SlideShare a Scribd company logo
1 of 43
Ellipsometry
Matt Brown
Alicia Allbaugh
Electrodynamics II Project
10 April 2001
Ellipsometry
A method
of probing
surfaces
with light.
Introduction
 History
 Methodology
 Theory
 Types of Ellipsometry
 Applications
 Summary
History
 Fresnel derived his equations which
determine the Reflection/Transmission
coefficients in early 19th century.
Ellipsometry used soon thereafter.
 Last homework assignment
Electrodynamics I.
 Ellipsometry became important in
1960’s with the advent of smaller
computers.
Methodology
 Polarized light is reflected at an oblique angle
to a surface
 The change to or from a generally elliptical
polarization is measured.
 From these measurements, the complex
index of refraction and/or the thickness of the
material can be obtained.
Theory
 Determine r = Rp/Rs (complex)
 Find r indirectly by measuring the shape of
the ellipse
 Determine how e varies as a function of
depth, and thickness L of transition layer.
Note: We will focus on the case of very thin films.
In this case, only the imaginary part of r matters.
Maxwell’s equations for a wave incident
On a discontinuous surface. (Gaussian Units)
y
z
x H
z
H
y
E
t
c 







e
z
x
y H
x
H
z
E
t
c 







e
x
y
z H
y
H
x
E
t
c 







e
z
y
x E
y
E
z
H
t
c 







1
x
z
y E
z
E
x
H
t
c 







1
y
x
z E
x
E
y
H
t
c 







1
Boundary Conditions
2
1 x
x E
E  2
1 y
y E
E  2
2
1
1 z
z E
E e
e 
2
1 x
x H
H  2
1 y
y H
H  2
1 z
z H
H 
1
2 x
z
y
Derivation of Drude Equation
Fundamentals of Derivation
 Concept: Integrate a Maxwell Equation along z
over transition region of depth L. Result will be a
new Boundary Condition.
 Fundamental Approximations:
 a.
 b. We assume certain field components ,
which vary slowly along z, are constant.
X
Y
Z
I R
T
L

Y
1

L

Incident
beam

x
H

x
H

p
H

p
H
Example: Since Hx+= Hx-, and
/L<<1, Hx1~Hx2.
z
y
x E
y
E
z
H
t
c 







1
Integrate along z over L

 




L
y
L
x dz
E
z
dz
H
t
c 0
0
1
X
Y
Z
I R
T
L

Derivation of Drude Equation
Assumption that is uniform
With respect to y
z
E
z
y
x E
y
E
z
H
t
c 







1
0
Incident
beam

x
H

x
H

p
H

p
H
Derivation of Drude Equation
1
2
0
y
y
y
L
E
E
E
z
dz 




1
2 y
y
x E
E
H
t
c
L




Assumption that varies little:
Since , = constant.
x
H
x
L
x H
t
c
L
dz
H
t
c 





0
1

  x
x H
H
x
y
y H
t
c
L
E
E



 1
2
and
Substituting
Rearrangement yields
Incident
beam

x
H

x
H

p
H

p
H
2
1 x
x H
H 
x
z
y E
z
E
x
H
t
c 







1
2
2
1
1 z
z E
E e
e 
Integrate
)
(
1
1
2
0
0
x
x
L
z
L
y E
E
dz
E
x
dz
H
t
c









y
H z
z E
e
and vary
little over L


 







L
z
z
z
L
z
z
z
L
z dz
E
x
dz
E
x
dz
E
x 0
0
0
1
e
e
e
e
2
2
2
2
1 z
y
x
x E
x
q
H
t
c
L
E
E






 e 

L
dz
q
0
1
e

y
H

y
H


  p
p E
D e

p
D

z
D

z
D
X
Y
Z
I R
T
L
Y

where
;
Similarly, we now find new B.C. for and
x
H y
H
x
y
y H
t
c
L
E
E



 1
2
2
2
2
2
1 z
y
x
x E
x
q
H
t
c
L
E
E






 e 2
2
1
1 z
z E
E e
e 
2
1 z
z H
H 
2
2
2
1 y
z
x
x E
t
c
p
H
x
L
H
H






 2
2
1 x
y
y E
t
c
p
H
H






L
dz
q
0
1
e
New complete Boundary Conditions
X
Y
Z
I R
T
L
Y

Where


L
dz
p
0
e
We now solve Maxwell’s equations with
these new Boundary Conditions
x
y
y H
t
c
l
E
E



 1
2
)
(
0
t
r
k
i
e
E
E 



0
ˆ
)
( 


 n
T
R
Einc
E
k
H 
 ˆ
e
y
y
y
y
inc
y T
E
R
E
E 

 2
,
1 ,
)
]
[
1
( 2
2
,
c
L
Cos
i
E
R
E y
y
y
inc e
 Y



X
Y
Z
I R
T
L
Y

2
p
H
Boundary
Condition
Relate
H and E
Form of E field (to
satisfy Maxwell eq.)
Continuity
Again solve Maxwell’s equations
with these new Boundary Conditions
2
2
2
2
1 z
y
x
x E
x
q
H
t
c
l
E
E






 e
)
(
0
t
r
k
i
e
E
E 



0
ˆ
)
( 





 n
T
k
R
k
E
k t
r
i
E
k
H 
 ˆ
e
p
p
p
inc
p T
R
E
E 

 p2
,
1 E
))
]
[
(
]
[
(
]
[
)
( 2
2
2
2
, q
Sin
l
c
i
Cos
E
Cos
R
E p
p
p
inc e
e

 Y


Y


X
Y
Z
I R
T
L
y

Boundary Condition
Relate
H and E
Form of E field (to
satisfy Maxwell eq.)
Continuity
Note on notation:
Subscript p refers to
component parallel to
incident plane (x-z plane),
and subscript s refers to
perpendicular (same as y)
component.
)
]
[
1
( 2
2
,
c
L
Cos
i
E
R
E y
y
y
inc e
 Y



))
]
[
(
]
[
(
]
[
)
( 2
2
2
2
, q
Sin
L
c
i
Cos
E
Cos
R
E p
p
p
inc e
e

 Y


Y


))
]
[
(
]
[
(
]
[
)
( 2
2
2
2
1
,
c
p
Sin
L
i
Cos
E
Cos
R
E y
y
y
inc 
Y

Y

 e

e

e
)
]
[
(
)
( 2
2
1
,
c
p
Cos
i
E
R
E p
p
p
inc Y


 
e
e
This results in 4 relations between , , and .
inc
E 2
E
R
2
1
2
2
1
2
1
2
1
2
)
]
[
2
(
]
[
]
[
(
2
]
[
]
[
)
]
[
2
(
]
[
]
[
(
2
]
[
]
[
e
e

e



e
e

e
e

e



e
e

Sin
q
L
Cos
pCos
i
Cos
Cos
Sin
q
L
Cos
pCos
i
Cos
Cos
E
R
p
p


Y

Y



Y

Y


Algebraically eliminate transmission terms.
Example: Parallel components


L
dz
q
0
1
e 

L
dz
p
0
e
Notice that if we assume p and q terms to be
Proportional to L, the imaginary parts of top and
Bottom are proportional to

