SlideShare a Scribd company logo
1 of 13
Download to read offline
Semester II, 2017-18
Department of Physics, IIT Kanpur
PHY103A: Lecture # 5
(Text Book: Intro to Electrodynamics by Griffiths, 3rd Ed.)
Anand Kumar Jha
12-Jan-2018
1
Summary of Lecture # 4:
2
โ€ข Gaussโ€™s Law
๐„๐„(๐ซ๐ซ) =
1
4๐œ‹๐œ‹๐œ–๐œ–0
๏ฟฝ
๐‘‘๐‘‘๐‘‘๐‘‘
r2
rฬ‚
ฮฆ๐ธ๐ธ = ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š
๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข
๐›๐› โ‹… ๐„๐„ =
๐œŒ๐œŒ
๐œ–๐œ–0
โ€ข Scalar Potential : if ๐›๐› ร— ๐…๐… = 0 everywhere, ๐…๐… = โˆ’๐›๐›V
โ€ข Vector Potential : if ๐›๐› โ‹… ๐…๐… = 0 everywhere, ๐…๐… = ๐›๐› ร— ๐€๐€
โ€ข Coulombโ€™s Law:
โ€ข Electric Flux
๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š
๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข
=
๐‘„๐‘„enc
๐œ–๐œ–0
(in integral form)
(in differential form)
๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š
๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข
=
๐‘„๐‘„enc
๐œ–๐œ–0
This is the Gaussโ€™s law in integral form.
Q: (Griffiths: Ex 2.10): What is the flux through the shaded face of the cube due to the
charge ๐‘ž๐‘ž at the corner
Answer:
๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š
๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข
=
1
24
๐‘ž๐‘ž
๐œ–๐œ–0
3
Correction in Lecture # 4:
๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š ? ?
๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข
24 ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š
๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข
=
๐‘ž๐‘ž
๐œ–๐œ–0
Gaussโ€™s Law from Coulombโ€™s Law:
4
๐„๐„(๐ซ๐ซ) =
1
4๐œ‹๐œ‹๐œ–๐œ–0
๏ฟฝ
rฬ‚
r2
๐œŒ๐œŒ ๐ซ๐ซโ€ฒ ๐‘‘๐‘‘๐‘‘๐‘‘
Coulombโ€™s law gives the electric field
due to a volume charge ๐œŒ๐œŒ ๐ซ๐ซโ€ฒ
If Coulombโ€™s Law and Gaussโ€™s law have the same information
content, can we derive Gaussโ€™s law from Coulombโ€™s law?
Take the divergence of both sides of the equation
๐›๐› โ‹… ๐„๐„(๐ซ๐ซ) =
1
4๐œ‹๐œ‹๐œ–๐œ–0
๏ฟฝ ๐›๐› โ‹…
rฬ‚
r2
๐œŒ๐œŒ ๐ซ๐ซโ€ฒ ๐‘‘๐‘‘๐‘‘๐‘‘
We have: ๐›๐› โ‹…
rฬ‚
r2
= 4๐œ‹๐œ‹ ๐›ฟ๐›ฟ(r) = 4๐œ‹๐œ‹ ๐›ฟ๐›ฟ(๐ซ๐ซ โˆ’ ๐ซ๐ซ๐ซ)
๐›๐› โ‹… ๐„๐„ ๐ซ๐ซ =
1
4๐œ‹๐œ‹๐œ–๐œ–0
๏ฟฝ 4๐œ‹๐œ‹ ๐›ฟ๐›ฟ ๐ซ๐ซ โˆ’ ๐ซ๐ซโ€ฒ ๐œŒ๐œŒ ๐ซ๐ซโ€ฒ ๐‘‘๐‘‘๐‘‘๐‘‘
Therefore,
๐›๐› โ‹… ๐„๐„ =
๐œŒ๐œŒ
๐œ–๐œ–0
The divergence of electric field is equal
to the charge density divided by ๐œ–๐œ–0
=
๐œŒ๐œŒ(๐ซ๐ซ)
๐œ–๐œ–0
Curl of the Electric Field:
5
๐„๐„(๐ซ๐ซ) =
1
4๐œ‹๐œ‹๐œ–๐œ–0
๐‘ž๐‘ž
r2
rฬ‚
Electric field due to a single point charge ๐‘ž๐‘ž is:
Letโ€™s take the simplest electric field:
We need to find the curl of it
๐›๐› ร— ๐„๐„ ๐ซ๐ซ =
๐‘ž๐‘ž
4๐œ‹๐œ‹๐œ–๐œ–0
๐›๐› ร—
1
r2
rฬ‚
Take the area integral
๏ฟฝ ๐›๐› ร— ๐„๐„ ๐ซ๐ซ โ‹… ๐‘‘๐‘‘๐š๐š
๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข
=
๐‘ž๐‘ž
4๐œ‹๐œ‹๐œ–๐œ–0
๏ฟฝ ๐›๐› ร—
1
r2
rฬ‚ โ‹… ๐‘‘๐‘‘๐š๐š
๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข
๏ฟฝ ๐›๐› ร— ๐„๐„ ๐ซ๐ซ โ‹… ๐‘‘๐‘‘๐š๐š
๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข
=
๐‘ž๐‘ž
4๐œ‹๐œ‹๐œ–๐œ–0
๏ฟฝ
1
r2
rฬ‚ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ
Use Stokesโ€™s theorem
๏ฟฝ ๐›๐› ร— ๐„๐„ ๐ซ๐ซ โ‹… ๐‘‘๐‘‘๐š๐š
๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข
=
=
๐‘ž๐‘ž
4๐œ‹๐œ‹๐œ–๐œ–0
๏ฟฝ
1
r2
๐‘‘๐‘‘๐‘‘๐‘‘
since
๐‘‘๐‘‘๐ฅ๐ฅ = ๐‘‘๐‘‘๐‘‘๐‘‘๐’“๐’“
๏ฟฝ + ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐œฝ๐œฝ
๏ฟฝ
+๐‘Ÿ๐‘Ÿsin๐œƒ๐œƒ๐œƒ๐œƒ๐œƒ๐œƒ๐“๐“
๏ฟฝ
implies ๐›๐› ร— ๐„๐„ = ๐ŸŽ๐ŸŽ
= 0
๐‘ž๐‘ž
4๐œ‹๐œ‹๐œ–๐œ–0
ร—
1
๐‘Ÿ๐‘Ÿ
๏ฟฝ
๐‘Ÿ๐‘Ÿ๐‘Ž๐‘Ž
๐‘Ÿ๐‘Ÿ๐‘Ž๐‘Ž
Curl of the Electric Field (Digression):
6
๐›๐› ร— ๐„๐„ = ๐ŸŽ๐ŸŽ
Curl of an electric field is zero. We have shown this for the
simplest field, which is the field of a point charge. But it can be
shown to be true for any electric field, as long as the field is static.
