SlideShare a Scribd company logo
1 of 51
Domain, Range, Zeros,
Intercepts and
Asymptotes of
Rational Function
Objectives:
οƒ˜find the domain, range, zeroes
and intercepts of rational
functions
οƒ˜determine the vertical and
horizontal asymptotes of rational
function.
οƒ˜ The domain of a rational function 𝑓 π‘₯ =
𝑁(π‘₯)
𝐷(π‘₯)
is all the values of that π‘₯ will not make 𝐷(π‘₯)
equal to zero.
οƒ˜ To find the range of rational function is by
finding the domain of the inverse function.
οƒ˜ Another way to find the range of rational
function is to find the value of horizontal
asymptote.
Domain and Range of Rational Function
𝒇 𝒙 =
𝟐
𝒙 βˆ’ πŸ‘
EXAMPLE 1:
𝒇 𝒙 =
𝟐
𝒙 βˆ’ πŸ‘
𝒙 βˆ’ πŸ‘ = 𝟎
Focus on the
denominator
The domain of 𝒇(𝒙)
is the set of all real
numbers except πŸ‘.
EXAMPLE 1:
𝒙 = πŸ‘
To find the domain:
𝑫: 𝒙 𝒙 ∈ ℝ, 𝒙 β‰  πŸ‘
𝒇 𝒙 =
𝟐
𝒙 βˆ’ πŸ‘
οƒΌ Change 𝑓(π‘₯) into y
EXAMPLE 1:
To find the range:
π’š =
𝟐
𝒙 βˆ’ πŸ‘
οƒΌ Interchange the position
of x and y
𝒙 =
𝟐
π’š βˆ’ πŸ‘
οƒΌ Simplify the rational
expression
𝒙 π’š βˆ’ πŸ‘ = 𝟐
π’™π’š βˆ’ πŸ‘π’™ = 𝟐
οƒΌ Solve for y in terms of x π’™π’š = 𝟐 + πŸ‘π’™
π’™π’š
𝒙
=
𝟐 + πŸ‘π’™
𝒙
π’š =
𝟐 + πŸ‘π’™
𝒙
οƒΌ Equate the
denominator
to 0.
𝒙 = 𝟎
The range of 𝒇(𝒙) is the set
of all real numbers except 𝟎.
𝑹: π’š π’š ∈ ℝ, π’š β‰  𝟎
𝒇 𝒙 =
𝒙 βˆ’ πŸ“
𝒙 + 𝟐
EXAMPLE 2:
𝒇 𝒙 =
𝒙 βˆ’ πŸ“
𝒙 + 𝟐
𝒙 + 𝟐 = 𝟎
Focus on the
denominator
The domain of 𝒇(𝒙)
is the set of all real
numbers except βˆ’πŸ.
EXAMPLE 2:
𝒙 = βˆ’πŸ
To find the domain:
𝑫: 𝒙 𝒙 ∈ ℝ, 𝒙 β‰  βˆ’πŸ
𝒇 𝒙 =
𝒙 βˆ’ πŸ“
𝒙 + 𝟐
οƒΌ Change 𝑓(π‘₯) into y
EXAMPLE 2:
To find the range:
π’š =
𝒙 βˆ’ πŸ“
𝒙 + 𝟐
οƒΌ Interchange the position
of x and y
𝒙 =
π’š βˆ’ πŸ“
π’š + 𝟐
οƒΌ Simplify the rational
expression
𝒙 π’š + 𝟐 = π’š βˆ’ πŸ“
π’™π’š + πŸπ’™ = π’š βˆ’ πŸ“
οƒΌ Solve for y in terms of x π’™π’š βˆ’ π’š = βˆ’πŸ“ βˆ’ πŸπ’™
π’š(𝒙 βˆ’ 𝟏)
𝒙 βˆ’ 𝟏
=
βˆ’πŸ“ βˆ’ πŸπ’™
𝒙 βˆ’ 𝟏
π’š =
βˆ’πŸ“ βˆ’ πŸπ’™
𝒙 βˆ’ 𝟏
οƒΌ Equate the
denominator
to 0.
𝒙 βˆ’ 𝟏 = 𝟎
The range of 𝒇(𝒙) is
the set of all real
numbers except 𝟏.
𝑹: π’š π’š ∈ ℝ, π’š β‰  𝟏
π’š(𝒙 βˆ’ 𝟏) = βˆ’πŸ“ βˆ’ πŸπ’™
𝒙 = 𝟏
𝒇 𝒙 =
πŸ• + 𝒙
πŸπ’™ βˆ’ πŸ”
EXAMPLE 3:
𝒇 𝒙 =
πŸ• + 𝒙
πŸπ’™ βˆ’ πŸ”
πŸπ’™ βˆ’ πŸ” = 𝟎
Focus on the
denominator
The domain of 𝒇(𝒙)
is the set of all real
numbers except πŸ‘.
EXAMPLE 3:
πŸπ’™ = πŸ”
To find the domain:
𝑫: 𝒙 𝒙 ∈ ℝ, 𝒙 β‰  πŸ‘
𝒙 = πŸ‘
𝒇 𝒙 =
πŸ• + 𝒙
πŸπ’™ βˆ’ πŸ”
οƒΌ Change 𝑓(π‘₯) into y
EXAMPLE 3:
To find the range:
π’š =
πŸ• + 𝒙
πŸπ’™ βˆ’ πŸ”
οƒΌ Interchange the position
of x and y
𝒙 =
πŸ• + π’š
πŸπ’š βˆ’ πŸ”
οƒΌ Simplify the rational
expression
𝒙 πŸπ’š βˆ’ πŸ” = πŸ• + π’š
2π’™π’š βˆ’ πŸ”π’™ = πŸ• + π’š
οƒΌ Solve for y in terms of x πŸπ’™π’š βˆ’ π’š = πŸ• + πŸ”π’™
π’š(πŸπ’™ βˆ’ 𝟏)
πŸπ’™ βˆ’ 𝟏
=
πŸ• + πŸ”π’™
πŸπ’™ βˆ’ 𝟏
π’š =
βˆ’πŸ• + πŸ”π’™
πŸπ’™ βˆ’ 𝟏
οƒΌ Equate the
denominator
to 0.
πŸπ’™ βˆ’ 𝟏 = 𝟎
The range of 𝒇(𝒙) is the set of all
real numbers except
𝟏
𝟐
.
𝑹: π’š π’š ∈ ℝ, π’š β‰ 