L
where
)
]
[
]
[
]
[
]
[
]
[
2
1
(
]
[
]
[
]
[
]
[
2
1
2
2
2
2
2
2
1
1
2
1
2
Y

Y


Y


Y

Y


Cos
Cos
Sin
q
L
pCos
Cos
i
Cos
Cos
Cos
Cos
E
R
p
p
e

e
e
e
e


e
e

e
e

)
]
[
]
[
]
[
2
1
(
]
[
]
[
]
[
]
[
2
1
2
2
2
2
1
2
1
Y



Y

Y


Cos
Cos
p
L
Cos
i
Cos
Cos
Cos
Cos
E
R
s
s
e

e
e


e
e

e
e

Approximation for when L<< such that terms
in second order of L/ can be neglected.
)
]
[
]
[
(
]
[
]
[ 2
2
2
1
2
2
1
2
1
2
2 
e

e
e
e
e
e

e Cos
Sin
Cos
Cos 


Y

2
1
2
[
[ e
e
e

e 


Y

 

 Cos
Cos
]
[
]
[ 2
1 Y
 Sin
Sin e

e
Using Snell’s Law,
We get
Set polarization at 45 degrees. Then
s
p
s
s
p
p
R
R
R
E
E
R

Again, keeping only terms to first order in L/, and using binomial expansion,


e

e


e
e
e
e




)
]
[
]
[
]
[
]
[
4
1
(
]
[
]
[
2
2
2
1
2
2
1
1
2
Cos
Sin
Sin
Cos
i
Cos
Cos
R
R
s
p



Y

Y











L
dz
q
L
p
0
2
1
2
1
2
1
)
)(
(
)
(
e
e
e
e
e
e
e
e
e

where


e

e


e
e
e
e




)
]
[
]
[
]
[
]
[
4
1
(
]
[
]
[
2
2
2
1
2
2
1
1
2
Cos
Sin
Sin
Cos
i
Cos
Cos
R
R
s
p



Y

Y











L
dz
q
L
p
0
2
1
2
1
2
1
)
)(
(
)
(
e
e
e
e
e
e
e
e
e








L
s
p
dz
R
R
0
2
1
2
1
2
1 )
)(
(
]
Im[
e
e
e
e
e
e
e
e
e


r
For thin films, we often take to be the dielectric constant
Of air, to be that of our substrate, and to be constant
in the film. Then
Recall that at Brewster’s angle Ep is minimized
So near Brewster’s Angle, we get
1
e
2
e e
L
R
R
s
p
e
e
e
e
e
e
e
e
e


r
)
)(
(
]
Im[ 2
1
2
1
2
1 





This is the
Drude
Equation.
Types of Ellipsometry
 Null Ellipsometry
 Photometric Ellipsometry
 Phase Modulated Ellipsometer
 Spectroscopic Ellipsometry
We choose
our polarizer
orientation
such that the
relative phase
shift from
Reflection is
just cancelled
by the phase
shift from the
retarder.
We know that the relative phase
shifts have cancelled if we can null
the signal with the analyzer
Null Ellipsometry







s
p
r
r
Im
seek
We r
Example Setup
Phase modulated ellipsometer







s
p
R
R
Im
seek
We r
How to get r,an example.
Phase Modulated Ellipsometry
)
ˆ
2
1
ˆ
2
1
(
0 p
s
E
E 


The polarizer polarizes light to
45 degrees from the incident plane.
How to get r,an example.
Phase Modulated Ellipsometry
)
ˆ
2
1
ˆ
2
1
(
0 p
s
E
E 


)
ˆ
]
[
exp[
ˆ
(
2
0
0
0
p
t
Sin
i
s
E
E 




The birefringment modulator
introduces a time varying phase shift.
extrema.
the
determines
unchanged.
is
on
polarizati
,
0
]
[
at
that
Note
0
0

 
t
Sin
How to get r,an example.
Phase Modulated Ellipsometry
For a continuous
interface,
)
ˆ
]
[
exp[
ˆ
(
2
0
0
0
p
t
Sin
i
s
E
E 




]])
[
exp[
ˆ
]
exp[
(
2
0
0
0
t
Sin
i
i
r
s
i
r
E
E p
p
s
s 


 



Upon reflection both the parallel
and perpendicular components are
changed in phase and amplitude.
.
s
p 
 
How to get r,an example.
Phase Modulated Ellipsometry
s
p 
 
For a discontinuous
interface,
]])
[
exp[
ˆ
]
exp[
(
2
0
0
0
t
Sin
i
i
r
s
i
r
E
E p
p
s
s 


 



]])
[
exp[
ˆ
]
exp[
(
2
0
0
0
t
Sin
i
i
r
s
i
r
E
E p
p
s
s 


 


How to get r,an example.
Phase Modulated Ellipsometry
Photomultiplier Tube measures intensity.
Lockin Amplifier














 ]]
[
[
2
1
)
( 0
0
2
2
2
2
2
t
Sin
Cos
r
r
r
r
r
r
E
I
p
s
p
s
p
s 


s
p 
 


Where
   
 
   
 
...
]
3
[
2
]
[
2
]
[
...
]
2
[
2
]
[
]]
[
[
0
3
0
0
1
0
0
2
0
0
0
0










t
Sin
J
t
Sin
J
Sin
Cos
J
J
Cos
t
Sin
Cos
o









How to get r,an example.
Phase Modulated Ellipsometry
Note: The J’’s are the Bessel Functions
Lockin Amplifier
  small.
is
since
,
2
1
2
2
s
p
s
p
s
p
s
p
r
r
r
r
r
r
r
r
a 














765
.
0
:
J
of
zero
a
to
set
to
modulator
nt
birefringe
orient the
We
0
0
0

   
  











...
]
2
[
]
[
2
]
[
]
[
2
1
0
0
2
0
0
1
2
2
t
Cos
Cos
aJ
t
Sin
Sin
aJ
r
r
I p
s





s
p 
 


Where
r
2
]
Im[
2
]
[
2
]
[ 












s
p
s
p
r
r
Sin
r
r
a Sin
   
  