What if the field is dynamic, that is, what if
the field changes as a function of time?
๐›๐› ร— ๐„๐„ = โˆ’
๐‘‘๐‘‘๐๐
๐‘‘๐‘‘๐‘‘๐‘‘
Faradayโ€™s Law in differential
form.
Integrate over a surface
๏ฟฝ ๐›๐› ร— ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š
๐’”๐’”๐’–๐’–๐’–๐’–๐’–๐’–
= ๏ฟฝ โˆ’
๐‘‘๐‘‘๐๐
๐‘‘๐‘‘๐‘ก๐‘ก
โ‹… ๐‘‘๐‘‘๐š๐š
๐’”๐’”๐’–๐’–๐’–๐’–๐’–๐’–
Apply Stokesโ€™ theorem
๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ
๐‘๐‘๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž
= โˆ’
๐‘‘๐‘‘
๐‘‘๐‘‘๐‘ก๐‘ก
๏ฟฝ ๐๐ โ‹… ๐‘‘๐‘‘๐š๐š
๐’”๐’”๐’–๐’–๐’–๐’–๐’–๐’–
E = โˆ’
๐‘‘๐‘‘ฮฆ
๐‘‘๐‘‘๐‘ก๐‘ก
EMF
Magnetic flux Faradayโ€™s Law in integral form.
Maxwellโ€™s Equations (Digression 2):
7
๐›๐› ร— ๐„๐„ = โˆ’
๐‘‘๐‘‘๐๐
๐‘‘๐‘‘๐‘‘๐‘‘
๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ
๐‘๐‘๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž
= โˆ’
๐‘‘๐‘‘
๐‘‘๐‘‘๐‘ก๐‘ก
๏ฟฝ ๐๐ โ‹… ๐‘‘๐‘‘๐š๐š
๐’”๐’”๐’–๐’–๐’–๐’–๐’–๐’–
๐›๐› โ‹… ๐„๐„ =
๐œŒ๐œŒ
๐œ–๐œ–0
๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š
๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข
=
๐‘„๐‘„enc
๐œ–๐œ–0
๐›๐› โ‹… ๐๐ = 0
๐›๐› ร— ๐๐ = ๐œ‡๐œ‡0๐‰๐‰ โˆ’ ๐œ‡๐œ‡0๐œ–๐œ–0
๐‘‘๐‘‘๐„๐„
๐‘‘๐‘‘๐‘‘๐‘‘
Gaussโ€™s Law
Faradayโ€™s Law
Amperesโ€™s Law with
Maxwellโ€™s correction
No name; Magnetic
Monopole does not exist
When fields do not vary as a function of time, it is called Electrostatics /
Magnetostatics. (before mid-sem)
When fields do vary as a function of time, then the two fields have to be studied
together as an electromagnetic field, and one consequence of a changing electric
and magnetic field is the electromagnetic radiation. (after mid-sem)
When the energy of the field is quantized (photons) then it is called quantum
electrodynamics. (Not for this course). Applications: Quantum computers, Quantum
cryptography, Quantum teleportation
Electric Potential:
(1) โˆซ ๐…๐… โ‹… d๐ฅ๐ฅ
b
a
is independent of path.
(2) โˆฎ ๐…๐… โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ = 0 for any closed loop.
This is because of Stokesโ€™ theorem
๏ฟฝ ๐›๐› ร— ๐…๐… โ‹… ๐‘‘๐‘‘๐š๐š = ๏ฟฝ ๐…๐… โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ
๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž
๐‘†๐‘†๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข
โ€ข This is because Curl of a gradient is zero ๐›๐› ร— ๐›๐›V = ๐ŸŽ๐ŸŽ
(3) ๐…๐… is the gradient of a scalar function: ๐…๐… = โˆ’๐›๐›V
If the curl of a vector field ๐…๐… is zero, that is, if ๐›๐› ร— ๐…๐… = 0 everywhere, then:
8
Recall:
(1) โˆซ ๐„๐„ โ‹… d๐ฅ๐ฅ
b
a
is independent of path.
(2) โˆฎ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ = 0 for any closed loop.