𝟏
𝟐
π’š πŸπ’™ βˆ’ 𝟏 = πŸ• + πŸ”π’™
πŸπ’™ = 𝟏
𝒙 =
𝟏
𝟐
Vertical and
Horizontal
Asymptotes of
Rational Functions
They are the restrictions on the x
– values of a reduced rational
function. To find the restrictions,
equate the denominator to 0 and
solve for x.
Finding the Vertical Asymptotes
of Rational Functions
Let n be the degree of the numerator and m
be the degree of denominator:
β€’ If 𝒏 < π’Ž, π’š = 𝟎.
β€’ If 𝒏 = π’Ž, π’š =
𝒂
𝒃
, where 𝒂 is the leading
coefficient of the numerator and 𝒃 is the
leading coefficient of the denominator.
β€’ If 𝒏 > π’Ž , there is no horizontal
asymptote.
Finding the Horizontal Asymptotes
of Rational Functions
Find the Degree of Polynomial.
πŸ“π’™ 𝟏
π‘«π’†π’ˆπ’“π’†π’†
𝒙 βˆ’ πŸ’ 𝟏
πŸπ’™πŸ‘
βˆ’ 𝒙 βˆ’ πŸ’ πŸ‘
Find the Degree of Polynomial.
π’™πŸ
βˆ’ πŸπ’™πŸ“
βˆ’ 𝒙 πŸ“
π‘«π’†π’ˆπ’“π’†π’†
π’šπŸ
βˆ’ π’š + 𝟏 𝟐
πŸ— + πŸπ’™ βˆ’ π’™πŸ‘ πŸ‘
EXAMPLE 1:
𝒇 𝒙 =
πŸ‘
𝒙 βˆ’ πŸ“
𝒇 𝒙 =
πŸ‘
𝒙 βˆ’ πŸ“
To find the vertical
asymptote:
𝒙 βˆ’ πŸ“ = 𝟎
𝒙 = πŸ“
Focus on the
denominator
The vertical asymptote
is 𝒙 = πŸ“.
EXAMPLE 1:
𝒇 𝒙 =
πŸ‘
𝒙 βˆ’ πŸ“
To find the horizontal
asymptote:
𝒏 < π’Ž
Focus on the degree
of the numerator
and denominator
The horizontal asymptote
is π’š = 𝟎.
0
1
EXAMPLE 1:
𝒇 𝒙 =
πŸ’π’™ βˆ’ 𝟐
𝒙 + 𝟐
EXAMPLE 2:
𝒇 𝒙 =
πŸ’π’™ βˆ’ 𝟐
𝒙 + 𝟐
To find the vertical
asymptote:
𝒙 + 𝟐 = 𝟎
𝒙 = βˆ’πŸ
Focus on the
denominator
The vertical asymptote
is 𝒙 = βˆ’πŸ.
EXAMPLE 2:
𝒇 𝒙 =
πŸ’π’™ βˆ’ 𝟐
𝒙 + 𝟐
To find the horizontal
asymptote:
𝒏 = π’Ž
Focus on the degree
of the numerator
and denominator
The horizontal
asymptote is π’š = πŸ’.
1
1
EXAMPLE 2:
π’š =
𝒂
𝒃
=
πŸ’
𝟏
= πŸ’
a is the leading coefficient of 4x
b is the leading coefficient of x
𝒇 𝒙 =
πŸ‘π’™ + πŸ’
πŸπ’™πŸ + πŸ‘π’™ + 𝟏
EXAMPLE 3:
𝒇 𝒙 =
πŸ‘π’™ + πŸ’
πŸπ’™πŸ + πŸ‘π’™ + 𝟏
To find the vertical asymptote:
πŸπ’™πŸ + πŸ‘π’™ + 𝟏 = 𝟎
Focus on the
denominator
The vertical
asymptote are 𝒙 = βˆ’
𝟏
𝟐
and 𝒙 = βˆ’πŸ.
EXAMPLE 3:
πŸπ’™ + 𝟏 𝒙 + 𝟏 = 𝟎
πŸπ’™ + 𝟏 = 𝟎 𝒙 + 𝟏 = 𝟎
πŸπ’™ = βˆ’πŸ
𝒙 = βˆ’
𝟏
𝟐
𝒙 = βˆ’πŸ
1
2
EXAMPLE 3:
𝒇 𝒙 =
πŸ‘π’™ + πŸ’
πŸπ’™πŸ + πŸ‘π’™ + 𝟏
To find the horizontal
asymptote:
𝒏 < π’Ž
Focus on the degree
of the numerator
and denominator
The horizontal asymptote
is π’š = 𝟎.
𝒇 𝒙 =
πŸ’π’™πŸ‘
βˆ’ 𝟏
π’™πŸ + πŸ’π’™ βˆ’ πŸ“
EXAMPLE 4:
𝒇 𝒙 =
πŸ’π’™πŸ‘
βˆ’ 𝟏
π’™πŸ + πŸ’π’™ βˆ’ πŸ“
To find the vertical asymptote:
π’™πŸ + πŸπ’™ βˆ’ πŸ“ = 𝟎
Focus on the
denominator
The vertical
asymptote are 𝒙 = βˆ’πŸ“
and 𝒙 = 𝟏.
EXAMPLE 4:
𝒙 + πŸ“ 𝒙 βˆ’ 𝟏 = 𝟎
𝒙 + πŸ“ = 𝟎 𝒙 βˆ’ 𝟏 = 𝟎
𝒙 = βˆ’πŸ“ 𝒙 = 𝟏
𝒙 = βˆ’πŸ“
3
2
EXAMPLE 4:
To find the horizontal
asymptote:
𝒏 > π’Ž
Focus on the degree
of the numerator
and denominator
The rational function has
no horizontal asymptote.
𝒇 𝒙 =
πŸ’π’™πŸ‘
βˆ’ 𝟏
π’™πŸ + πŸ’π’™ βˆ’ πŸ“
Zeros of
Rational
Function
Finding the Zeros of Rational
Functions
Steps:
1. Factor the numerator and denominator.
2. Identify the restrictions.
