SlideShare a Scribd company logo
1 of 67
Carbohydrate
 Classification
1. Numbers
2. Location of carbonyl group
3. Number of carbon atoms
4. Configuration
5. Reactivity
 Common hexoses
1. Aldoses
2. Ketoses
 Stereochemistry
1. Chirality
2. Enantio mers
3. D- & L-sugars
4. Physical properties
5. Fisher projections
6. Haworth formulae
7. Stereo projections
8. Chair presentations
 Conformation
1. Intramolecular cyclization
2. Anomer
3. Mutarotation
4. Furanose & pyranose
 Some important
monosaccharide
1. D-glyceraldehyde
2. D-glucose
3. D-fructose
4. D-galactose
5. D-ribose
 Disaccharide
1. Glycosidic bond
2. Disaccharide
 Oligosaccharide
 Polysaccharide
Carbohydrate
Carbohydrate Can Be Divided
up Into 3 Groups
¶ Sugar
Glucose + Sucrose
· Starch
¸ Cellulose
Why do we need
carbohydrate?
Carbohydrate
Compounds contain C, H, O with
general formula of Cm(H2O)n
All have C=O and -OH functional groups
Classified based on
Size of base carbon chain
Number of sugar unit
Location of C=O group
Stereochemistry
Types of Carbohydrates
Classification based on the number of sugar units
in the total chain
Monosachcarides Single sugar unit
Disaccharides Two sugar units
Trisachcarides Three sugar units
Oligosaccharides up to 10/13/ sugar units
Polysaccharides > 13 sugar units
Chaining relies on the glycosidic bonds
Fischer Projections
• Used to represent carbohydrates (chiral carbons)
• Places the most oxidized group at the top (C1)
• Uses horizontal lines for bonds that come forward
• Uses vertical lines for bonds that go back
D and L Notations
• By convention, the letter L is assigned to the
structure with the —OH on the left
• The letter D is assigned to the structure with —OH
on the right
D and L Monosaccharides
• Stereochemistry determined by the asymmetric center
farthest from the carbonyl group
• Most monosaccharides found in living organisms are D
D
D L
Aldose
Ketone Sugars
Ketones are not easy to oxidize except for ketoses
Enediol reaction -- All monosaccharides are reducing sugars
CHO
OH
H
H
HO
OH
H
OH
H
CH2OH
OH
H
HO
OH
H
OH
H
CH2OH
OH
O
H
HO
OH
H
OH
H
CH2OH
OH
Aldose Ketose
cis-enediol
intermediate
Ketose
Pure Fruits Sweetly Taste
Conformation
Intramolecular cyclization
Anomer
Mutaroation
Furanose & pyranose
Cyclization of D-glucose
b-D-glucose
a-D-glucose
CHO
OH
H
H
HO
OH
H
OH
H
CH2OH
O
HO
HO
OH
OH
OH
O
HO
HO
OH
OH
OH
C
OH
OH
OH
OH
CH2OH
O
H
OH
O
H
HO
HO
OH
OH
a
b
OH
H
HO
OH
O
H
HO
HO
O
HO
OH
OH
H
OH
OH
a
b
Intramolecular Cyclization
Chain can bend and rotate
Fisher Projections
Haworth Formulae
Stereo Projections
Chair Presentations
OH
O
OH
O
H
OH
OH
Aldose
(Glucose)
OH
OH
O
H
OH
OH
OH
OH
O
OH
O
H
OH
OH
O
OH
O
OH
O
H
OH
OH
O
H
O
OH
O
OH
O
H
OH
OH
O
H
Alditol
(Glucitol)
Aldouronic Acid
(Glucuronic Acid)
Aldaric Acid
(Glucaric Acid)
Aldonic Acid
(Gluconic Acid)
[H]
[O] C- 1 and C- 6
[O] C- 6
[O] C- 1
Pyranose: Chair, Boat, Half-chair, Skew.
O
1
2
3
4 5
4
C1
O
4 5
3 2 1
4
C1
O
1
2
3
4
5
1
C4
O
1
2
3
4
5
1,4
B
Furanose: Envelope, Twist.
O
1
E
O
1
T
O
O
COMPLICATION OF CARBOHYDRATE
1. Number of Carbon Atoms
2. The Location of Carbonyl Group
3. The Configuration of Sugar (D or L)
4. The Size of Ring (5, 6 or 7)
5. The Configuration at Position 1 (a or b)
6. The Connectivity between Sugar Units
7. Derivatives (oxidation, reduction, deoxy, various group)
CARBOHYDRATE ISOMERS
Combination of
Individual Units
Number of
Carbohydrates
Two identical units,
A-A dimer
11
Three identical
units, A-A-A trimer
176
Three different units,
A-B-C trimer
1,056
Five different units,
A-B-C-D-E
pentamer
2,144,640
Starch
Energy storage used by plant
Long repeating chain of a-D-glucose
Chain up to 4000 units
Amylose
Straight chain
Amylopectin
Branched structure
Major part of starch
Great for making gravy, jam & jelly
Starch
can be found
Pasta, Rice , Potatos
Bread
Too much …..
Carbohydrate will be converted
into fat and stored under the
skin leading to weight gain!