...
]
2
[
]
[
2
]
[
4
1
0
0
2
0
0
1
2
2
t
Cos
Cos
aJ
t
Sin
J
r
r
I p
s



r


At the Brewster Angle,
 r

 0
1
2
0
J
V 

  ]
[
0
2
2 0


 Cos
J
V 

   
  










...
]
2
[
]
[
2
]
[
4
1
0
0
2
0
0
1
2
2
t
Cos
Cos
aJ
t
Sin
J
r
r
I p
s



r


.
2




Now we can use a calibration procedure to
Find the proportionality of r
 to
0
V
How to get r,an example.
Phase Modulated Ellipsometry
We find the Brewster angle by adjusting until
Which is where
,
0
0
2 

V
Applications
 Determining
the thickness
of a thin film
 Focus of this
presentation
Applications - Continued
 Research
 Thin films, surface structures
 Emphasis on accuracy and precision
 Spectroscopic
 Analyze multiple layers
 Determine optical constant dispersion relationship
 Degree of crystallinity of annealed amorphous silicon
 Semiconductor applications
 Solid surfaces
 Industrial applications in fabrication
 Emphasis on reliability, speed and maintenance
 Usually employs multiple methods
Ellipsometry
 Ellipsometry can measure the oxide depth.
 Intensity doesn’t vary much with film depth
but  does.
Other Methods
 Reflectometry
 Microscopic Interferometry
 Mirau Interferometry
Reflectometry
 Reflectometry
 Intensity of reflected to incident (square of
reflectance coefficients).
 Usually find relative reflectance.
 Taken at normal incidence.
 Relatively unaffected by a thin dielectric
film.
 Therefore not used for these types of thin films.
Ellipsometry
 Ellipsometry can measure the oxide depth.
 Intensity doesn’t vary much with film depth
but  does.
Reflectometry
Reflectometry
 Can be more accurate for thin metal films.
Microscopic Interferometry
 Uses only
interference
fringes.
 Only useful for
thick films and/or
droplets
 Thickness h>/4
Mirau Interferometry
 Accuracies to 0.1nm
 x is less than
present ellipsometry
 At normal incidence.
 Kai Zhang is
constructing one for
use at KSU.
Ellipsometry
 Allows us to probe the surface structure of
materials.
 Makes use of Maxwell’s equations to
interpret data.
 Drude Approximation
 Is often relatively insensitive to calibration
uncertainties.
Ellipsometry
 Accuracies to the Angstrom
 Can be used in-situ (as a film grows)
 Typically used in thin film applications
 For more information and also this
presentation see our website:
html://www.phys.ksu.edu/~allbaugh/ellipsometry
Bibliography
1. Bhushan, B., Wyant, J. C., Koliopoulos, C. L. (1985). “Measurement of
surace topography of magnetic tapes by Mirau interferometry.” Applied
Optics 24(10): 1489-1497.
2. Drude, P. (1902). The Theory of Optics. New York, Dover Publications, Inc.,
p. 287-292.
3. Riedling, K. (1988). Ellipsometry for Industrial Applications. New York,
Springer-Verlag Wein, p.1-21.
4. Smith, D. S. (1996). An Ellipsometric Study of Critical Adsorption in Binary
Liquid Mixtures. Department of Physics. Manhattan, Kansas State University:
276, p. 18-27.
5. Tompkins, H. G. (1993). A User's Guide to Ellipsometry. New York,
Academic Press, Inc.
6. Tompkins, H. G., McGahan, W. A. (1999). Spectroscopic Ellipsometry and
Reflectometry: A User's Guide. New Your, John Wiles & Sons, Inc.
7. Wang, J. Y., Betalu, S., Law, B. M. (2001). “Line tension approaching a first-
order wetting transition: Experimental results from contact angle
measurements.” Physical Review E 63(3).

More Related Content

What's hot

Computational modeling of perovskites ppt
Computational modeling of perovskites pptComputational modeling of perovskites ppt
Computational modeling of perovskites ppttedoado
 
Stern Gerlac Experiment
Stern Gerlac ExperimentStern Gerlac Experiment
Stern Gerlac ExperimentLittleFlower15
 
Nonlinear Optical Materials
Nonlinear Optical MaterialsNonlinear Optical Materials
Nonlinear Optical Materialskrishslide
 
2d materials introductions
2d materials introductions2d materials introductions
2d materials introductionsNguyen Chuong
 
Perovskite solar cells
Perovskite solar cellsPerovskite solar cells
Perovskite solar cellshadi maghsoudi
 
Opto electronics devices
Opto electronics devicesOpto electronics devices
Opto electronics devicesSiddharth Panda
 
Introduction to nanophotonics
Introduction to nanophotonicsIntroduction to nanophotonics
Introduction to nanophotonicsajayrampelli
 
Spectroscopic ellipsometry
Spectroscopic ellipsometrySpectroscopic ellipsometry
Spectroscopic ellipsometrynirupam12
 
ZnO-Nanostructures_Presentation
ZnO-Nanostructures_PresentationZnO-Nanostructures_Presentation
ZnO-Nanostructures_Presentationjeanpierrecf6
 
Optics properties of hexagonal boron nitride
Optics properties of hexagonal boron nitrideOptics properties of hexagonal boron nitride
Optics properties of hexagonal boron nitrideClaudio Attaccalite
 
Electroluminesecnce
ElectroluminesecnceElectroluminesecnce
ElectroluminesecnceSudama04
 
Band structure and surface properties of 1-4 layers of MoS2
Band structure and surface properties of 1-4 layers of MoS2Band structure and surface properties of 1-4 layers of MoS2
Band structure and surface properties of 1-4 layers of MoS2Po-Chun Yeh
 
Organic electronic
Organic electronicOrganic electronic
Organic electronicAzurah Razak
 
Solar Cells Lecture 1: Introduction to Photovoltaics
Solar Cells Lecture 1: Introduction to PhotovoltaicsSolar Cells Lecture 1: Introduction to Photovoltaics
Solar Cells Lecture 1: Introduction to PhotovoltaicsTuong Do
 

What's hot (20)

Computational modeling of perovskites ppt
Computational modeling of perovskites pptComputational modeling of perovskites ppt
Computational modeling of perovskites ppt
 
Stern Gerlac Experiment
Stern Gerlac ExperimentStern Gerlac Experiment
Stern Gerlac Experiment
 
Nonlinear Optical Materials
Nonlinear Optical MaterialsNonlinear Optical Materials
Nonlinear Optical Materials
 
2d materials introductions
2d materials introductions2d materials introductions
2d materials introductions
 
Perovskite solar cells
Perovskite solar cellsPerovskite solar cells
Perovskite solar cells
 