3. Identify the values of x that make the
numerator equal to zero.
4. Identify the zero of f(x).
𝒇 𝒙 =
π’™πŸ
βˆ’ πŸ’π’™
𝒙 + 𝟏
EXAMPLE 1:
𝒇 𝒙 =
π’™πŸ
βˆ’ πŸ’π’™
𝒙 + 𝟏
οƒΌ Factor the numerator and
denominator
EXAMPLE 1:
𝒇(𝒙) =
𝒙(𝒙 βˆ’ πŸ’)
𝒙 + 𝟏
οƒΌ Identify the restrictions. 𝒙 + 𝟏 = 𝟎
𝒙 = βˆ’πŸ
οƒΌ Identify the values of x that
will make the numerator
equal to zero.
𝒙 𝒙 βˆ’ πŸ’ = 𝟎
𝒙 = 𝟎 𝒙 βˆ’ πŸ’ = 𝟎
𝒙 = πŸ’
οƒΌ Identify the zeroes of f(x).
𝒙 = 𝟎 𝒙 = πŸ’
𝒇 𝒙 =
(𝒙 βˆ’ πŸ’)(𝒙 + 𝟐)
(𝒙 βˆ’ πŸ‘)(𝒙 βˆ’ 𝟏)
EXAMPLE 2:
οƒΌ Factor the numerator and
denominator
EXAMPLE 2:
𝒇(𝒙) =
(𝒙 βˆ’ πŸ’)(𝒙 + 𝟐)
(𝒙 βˆ’ πŸ‘)(𝒙 βˆ’ 𝟏)
οƒΌ Identify the restrictions. 𝒙 βˆ’ πŸ‘ 𝒙 βˆ’ 𝟏 = 𝟎
𝒙 βˆ’ πŸ‘ = 𝟎
οƒΌ Identify the values of x
that will make the
numerator equal to
zero.
𝒙 βˆ’ πŸ’ 𝒙 + 𝟐 = 𝟎
𝒙 βˆ’ πŸ’ = 𝟎 𝒙 + 𝟐 = 𝟎
𝒙 = βˆ’πŸ
οƒΌ Identify the zeroes of f(x).
𝒙 = πŸ’ 𝒙 = βˆ’πŸ
𝒇 𝒙 =
(𝒙 βˆ’ πŸ’)(𝒙 + 𝟐)
(𝒙 βˆ’ πŸ‘)(𝒙 βˆ’ 𝟏)
𝒙 = πŸ‘
𝒙 βˆ’ 𝟏 = 𝟎
𝒙 = 𝟏
𝒙 = πŸ’
𝒇 𝒙 =
π’™πŸ
+ πŸ“π’™ + πŸ’
π’™πŸ βˆ’ πŸπ’™ βˆ’ πŸ‘
EXAMPLE 3:
οƒΌ Factor the numerator and
denominator
EXAMPLE 3:
𝒇(𝒙) =
(𝒙 + 𝟏)(𝒙 + πŸ’)
(𝒙 βˆ’ πŸ‘)(𝒙 + 𝟏)
οƒΌ Identify the restrictions. 𝒙 βˆ’ πŸ‘ 𝒙 + 𝟏 = 𝟎
𝒙 βˆ’ πŸ‘ = 𝟎
οƒΌ Identify the values of x
that will make the
numerator equal to
zero.
𝒙 + 𝟏 𝒙 + πŸ’ = 𝟎
𝒙 + 𝟏 = 𝟎 𝒙 + πŸ’ = 𝟎
𝒙 = βˆ’πŸ’
οƒΌ Identify the zeroes of f(x).
𝒙 = βˆ’πŸ’
𝒙 = πŸ‘
𝒙 + 𝟏 = 𝟎
𝒙 = βˆ’πŸ
𝒙 = βˆ’πŸ
𝒇 𝒙 =
π’™πŸ
+ πŸ“π’™ + πŸ’
π’™πŸ βˆ’ πŸπ’™ βˆ’ πŸ‘
Intercepts of
Rational
Functions
οƒ˜ Intercepts are x and y – coordinates of
the points at which a graph crosses the
x-axis or y-axis, respectively.
οƒ˜ y-intercept is the y-coordinate of the
point where the graph crosses the y-
axis.
οƒ˜ x-intercept is the x-coordinate of the
point where the graph crosses the x-
axis.
Note: Not all rational functions have both x and y intercepts. If the
rational function has no real solution, then it does not have intercepts.
Rule to find the Intercepts
1) To find the y-intercept, substitute 0
for x and solve for y or f(x).
2) To find the x-intercept, substitute 0
for y and solve for x.
𝒇 𝒙 =
𝒙 + πŸ’
𝒙 βˆ’ 𝟐
EXAMPLE 1:
𝒇 𝒙 =
𝒙 + πŸ’
𝒙 βˆ’ 𝟐
EXAMPLE 1:
y - intercept
𝒇(𝒙) =
𝒙 + πŸ’
𝒙 βˆ’ 𝟐
𝒙 = 𝟎
𝒇(𝒙) =
𝟎 + πŸ’
𝟎 βˆ’ 𝟐
𝒇(𝒙) =
πŸ’
βˆ’πŸ
𝒇(𝒙) = βˆ’πŸ
x - intercept
𝒇(𝒙) =
𝒙 + πŸ’
𝒙 βˆ’ 𝟐
π’š = 𝟎
𝟎 =
𝒙 + πŸ’
𝒙 βˆ’ 𝟐
𝟎 𝒙 βˆ’ 𝟐 = 𝒙 + πŸ’
𝟎 = 𝒙 + πŸ’
βˆ’πŸ’ = 𝒙
𝒇 𝒙 =
π’™πŸ
+ πŸ“π’™ + πŸ’
π’™πŸ βˆ’ πŸπ’™ βˆ’ πŸ‘
EXAMPLE 2:
EXAMPLE 1:
y - intercept
𝒙 = 𝟎
𝒇 𝒙 =
𝟎 + πŸ’
𝟎 βˆ’ πŸ‘
x - intercept
π’š = 𝟎
𝟎 = 𝒙 + πŸ’
βˆ’πŸ’ = 𝒙
𝒇 𝒙 =
π’™πŸ
+ πŸ“π’™ + πŸ’
π’™πŸ βˆ’ πŸπ’™ βˆ’ πŸ‘
𝒇 𝒙 =
(𝒙 + 𝟏)(𝒙 + πŸ’)
(𝒙 + 𝟏)(𝒙 βˆ’ πŸ‘)
𝒇 𝒙 =
𝒙 + πŸ’
𝒙 βˆ’ πŸ‘
𝒇 𝒙 = βˆ’
πŸ’
πŸ‘
𝒇 𝒙 =
𝒙 + πŸ’
𝒙 βˆ’ πŸ‘
𝟎 =
𝒙 + πŸ’
𝒙 βˆ’ πŸ‘
𝟎(𝒙 βˆ’ πŸ‘) = 𝒙 + πŸ’
Find each of the following:
a) Intercepts
1)𝑓 π‘₯ =
π‘₯
π‘₯+4
2) 𝑓 π‘₯ =
π‘₯ βˆ’7
π‘₯ βˆ’5
3) 𝑓 π‘₯ =
π‘₯2βˆ’5π‘₯βˆ’14
π‘₯2βˆ’4
Domain-Range-Intercepts-Zeros-and-Asymptotes-of-Rational-Function.pptx