This is because of Stokesโ€™ theorem
๏ฟฝ ๐›๐› ร— ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š = ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ
๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž
๐‘†๐‘†๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข
(3) ๐„๐„ is the gradient of a scalar function:
The curl of Electric field ๐„๐„ is zero, that is,๐›๐› ร— ๐„๐„ = 0 everywhere. Therefore:
V is called the electric potential. It is a scalar quantity,
the gradient of which is equal to the electric field
๐„๐„ = โˆ’๐›๐›V
Electric Potential:
9
Use the fundamental Theorem for Gradient:
How to write electric potential in terms of the electric field?
โˆ’๐›๐›V = ๐„๐„
Take the line integral of the above equation over a path
๏ฟฝ ๐›๐›V โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ
๐’ƒ๐’ƒ
๐’‚๐’‚
= โˆ’ ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ
๐’ƒ๐’ƒ
๐’‚๐’‚
V ๐›๐› โˆ’ V(๐š๐š) = โˆ’ ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ
๐’ƒ๐’ƒ
๐’‚๐’‚
๏ฟฝ ๐›๐›V โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ = V ๐‘๐‘ โˆ’ V(๐‘Ž๐‘Ž)
๐’ƒ๐’ƒ
๐’‚๐’‚ ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ
โ€ข Absolute potential cannot be defined.
โ€ข Only potential differences can be defined.
Since ๐›๐› ร— ๐„๐„ = 0 everywhere, ๐„๐„ = โˆ’๐›๐›V
Electric Potential:
10
(5) V ๐›๐› โˆ’ V(๐š๐š) = โˆ’ โˆซ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ
๐’ƒ๐’ƒ
๐’‚๐’‚
. Absolute potential cannot be defined. In
electrostatics, usually one takes the reference point to infinity and set the
potential at infinity to zero, that is, take V ๐š๐š = V โˆž = 0. Also if V ๐›๐› = V(๐ซ๐ซ),
V ๐ซ๐ซ = โˆ’ ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ
๐ซ๐ซ
โˆž
(1) Electric potential is different from electric potential energy. Unit of electric
potential is Newton-meter per Coulomb (
Nโ‹…m
C
) or Volt.
(2) The potential obeys superposition principle, i.e., the potential due to several
charges is equal to the sum of the potentials due to individual ones: V = V1 + V2 + โ‹ฏ
(4) The electric field is a vector quantity, but we still get all the information from
the potential (a scalar quantity). This is because different components are
interrelated: ๐›๐› ร— ๐„๐„ = 0, i.e.,
๐œ•๐œ•Ex
๐œ•๐œ•๐œ•
=
๐œ•๐œ•Ey
๐œ•๐œ•๐œ•
;
๐œ•๐œ•Ez
๐œ•๐œ•๐œ•
=
๐œ•๐œ•Ey
๐œ•๐œ•๐œ•
;
๐œ•๐œ•Ex
๐œ•๐œ•๐œ•
=
๐œ•๐œ•Ez
๐œ•๐œ•๐œ•
;
(3) If one knows the electrical potential (a scalar quantity), the electric field (a
vector quantity) can be calculated
Electric Potential due to a point charge at origin:
11
๐„๐„(๐ซ๐ซ๐Ÿ๐Ÿ) =
1
4๐œ‹๐œ‹๐œ–๐œ–0
๐‘ž๐‘ž
๐‘Ÿ๐‘Ÿ1
2 ๐ซ๐ซ๐Ÿ๐Ÿ
๏ฟฝ
Electric field ๐„๐„(๐ซ๐ซ๐Ÿ๐Ÿ) at ๐ซ๐ซ๐Ÿ๐Ÿ due to
a single point charge ๐‘ž๐‘ž at origin:
V ๐ซ๐ซ = โˆ’ ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ
๐‘Ÿ๐‘Ÿ
โˆž
Electric potential V ๐ซ๐ซ at ๐ซ๐ซ due to a
single point charge ๐‘ž๐‘ž at origin:
The line element is: ๐‘‘๐‘‘๐ฅ๐ฅ๐Ÿ๐Ÿ = ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ1 r๐Ÿ๐Ÿ
๏ฟฝ + ๐‘Ÿ๐‘Ÿ1๐‘‘๐‘‘๐œƒ๐œƒ1 ๐›‰๐›‰๐Ÿ๐Ÿ
๏ฟฝ + ๐‘Ÿ๐‘Ÿ1sin๐œƒ๐œƒ1๐‘‘๐‘‘๐œ™๐œ™1 ๐“๐“๐Ÿ๐Ÿ
๏ฟฝ
V ๐ซ๐ซ = โˆ’ ๏ฟฝ
1
4๐œ‹๐œ‹๐œ–๐œ–0
๐‘ž๐‘ž
๐‘Ÿ๐‘Ÿ1
2
๐’“๐’“
โˆž
๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ1
V ๐ซ๐ซ =
๐‘ž๐‘ž
4๐œ‹๐œ‹๐œ–๐œ–0
1
๐‘Ÿ๐‘Ÿ
= โˆ’ ๏ฟฝ ๐„๐„(๐ซ๐ซ๐Ÿ๐Ÿ) โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ๐Ÿ๐Ÿ
๐’“๐’“
โˆž
=
๐‘ž๐‘ž
4๐œ‹๐œ‹๐œ–๐œ–0
1
๐‘Ÿ๐‘Ÿ
= โˆ’
๐‘ž๐‘ž
4๐œ‹๐œ‹๐œ–๐œ–0
๏ฟฝ
1
๐‘Ÿ๐‘Ÿ1
2
๐’“๐’“
โˆž
๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ1
Electric Potential due to localized charge distribution:
V ๐ซ๐ซ =
๐‘ž๐‘ž
4๐œ‹๐œ‹๐œ–๐œ–0
1
r
V ๐ซ๐ซ =
1
4๐œ‹๐œ‹๐œ–๐œ–0
๏ฟฝ
๐‘ž๐‘ž๐‘–๐‘–
ri
๐‘›๐‘›
๐‘–๐‘–=1
V ๐ซ๐ซ =
๐‘ž๐‘ž
4๐œ‹๐œ‹๐œ–๐œ–0
1
๐‘Ÿ๐‘Ÿ
Potential due to a point
charge ๐‘ž๐‘ž at origin:
Potential due to a point
charge ๐‘ž๐‘ž at ๐ซ๐ซโ€ฒ:
Potential due to a collection
of point charges
V(๐ซ๐ซ) =
1
4๐œ‹๐œ‹๐œ–๐œ–0
๏ฟฝ
๐‘‘๐‘‘๐‘‘๐‘‘
r
For a line charge ๐‘‘๐‘‘๐‘‘๐‘‘ = ๐œ†๐œ† ๐ซ๐ซโ€ฒ ๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘
For a surface charge ๐‘‘๐‘‘๐‘‘๐‘‘ = ๐œŽ๐œŽ ๐ซ๐ซโ€ฒ ๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘
For a volume charge ๐‘‘๐‘‘๐‘‘๐‘‘ = ๐œŒ๐œŒ ๐ซ๐ซโ€ฒ ๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘
Potential due to a a continuous
charge distribution is
12
Ease of calculating the Electric Field
โ€ข If the above two is not applicable, one has to go back to the Coulombโ€™s
law and then calculate the electric field.
โ€ข The easiest way to calculate the electric field is using Gaussโ€™s law. But
this is possible only when there is some symmetry in the problem.
โ€ข The next best thing: if the electric potential is known, one can calculate
the electric field by just taking the gradient of the potential ๐„๐„ = โˆ’๐›๐›V.
Sometimes, it is very effective to calculate the electric potential first
and then the electric field from there.
13

More Related Content

Similar to Easy Plasma Theory BS Math helping notespdf

Reflection & Refraction.pptx
Reflection & Refraction.pptxReflection & Refraction.pptx
Reflection & Refraction.pptxPaulBoro1
ย 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...AIMST University
ย 
Electrostatics
ElectrostaticsElectrostatics
ElectrostaticsEdigniteNGO
ย 
Magnetic Force and Material Media
Magnetic Force and Material MediaMagnetic Force and Material Media
Magnetic Force and Material Mediakailash karki
ย 
Electrostatic potential and capacitance
Electrostatic potential and capacitanceElectrostatic potential and capacitance
Electrostatic potential and capacitanceEdigniteNGO
ย 
electric field, (dipoles)
  electric field, (dipoles)  electric field, (dipoles)
electric field, (dipoles)Abhinay Potlabathini
ย 
Gen Phy 2 Q1L3 Electric Charge and Coulumb's Law.pptx
Gen Phy 2 Q1L3 Electric Charge and Coulumb's Law.pptxGen Phy 2 Q1L3 Electric Charge and Coulumb's Law.pptx
Gen Phy 2 Q1L3 Electric Charge and Coulumb's Law.pptxJeffrey Alemania
ย 
Electric field and Material space
Electric field and Material spaceElectric field and Material space
Electric field and Material spaceAbu hayat Mohammod Saim
ย 
Lecture 14 on Blackbody Radiation.pptx
Lecture 14 on Blackbody Radiation.pptxLecture 14 on Blackbody Radiation.pptx
Lecture 14 on Blackbody Radiation.pptxTheObserver3
ย 
EM_Theory.pdf
EM_Theory.pdfEM_Theory.pdf
EM_Theory.pdfssuser9ae06b
ย 
Electrostatics in vacuum
Electrostatics in vacuumElectrostatics in vacuum
Electrostatics in vacuumsaravananperiasamy4
ย 
EMF PPT_0.pdf
EMF PPT_0.pdfEMF PPT_0.pdf
EMF PPT_0.pdfSirazHasan
ย 
Electric field due to ring of charge Derivation
Electric field due to ring of charge DerivationElectric field due to ring of charge Derivation
Electric field due to ring of charge DerivationAbdul Wahab Raza
ย 
physics El.potential & capacitance notes
physics El.potential & capacitance notesphysics El.potential & capacitance notes
physics El.potential & capacitance notesstudy material
ย 
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...RohitNukte
ย 
Electrodynamics ppt.pdfgjskysudfififkfkfififididhxdifififif
Electrodynamics ppt.pdfgjskysudfififkfkfififididhxdififififElectrodynamics ppt.pdfgjskysudfififkfkfififididhxdifififif
Electrodynamics ppt.pdfgjskysudfififkfkfififididhxdififififMAINAKGHOSH73
ย 

Similar to Easy Plasma Theory BS Math helping notespdf (20)

Reflection & Refraction.pptx
Reflection & Refraction.pptxReflection & Refraction.pptx
Reflection & Refraction.pptx
ย 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
ย 
Electrostatics
ElectrostaticsElectrostatics
Electrostatics
ย 
Magnetic Force and Material Media
Magnetic Force and Material MediaMagnetic Force and Material Media
Magnetic Force and Material Media
ย 
Electrostatic potential and capacitance
Electrostatic potential and capacitanceElectrostatic potential and capacitance
Electrostatic potential and capacitance
ย 
electric field, (dipoles)
  electric field, (dipoles)  electric field, (dipoles)
electric field, (dipoles)
ย 
Gen Phy 2 Q1L3 Electric Charge and Coulumb's Law.pptx
Gen Phy 2 Q1L3 Electric Charge and Coulumb's Law.pptxGen Phy 2 Q1L3 Electric Charge and Coulumb's Law.pptx
Gen Phy 2 Q1L3 Electric Charge and Coulumb's Law.pptx
ย 