Photonic Crystals
Photonic CrystalsPhotonic Crystals
Photonic Crystals
 
Atomic layer Deposition _Mukhtar Hussain awan
Atomic layer Deposition _Mukhtar Hussain awanAtomic layer Deposition _Mukhtar Hussain awan
Atomic layer Deposition _Mukhtar Hussain awan
 
Opto electronics devices
Opto electronics devicesOpto electronics devices
Opto electronics devices
 
Perovskite Solar Cells
Perovskite Solar CellsPerovskite Solar Cells
Perovskite Solar Cells
 
thinfilms.pptx
thinfilms.pptxthinfilms.pptx
thinfilms.pptx
 
Generation and Recombination related to Carrier Transport
Generation and Recombination related to Carrier TransportGeneration and Recombination related to Carrier Transport
Generation and Recombination related to Carrier Transport
 
Introduction to nanophotonics
Introduction to nanophotonicsIntroduction to nanophotonics
Introduction to nanophotonics
 
Spectroscopic ellipsometry
Spectroscopic ellipsometrySpectroscopic ellipsometry
Spectroscopic ellipsometry
 
Organic Semiconductor
Organic Semiconductor Organic Semiconductor
Organic Semiconductor
 
ZnO-Nanostructures_Presentation
ZnO-Nanostructures_PresentationZnO-Nanostructures_Presentation
ZnO-Nanostructures_Presentation
 
Optics properties of hexagonal boron nitride
Optics properties of hexagonal boron nitrideOptics properties of hexagonal boron nitride
Optics properties of hexagonal boron nitride
 
Electroluminesecnce
ElectroluminesecnceElectroluminesecnce
Electroluminesecnce
 
Band structure and surface properties of 1-4 layers of MoS2
Band structure and surface properties of 1-4 layers of MoS2Band structure and surface properties of 1-4 layers of MoS2
Band structure and surface properties of 1-4 layers of MoS2
 
Organic electronic
Organic electronicOrganic electronic
Organic electronic
 
Solar Cells Lecture 1: Introduction to Photovoltaics
Solar Cells Lecture 1: Introduction to PhotovoltaicsSolar Cells Lecture 1: Introduction to Photovoltaics
Solar Cells Lecture 1: Introduction to Photovoltaics
 

Similar to s3-Ellipsometry.ppt

Exact Sum Rules for Vector Channel at Finite Temperature and its Applications...
Exact Sum Rules for Vector Channel at Finite Temperature and its Applications...Exact Sum Rules for Vector Channel at Finite Temperature and its Applications...
Exact Sum Rules for Vector Channel at Finite Temperature and its Applications...Daisuke Satow
 
Fourier-transform analysis of a ridge waveguide and a rectangular coaxial line
Fourier-transform analysis of a ridge waveguide and a rectangular coaxial lineFourier-transform analysis of a ridge waveguide and a rectangular coaxial line
Fourier-transform analysis of a ridge waveguide and a rectangular coaxial lineYong Heui Cho
 
Mcrowave and Radar engineering
Mcrowave and Radar engineeringMcrowave and Radar engineering
Mcrowave and Radar engineeringPriyanka Anni
 
Fourier transform.ppt
Fourier transform.pptFourier transform.ppt
Fourier transform.pptRadhyesham
 
Waveguiding Structures Part 1 (General Theory).pptx
Waveguiding Structures Part 1 (General Theory).pptxWaveguiding Structures Part 1 (General Theory).pptx
Waveguiding Structures Part 1 (General Theory).pptxPawanKumar391848
 
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable CoefficientsDecay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable CoefficientsEditor IJCATR
 
Laplace transform
Laplace transform Laplace transform
Laplace transform Shivam225
 
presentation_laplace_transform_1553598871_41306.pptx
presentation_laplace_transform_1553598871_41306.pptxpresentation_laplace_transform_1553598871_41306.pptx
presentation_laplace_transform_1553598871_41306.pptxAmmarShr1
 
On Double Elzaki Transform and Double Laplace Transform
On Double Elzaki Transform and Double Laplace TransformOn Double Elzaki Transform and Double Laplace Transform
On Double Elzaki Transform and Double Laplace Transformiosrjce
 

Similar to s3-Ellipsometry.ppt (20)

Exact Sum Rules for Vector Channel at Finite Temperature and its Applications...
Exact Sum Rules for Vector Channel at Finite Temperature and its Applications...Exact Sum Rules for Vector Channel at Finite Temperature and its Applications...
Exact Sum Rules for Vector Channel at Finite Temperature and its Applications...
 
Fourier-transform analysis of a ridge waveguide and a rectangular coaxial line
Fourier-transform analysis of a ridge waveguide and a rectangular coaxial lineFourier-transform analysis of a ridge waveguide and a rectangular coaxial line
Fourier-transform analysis of a ridge waveguide and a rectangular coaxial line
 
Mcrowave and Radar engineering
Mcrowave and Radar engineeringMcrowave and Radar engineering
Mcrowave and Radar engineering
 
Fourier transform.ppt
Fourier transform.pptFourier transform.ppt
Fourier transform.ppt
 
Waveguiding Structures Part 1 (General Theory).pptx
Waveguiding Structures Part 1 (General Theory).pptxWaveguiding Structures Part 1 (General Theory).pptx
Waveguiding Structures Part 1 (General Theory).pptx
 
Laplace
LaplaceLaplace
Laplace
 
Ece5318 ch4
Ece5318 ch4Ece5318 ch4
Ece5318 ch4
 
Asymptotic Analysis
Asymptotic  AnalysisAsymptotic  Analysis
Asymptotic Analysis
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
HYDROGEN ATOM.ppt
HYDROGEN ATOM.pptHYDROGEN ATOM.ppt
HYDROGEN ATOM.ppt
 
M.Sc. Phy SII UIV Quantum Mechanics
M.Sc. Phy SII UIV Quantum MechanicsM.Sc. Phy SII UIV Quantum Mechanics
M.Sc. Phy SII UIV Quantum Mechanics
 
Theory of conformal optics
Theory of conformal opticsTheory of conformal optics
Theory of conformal optics
 
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable CoefficientsDecay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
 
14210111030
1421011103014210111030
14210111030
 
Laplace transform
Laplace transform Laplace transform
Laplace transform
 
Poster Icqc
Poster IcqcPoster Icqc
Poster Icqc
 
1416336962.pdf
1416336962.pdf1416336962.pdf
1416336962.pdf
 
presentation_laplace_transform_1553598871_41306.pptx
presentation_laplace_transform_1553598871_41306.pptxpresentation_laplace_transform_1553598871_41306.pptx
presentation_laplace_transform_1553598871_41306.pptx
 