More Related Content

What's hot

One to-one function (MATH 11)
One to-one function (MATH 11)One to-one function (MATH 11)
One to-one function (MATH 11)majoydrew
Β 
Evaluating functions basic rules
Evaluating functions   basic rulesEvaluating functions   basic rules
Evaluating functions basic rulesjulienorman80065
Β 
Evaluating Functions
Evaluating FunctionsEvaluating Functions
Evaluating Functionsarielrogon
Β 
General Mathematics - Rational Functions
General Mathematics - Rational FunctionsGeneral Mathematics - Rational Functions
General Mathematics - Rational FunctionsJuan Miguel Palero
Β 
Exponential functions
Exponential functionsExponential functions
Exponential functionsJessica Garcia
Β 
Solving rational equations
Solving rational equationsSolving rational equations
Solving rational equationschrystal_brinson
Β 
Rational function representation
Rational function representationRational function representation
Rational function representationrey castro
Β 
Exponential functions
Exponential functionsExponential functions
Exponential functionsRon Eick
Β 
Factoring Sum and Difference of Two Cubes
Factoring Sum and Difference of Two CubesFactoring Sum and Difference of Two Cubes
Factoring Sum and Difference of Two CubesFree Math Powerpoints
Β 
Mean, variance, and standard deviation of a Discrete Random Variable
Mean, variance, and standard deviation of a Discrete Random VariableMean, variance, and standard deviation of a Discrete Random Variable
Mean, variance, and standard deviation of a Discrete Random VariableMichael Ogoy
Β 
Lesson 2: Limits and Limit Laws
Lesson 2: Limits and Limit LawsLesson 2: Limits and Limit Laws
Lesson 2: Limits and Limit LawsMatthew Leingang
Β 
Simplifying Rational Algebraic Expressions
Simplifying Rational Algebraic ExpressionsSimplifying Rational Algebraic Expressions
Simplifying Rational Algebraic ExpressionsFree Math Powerpoints
Β 
Illustrating Rational Algebraic Expressions
Illustrating Rational Algebraic ExpressionsIllustrating Rational Algebraic Expressions
Illustrating Rational Algebraic ExpressionsFree Math Powerpoints
Β 
Function Operations
Function OperationsFunction Operations
Function Operationsswartzje
Β 
One-to-one Functions.pptx
One-to-one Functions.pptxOne-to-one Functions.pptx
One-to-one Functions.pptxDianeKrisBaniaga1
Β 
Solving rational inequalities
Solving rational inequalitiesSolving rational inequalities
Solving rational inequalitiesrey castro
Β 

What's hot (20)

Rational equations
Rational equationsRational equations
Rational equations
Β 
One to-one function (MATH 11)
One to-one function (MATH 11)One to-one function (MATH 11)
One to-one function (MATH 11)
Β 
Quadratic functions
Quadratic functionsQuadratic functions
Quadratic functions
Β 
Evaluating functions basic rules
Evaluating functions   basic rulesEvaluating functions   basic rules
Evaluating functions basic rules
Β 
Evaluating Functions
Evaluating FunctionsEvaluating Functions
Evaluating Functions
Β 
General Mathematics - Rational Functions
General Mathematics - Rational FunctionsGeneral Mathematics - Rational Functions
General Mathematics - Rational Functions
Β 
Exponential functions
Exponential functionsExponential functions
Exponential functions
Β 
Solving rational equations
Solving rational equationsSolving rational equations
Solving rational equations
Β 
Rational function representation
Rational function representationRational function representation
Rational function representation
Β 
Lesson 3 Operation on Functions
Lesson 3 Operation on FunctionsLesson 3 Operation on Functions
Lesson 3 Operation on Functions
Β 
Exponential functions
Exponential functionsExponential functions
Exponential functions
Β 
Factoring Sum and Difference of Two Cubes
Factoring Sum and Difference of Two CubesFactoring Sum and Difference of Two Cubes
Factoring Sum and Difference of Two Cubes
Β 
Mean, variance, and standard deviation of a Discrete Random Variable
Mean, variance, and standard deviation of a Discrete Random VariableMean, variance, and standard deviation of a Discrete Random Variable
Mean, variance, and standard deviation of a Discrete Random Variable
Β 
Lesson 2: Limits and Limit Laws
Lesson 2: Limits and Limit LawsLesson 2: Limits and Limit Laws
Lesson 2: Limits and Limit Laws
Β 
Simplifying Rational Algebraic Expressions
Simplifying Rational Algebraic ExpressionsSimplifying Rational Algebraic Expressions
Simplifying Rational Algebraic Expressions
Β 
Illustrating Rational Algebraic Expressions
Illustrating Rational Algebraic ExpressionsIllustrating Rational Algebraic Expressions
Illustrating Rational Algebraic Expressions
Β 
Piecewise functions
Piecewise functions Piecewise functions
Piecewise functions
Β 
Function Operations
Function OperationsFunction Operations
Function Operations
Β 
One-to-one Functions.pptx
One-to-one Functions.pptxOne-to-one Functions.pptx
One-to-one Functions.pptx
Β 
Solving rational inequalities
Solving rational inequalitiesSolving rational inequalities
Solving rational inequalities
Β 

Similar to Domain-Range-Intercepts-Zeros-and-Asymptotes-of-Rational-Function.pptx