Electric field and Material space
Electric field and Material spaceElectric field and Material space
Electric field and Material space
ย 
Lecture 14 on Blackbody Radiation.pptx
Lecture 14 on Blackbody Radiation.pptxLecture 14 on Blackbody Radiation.pptx
Lecture 14 on Blackbody Radiation.pptx
ย 
EM_Theory.pdf
EM_Theory.pdfEM_Theory.pdf
EM_Theory.pdf
ย 
Electrostatics in vacuum
Electrostatics in vacuumElectrostatics in vacuum
Electrostatics in vacuum
ย 
Electrostatics 3
Electrostatics 3Electrostatics 3
Electrostatics 3
ย 
EMF PPT_0.pdf
EMF PPT_0.pdfEMF PPT_0.pdf
EMF PPT_0.pdf
ย 
Electric field due to ring of charge Derivation
Electric field due to ring of charge DerivationElectric field due to ring of charge Derivation
Electric field due to ring of charge Derivation
ย 
physics El.potential & capacitance notes
physics El.potential & capacitance notesphysics El.potential & capacitance notes
physics El.potential & capacitance notes
ย 
Chapter 7N.pptx
Chapter 7N.pptxChapter 7N.pptx
Chapter 7N.pptx
ย 
Electrostatics 2
Electrostatics 2Electrostatics 2
Electrostatics 2
ย 
lec5.ppt
lec5.pptlec5.ppt
lec5.ppt
ย 
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
Physics 498 SQD -- Lecture 3 -- Models and theories of superconductivity FINA...
ย 
Electrodynamics ppt.pdfgjskysudfififkfkfififididhxdifififif
Electrodynamics ppt.pdfgjskysudfififkfkfififididhxdififififElectrodynamics ppt.pdfgjskysudfififkfkfififididhxdifififif
Electrodynamics ppt.pdfgjskysudfififkfkfififididhxdifififif
ย 

Recently uploaded

โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
ย 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
ย 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
ย 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
ย 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
ย 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
ย 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
ย 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
ย 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
ย 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
ย 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
ย 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
ย 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
ย 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
ย 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
ย 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
ย 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
ย 

Recently uploaded (20)

โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
ย 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
ย 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
ย 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
ย 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
ย 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
ย 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
ย 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
ย 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
ย 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
ย 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
ย 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
ย 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
ย 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
ย 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
ย 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
ย 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
ย 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
ย 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
ย 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
ย 

Easy Plasma Theory BS Math helping notespdf

  • 1. Semester II, 2017-18 Department of Physics, IIT Kanpur PHY103A: Lecture # 5 (Text Book: Intro to Electrodynamics by Griffiths, 3rd Ed.) Anand Kumar Jha 12-Jan-2018 1