On Double Elzaki Transform and Double Laplace Transform
On Double Elzaki Transform and Double Laplace TransformOn Double Elzaki Transform and Double Laplace Transform
On Double Elzaki Transform and Double Laplace Transform
 

Recently uploaded

Hazratganj / Call Girl in Lucknow - Phone 🫗 8923113531 ☛ Escorts Service at 6...
Hazratganj / Call Girl in Lucknow - Phone 🫗 8923113531 ☛ Escorts Service at 6...Hazratganj / Call Girl in Lucknow - Phone 🫗 8923113531 ☛ Escorts Service at 6...
Hazratganj / Call Girl in Lucknow - Phone 🫗 8923113531 ☛ Escorts Service at 6...akbard9823
 
Charbagh / best call girls in Lucknow - Book 🥤 8923113531 🪗 Call Girls Availa...
Charbagh / best call girls in Lucknow - Book 🥤 8923113531 🪗 Call Girls Availa...Charbagh / best call girls in Lucknow - Book 🥤 8923113531 🪗 Call Girls Availa...
Charbagh / best call girls in Lucknow - Book 🥤 8923113531 🪗 Call Girls Availa...gurkirankumar98700
 
exhuma plot and synopsis from the exhuma movie.pptx
exhuma plot and synopsis from the exhuma movie.pptxexhuma plot and synopsis from the exhuma movie.pptx
exhuma plot and synopsis from the exhuma movie.pptxKurikulumPenilaian
 
The First Date by Daniel Johnson (Inspired By True Events)
The First Date by Daniel Johnson (Inspired By True Events)The First Date by Daniel Johnson (Inspired By True Events)
The First Date by Daniel Johnson (Inspired By True Events)thephillipta
 
Islamabad Escorts # 03080115551 # Escorts in Islamabad || Call Girls in Islam...
Islamabad Escorts # 03080115551 # Escorts in Islamabad || Call Girls in Islam...Islamabad Escorts # 03080115551 # Escorts in Islamabad || Call Girls in Islam...
Islamabad Escorts # 03080115551 # Escorts in Islamabad || Call Girls in Islam...wdefrd
 
Lucknow 💋 Escorts Service Lucknow Phone No 8923113531 Elite Escort Service Av...
Lucknow 💋 Escorts Service Lucknow Phone No 8923113531 Elite Escort Service Av...Lucknow 💋 Escorts Service Lucknow Phone No 8923113531 Elite Escort Service Av...
Lucknow 💋 Escorts Service Lucknow Phone No 8923113531 Elite Escort Service Av...anilsa9823
 
Young⚡Call Girls in Lajpat Nagar Delhi >༒9667401043 Escort Service
Young⚡Call Girls in Lajpat Nagar Delhi >༒9667401043 Escort ServiceYoung⚡Call Girls in Lajpat Nagar Delhi >༒9667401043 Escort Service
Young⚡Call Girls in Lajpat Nagar Delhi >༒9667401043 Escort Servicesonnydelhi1992
 
Hazratganj ] (Call Girls) in Lucknow - 450+ Call Girl Cash Payment 🧄 89231135...
Hazratganj ] (Call Girls) in Lucknow - 450+ Call Girl Cash Payment 🧄 89231135...Hazratganj ] (Call Girls) in Lucknow - 450+ Call Girl Cash Payment 🧄 89231135...
Hazratganj ] (Call Girls) in Lucknow - 450+ Call Girl Cash Payment 🧄 89231135...akbard9823
 
FULL ENJOY - 9953040155 Call Girls in Mahipalpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Mahipalpur | DelhiFULL ENJOY - 9953040155 Call Girls in Mahipalpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Mahipalpur | DelhiMalviyaNagarCallGirl
 
FULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | DelhiFULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | DelhiMalviyaNagarCallGirl
 
Turn Lock Take Key Storyboard Daniel Johnson
Turn Lock Take Key Storyboard Daniel JohnsonTurn Lock Take Key Storyboard Daniel Johnson
Turn Lock Take Key Storyboard Daniel Johnsonthephillipta
 
FULL ENJOY - 9953040155 Call Girls in Shaheen Bagh | Delhi
FULL ENJOY - 9953040155 Call Girls in Shaheen Bagh | DelhiFULL ENJOY - 9953040155 Call Girls in Shaheen Bagh | Delhi
FULL ENJOY - 9953040155 Call Girls in Shaheen Bagh | DelhiMalviyaNagarCallGirl
 
FULL ENJOY - 9953040155 Call Girls in Gtb Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in Gtb Nagar | DelhiFULL ENJOY - 9953040155 Call Girls in Gtb Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in Gtb Nagar | DelhiMalviyaNagarCallGirl
 
FULL ENJOY - 9953040155 Call Girls in Laxmi Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in Laxmi Nagar | DelhiFULL ENJOY - 9953040155 Call Girls in Laxmi Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in Laxmi Nagar | DelhiMalviyaNagarCallGirl
 
MinSheng Gaofeng Estate commercial storyboard
MinSheng Gaofeng Estate commercial storyboardMinSheng Gaofeng Estate commercial storyboard
MinSheng Gaofeng Estate commercial storyboardjessica288382
 
FULL ENJOY - 9953040155 Call Girls in Burari | Delhi
FULL ENJOY - 9953040155 Call Girls in Burari | DelhiFULL ENJOY - 9953040155 Call Girls in Burari | Delhi
FULL ENJOY - 9953040155 Call Girls in Burari | DelhiMalviyaNagarCallGirl
 
FULL ENJOY - 9953040155 Call Girls in Noida | Delhi
FULL ENJOY - 9953040155 Call Girls in Noida | DelhiFULL ENJOY - 9953040155 Call Girls in Noida | Delhi
FULL ENJOY - 9953040155 Call Girls in Noida | DelhiMalviyaNagarCallGirl
 
Deconstructing Gendered Language; Feminist World-Making 2024
Deconstructing Gendered Language; Feminist World-Making 2024Deconstructing Gendered Language; Feminist World-Making 2024
Deconstructing Gendered Language; Feminist World-Making 2024samlnance
 

Recently uploaded (20)

Bur Dubai Call Girls # 971504361175 # Call Girls In Bur Dubai || (UAE)
Bur Dubai Call Girls # 971504361175 # Call Girls In Bur Dubai || (UAE)Bur Dubai Call Girls # 971504361175 # Call Girls In Bur Dubai || (UAE)
Bur Dubai Call Girls # 971504361175 # Call Girls In Bur Dubai || (UAE)
 
Hazratganj / Call Girl in Lucknow - Phone 🫗 8923113531 ☛ Escorts Service at 6...
Hazratganj / Call Girl in Lucknow - Phone 🫗 8923113531 ☛ Escorts Service at 6...Hazratganj / Call Girl in Lucknow - Phone 🫗 8923113531 ☛ Escorts Service at 6...
Hazratganj / Call Girl in Lucknow - Phone 🫗 8923113531 ☛ Escorts Service at 6...
 