Rational function 11
Rational function 11Rational function 11
Rational function 11AjayQuines
Β 
WEEK-4-Piecewise-Function-and-Rational-Function.pptx
WEEK-4-Piecewise-Function-and-Rational-Function.pptxWEEK-4-Piecewise-Function-and-Rational-Function.pptx
WEEK-4-Piecewise-Function-and-Rational-Function.pptxExtremelyDarkness2
Β 
Grade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptx
Grade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptxGrade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptx
Grade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptxErlenaMirador1
Β 
Grade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptx
Grade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptxGrade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptx
Grade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptxErlenaMirador1
Β 
Quadratic Functions.pptx
Quadratic Functions.pptxQuadratic Functions.pptx
Quadratic Functions.pptxMeryAnnMAlday
Β 
06_Complex Numbers_Hyperbolic Functions.pptx
06_Complex Numbers_Hyperbolic Functions.pptx06_Complex Numbers_Hyperbolic Functions.pptx
06_Complex Numbers_Hyperbolic Functions.pptx62AniketVishwakarma
Β 
PRODUCT RULES
PRODUCT RULESPRODUCT RULES
PRODUCT RULESNumanUsama
Β 
Rational-Function-W3-4.pptx
Rational-Function-W3-4.pptxRational-Function-W3-4.pptx
Rational-Function-W3-4.pptxMYRABACSAFRA2
Β 
g_9 - L_1 Solving Quadratic Equations.pptx
g_9 - L_1 Solving Quadratic Equations.pptxg_9 - L_1 Solving Quadratic Equations.pptx
g_9 - L_1 Solving Quadratic Equations.pptxMichelleMatriano
Β 
Parts of quadratic function and transforming to general form to vertex form a...
Parts of quadratic function and transforming to general form to vertex form a...Parts of quadratic function and transforming to general form to vertex form a...
Parts of quadratic function and transforming to general form to vertex form a...rowenaCARINO
Β 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine LearningSEMINARGROOT
Β 
Lecture 1.2 quadratic functions
Lecture 1.2 quadratic functionsLecture 1.2 quadratic functions
Lecture 1.2 quadratic functionsnarayana dash
Β 
5.6 Rational Functions
5.6 Rational Functions5.6 Rational Functions
5.6 Rational Functionssmiller5
Β 
Inverse Function.pptx
Inverse Function.pptxInverse Function.pptx
Inverse Function.pptxSerGeo5
Β 
Complex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxComplex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxjyotidighole2
Β 
Changing the subject of a formula (grouping like terms and factorizing)
Changing the subject of a formula (grouping like terms and factorizing)Changing the subject of a formula (grouping like terms and factorizing)
Changing the subject of a formula (grouping like terms and factorizing)Alona Hall
Β 

Similar to Domain-Range-Intercepts-Zeros-and-Asymptotes-of-Rational-Function.pptx (20)

Rational function 11
Rational function 11Rational function 11
Rational function 11
Β 
WEEK-4-Piecewise-Function-and-Rational-Function.pptx
WEEK-4-Piecewise-Function-and-Rational-Function.pptxWEEK-4-Piecewise-Function-and-Rational-Function.pptx
WEEK-4-Piecewise-Function-and-Rational-Function.pptx
Β 
Grade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptx
Grade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptxGrade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptx
Grade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptx
Β 
Grade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptx
Grade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptxGrade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptx
Grade 10_Math-Lesson 2-3 Graphs of Polynomial Functions .pptx
Β 
Quadratic Functions.pptx
Quadratic Functions.pptxQuadratic Functions.pptx
Quadratic Functions.pptx
Β 
06_Complex Numbers_Hyperbolic Functions.pptx
06_Complex Numbers_Hyperbolic Functions.pptx06_Complex Numbers_Hyperbolic Functions.pptx
06_Complex Numbers_Hyperbolic Functions.pptx
Β 
PRODUCT RULES
PRODUCT RULESPRODUCT RULES
PRODUCT RULES
Β 
Rational-Function-W3-4.pptx
Rational-Function-W3-4.pptxRational-Function-W3-4.pptx
Rational-Function-W3-4.pptx
Β 
Regression.pptx
Regression.pptxRegression.pptx
Regression.pptx
Β 
g_9 - L_1 Solving Quadratic Equations.pptx
g_9 - L_1 Solving Quadratic Equations.pptxg_9 - L_1 Solving Quadratic Equations.pptx
g_9 - L_1 Solving Quadratic Equations.pptx
Β 
Parts of quadratic function and transforming to general form to vertex form a...
Parts of quadratic function and transforming to general form to vertex form a...Parts of quadratic function and transforming to general form to vertex form a...
Parts of quadratic function and transforming to general form to vertex form a...
Β 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine Learning
Β 
Lecture 1.2 quadratic functions
Lecture 1.2 quadratic functionsLecture 1.2 quadratic functions
Lecture 1.2 quadratic functions
Β 
5.6 Rational Functions
5.6 Rational Functions5.6 Rational Functions
5.6 Rational Functions
Β 
probablity
 probablity probablity
probablity
Β 
Vektor part 2
Vektor part 2Vektor part 2
Vektor part 2
Β 
Inverse Function.pptx
Inverse Function.pptxInverse Function.pptx
Inverse Function.pptx
Β 
Complex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxComplex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptx
Β 
Changing the subject of a formula (grouping like terms and factorizing)
Changing the subject of a formula (grouping like terms and factorizing)Changing the subject of a formula (grouping like terms and factorizing)
Changing the subject of a formula (grouping like terms and factorizing)
Β 
Basic calculus (i)
Basic calculus (i)Basic calculus (i)
Basic calculus (i)
Β 

Recently uploaded

ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
Β 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
Β 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
Β 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
Β 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
Β 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
Β 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
Β 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
Β 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
Β 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
Β 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
Β 
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈcall girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ9953056974 Low Rate Call Girls In Saket, Delhi NCR
Β 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
Β 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
Β 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
Β 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
Β 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
Β 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
Β 

Recently uploaded (20)

ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
Β 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
Β 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
Β 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
Β 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
Β 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
Β 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
Β 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
Β 
Model Call Girl in Bikash Puri Delhi reach out to us at πŸ”9953056974πŸ”
Model Call Girl in Bikash Puri  Delhi reach out to us at πŸ”9953056974πŸ”Model Call Girl in Bikash Puri  Delhi reach out to us at πŸ”9953056974πŸ”
Model Call Girl in Bikash Puri Delhi reach out to us at πŸ”9953056974πŸ”
Β 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
Β 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
Β 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
Β 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
Β 
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈcall girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ
Β 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Β 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
Β 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
Β 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
Β 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
Β 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Β 