  • 2. Summary of Lecture # 4: 2 โ€ข Gaussโ€™s Law ๐„๐„(๐ซ๐ซ) = 1 4๐œ‹๐œ‹๐œ–๐œ–0 ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ r2 rฬ‚ ฮฆ๐ธ๐ธ = ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š ๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข ๐›๐› โ‹… ๐„๐„ = ๐œŒ๐œŒ ๐œ–๐œ–0 โ€ข Scalar Potential : if ๐›๐› ร— ๐…๐… = 0 everywhere, ๐…๐… = โˆ’๐›๐›V โ€ข Vector Potential : if ๐›๐› โ‹… ๐…๐… = 0 everywhere, ๐…๐… = ๐›๐› ร— ๐€๐€ โ€ข Coulombโ€™s Law: โ€ข Electric Flux ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š ๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข = ๐‘„๐‘„enc ๐œ–๐œ–0 (in integral form) (in differential form)
  • 3. ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š ๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข = ๐‘„๐‘„enc ๐œ–๐œ–0 This is the Gaussโ€™s law in integral form. Q: (Griffiths: Ex 2.10): What is the flux through the shaded face of the cube due to the charge ๐‘ž๐‘ž at the corner Answer: ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š ๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข = 1 24 ๐‘ž๐‘ž ๐œ–๐œ–0 3 Correction in Lecture # 4: ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š ? ? ๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข 24 ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š ๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข = ๐‘ž๐‘ž ๐œ–๐œ–0
  • 4. Gaussโ€™s Law from Coulombโ€™s Law: 4 ๐„๐„(๐ซ๐ซ) = 1 4๐œ‹๐œ‹๐œ–๐œ–0 ๏ฟฝ rฬ‚ r2 ๐œŒ๐œŒ ๐ซ๐ซโ€ฒ ๐‘‘๐‘‘๐‘‘๐‘‘ Coulombโ€™s law gives the electric field due to a volume charge ๐œŒ๐œŒ ๐ซ๐ซโ€ฒ If Coulombโ€™s Law and Gaussโ€™s law have the same information content, can we derive Gaussโ€™s law from Coulombโ€™s law? Take the divergence of both sides of the equation ๐›๐› โ‹… ๐„๐„(๐ซ๐ซ) = 1 4๐œ‹๐œ‹๐œ–๐œ–0 ๏ฟฝ ๐›๐› โ‹… rฬ‚ r2 ๐œŒ๐œŒ ๐ซ๐ซโ€ฒ ๐‘‘๐‘‘๐‘‘๐‘‘ We have: ๐›๐› โ‹… rฬ‚ r2 = 4๐œ‹๐œ‹ ๐›ฟ๐›ฟ(r) = 4๐œ‹๐œ‹ ๐›ฟ๐›ฟ(๐ซ๐ซ โˆ’ ๐ซ๐ซ๐ซ) ๐›๐› โ‹… ๐„๐„ ๐ซ๐ซ = 1 4๐œ‹๐œ‹๐œ–๐œ–0 ๏ฟฝ 4๐œ‹๐œ‹ ๐›ฟ๐›ฟ ๐ซ๐ซ โˆ’ ๐ซ๐ซโ€ฒ ๐œŒ๐œŒ ๐ซ๐ซโ€ฒ ๐‘‘๐‘‘๐‘‘๐‘‘ Therefore, ๐›๐› โ‹… ๐„๐„ = ๐œŒ๐œŒ ๐œ–๐œ–0 The divergence of electric field is equal to the charge density divided by ๐œ–๐œ–0 = ๐œŒ๐œŒ(๐ซ๐ซ) ๐œ–๐œ–0
  • 5. Curl of the Electric Field: 5 ๐„๐„(๐ซ๐ซ) = 1 4๐œ‹๐œ‹๐œ–๐œ–0 ๐‘ž๐‘ž r2 rฬ‚ Electric field due to a single point charge ๐‘ž๐‘ž is: Letโ€™s take the simplest electric field: We need to find the curl of it ๐›๐› ร— ๐„๐„ ๐ซ๐ซ = ๐‘ž๐‘ž 4๐œ‹๐œ‹๐œ–๐œ–0 ๐›๐› ร— 1 r2 rฬ‚ Take the area integral ๏ฟฝ ๐›๐› ร— ๐„๐„ ๐ซ๐ซ โ‹… ๐‘‘๐‘‘๐š๐š ๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข = ๐‘ž๐‘ž 4๐œ‹๐œ‹๐œ–๐œ–0 ๏ฟฝ ๐›๐› ร— 1 r2 rฬ‚ โ‹… ๐‘‘๐‘‘๐š๐š ๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข ๏ฟฝ ๐›๐› ร— ๐„๐„ ๐ซ๐ซ โ‹… ๐‘‘๐‘‘๐š๐š ๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข = ๐‘ž๐‘ž 4๐œ‹๐œ‹๐œ–๐œ–0 ๏ฟฝ 1 r2 rฬ‚ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ Use Stokesโ€™s theorem ๏ฟฝ ๐›๐› ร— ๐„๐„ ๐ซ๐ซ โ‹… ๐‘‘๐‘‘๐š๐š ๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข = = ๐‘ž๐‘ž 4๐œ‹๐œ‹๐œ–๐œ–0 ๏ฟฝ 1 r2 ๐‘‘๐‘‘๐‘‘๐‘‘ since ๐‘‘๐‘‘๐ฅ๐ฅ = ๐‘‘๐‘‘๐‘‘๐‘‘๐’“๐’“ ๏ฟฝ + ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐‘Ÿ๐œฝ๐œฝ ๏ฟฝ +๐‘Ÿ๐‘Ÿsin๐œƒ๐œƒ๐œƒ๐œƒ๐œƒ๐œƒ๐“๐“ ๏ฟฝ implies ๐›๐› ร— ๐„๐„ = ๐ŸŽ๐ŸŽ = 0 ๐‘ž๐‘ž 4๐œ‹๐œ‹๐œ–๐œ–0 ร— 1 ๐‘Ÿ๐‘Ÿ ๏ฟฝ ๐‘Ÿ๐‘Ÿ๐‘Ž๐‘Ž ๐‘Ÿ๐‘Ÿ๐‘Ž๐‘Ž
  • 6. Curl of the Electric Field (Digression): 6 ๐›๐› ร— ๐„๐„ = ๐ŸŽ๐ŸŽ Curl of an electric field is zero. We have shown this for the simplest field, which is the field of a point charge. But it can be shown to be true for any electric field, as long as the field is static. What if the field is dynamic, that is, what if the field changes as a function of time? ๐›๐› ร— ๐„๐„ = โˆ’ ๐‘‘๐‘‘๐๐ ๐‘‘๐‘‘๐‘‘๐‘‘ Faradayโ€™s Law in differential form. Integrate over a surface ๏ฟฝ ๐›๐› ร— ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š ๐’”๐’”๐’–๐’–๐’–๐’–๐’–๐’– = ๏ฟฝ โˆ’ ๐‘‘๐‘‘๐๐ ๐‘‘๐‘‘๐‘ก๐‘ก โ‹… ๐‘‘๐‘‘๐š๐š ๐’”๐’”๐’–๐’–๐’–๐’–๐’–๐’– Apply Stokesโ€™ theorem ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ ๐‘๐‘๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž = โˆ’ ๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘ก๐‘ก ๏ฟฝ ๐๐ โ‹… ๐‘‘๐‘‘๐š๐š ๐’”๐’”๐’–๐’–๐’–๐’–๐’–๐’– E = โˆ’ ๐‘‘๐‘‘ฮฆ ๐‘‘๐‘‘๐‘ก๐‘ก EMF Magnetic flux Faradayโ€™s Law in integral form.