More Related Content

What's hot

Physiological buffers new
Physiological buffers  newPhysiological buffers  new
Physiological buffers newMary Theresa
 
Lipids properties, classification, function
Lipids  properties, classification, functionLipids  properties, classification, function
Lipids properties, classification, functionPraveen Garg
 
HMP SHUNT PATHWAY
HMP SHUNT PATHWAYHMP SHUNT PATHWAY
HMP SHUNT PATHWAYYESANNA
 
De novo and salvage pathway of nucleotides synthesis.pptx
De novo and salvage pathway of nucleotides synthesis.pptxDe novo and salvage pathway of nucleotides synthesis.pptx
De novo and salvage pathway of nucleotides synthesis.pptx✨M.A kawish Ⓜ️
 
Classification of Protein by different mode.
Classification of Protein by different mode.Classification of Protein by different mode.
Classification of Protein by different mode.Dr-Jitendra Patel
 
Fatty acids and triglycerides
Fatty acids and triglyceridesFatty acids and triglycerides
Fatty acids and triglyceridesNur Fatihah
 
Determination of primary structure of proteins
Determination of primary structure of proteinsDetermination of primary structure of proteins
Determination of primary structure of proteinsPradeep Singh Narwat
 
Glycosaminoglycans
GlycosaminoglycansGlycosaminoglycans
GlycosaminoglycansAstha Goyal
 
Amino acids and proteins
Amino acids and proteinsAmino acids and proteins
Amino acids and proteinsSurender Rawat
 
Citric Acid Cycle
Citric Acid CycleCitric Acid Cycle
Citric Acid CycleAshok Katta
 
Disorders of carbohydrate metabolism
Disorders of carbohydrate metabolismDisorders of carbohydrate metabolism
Disorders of carbohydrate metabolismBiochemistrySGRDIMSAR
 
Enzymes definitions, types & classification
Enzymes   definitions, types & classificationEnzymes   definitions, types & classification
Enzymes definitions, types & classificationJasmineJuliet
 
Tests for proteins - Biochemistry lab
Tests for proteins - Biochemistry labTests for proteins - Biochemistry lab
Tests for proteins - Biochemistry labBryar Ali Rus
 

What's hot (20)

Physiological buffers new
Physiological buffers  newPhysiological buffers  new
Physiological buffers new
 
Coagulation factors
Coagulation factorsCoagulation factors
Coagulation factors
 
Lipids properties, classification, function
Lipids  properties, classification, functionLipids  properties, classification, function
Lipids properties, classification, function
 
HMP SHUNT PATHWAY
HMP SHUNT PATHWAYHMP SHUNT PATHWAY
HMP SHUNT PATHWAY
 
Polysaccharides
PolysaccharidesPolysaccharides
Polysaccharides
 
De novo and salvage pathway of nucleotides synthesis.pptx
De novo and salvage pathway of nucleotides synthesis.pptxDe novo and salvage pathway of nucleotides synthesis.pptx
De novo and salvage pathway of nucleotides synthesis.pptx
 
Classification of Protein by different mode.
Classification of Protein by different mode.Classification of Protein by different mode.
Classification of Protein by different mode.
 