Domain-Range-Intercepts-Zeros-and-Asymptotes-of-Rational-Function.pptx

  • 1. Domain, Range, Zeros, Intercepts and Asymptotes of Rational Function
  • 2. Objectives: οƒ˜find the domain, range, zeroes and intercepts of rational functions οƒ˜determine the vertical and horizontal asymptotes of rational function.
  • 3. οƒ˜ The domain of a rational function 𝑓 π‘₯ = 𝑁(π‘₯) 𝐷(π‘₯) is all the values of that π‘₯ will not make 𝐷(π‘₯) equal to zero. οƒ˜ To find the range of rational function is by finding the domain of the inverse function. οƒ˜ Another way to find the range of rational function is to find the value of horizontal asymptote. Domain and Range of Rational Function
  • 4.
  • 5. 𝒇 𝒙 = 𝟐 𝒙 βˆ’ πŸ‘ EXAMPLE 1:
  • 6. 𝒇 𝒙 = 𝟐 𝒙 βˆ’ πŸ‘ 𝒙 βˆ’ πŸ‘ = 𝟎 Focus on the denominator The domain of 𝒇(𝒙) is the set of all real numbers except πŸ‘. EXAMPLE 1: 𝒙 = πŸ‘ To find the domain: 𝑫: 𝒙 𝒙 ∈ ℝ, 𝒙 β‰  πŸ‘
  • 7. 𝒇 𝒙 = 𝟐 𝒙 βˆ’ πŸ‘ οƒΌ Change 𝑓(π‘₯) into y EXAMPLE 1: To find the range: π’š = 𝟐 𝒙 βˆ’ πŸ‘ οƒΌ Interchange the position of x and y 𝒙 = 𝟐 π’š βˆ’ πŸ‘ οƒΌ Simplify the rational expression 𝒙 π’š βˆ’ πŸ‘ = 𝟐 π’™π’š βˆ’ πŸ‘π’™ = 𝟐 οƒΌ Solve for y in terms of x π’™π’š = 𝟐 + πŸ‘π’™ π’™π’š 𝒙 = 𝟐 + πŸ‘π’™ 𝒙 π’š = 𝟐 + πŸ‘π’™ 𝒙 οƒΌ Equate the denominator to 0. 𝒙 = 𝟎 The range of 𝒇(𝒙) is the set of all real numbers except 𝟎. 𝑹: π’š π’š ∈ ℝ, π’š β‰  𝟎
  • 8. 𝒇 𝒙 = 𝒙 βˆ’ πŸ“ 𝒙 + 𝟐 EXAMPLE 2:
  • 9. 𝒇 𝒙 = 𝒙 βˆ’ πŸ“ 𝒙 + 𝟐 𝒙 + 𝟐 = 𝟎 Focus on the denominator The domain of 𝒇(𝒙) is the set of all real numbers except βˆ’πŸ. EXAMPLE 2: 𝒙 = βˆ’πŸ To find the domain: 𝑫: 𝒙 𝒙 ∈ ℝ, 𝒙 β‰  βˆ’πŸ
  • 10. 𝒇 𝒙 = 𝒙 βˆ’ πŸ“ 𝒙 + 𝟐 οƒΌ Change 𝑓(π‘₯) into y EXAMPLE 2: To find the range: π’š = 𝒙 βˆ’ πŸ“ 𝒙 + 𝟐 οƒΌ Interchange the position of x and y 𝒙 = π’š βˆ’ πŸ“ π’š + 𝟐 οƒΌ Simplify the rational expression 𝒙 π’š + 𝟐 = π’š βˆ’ πŸ“ π’™π’š + πŸπ’™ = π’š βˆ’ πŸ“ οƒΌ Solve for y in terms of x π’™π’š βˆ’ π’š = βˆ’πŸ“ βˆ’ πŸπ’™ π’š(𝒙 βˆ’ 𝟏) 𝒙 βˆ’ 𝟏 = βˆ’πŸ“ βˆ’ πŸπ’™ 𝒙 βˆ’ 𝟏 π’š = βˆ’πŸ“ βˆ’ πŸπ’™ 𝒙 βˆ’ 𝟏 οƒΌ Equate the denominator to 0. 𝒙 βˆ’ 𝟏 = 𝟎 The range of 𝒇(𝒙) is the set of all real numbers except 𝟏. 𝑹: π’š π’š ∈ ℝ, π’š β‰  𝟏 π’š(𝒙 βˆ’ 𝟏) = βˆ’πŸ“ βˆ’ πŸπ’™ 𝒙 = 𝟏
  • 11. 𝒇 𝒙 = πŸ• + 𝒙 πŸπ’™ βˆ’ πŸ” EXAMPLE 3:
  • 12. 𝒇 𝒙 = πŸ• + 𝒙 πŸπ’™ βˆ’ πŸ” πŸπ’™ βˆ’ πŸ” = 𝟎 Focus on the denominator The domain of 𝒇(𝒙) is the set of all real numbers except πŸ‘. EXAMPLE 3: πŸπ’™ = πŸ” To find the domain: 𝑫: 𝒙 𝒙 ∈ ℝ, 𝒙 β‰  πŸ‘ 𝒙 = πŸ‘
  • 13. 𝒇 𝒙 = πŸ• + 𝒙 πŸπ’™ βˆ’ πŸ” οƒΌ Change 𝑓(π‘₯) into y EXAMPLE 3: To find the range: π’š = πŸ• + 𝒙 πŸπ’™ βˆ’ πŸ” οƒΌ Interchange the position of x and y 𝒙 = πŸ• + π’š πŸπ’š βˆ’ πŸ” οƒΌ Simplify the rational expression 𝒙 πŸπ’š βˆ’ πŸ” = πŸ• + π’š 2π’™π’š βˆ’ πŸ”π’™ = πŸ• + π’š οƒΌ Solve for y in terms of x πŸπ’™π’š βˆ’ π’š = πŸ• + πŸ”π’™ π’š(πŸπ’™ βˆ’ 𝟏) πŸπ’™ βˆ’ 𝟏 = πŸ• + πŸ”π’™ πŸπ’™ βˆ’ 𝟏 π’š = βˆ’πŸ• + πŸ”π’™ πŸπ’™ βˆ’ 𝟏 οƒΌ Equate the denominator to 0. πŸπ’™ βˆ’ 𝟏 = 𝟎 The range of 𝒇(𝒙) is the set of all real numbers except 𝟏 𝟐 . 𝑹: π’š π’š ∈ ℝ, π’š β‰  𝟏 𝟐 π’š πŸπ’™ βˆ’ 𝟏 = πŸ• + πŸ”π’™ πŸπ’™ = 𝟏 𝒙 = 𝟏 𝟐