  • 7. Maxwellโ€™s Equations (Digression 2): 7 ๐›๐› ร— ๐„๐„ = โˆ’ ๐‘‘๐‘‘๐๐ ๐‘‘๐‘‘๐‘‘๐‘‘ ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ ๐‘๐‘๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž = โˆ’ ๐‘‘๐‘‘ ๐‘‘๐‘‘๐‘ก๐‘ก ๏ฟฝ ๐๐ โ‹… ๐‘‘๐‘‘๐š๐š ๐’”๐’”๐’–๐’–๐’–๐’–๐’–๐’– ๐›๐› โ‹… ๐„๐„ = ๐œŒ๐œŒ ๐œ–๐œ–0 ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š ๐‘ ๐‘ ๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข = ๐‘„๐‘„enc ๐œ–๐œ–0 ๐›๐› โ‹… ๐๐ = 0 ๐›๐› ร— ๐๐ = ๐œ‡๐œ‡0๐‰๐‰ โˆ’ ๐œ‡๐œ‡0๐œ–๐œ–0 ๐‘‘๐‘‘๐„๐„ ๐‘‘๐‘‘๐‘‘๐‘‘ Gaussโ€™s Law Faradayโ€™s Law Amperesโ€™s Law with Maxwellโ€™s correction No name; Magnetic Monopole does not exist When fields do not vary as a function of time, it is called Electrostatics / Magnetostatics. (before mid-sem) When fields do vary as a function of time, then the two fields have to be studied together as an electromagnetic field, and one consequence of a changing electric and magnetic field is the electromagnetic radiation. (after mid-sem) When the energy of the field is quantized (photons) then it is called quantum electrodynamics. (Not for this course). Applications: Quantum computers, Quantum cryptography, Quantum teleportation
  • 8. Electric Potential: (1) โˆซ ๐…๐… โ‹… d๐ฅ๐ฅ b a is independent of path. (2) โˆฎ ๐…๐… โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ = 0 for any closed loop. This is because of Stokesโ€™ theorem ๏ฟฝ ๐›๐› ร— ๐…๐… โ‹… ๐‘‘๐‘‘๐š๐š = ๏ฟฝ ๐…๐… โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ ๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘†๐‘†๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข โ€ข This is because Curl of a gradient is zero ๐›๐› ร— ๐›๐›V = ๐ŸŽ๐ŸŽ (3) ๐…๐… is the gradient of a scalar function: ๐…๐… = โˆ’๐›๐›V If the curl of a vector field ๐…๐… is zero, that is, if ๐›๐› ร— ๐…๐… = 0 everywhere, then: 8 Recall: (1) โˆซ ๐„๐„ โ‹… d๐ฅ๐ฅ b a is independent of path. (2) โˆฎ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ = 0 for any closed loop. This is because of Stokesโ€™ theorem ๏ฟฝ ๐›๐› ร— ๐„๐„ โ‹… ๐‘‘๐‘‘๐š๐š = ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ ๐‘ƒ๐‘ƒ๐‘Ž๐‘Ž๐‘Ž๐‘Ž๐‘Ž ๐‘†๐‘†๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข๐‘ข (3) ๐„๐„ is the gradient of a scalar function: The curl of Electric field ๐„๐„ is zero, that is,๐›๐› ร— ๐„๐„ = 0 everywhere. Therefore: V is called the electric potential. It is a scalar quantity, the gradient of which is equal to the electric field ๐„๐„ = โˆ’๐›๐›V
  • 9. Electric Potential: 9 Use the fundamental Theorem for Gradient: How to write electric potential in terms of the electric field? โˆ’๐›๐›V = ๐„๐„ Take the line integral of the above equation over a path ๏ฟฝ ๐›๐›V โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ ๐’ƒ๐’ƒ ๐’‚๐’‚ = โˆ’ ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ ๐’ƒ๐’ƒ ๐’‚๐’‚ V ๐›๐› โˆ’ V(๐š๐š) = โˆ’ ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ ๐’ƒ๐’ƒ ๐’‚๐’‚ ๏ฟฝ ๐›๐›V โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ = V ๐‘๐‘ โˆ’ V(๐‘Ž๐‘Ž) ๐’ƒ๐’ƒ ๐’‚๐’‚ ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ๐‘ƒ โ€ข Absolute potential cannot be defined. โ€ข Only potential differences can be defined. Since ๐›๐› ร— ๐„๐„ = 0 everywhere, ๐„๐„ = โˆ’๐›๐›V