Charbagh / best call girls in Lucknow - Book 🥤 8923113531 🪗 Call Girls Availa...
Charbagh / best call girls in Lucknow - Book 🥤 8923113531 🪗 Call Girls Availa...Charbagh / best call girls in Lucknow - Book 🥤 8923113531 🪗 Call Girls Availa...
Charbagh / best call girls in Lucknow - Book 🥤 8923113531 🪗 Call Girls Availa...
 
exhuma plot and synopsis from the exhuma movie.pptx
exhuma plot and synopsis from the exhuma movie.pptxexhuma plot and synopsis from the exhuma movie.pptx
exhuma plot and synopsis from the exhuma movie.pptx
 
The First Date by Daniel Johnson (Inspired By True Events)
The First Date by Daniel Johnson (Inspired By True Events)The First Date by Daniel Johnson (Inspired By True Events)
The First Date by Daniel Johnson (Inspired By True Events)
 
Islamabad Escorts # 03080115551 # Escorts in Islamabad || Call Girls in Islam...
Islamabad Escorts # 03080115551 # Escorts in Islamabad || Call Girls in Islam...Islamabad Escorts # 03080115551 # Escorts in Islamabad || Call Girls in Islam...
Islamabad Escorts # 03080115551 # Escorts in Islamabad || Call Girls in Islam...
 
Dxb Call Girls # +971529501107 # Call Girls In Dxb Dubai || (UAE)
Dxb Call Girls # +971529501107 # Call Girls In Dxb Dubai || (UAE)Dxb Call Girls # +971529501107 # Call Girls In Dxb Dubai || (UAE)
Dxb Call Girls # +971529501107 # Call Girls In Dxb Dubai || (UAE)
 
Lucknow 💋 Escorts Service Lucknow Phone No 8923113531 Elite Escort Service Av...
Lucknow 💋 Escorts Service Lucknow Phone No 8923113531 Elite Escort Service Av...Lucknow 💋 Escorts Service Lucknow Phone No 8923113531 Elite Escort Service Av...
Lucknow 💋 Escorts Service Lucknow Phone No 8923113531 Elite Escort Service Av...
 
Young⚡Call Girls in Lajpat Nagar Delhi >༒9667401043 Escort Service
Young⚡Call Girls in Lajpat Nagar Delhi >༒9667401043 Escort ServiceYoung⚡Call Girls in Lajpat Nagar Delhi >༒9667401043 Escort Service
Young⚡Call Girls in Lajpat Nagar Delhi >༒9667401043 Escort Service
 
Hazratganj ] (Call Girls) in Lucknow - 450+ Call Girl Cash Payment 🧄 89231135...
Hazratganj ] (Call Girls) in Lucknow - 450+ Call Girl Cash Payment 🧄 89231135...Hazratganj ] (Call Girls) in Lucknow - 450+ Call Girl Cash Payment 🧄 89231135...
Hazratganj ] (Call Girls) in Lucknow - 450+ Call Girl Cash Payment 🧄 89231135...
 
FULL ENJOY - 9953040155 Call Girls in Mahipalpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Mahipalpur | DelhiFULL ENJOY - 9953040155 Call Girls in Mahipalpur | Delhi
FULL ENJOY - 9953040155 Call Girls in Mahipalpur | Delhi
 
FULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | DelhiFULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in New Ashok Nagar | Delhi
 
Turn Lock Take Key Storyboard Daniel Johnson
Turn Lock Take Key Storyboard Daniel JohnsonTurn Lock Take Key Storyboard Daniel Johnson
Turn Lock Take Key Storyboard Daniel Johnson
 
FULL ENJOY - 9953040155 Call Girls in Shaheen Bagh | Delhi
FULL ENJOY - 9953040155 Call Girls in Shaheen Bagh | DelhiFULL ENJOY - 9953040155 Call Girls in Shaheen Bagh | Delhi
FULL ENJOY - 9953040155 Call Girls in Shaheen Bagh | Delhi
 
FULL ENJOY - 9953040155 Call Girls in Gtb Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in Gtb Nagar | DelhiFULL ENJOY - 9953040155 Call Girls in Gtb Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in Gtb Nagar | Delhi
 
FULL ENJOY - 9953040155 Call Girls in Laxmi Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in Laxmi Nagar | DelhiFULL ENJOY - 9953040155 Call Girls in Laxmi Nagar | Delhi
FULL ENJOY - 9953040155 Call Girls in Laxmi Nagar | Delhi
 
MinSheng Gaofeng Estate commercial storyboard
MinSheng Gaofeng Estate commercial storyboardMinSheng Gaofeng Estate commercial storyboard
MinSheng Gaofeng Estate commercial storyboard
 
FULL ENJOY - 9953040155 Call Girls in Burari | Delhi
FULL ENJOY - 9953040155 Call Girls in Burari | DelhiFULL ENJOY - 9953040155 Call Girls in Burari | Delhi
FULL ENJOY - 9953040155 Call Girls in Burari | Delhi
 
FULL ENJOY - 9953040155 Call Girls in Noida | Delhi
FULL ENJOY - 9953040155 Call Girls in Noida | DelhiFULL ENJOY - 9953040155 Call Girls in Noida | Delhi
FULL ENJOY - 9953040155 Call Girls in Noida | Delhi
 