Proteins basics
Proteins basicsProteins basics
Proteins basics
 
Fatty acids and triglycerides
Fatty acids and triglyceridesFatty acids and triglycerides
Fatty acids and triglycerides
 
Metabolism protein
Metabolism proteinMetabolism protein
Metabolism protein
 
Nucleotide
NucleotideNucleotide
Nucleotide
 
Determination of primary structure of proteins
Determination of primary structure of proteinsDetermination of primary structure of proteins
Determination of primary structure of proteins
 
Glycosaminoglycans
GlycosaminoglycansGlycosaminoglycans
Glycosaminoglycans
 
Amino acids and proteins
Amino acids and proteinsAmino acids and proteins
Amino acids and proteins
 
Proteins (2)
Proteins (2)Proteins (2)
Proteins (2)
 
Citric Acid Cycle
Citric Acid CycleCitric Acid Cycle
Citric Acid Cycle
 
Disorders of carbohydrate metabolism
Disorders of carbohydrate metabolismDisorders of carbohydrate metabolism
Disorders of carbohydrate metabolism
 
Enzymes definitions, types & classification
Enzymes   definitions, types & classificationEnzymes   definitions, types & classification
Enzymes definitions, types & classification
 
Electrophoresis
ElectrophoresisElectrophoresis
Electrophoresis
 
Tests for proteins - Biochemistry lab
Tests for proteins - Biochemistry labTests for proteins - Biochemistry lab
Tests for proteins - Biochemistry lab
 

Similar to carbohydrates.ppt

Intro to cho and monosaccharides
Intro to cho and monosaccharidesIntro to cho and monosaccharides
Intro to cho and monosaccharidesDr. Khuram Aziz
 
Carbohydrate property, classification and function
Carbohydrate  property, classification and functionCarbohydrate  property, classification and function
Carbohydrate property, classification and functionPraveen Garg
 
2. CARBOHYDRATES.pptx
2. CARBOHYDRATES.pptx2. CARBOHYDRATES.pptx
2. CARBOHYDRATES.pptx2232696
 
13 lecture in medical chemistry.ppjhgjkvgjvgt
13 lecture in medical chemistry.ppjhgjkvgjvgt13 lecture in medical chemistry.ppjhgjkvgjvgt
13 lecture in medical chemistry.ppjhgjkvgjvgtSriRam071
 
Carbohydrates introduction, classification and properties
Carbohydrates introduction, classification and properties  Carbohydrates introduction, classification and properties
Carbohydrates introduction, classification and properties sowmiyaduraisamy
 
carbohydrate chemistry BOT.pptx
carbohydrate chemistry BOT.pptxcarbohydrate chemistry BOT.pptx
carbohydrate chemistry BOT.pptxSangeeta Khyalia
 
د.مصطفى طه محمد (Carbohydrates) الكاربوهيدرات
 د.مصطفى طه محمد (Carbohydrates) الكاربوهيدرات    د.مصطفى طه محمد (Carbohydrates) الكاربوهيدرات
د.مصطفى طه محمد (Carbohydrates) الكاربوهيدرات Mustafa Taha mohammed
 
BRIEF EXPLANATION OF CARBOHYDRATE
BRIEF EXPLANATION OF CARBOHYDRATEBRIEF EXPLANATION OF CARBOHYDRATE
BRIEF EXPLANATION OF CARBOHYDRATEBishnuPatra1
 
