡 = 𝐸𝑥, i 𝑧 = 0, 𝑡 + 𝐸𝑥, r 𝑧 = 0, 𝑡 = 0 𝑬i + 𝑬r = 0 ⇒ 𝑬r = −𝑬i
  • 19. 18 Figure 2: Time varying electromagnetic phenomena differ only in the scaling of time (frequency) and size (wavelength). In linear dielectric media the frequency and wavelength are related as 𝑓λ = 𝑐 (𝜔 = 𝑘𝑐), where 𝑐 = 1 𝜀𝜇 is the velocity of light in the medium. sin 𝑘z 𝜆 = 2π 𝑘 𝑇 = 2π 𝜔 2π 𝑘 2π 𝜔 𝑧 𝑡 π 𝜔 π 𝑘 −1 −1 1 1 sin 𝜔𝑡 0 102 104 106 108 1010 1012 1014 1016 1018 1020 Circuit Theory Microwaves f (Hz) Visible Light Ultraviolet X-Rays Gamma Rays Power Infrared (Heat) Radio and Television AM FM 3 × 106 λ meters 3 × 104 3 × 102 3 3 × 10−2 3 × 10−4 3 × 10−6 3 × 10−8 3 × 10−10 3 × 10−12
  • 20. 19 For 𝑬i = 𝐸i real we have: 𝐸𝑥 𝑧, 𝑡 = 𝐸𝑥, i 𝑧, 𝑡 + 𝐸𝑥, r 𝑧, 𝑡 = Re 𝑬i e−j𝑘𝑧 − ej𝑘𝑧 ej𝜔𝑡 = 2𝐸i sin 𝑘𝑧 sin 𝜔𝑡 𝐻𝑦 𝑧, 𝑡 = 𝐻𝑦, i 𝑧, 𝑡 + 𝐻𝑦, r 𝑧, 𝑡 = Re 𝑬i 𝜂 e−j𝑘𝑧 − ej𝑘𝑧 ej𝜔𝑡 = 2𝐸i 𝜂 cos 𝑘𝑧 cos 𝜔𝑡 𝐾𝑧 𝑧 = 0, 𝑡 = 𝐻𝑦 𝑧 = 0, 𝑡 = 2𝐸i 𝜂 cos 𝜔𝑡 Radiation pressure in free space 𝜇 = 𝜇o, 𝜀 = 𝜀o Force𝑧 Area 𝑧=0 = 1 2 𝑲 × 𝜇o𝑯 = 1 2 𝜇o𝐾𝑥𝐻𝑦 𝑧=0 𝒊𝑧 = 1 2 𝜇o𝐻𝑦 2 𝑧 = 0 𝒊𝑧 = 2𝜇o𝐸i 2 𝜂o 2 cos2 𝜔𝑡 𝒊𝑧 = 2𝜇o 𝜂o 𝜀o 𝐸i 2 cos2 𝜔𝑡 𝒊𝑧 = 2𝜀o 𝐸i 2 cos2 𝜔𝑡 𝒊𝑧
  • 21. 20 Figure 3: A uniform plane wave normally incident upon a perfect conductor has zero electric field at the conducting surface thus requiring a reflected wave. The source of this reflected wave is the surface current at 𝑧 = 0, which equals the magnetic field there. The total electric and magnetic fields are 90° out of phase in time and space. x z y 𝐸i = Re 𝑬iej 𝜔𝑡−𝑘𝑧 𝒊𝑥 𝐻i = Re 𝑬i 𝑍o ej 𝜔𝑡−𝑘𝑧 𝒊𝑦 𝑘 = 𝜔 𝑐 𝒊𝑧 𝐻r = Re − 𝑬r 𝑍o ej 𝜔𝑡+𝑘𝑧 𝒊𝑦 𝐸r = Re 𝑬rej 𝜔𝑡+𝑘𝑧 𝒊𝑥 𝑘r = − 𝜔 c1 𝒊𝑧 𝜀o, 𝜇o 𝜂o = 𝑍o= 𝜇o 𝜀o 𝐻𝑦 𝑠, 𝑡 = 2𝑬i 𝑍o cos 𝑘𝑠 cos 𝜔𝑡 𝐸𝑥 𝑠, 𝑡 = 2𝑬isin 𝑘𝑠 sin 𝜔𝑡 𝜎 → ∞
  • 22. 21 Figure 4: A uniform plane wave normally incident upon a dielectric interface separating two different materials has part of its power reflected and part transmitted. IV. Normal Incidence Onto A Dielectric x z y 𝜀1, 𝜇1 𝜂1 = 𝑍1 = 𝜇1 𝜀1 , 𝑐1 = 1 𝜀1𝜇1 𝜀2, 𝜇2 𝑍2 = 𝜇2 𝜀2 , 𝑐2 = 1 𝜀2𝜇2 𝐸i = Re 𝑬iej 𝜔𝑡−𝑘1𝑧 𝒊𝑥 𝐸t = Re 𝑬tej 𝜔𝑡−𝑘2𝑧 𝒊𝑥 𝐻t = Re 𝑬t 𝑍2 ej 𝜔𝑡−𝑘2𝑧 𝒊𝑦 𝐻r = Re − 𝑬r 𝑍1 ej 𝜔𝑡+𝑘1𝑧 𝒊𝑦 𝐻i = Re 𝑬i 𝑍1 ej 𝜔𝑡−𝑘1𝑧 𝒊𝑦 𝐸r = Re 𝑬rej 𝜔𝑡+𝑘1𝑧 𝒊𝑥 𝑘i = 𝑘1𝒊𝑧 = 𝜔 𝑐1 𝒊𝑧 𝑘r = −𝑘1𝒊𝑧 = −𝜔 𝑐1 𝒊𝑧 𝑘t = 𝑘2𝒊𝑧 = 𝜔 𝑐2 𝒊𝑧