Deconstructing Gendered Language; Feminist World-Making 2024
Deconstructing Gendered Language; Feminist World-Making 2024Deconstructing Gendered Language; Feminist World-Making 2024
Deconstructing Gendered Language; Feminist World-Making 2024
 

s3-Ellipsometry.ppt

  • 3. Introduction  History  Methodology  Theory  Types of Ellipsometry  Applications  Summary
  • 4. History  Fresnel derived his equations which determine the Reflection/Transmission coefficients in early 19th century. Ellipsometry used soon thereafter.  Last homework assignment Electrodynamics I.  Ellipsometry became important in 1960’s with the advent of smaller computers.
  • 5. Methodology  Polarized light is reflected at an oblique angle to a surface  The change to or from a generally elliptical polarization is measured.  From these measurements, the complex index of refraction and/or the thickness of the material can be obtained.
  • 6. Theory  Determine r = Rp/Rs (complex)  Find r indirectly by measuring the shape of the ellipse  Determine how e varies as a function of depth, and thickness L of transition layer. Note: We will focus on the case of very thin films. In this case, only the imaginary part of r matters.
  • 7. Maxwell’s equations for a wave incident On a discontinuous surface. (Gaussian Units) y z x H z H y E t c         e z x y H x H z E t c         e x y z H y H x E t c         e z y x E y E z H t c         1 x z y E z E x H t c         1 y x z E x E y H t c         1 Boundary Conditions 2 1 x x E E  2 1 y y E E  2 2 1 1 z z E E e e  2 1 x x H H  2 1 y y H H  2 1 z z H H  1 2 x z y
  • 8. Derivation of Drude Equation Fundamentals of Derivation  Concept: Integrate a Maxwell Equation along z over transition region of depth L. Result will be a new Boundary Condition.  Fundamental Approximations:  a.  b. We assume certain field components , which vary slowly along z, are constant. X Y Z I R T L  Y 1  L  Incident beam  x H  x H  p H  p H Example: Since Hx+= Hx-, and /L<<1, Hx1~Hx2.
  • 9. z y x E y E z H t c         1 Integrate along z over L        L y L x dz E z dz H t c 0 0 1 X Y Z I R T L  Derivation of Drude Equation Assumption that is uniform With respect to y z E z y x E y E z H t c         1 0 Incident beam  x H  x H  p H  p H
  • 10. Derivation of Drude Equation 1 2 0 y y y L E E E z dz      1 2 y y x E E H t c L     Assumption that varies little: Since , = constant. x H x L x H t c L dz H t c       0 1    x x H H x y y H t c L E E     1 2 and Substituting Rearrangement yields Incident beam  x H  x H  p H  p H 2 1 x x H H 
  • 11. x z y E z E x H t c         1 2 2 1 1 z z E E e e  Integrate ) ( 1 1 2 0 0 x x L z L y E E dz E x dz H t c          y H z z E e and vary little over L            L z z z L z z z L z dz E x dz E x dz E x 0 0 0 1 e e e e 2 2 2 2 1 z y x x E x q H t c L E E        e   L dz q 0 1 e  y H  y H     p p E D e  p D  z D  z D X Y Z I R T L Y  where ;
  • 12. Similarly, we now find new B.C. for and x H y H x y y H t c L E E     1 2 2 2 2 2 1 z y x x E x q H t c L E E        e 2 2 1 1 z z E E e e  2 1 z z H H  2 2 2 1 y z x x E t c p H x L H H        2 2 1 x y y E t c p H H       L dz q 0 1 e New complete Boundary Conditions X Y Z I R T L Y  Where   L dz p 0 e
  • 13. We now solve Maxwell’s equations with these new Boundary Conditions x y y H t c l E E     1 2 ) ( 0 t r k i e E E     0 ˆ ) (     n T R Einc E k H   ˆ e y y y y inc y T E R E E    2 , 1 , ) ] [ 1 ( 2 2 , c L Cos i E R E y y y inc e  Y    X Y Z I R T L Y  2 p H Boundary Condition Relate H and E Form of E field (to satisfy Maxwell eq.) Continuity
  • 14. Again solve Maxwell’s equations with these new Boundary Conditions 2 2 2 2 1 z y x x E x q H t c l E E        e ) ( 0 t r k i e E E     0 ˆ ) (        n T k R k E k t r i E k H   ˆ e p p p inc p T R E E    p2 , 1 E )) ] [ ( ] [ ( ] [ ) ( 2 2 2 2 , q Sin l c i Cos E Cos R E p p p inc e e   Y   Y   X Y Z I R T L y  Boundary Condition Relate H and E Form of E field (to satisfy Maxwell eq.) Continuity Note on notation: Subscript p refers to component parallel to incident plane (x-z plane), and subscript s refers to perpendicular (same as y) component.
  • 15. ) ] [ 1 ( 2 2 , c L Cos i E R E y y y inc e  Y    )) ] [ ( ] [ ( ] [ ) ( 2 2 2 2 , q Sin L c i Cos E Cos R E p p p inc e e   Y   Y   )) ] [ ( ] [ ( ] [ ) ( 2 2 2 2 1 , c p Sin L i Cos E Cos R E y y y inc  Y  Y   e  e  e ) ] [ ( ) ( 2 2 1 , c p Cos i E R E p p p inc Y     e e This results in 4 relations between , , and . inc E 2 E R
  • 16. 2 1 2 2 1 2 1 2 1 2 ) ] [ 2 ( ] [ ] [ ( 2 ] [ ] [ ) ] [ 2 ( ] [ ] [ ( 2 ] [ ] [ e e  e    e e  e e  e    e e  Sin q L Cos pCos i Cos Cos Sin q L Cos pCos i Cos Cos E R p p   Y  Y    Y  Y   Algebraically eliminate transmission terms. Example: Parallel components   L dz q 0 1 e   L dz p 0 e Notice that if we assume p and q terms to be Proportional to L, the imaginary parts of top and Bottom are proportional to  L where
  • 18. ) ] [ ] [ ( ] [ ] [ 2 2 2 1 2 2 1 2 1 2 2  e  e e e e e  e Cos Sin Cos Cos    Y  2 1 2 [ [ e e e  e    Y      Cos Cos ] [ ] [ 2 1 Y  Sin Sin e  e Using Snell’s Law, We get Set polarization at 45 degrees. Then s p s s p p R R R E E R  Again, keeping only terms to first order in L/, and using binomial expansion,   e  e   e e e e     ) ] [ ] [ ] [ ] [ 4 1 ( ] [ ] [ 2 2 2 1 2 2 1 1 2 Cos Sin Sin Cos i Cos Cos R R s p    Y  Y            L dz q L p 0 2 1 2 1 2 1 ) )( ( ) ( e e e e e e e e e  where
  • 19.   e  e   e e e e     ) ] [ ] [ ] [ ] [ 4 1 ( ] [ ] [ 2 2 2 1 2 2 1 1 2 Cos Sin Sin Cos i Cos Cos R R s p    Y  Y            L dz q L p 0 2 1 2 1 2 1 ) )( ( ) ( e e e e e e e e e         L s p dz R R 0 2 1 2 1 2 1 ) )( ( ] Im[ e e e e e e e e e   r For thin films, we often take to be the dielectric constant Of air, to be that of our substrate, and to be constant in the film. Then Recall that at Brewster’s angle Ep is minimized So near Brewster’s Angle, we get 1 e 2 e e L R R s p e e e e e e e e e   r ) )( ( ] Im[ 2 1 2 1 2 1       This is the Drude Equation.