Carbohydrates Dr. Shasthree Taduri.pptx
Carbohydrates Dr. Shasthree Taduri.pptxCarbohydrates Dr. Shasthree Taduri.pptx
Carbohydrates Dr. Shasthree Taduri.pptxShastriTaduri
 
chapter 2 carbohydrates.ppt
chapter 2 carbohydrates.pptchapter 2 carbohydrates.ppt
chapter 2 carbohydrates.pptFatima117039
 
carbohydrates Dr. Shasthree Taduri.ppt
carbohydrates Dr. Shasthree Taduri.pptcarbohydrates Dr. Shasthree Taduri.ppt
carbohydrates Dr. Shasthree Taduri.pptShastriTaduri
 

Similar to carbohydrates.ppt (20)

Biomolecules and carbohydrates
Biomolecules and carbohydratesBiomolecules and carbohydrates
Biomolecules and carbohydrates
 
Introduction of biochemistry
Introduction of biochemistryIntroduction of biochemistry
Introduction of biochemistry
 
Intro to cho and monosaccharides
Intro to cho and monosaccharidesIntro to cho and monosaccharides
Intro to cho and monosaccharides
 
Carbohydrate property, classification and function
Carbohydrate  property, classification and functionCarbohydrate  property, classification and function
Carbohydrate property, classification and function
 
2. CARBOHYDRATES.pptx
2. CARBOHYDRATES.pptx2. CARBOHYDRATES.pptx
2. CARBOHYDRATES.pptx
 
13 lecture in medical chemistry.ppjhgjkvgjvgt
13 lecture in medical chemistry.ppjhgjkvgjvgt13 lecture in medical chemistry.ppjhgjkvgjvgt
13 lecture in medical chemistry.ppjhgjkvgjvgt
 
Carbohydrates introduction, classification and properties
Carbohydrates introduction, classification and properties  Carbohydrates introduction, classification and properties
Carbohydrates introduction, classification and properties
 
carbohydrate chemistry BOT.pptx
carbohydrate chemistry BOT.pptxcarbohydrate chemistry BOT.pptx
carbohydrate chemistry BOT.pptx
 
د.مصطفى طه محمد (Carbohydrates) الكاربوهيدرات
 د.مصطفى طه محمد (Carbohydrates) الكاربوهيدرات    د.مصطفى طه محمد (Carbohydrates) الكاربوهيدرات
د.مصطفى طه محمد (Carbohydrates) الكاربوهيدرات
 
BRIEF EXPLANATION OF CARBOHYDRATE
BRIEF EXPLANATION OF CARBOHYDRATEBRIEF EXPLANATION OF CARBOHYDRATE
BRIEF EXPLANATION OF CARBOHYDRATE
 
Carbohydrate
Carbohydrate Carbohydrate
Carbohydrate
 
Overview of Carbohydrates
Overview of CarbohydratesOverview of Carbohydrates
Overview of Carbohydrates
 
Carbohydrates Dr. Shasthree Taduri.pptx
Carbohydrates Dr. Shasthree Taduri.pptxCarbohydrates Dr. Shasthree Taduri.pptx
Carbohydrates Dr. Shasthree Taduri.pptx
 
Ap Bio Ch3 PowerPoint
Ap Bio Ch3 PowerPointAp Bio Ch3 PowerPoint
Ap Bio Ch3 PowerPoint
 
CARBOHYDRATES
CARBOHYDRATESCARBOHYDRATES
CARBOHYDRATES
 
Carbohydrates
Carbohydrates Carbohydrates
Carbohydrates
 
The nature of carbohydrates
The nature of carbohydrates The nature of carbohydrates
The nature of carbohydrates
 
chapter 2 carbohydrates.ppt
chapter 2 carbohydrates.pptchapter 2 carbohydrates.ppt
chapter 2 carbohydrates.ppt
 