  • 23. 22 𝑬i 𝑧, 𝑡 = Re 𝑬iej 𝜔𝑡−𝑘1𝑧 𝑖𝑥 , 𝑘1 = 𝜔 𝜀1𝜇1 𝑯i 𝑧, 𝑡 = Re 𝑯i 𝜂1 ej 𝜔𝑡−𝑘1𝑧 𝑖𝑦 , 𝜂1 = 𝜔 𝜇1 𝜀1 𝑬r 𝑧, 𝑡 = Re 𝑬rej 𝜔𝑡+𝑘1𝑧 𝑖𝑥 𝑯r 𝑧, 𝑡 = Re − 𝑬r 𝜂1 ej 𝜔𝑡+𝑘1𝑧 𝑖𝑦 𝑬t 𝑧, 𝑡 = Re 𝑬tej 𝜔𝑡−𝑘2𝑧 𝑖𝑥 , 𝑘2 = 𝜔 𝜀2𝜇2 𝑯t 𝑧, 𝑡 = Re 𝑬t 𝜂2 ej 𝜔𝑡−𝑘2𝑧 𝑖𝑦 , 𝜂2 = 𝜔 𝜇2 𝜀2
  • 24. 23 𝐸𝑥 𝑧 = 0− = 𝐸𝑥 𝑧 = 0+ ⇒ 𝑬i + 𝑬r = 𝑬t 𝐻𝑦 𝑧 = 0− = 𝐻𝑦 𝑧 = 0+ ⇒ 𝑬i − 𝑬r 𝜂1 = 𝑬t 𝜂2 𝑅 = 𝐸r 𝐸i = 𝜂2 − 𝜂1 𝜂1 + 𝜂2 is the Reflection coefficient 𝑇 = 𝐸t 𝐸i = 2𝜂2 𝜂1 + 𝜂2 is the Transmission coefficient 1 + 𝑅 = 𝑇
  • 25. 24 𝑆𝑧, i = 1 2 Re 𝑬𝑥 𝑧 𝑯𝑦 ∗ 𝑧 = 1 2𝜂1 Re 𝑬ie−j𝑘1𝑧 + 𝑬rej𝑘1𝑧 𝑬i ∗ ej𝑘1𝑧 − 𝑬r ∗ e−j𝑘1𝑧 = 1 2𝜂1 𝑬i 2 − 𝑬r 2 + 1 2𝜂1 Re 𝑬r𝑬i ∗ e2j𝑘1𝑧 − 𝑬r ∗ 𝑬ie−2j𝑘1𝑧 = 1 2𝜂1 𝑬i 2 − 𝑬r 2 = 𝑬i 2 2𝜂1 1 − 𝑅2 𝑆𝑧, t = 1 2𝜂2 𝑬t 2 = 𝑬i 2 𝑇2 2𝜂2 = 𝑬i 2 1 − 𝑅2 2𝜂2 = 𝑆𝑧, i pure imaginary
  • 26. 25 V. Lossy Dielectrics, 𝑱 = 𝜎𝑬 Ampere′ s Law: 𝛻 × 𝑯 = 𝑱 + 𝜀 𝜕𝑬 𝜕𝑡 = 𝜎𝑬 + 𝜀 𝜕𝑬 𝜕𝑡 For ej𝜔𝑡 fields, 𝛻 × 𝑯 = j𝜔𝜀 + 𝜎 𝑬 = j𝜔𝜀 1 + 𝜎 j𝜔𝜀 𝑬 where, 𝜎 = conductivity of a medium ( Siemens m )
  • 27. 26 Define complex permittivity by 𝜺 = 𝜀 1 + 𝜎 j𝜔𝜀 . Then complex amplitude solutions are the same as real amplitude solutions if we replace 𝜀 by 𝜺: 𝑘 = 𝜔 𝜺𝜇 𝜂 = 𝜇 𝜺 = 𝜇 𝜀 1 + 𝜎 j𝜔𝜀 𝑘 = 𝜔 𝜀𝜇 1 + 𝜎 j𝜔𝜀
  • 28. 27 A. Low Loss Limit: 𝜎 𝜔𝜀 ≪ 1 𝑘 = 𝜔 𝜀𝜇 1 + 𝜎 j𝜔𝜀 ≈ 𝜔 𝜀𝜇 1 + 1 2 𝜎 j𝜔𝜀 ≈ 𝜔 𝜀𝜇 − j𝜎 2 𝜇 𝜀 ≈ 𝜔 𝜀𝜇 − j 𝜎𝜂 2 e−j𝑘𝑧 = e−j𝜔 𝜀𝜇𝑧 e −j −j 𝜎𝜂 2 𝑧 = e−j𝜔 𝜀𝜇𝑧 e− 𝜎𝜂 2 𝑧 slow exponential decay
  • 29. 28 B. Large Loss Limit: 𝜎 𝜔𝜀 ≫ 1 𝑘 = 𝜔 𝜀𝜇 1 + 𝜎 j𝜔𝜀 ≈ 𝜔 𝜀𝜇 𝜎 𝜔𝜀 −j we know that, 𝜔 𝜔 = 𝜔 ≈ 𝜔𝜇𝜎 2 1 − j ≈ 1 − j 𝛿 𝛿 = 2 𝜔𝜇𝜎 is the skin depth e−j𝑘𝑧 = e −j 1−j 𝑧 𝛿 = e −j 𝑧 𝛿 e − 𝑧 𝛿 fast exponential decay 1 − j 2
  • 30. (1) Markus Zahn, Electromagnetics and Applications, Massachusetts Institute of Technology: MIT Open Course Ware, 2005. References 29