  • 20. Types of Ellipsometry  Null Ellipsometry  Photometric Ellipsometry  Phase Modulated Ellipsometer  Spectroscopic Ellipsometry
  • 21. We choose our polarizer orientation such that the relative phase shift from Reflection is just cancelled by the phase shift from the retarder. We know that the relative phase shifts have cancelled if we can null the signal with the analyzer Null Ellipsometry        s p r r Im seek We r
  • 22. Example Setup Phase modulated ellipsometer        s p R R Im seek We r
  • 23. How to get r,an example. Phase Modulated Ellipsometry
  • 24. ) ˆ 2 1 ˆ 2 1 ( 0 p s E E    The polarizer polarizes light to 45 degrees from the incident plane. How to get r,an example. Phase Modulated Ellipsometry
  • 25. ) ˆ 2 1 ˆ 2 1 ( 0 p s E E    ) ˆ ] [ exp[ ˆ ( 2 0 0 0 p t Sin i s E E      The birefringment modulator introduces a time varying phase shift. extrema. the determines unchanged. is on polarizati , 0 ] [ at that Note 0 0    t Sin How to get r,an example. Phase Modulated Ellipsometry
  • 26. For a continuous interface, ) ˆ ] [ exp[ ˆ ( 2 0 0 0 p t Sin i s E E      ]]) [ exp[ ˆ ] exp[ ( 2 0 0 0 t Sin i i r s i r E E p p s s         Upon reflection both the parallel and perpendicular components are changed in phase and amplitude. . s p    How to get r,an example. Phase Modulated Ellipsometry s p    For a discontinuous interface,
  • 27. ]]) [ exp[ ˆ ] exp[ ( 2 0 0 0 t Sin i i r s i r E E p p s s         ]]) [ exp[ ˆ ] exp[ ( 2 0 0 0 t Sin i i r s i r E E p p s s        How to get r,an example. Phase Modulated Ellipsometry
  • 28. Photomultiplier Tube measures intensity. Lockin Amplifier                ]] [ [ 2 1 ) ( 0 0 2 2 2 2 2 t Sin Cos r r r r r r E I p s p s p s    s p      Where             ... ] 3 [ 2 ] [ 2 ] [ ... ] 2 [ 2 ] [ ]] [ [ 0 3 0 0 1 0 0 2 0 0 0 0           t Sin J t Sin J Sin Cos J J Cos t Sin Cos o          How to get r,an example. Phase Modulated Ellipsometry Note: The J’’s are the Bessel Functions
  • 29. Lockin Amplifier   small. is since , 2 1 2 2 s p s p s p s p r r r r r r r r a                765 . 0 : J of zero a to set to modulator nt birefringe orient the We 0 0 0                    ... ] 2 [ ] [ 2 ] [ ] [ 2 1 0 0 2 0 0 1 2 2 t Cos Cos aJ t Sin Sin aJ r r I p s      s p      Where r 2 ] Im[ 2 ] [ 2 ] [              s p s p r r Sin r r a Sin                  ... ] 2 [ ] [ 2 ] [ 4 1 0 0 2 0 0 1 2 2 t Cos Cos aJ t Sin J r r I p s    r   At the Brewster Angle,
  • 30.  r   0 1 2 0 J V     ] [ 0 2 2 0    Cos J V                    ... ] 2 [ ] [ 2 ] [ 4 1 0 0 2 0 0 1 2 2 t Cos Cos aJ t Sin J r r I p s    r   . 2     Now we can use a calibration procedure to Find the proportionality of r  to 0 V How to get r,an example. Phase Modulated Ellipsometry We find the Brewster angle by adjusting until Which is where , 0 0 2   V
  • 31. Applications  Determining the thickness of a thin film  Focus of this presentation
  • 32. Applications - Continued  Research  Thin films, surface structures  Emphasis on accuracy and precision  Spectroscopic  Analyze multiple layers  Determine optical constant dispersion relationship  Degree of crystallinity of annealed amorphous silicon  Semiconductor applications  Solid surfaces  Industrial applications in fabrication  Emphasis on reliability, speed and maintenance  Usually employs multiple methods
  • 33. Ellipsometry  Ellipsometry can measure the oxide depth.  Intensity doesn’t vary much with film depth but  does.
  • 34. Other Methods  Reflectometry  Microscopic Interferometry  Mirau Interferometry
  • 35. Reflectometry  Reflectometry  Intensity of reflected to incident (square of reflectance coefficients).  Usually find relative reflectance.  Taken at normal incidence.  Relatively unaffected by a thin dielectric film.  Therefore not used for these types of thin films.
  • 36. Ellipsometry  Ellipsometry can measure the oxide depth.  Intensity doesn’t vary much with film depth but  does.
  • 38. Reflectometry  Can be more accurate for thin metal films.
  • 39. Microscopic Interferometry  Uses only interference fringes.  Only useful for thick films and/or droplets  Thickness h>/4
  • 40. Mirau Interferometry  Accuracies to 0.1nm  x is less than present ellipsometry  At normal incidence.  Kai Zhang is constructing one for use at KSU.
  • 41. Ellipsometry  Allows us to probe the surface structure of materials.  Makes use of Maxwell’s equations to interpret data.  Drude Approximation  Is often relatively insensitive to calibration uncertainties.
  • 42. Ellipsometry  Accuracies to the Angstrom  Can be used in-situ (as a film grows)  Typically used in thin film applications  For more information and also this presentation see our website: html://www.phys.ksu.edu/~allbaugh/ellipsometry
  • 43. Bibliography 1. Bhushan, B., Wyant, J. C., Koliopoulos, C. L. (1985). “Measurement of surace topography of magnetic tapes by Mirau interferometry.” Applied Optics 24(10): 1489-1497. 2. Drude, P. (1902). The Theory of Optics. New York, Dover Publications, Inc., p. 287-292. 3. Riedling, K. (1988). Ellipsometry for Industrial Applications. New York, Springer-Verlag Wein, p.1-21. 4. Smith, D. S. (1996). An Ellipsometric Study of Critical Adsorption in Binary Liquid Mixtures. Department of Physics. Manhattan, Kansas State University: 276, p. 18-27. 5. Tompkins, H. G. (1993). A User's Guide to Ellipsometry. New York, Academic Press, Inc. 6. Tompkins, H. G., McGahan, W. A. (1999). Spectroscopic Ellipsometry and Reflectometry: A User's Guide. New Your, John Wiles & Sons, Inc. 7. Wang, J. Y., Betalu, S., Law, B. M. (2001). “Line tension approaching a first- order wetting transition: Experimental results from contact angle measurements.” Physical Review E 63(3).