Introduction carbohydrates
Introduction carbohydratesIntroduction carbohydrates
Introduction carbohydrates
 
carbohydrates Dr. Shasthree Taduri.ppt
carbohydrates Dr. Shasthree Taduri.pptcarbohydrates Dr. Shasthree Taduri.ppt
carbohydrates Dr. Shasthree Taduri.ppt
 

Recently uploaded

Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxAnaBeatriceAblay2
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 

Recently uploaded (20)

Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 

carbohydrates.ppt

Editor's Notes

  1. FIGURE 7-1a Representative monosaccharides. (a)Two trioses, an aldose and a ketose. The carbonyl group in each is shaded.
  2. FIGURE 7-1 Representative monosaccharides. (a)Two trioses, an aldose and a ketose. The carbonyl group in each is shaded. (b) Two common hexoses. (c) The pentose components of nucleic acids. D-Ribose is a component of ribonucleic acid (RNA), and 2-deoxy-D-ribose is a component of deoxyribonucleic acid (DNA).
  3. FIGURE 7-2 (part 1) Three ways to represent the two enantiomers of glyceraldehyde. The enantiomers are mirror images of each other. Ball-and-stick models show the actual configuration of molecules. Recall (see Figure 1-17) that in perspective formulas, solid wedge-shaped bonds point toward the reader, dashed wedges point away.
  4. FIGURE 7-2 (part 2) Three ways to represent the two enantiomers of glyceraldehyde. The enantiomers are mirror images of each other. Ball-and-stick models show the actual configuration of molecules. Recall (see Figure 1-17) that in perspective formulas, solid wedge-shaped bonds point toward the reader, dashed wedges point away.
  5. FIGURE 7-2 (part 3) Three ways to represent the two enantiomers of glyceraldehyde. The enantiomers are mirror images of each other. Ball-and-stick models show the actual configuration of molecules. Recall (see Figure 1-17) that in perspective formulas, solid wedge-shaped bonds point toward the reader, dashed wedges point away.
  6. FIGURE 7-3a (part 1) Aldoses and ketoses. The series of (a) D-aldoses and (b) D-ketoses having from three to six carbon atoms, shown as projection formulas. The carbon atoms in red are chiral centers. In all these D isomers, the chiral carbon most distant from the carbonyl carbon has the same configuration as the chiral carbon in D-glyceraldehyde. The sugars named in boxes are the most common in nature; you will encounter these again in this and later chapters.
  7. FIGURE 7-3a (part 2) Aldoses and ketoses. The series of (a) D-aldoses and (b) D-ketoses having from three to six carbon atoms, shown as projection formulas. The carbon atoms in red are chiral centers. In all these D isomers, the chiral carbon most distant from the carbonyl carbon has the same configuration as the chiral carbon in D-glyceraldehyde. The sugars named in boxes are the most common in nature; you will encounter these again in this and later chapters.
  8. FIGURE 7-3a (part 3) Aldoses and ketoses. The series of (a) D-aldoses and (b) D-ketoses having from three to six carbon atoms, shown as projection formulas. The carbon atoms in red are chiral centers. In all these D isomers, the chiral carbon most distant from the carbonyl carbon has the same configuration as the chiral carbon in D-glyceraldehyde. The sugars named in boxes are the most common in nature; you will encounter these again in this and later chapters.
  9. FIGURE 7-3b (part 1) Aldoses and ketoses. The series of (a) D-aldoses and (b) D-ketoses having from three to six carbon atoms, shown as projection formulas. The carbon atoms in red are chiral centers. In all these D isomers, the chiral carbon most distant from the carbonyl carbon has the same configuration as the chiral carbon in D-glyceraldehyde. The sugars named in boxes are the most common in nature; you will encounter these again in this and later chapters.
  10. FIGURE 7-3b (part 2) Aldoses and ketoses. The series of (a) D-aldoses and (b) D-ketoses having from three to six carbon atoms, shown as projection formulas. The carbon atoms in red are chiral centers. In all these D isomers, the chiral carbon most distant from the carbonyl carbon has the same configuration as the chiral carbon in D-glyceraldehyde. The sugars named in boxes are the most common in nature; you will encounter these again in this and later chapters.