  • 15. They are the restrictions on the x – values of a reduced rational function. To find the restrictions, equate the denominator to 0 and solve for x. Finding the Vertical Asymptotes of Rational Functions
  • 16. Let n be the degree of the numerator and m be the degree of denominator: β€’ If 𝒏 < π’Ž, π’š = 𝟎. β€’ If 𝒏 = π’Ž, π’š = 𝒂 𝒃 , where 𝒂 is the leading coefficient of the numerator and 𝒃 is the leading coefficient of the denominator. β€’ If 𝒏 > π’Ž , there is no horizontal asymptote. Finding the Horizontal Asymptotes of Rational Functions
  • 17. Find the Degree of Polynomial. πŸ“π’™ 𝟏 π‘«π’†π’ˆπ’“π’†π’† 𝒙 βˆ’ πŸ’ 𝟏 πŸπ’™πŸ‘ βˆ’ 𝒙 βˆ’ πŸ’ πŸ‘
  • 18. Find the Degree of Polynomial. π’™πŸ βˆ’ πŸπ’™πŸ“ βˆ’ 𝒙 πŸ“ π‘«π’†π’ˆπ’“π’†π’† π’šπŸ βˆ’ π’š + 𝟏 𝟐 πŸ— + πŸπ’™ βˆ’ π’™πŸ‘ πŸ‘
  • 19.
  • 20. EXAMPLE 1: 𝒇 𝒙 = πŸ‘ 𝒙 βˆ’ πŸ“
  • 21. 𝒇 𝒙 = πŸ‘ 𝒙 βˆ’ πŸ“ To find the vertical asymptote: 𝒙 βˆ’ πŸ“ = 𝟎 𝒙 = πŸ“ Focus on the denominator The vertical asymptote is 𝒙 = πŸ“. EXAMPLE 1:
  • 22. 𝒇 𝒙 = πŸ‘ 𝒙 βˆ’ πŸ“ To find the horizontal asymptote: 𝒏 < π’Ž Focus on the degree of the numerator and denominator The horizontal asymptote is π’š = 𝟎. 0 1 EXAMPLE 1:
  • 23. 𝒇 𝒙 = πŸ’π’™ βˆ’ 𝟐 𝒙 + 𝟐 EXAMPLE 2:
  • 24. 𝒇 𝒙 = πŸ’π’™ βˆ’ 𝟐 𝒙 + 𝟐 To find the vertical asymptote: 𝒙 + 𝟐 = 𝟎 𝒙 = βˆ’πŸ Focus on the denominator The vertical asymptote is 𝒙 = βˆ’πŸ. EXAMPLE 2:
  • 25. 𝒇 𝒙 = πŸ’π’™ βˆ’ 𝟐 𝒙 + 𝟐 To find the horizontal asymptote: 𝒏 = π’Ž Focus on the degree of the numerator and denominator The horizontal asymptote is π’š = πŸ’. 1 1 EXAMPLE 2: π’š = 𝒂 𝒃 = πŸ’ 𝟏 = πŸ’ a is the leading coefficient of 4x b is the leading coefficient of x
  • 26. 𝒇 𝒙 = πŸ‘π’™ + πŸ’ πŸπ’™πŸ + πŸ‘π’™ + 𝟏 EXAMPLE 3:
  • 27. 𝒇 𝒙 = πŸ‘π’™ + πŸ’ πŸπ’™πŸ + πŸ‘π’™ + 𝟏 To find the vertical asymptote: πŸπ’™πŸ + πŸ‘π’™ + 𝟏 = 𝟎 Focus on the denominator The vertical asymptote are 𝒙 = βˆ’ 𝟏 𝟐 and 𝒙 = βˆ’πŸ. EXAMPLE 3: πŸπ’™ + 𝟏 𝒙 + 𝟏 = 𝟎 πŸπ’™ + 𝟏 = 𝟎 𝒙 + 𝟏 = 𝟎 πŸπ’™ = βˆ’πŸ 𝒙 = βˆ’ 𝟏 𝟐 𝒙 = βˆ’πŸ
  • 28. 1 2 EXAMPLE 3: 𝒇 𝒙 = πŸ‘π’™ + πŸ’ πŸπ’™πŸ + πŸ‘π’™ + 𝟏 To find the horizontal asymptote: 𝒏 < π’Ž Focus on the degree of the numerator and denominator The horizontal asymptote is π’š = 𝟎.
  • 29. 𝒇 𝒙 = πŸ’π’™πŸ‘ βˆ’ 𝟏 π’™πŸ + πŸ’π’™ βˆ’ πŸ“ EXAMPLE 4:
  • 30. 𝒇 𝒙 = πŸ’π’™πŸ‘ βˆ’ 𝟏 π’™πŸ + πŸ’π’™ βˆ’ πŸ“ To find the vertical asymptote: π’™πŸ + πŸπ’™ βˆ’ πŸ“ = 𝟎 Focus on the denominator The vertical asymptote are 𝒙 = βˆ’πŸ“ and 𝒙 = 𝟏. EXAMPLE 4: 𝒙 + πŸ“ 𝒙 βˆ’ 𝟏 = 𝟎 𝒙 + πŸ“ = 𝟎 𝒙 βˆ’ 𝟏 = 𝟎 𝒙 = βˆ’πŸ“ 𝒙 = 𝟏 𝒙 = βˆ’πŸ“
  • 31. 3 2 EXAMPLE 4: To find the horizontal asymptote: 𝒏 > π’Ž Focus on the degree of the numerator and denominator The rational function has no horizontal asymptote. 𝒇 𝒙 = πŸ’π’™πŸ‘ βˆ’ 𝟏 π’™πŸ + πŸ’π’™ βˆ’ πŸ“