  • 10. Electric Potential: 10 (5) V ๐›๐› โˆ’ V(๐š๐š) = โˆ’ โˆซ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ ๐’ƒ๐’ƒ ๐’‚๐’‚ . Absolute potential cannot be defined. In electrostatics, usually one takes the reference point to infinity and set the potential at infinity to zero, that is, take V ๐š๐š = V โˆž = 0. Also if V ๐›๐› = V(๐ซ๐ซ), V ๐ซ๐ซ = โˆ’ ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ ๐ซ๐ซ โˆž (1) Electric potential is different from electric potential energy. Unit of electric potential is Newton-meter per Coulomb ( Nโ‹…m C ) or Volt. (2) The potential obeys superposition principle, i.e., the potential due to several charges is equal to the sum of the potentials due to individual ones: V = V1 + V2 + โ‹ฏ (4) The electric field is a vector quantity, but we still get all the information from the potential (a scalar quantity). This is because different components are interrelated: ๐›๐› ร— ๐„๐„ = 0, i.e., ๐œ•๐œ•Ex ๐œ•๐œ•๐œ• = ๐œ•๐œ•Ey ๐œ•๐œ•๐œ• ; ๐œ•๐œ•Ez ๐œ•๐œ•๐œ• = ๐œ•๐œ•Ey ๐œ•๐œ•๐œ• ; ๐œ•๐œ•Ex ๐œ•๐œ•๐œ• = ๐œ•๐œ•Ez ๐œ•๐œ•๐œ• ; (3) If one knows the electrical potential (a scalar quantity), the electric field (a vector quantity) can be calculated
  • 11. Electric Potential due to a point charge at origin: 11 ๐„๐„(๐ซ๐ซ๐Ÿ๐Ÿ) = 1 4๐œ‹๐œ‹๐œ–๐œ–0 ๐‘ž๐‘ž ๐‘Ÿ๐‘Ÿ1 2 ๐ซ๐ซ๐Ÿ๐Ÿ ๏ฟฝ Electric field ๐„๐„(๐ซ๐ซ๐Ÿ๐Ÿ) at ๐ซ๐ซ๐Ÿ๐Ÿ due to a single point charge ๐‘ž๐‘ž at origin: V ๐ซ๐ซ = โˆ’ ๏ฟฝ ๐„๐„ โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ ๐‘Ÿ๐‘Ÿ โˆž Electric potential V ๐ซ๐ซ at ๐ซ๐ซ due to a single point charge ๐‘ž๐‘ž at origin: The line element is: ๐‘‘๐‘‘๐ฅ๐ฅ๐Ÿ๐Ÿ = ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ1 r๐Ÿ๐Ÿ ๏ฟฝ + ๐‘Ÿ๐‘Ÿ1๐‘‘๐‘‘๐œƒ๐œƒ1 ๐›‰๐›‰๐Ÿ๐Ÿ ๏ฟฝ + ๐‘Ÿ๐‘Ÿ1sin๐œƒ๐œƒ1๐‘‘๐‘‘๐œ™๐œ™1 ๐“๐“๐Ÿ๐Ÿ ๏ฟฝ V ๐ซ๐ซ = โˆ’ ๏ฟฝ 1 4๐œ‹๐œ‹๐œ–๐œ–0 ๐‘ž๐‘ž ๐‘Ÿ๐‘Ÿ1 2 ๐’“๐’“ โˆž ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ1 V ๐ซ๐ซ = ๐‘ž๐‘ž 4๐œ‹๐œ‹๐œ–๐œ–0 1 ๐‘Ÿ๐‘Ÿ = โˆ’ ๏ฟฝ ๐„๐„(๐ซ๐ซ๐Ÿ๐Ÿ) โ‹… ๐‘‘๐‘‘๐ฅ๐ฅ๐Ÿ๐Ÿ ๐’“๐’“ โˆž = ๐‘ž๐‘ž 4๐œ‹๐œ‹๐œ–๐œ–0 1 ๐‘Ÿ๐‘Ÿ = โˆ’ ๐‘ž๐‘ž 4๐œ‹๐œ‹๐œ–๐œ–0 ๏ฟฝ 1 ๐‘Ÿ๐‘Ÿ1 2 ๐’“๐’“ โˆž ๐‘‘๐‘‘๐‘Ÿ๐‘Ÿ1
  • 12. Electric Potential due to localized charge distribution: V ๐ซ๐ซ = ๐‘ž๐‘ž 4๐œ‹๐œ‹๐œ–๐œ–0 1 r V ๐ซ๐ซ = 1 4๐œ‹๐œ‹๐œ–๐œ–0 ๏ฟฝ ๐‘ž๐‘ž๐‘–๐‘– ri ๐‘›๐‘› ๐‘–๐‘–=1 V ๐ซ๐ซ = ๐‘ž๐‘ž 4๐œ‹๐œ‹๐œ–๐œ–0 1 ๐‘Ÿ๐‘Ÿ Potential due to a point charge ๐‘ž๐‘ž at origin: Potential due to a point charge ๐‘ž๐‘ž at ๐ซ๐ซโ€ฒ: Potential due to a collection of point charges V(๐ซ๐ซ) = 1 4๐œ‹๐œ‹๐œ–๐œ–0 ๏ฟฝ ๐‘‘๐‘‘๐‘‘๐‘‘ r For a line charge ๐‘‘๐‘‘๐‘‘๐‘‘ = ๐œ†๐œ† ๐ซ๐ซโ€ฒ ๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘ For a surface charge ๐‘‘๐‘‘๐‘‘๐‘‘ = ๐œŽ๐œŽ ๐ซ๐ซโ€ฒ ๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘ For a volume charge ๐‘‘๐‘‘๐‘‘๐‘‘ = ๐œŒ๐œŒ ๐ซ๐ซโ€ฒ ๐‘‘๐‘‘๐‘‘๐‘‘๐‘‘ Potential due to a a continuous charge distribution is 12
  • 13. Ease of calculating the Electric Field โ€ข If the above two is not applicable, one has to go back to the Coulombโ€™s law and then calculate the electric field. โ€ข The easiest way to calculate the electric field is using Gaussโ€™s law. But this is possible only when there is some symmetry in the problem. โ€ข The next best thing: if the electric potential is known, one can calculate the electric field by just taking the gradient of the potential ๐„๐„ = โˆ’๐›๐›V. Sometimes, it is very effective to calculate the electric potential first and then the electric field from there. 13