  11. FIGURE 7-3b (part 1) Aldoses and ketoses. The series of (a) D-aldoses and (b) D-ketoses having from three to six carbon atoms, shown as projection formulas. The carbon atoms in red are chiral centers. In all these D isomers, the chiral carbon most distant from the carbonyl carbon has the same configuration as the chiral carbon in D-glyceraldehyde. The sugars named in boxes are the most common in nature; you will encounter these again in this and later chapters.
  12. FIGURE 7-3b (part 2) Aldoses and ketoses. The series of (a) D-aldoses and (b) D-ketoses having from three to six carbon atoms, shown as projection formulas. The carbon atoms in red are chiral centers. In all these D isomers, the chiral carbon most distant from the carbonyl carbon has the same configuration as the chiral carbon in D-glyceraldehyde. The sugars named in boxes are the most common in nature; you will encounter these again in this and later chapters.
  13. FIGURE 7-5 Formation of hemiacetals and hemiketals. An aldehyde or ketone can react with an alcohol in a 1:1 ratio to yield a hemiacetal or hemiketal, respectively, creating a new chiral center at the carbonyl carbon. Substitution of a second alcohol molecule produces an acetal or ketal. When the second alcohol is part of another sugar molecule, the bond produced is a glycosidic bond (p. 243).
  14. FIGURE 7-6 Formation of the two cyclic forms of D-glucose. Reaction between the aldehyde group at C-1 and the hydroxyl group at C-5 forms a hemiacetal linkage, producing either of two stereoisomers, the α and β anomers, which differ only in the stereochemistry around the hemiacetal carbon. The interconversion of α and β anomers is called mutarotation.
  15. FIGURE 7-7 Pyranoses and furanoses. The pyranose forms of D-glucose and the furanose forms of D-fructose are shown here as Haworth perspective formulas. The edges of the ring nearest the reader are represented by bold lines. Hydroxyl groups below the plane of the ring in these Haworth perspectives would appear at the right side of a Fischer projection (compare with Figure 7-6). Pyran and furan are shown for comparison.
  16. FIGURE 7-9 Some hexose derivatives important in biology. In amino sugars, an —NH2 group replaces one of the —OH groups in the parent hexose. Substitution of —H for —OH produces a deoxy sugar; note that the deoxy sugars shown here occur in nature as the L isomers. The acidic sugars contain a carboxylate group, which confers a negative charge at neutral pH. D-Glucono-δ-lactone results from formation of an ester linkage between the C-1 carboxylate group and the C-5 (also known as the δ carbon) hydroxyl group of D-gluconate.
  17. FIGURE 7-11 Formation of maltose. A disaccharide is formed from two monosaccharides (here, two molecules of D-glucose) when an —OH (alcohol) of one glucose molecule (right) condenses with the intramolecular hemiacetal of the other glucose molecule (left), with elimination of H2O and formation of a glycosidic bond. The reversal of this reaction is hydrolysis—attack by H2O on the glycosidic bond. The maltose molecule, shown here as an illustration, retains a reducing hemiacetal at the C-1 not involved in the glycosidic bond. Because mutarotation interconverts the α and β forms of the hemiacetal, the bonds at this position are sometimes depicted with wavy lines, as shown here, to indicate that the structure may be either α or β.
  18. FIGURE 7-12 Some common disaccharides. Like maltose in Figure 7-11, these are shown as Haworth perspectives. The common name, full systematic name, and abbreviation are given for each disaccharide. Formal nomenclature for sucrose names glucose as the parent glycoside, although it is typically depicted as shown, with glucose on the left.
  19. Table 7-1