  • 33. Finding the Zeros of Rational Functions Steps: 1. Factor the numerator and denominator. 2. Identify the restrictions. 3. Identify the values of x that make the numerator equal to zero. 4. Identify the zero of f(x).
  • 34.
  • 35. 𝒇 𝒙 = π’™πŸ βˆ’ πŸ’π’™ 𝒙 + 𝟏 EXAMPLE 1:
  • 36. 𝒇 𝒙 = π’™πŸ βˆ’ πŸ’π’™ 𝒙 + 𝟏 οƒΌ Factor the numerator and denominator EXAMPLE 1: 𝒇(𝒙) = 𝒙(𝒙 βˆ’ πŸ’) 𝒙 + 𝟏 οƒΌ Identify the restrictions. 𝒙 + 𝟏 = 𝟎 𝒙 = βˆ’πŸ οƒΌ Identify the values of x that will make the numerator equal to zero. 𝒙 𝒙 βˆ’ πŸ’ = 𝟎 𝒙 = 𝟎 𝒙 βˆ’ πŸ’ = 𝟎 𝒙 = πŸ’ οƒΌ Identify the zeroes of f(x). 𝒙 = 𝟎 𝒙 = πŸ’
  • 37. 𝒇 𝒙 = (𝒙 βˆ’ πŸ’)(𝒙 + 𝟐) (𝒙 βˆ’ πŸ‘)(𝒙 βˆ’ 𝟏) EXAMPLE 2:
  • 38. οƒΌ Factor the numerator and denominator EXAMPLE 2: 𝒇(𝒙) = (𝒙 βˆ’ πŸ’)(𝒙 + 𝟐) (𝒙 βˆ’ πŸ‘)(𝒙 βˆ’ 𝟏) οƒΌ Identify the restrictions. 𝒙 βˆ’ πŸ‘ 𝒙 βˆ’ 𝟏 = 𝟎 𝒙 βˆ’ πŸ‘ = 𝟎 οƒΌ Identify the values of x that will make the numerator equal to zero. 𝒙 βˆ’ πŸ’ 𝒙 + 𝟐 = 𝟎 𝒙 βˆ’ πŸ’ = 𝟎 𝒙 + 𝟐 = 𝟎 𝒙 = βˆ’πŸ οƒΌ Identify the zeroes of f(x). 𝒙 = πŸ’ 𝒙 = βˆ’πŸ 𝒇 𝒙 = (𝒙 βˆ’ πŸ’)(𝒙 + 𝟐) (𝒙 βˆ’ πŸ‘)(𝒙 βˆ’ 𝟏) 𝒙 = πŸ‘ 𝒙 βˆ’ 𝟏 = 𝟎 𝒙 = 𝟏 𝒙 = πŸ’
  • 39. 𝒇 𝒙 = π’™πŸ + πŸ“π’™ + πŸ’ π’™πŸ βˆ’ πŸπ’™ βˆ’ πŸ‘ EXAMPLE 3:
  • 40. οƒΌ Factor the numerator and denominator EXAMPLE 3: 𝒇(𝒙) = (𝒙 + 𝟏)(𝒙 + πŸ’) (𝒙 βˆ’ πŸ‘)(𝒙 + 𝟏) οƒΌ Identify the restrictions. 𝒙 βˆ’ πŸ‘ 𝒙 + 𝟏 = 𝟎 𝒙 βˆ’ πŸ‘ = 𝟎 οƒΌ Identify the values of x that will make the numerator equal to zero. 𝒙 + 𝟏 𝒙 + πŸ’ = 𝟎 𝒙 + 𝟏 = 𝟎 𝒙 + πŸ’ = 𝟎 𝒙 = βˆ’πŸ’ οƒΌ Identify the zeroes of f(x). 𝒙 = βˆ’πŸ’ 𝒙 = πŸ‘ 𝒙 + 𝟏 = 𝟎 𝒙 = βˆ’πŸ 𝒙 = βˆ’πŸ 𝒇 𝒙 = π’™πŸ + πŸ“π’™ + πŸ’ π’™πŸ βˆ’ πŸπ’™ βˆ’ πŸ‘
  • 42. οƒ˜ Intercepts are x and y – coordinates of the points at which a graph crosses the x-axis or y-axis, respectively. οƒ˜ y-intercept is the y-coordinate of the point where the graph crosses the y- axis. οƒ˜ x-intercept is the x-coordinate of the point where the graph crosses the x- axis. Note: Not all rational functions have both x and y intercepts. If the rational function has no real solution, then it does not have intercepts.
  • 43. Rule to find the Intercepts 1) To find the y-intercept, substitute 0 for x and solve for y or f(x). 2) To find the x-intercept, substitute 0 for y and solve for x.
  • 44.
  • 45. 𝒇 𝒙 = 𝒙 + πŸ’ 𝒙 βˆ’ 𝟐 EXAMPLE 1:
  • 46. 𝒇 𝒙 = 𝒙 + πŸ’ 𝒙 βˆ’ 𝟐 EXAMPLE 1: y - intercept 𝒇(𝒙) = 𝒙 + πŸ’ 𝒙 βˆ’ 𝟐 𝒙 = 𝟎 𝒇(𝒙) = 𝟎 + πŸ’ 𝟎 βˆ’ 𝟐 𝒇(𝒙) = πŸ’ βˆ’πŸ 𝒇(𝒙) = βˆ’πŸ x - intercept 𝒇(𝒙) = 𝒙 + πŸ’ 𝒙 βˆ’ 𝟐 π’š = 𝟎 𝟎 = 𝒙 + πŸ’ 𝒙 βˆ’ 𝟐 𝟎 𝒙 βˆ’ 𝟐 = 𝒙 + πŸ’ 𝟎 = 𝒙 + πŸ’ βˆ’πŸ’ = 𝒙
  • 47. 𝒇 𝒙 = π’™πŸ + πŸ“π’™ + πŸ’ π’™πŸ βˆ’ πŸπ’™ βˆ’ πŸ‘ EXAMPLE 2:
  • 48. EXAMPLE 1: y - intercept 𝒙 = 𝟎 𝒇 𝒙 = 𝟎 + πŸ’ 𝟎 βˆ’ πŸ‘ x - intercept π’š = 𝟎 𝟎 = 𝒙 + πŸ’ βˆ’πŸ’ = 𝒙 𝒇 𝒙 = π’™πŸ + πŸ“π’™ + πŸ’ π’™πŸ βˆ’ πŸπ’™ βˆ’ πŸ‘ 𝒇 𝒙 = (𝒙 + 𝟏)(𝒙 + πŸ’) (𝒙 + 𝟏)(𝒙 βˆ’ πŸ‘) 𝒇 𝒙 = 𝒙 + πŸ’ 𝒙 βˆ’ πŸ‘ 𝒇 𝒙 = βˆ’ πŸ’ πŸ‘ 𝒇 𝒙 = 𝒙 + πŸ’ 𝒙 βˆ’ πŸ‘ 𝟎 = 𝒙 + πŸ’ 𝒙 βˆ’ πŸ‘ 𝟎(𝒙 βˆ’ πŸ‘) = 𝒙 + πŸ’
  • 49.
  • 50. Find each of the following: a) Intercepts 1)𝑓 π‘₯ = π‘₯ π‘₯+4 2) 𝑓 π‘₯ = π‘₯ βˆ’7 π‘₯ βˆ’5 3) 𝑓 π‘₯ = π‘₯2βˆ’5π‘₯βˆ’14 π‘₯2βˆ’4