  20. FIGURE 7-14a Glycogen and starch. (a) A short segment of amylose, a linear polymer of D-glucose residues in (α1→4) linkage. A single chain can contain several thousand glucose residues. Amylopectin has stretches of similarly linked residues between branch points. Glycogen has the same basic structure, but has more branching than amylopectin.
  21. FIGURE 7-14b Glycogen and starch. (b) An (α1→6) branch point of glycogen or amylopectin.
  22. FIGURE 7-14c Glycogen and starch. (c) A cluster of amylose and amylopectin like that believed to occur in starch granules. Strands of amylopectin (red) form double-helical structures with each other or with amylose strands (blue). Glucose residues at the nonreducing ends of the outer branches are removed enzymatically during the mobilization of starch for energy production. Glycogen has a similar structure but is more highly branched and more compact.
  23. FIGURE 7-15a Cellulose. (a) Two units of a cellulose chain; the D-glucose residues are in (β1→4) linkage. The rigid chair structures can rotate relative to one another.
  24. FIGURE 7-17a Chitin. (a) A short segment of chitin, a homopolymer of N-acetyl-D-glucosamine units in (β1→4) linkage.
  25. FIGURE 7-20b Starch (amylose). (b) A model of a segment of amylose; for clarity, the hydroxyl groups have been omitted from all but one of the glucose residues. Compare the two residues shaded in pink with the chemical structures in (a). The conformation of (α1→4) linkages in amylose, amylopectin, and glycogen causes these polymers to assume tightly coiled helical structures. These compact structures produce the dense granules of stored starch or glycogen seen in many cells (see Figure 20-2).
  26. FIGURE 7-21 Agarose. The repeating unit consists of D-galactose (β1→4)-linked to 3,6-anhydro-L-galactose (in which an ether bridge connects C-3 and C-6). These units are joined by (α1→3) glycosidic links to form a polymer 600 to 700 residues long. A small fraction of the 3,6-anhydrogalactose residues have a sulfate ester at C-2 (as shown here).
  27. FIGURE 7-22 (part 1) Repeating units of some common glycosaminoglycans of extracellular matrix. The molecules are copolymers of alternating uronic acid and amino sugar residues (keratan sulfate is the exception), with sulfate esters in any of several positions, except in hyaluronan. The ionized carboxylate and sulfate groups (red in the perspective formulas) give these polymers their characteristic high negative charge. Therapeutic heparin contains primarily iduronic acid (IdoA) and a smaller proportion of glucuronic acid (GlcA, not shown), and is generally highly sulfated and heterogeneous in length. The space-filling model shows a heparin segment as its solution structure, as determined by NMR spectroscopy (PDB ID 1HPN). The carbons in the iduronic acid sulfate are colored blue; those in glucosamine sulfate are green. Oxygen and sulfur atoms are shown in their standard colors of red and yellow, respectively. The hydrogen atoms are not shown (for clarity). Heparan sulfate (not shown) is similar to heparin but has a higher proportion of GlcA and fewer sulfate groups, arranged in a less regular pattern.
  28. FIGURE 7-22 (part 1a) Repeating units of some common glycosaminoglycans of extracellular matrix. The molecules are copolymers of alternating uronic acid and amino sugar residues (keratan sulfate is the exception), with sulfate esters in any of several positions, except in hyaluronan. The ionized carboxylate and sulfate groups (red in the perspective formulas) give these polymers their characteristic high negative charge. Therapeutic heparin contains primarily iduronic acid (IdoA) and a smaller proportion of glucuronic acid (GlcA, not shown), and is generally highly sulfated and heterogeneous in length. The space-filling model shows a heparin segment as its solution structure, as determined by NMR spectroscopy (PDB ID 1HPN). The carbons in the iduronic acid sulfate are colored blue; those in glucosamine sulfate are green. Oxygen and sulfur atoms are shown in their standard colors of red and yellow, respectively. The hydrogen atoms are not shown (for clarity). Heparan sulfate (not shown) is similar to heparin but has a higher proportion of GlcA and fewer sulfate groups, arranged in a less regular pattern.
  29. FIGURE 7-22 (part 1b) Repeating units of some common glycosaminoglycans of extracellular matrix. The molecules are copolymers of alternating uronic acid and amino sugar residues (keratan sulfate is the exception), with sulfate esters in any of several positions, except in hyaluronan. The ionized carboxylate and sulfate groups (red in the perspective formulas) give these polymers their characteristic high negative charge. Therapeutic heparin contains primarily iduronic acid (IdoA) and a smaller proportion of glucuronic acid (GlcA, not shown), and is generally highly sulfated and heterogeneous in length. The space-filling model shows a heparin segment as its solution structure, as determined by NMR spectroscopy (PDB ID 1HPN). The carbons in the iduronic acid sulfate are colored blue; those in glucosamine sulfate are green. Oxygen and sulfur atoms are shown in their standard colors of red and yellow, respectively. The hydrogen atoms are not shown (for clarity). Heparan sulfate (not shown) is similar to heparin but has a higher proportion of GlcA and fewer sulfate groups, arranged in a less regular pattern.
  30. FIGURE 7-25a Two families of membrane proteoglycans. (a) Schematic diagrams of a syndecan and a glypican in the plasma membrane. Syndecans are held in the membrane by hydrophobic interactions between a sequence of nonpolar amino acid residues and plasma membrane lipids; they can be released by a single proteolytic cut near the membrane surface. In a typical syndecan, the extracellular aminoterminal domain is covalently attached (by tetrasaccharide linkers such as those in Figure 7-24) to three heparan sulfate chains and two chondroitin sulfate chains. Glypicans are held in the membrane by a covalently attached membrane lipid (GPI anchor; see Chapter 11), and are shed if the lipid-protein bond is cleaved by a phospholipase. All glypicans have 14 conserved Cys residues, which form disulfide bonds to stabilize the protein moiety, and either two or three glycosaminoglycan chains attached near the carboxyl terminus, close to the membrane surface.
  31. FIGURE 7-27 Proteoglycan aggregate of the extracellular matrix. Schematic drawing of a proteoglycan with many aggrecan molecules. One very long molecule of hyaluronan is associated noncovalently with about 100 molecules of the core protein aggrecan. Each aggrecan molecule contains many covalently bound chondroitin sulfate and keratan sulfate chains. Link proteins at the junction between each core protein and the hyaluronan backbone mediate the core protein–hyaluronan interaction. The micrograph shows a single molecule of aggrecan, viewed with the atomic force microscope (see Box 11-1).
  32. FIGURE 7-28 Interactions between cells and the extracellular matrix. The association between cells and the proteoglycan of the extracellular matrix is mediated by a membrane protein (integrin) and by an extracellular protein (fibronectin in this example) with binding sites for both integrin and the proteoglycan. Note the close association of collagen fibers with the fibronectin and proteoglycan.
  33. FIGURE 7-30 Bacterial lipopolysaccharides. Schematic diagram of the lipopolysaccharide of the outer membrane of Salmonella typhimurium. Kdo is 3-deoxy-D-manno-octulosonic acid (previously called ketodeoxyoctonic acid); Hep is L-glycero-D-manno-heptose; AbeOAc is abequose (a 3,6-dideoxyhexose) acetylated on one of its hydroxyls. There are six fatty acid residues in the lipid A portion of the molecule. Different bacterial species have subtly different lipopolysaccharide structures, but they have in common a lipid region (lipid A), a core oligosaccharide also known as endotoxin, and an "O-specific" chain, which is the principal determinant of the serotype (immunological reactivity) of the bacterium. The outer membranes of the gram-negative bacteria S. typhimurium and E. coli contain so many lipopolysaccharide molecules that the cell surface is virtually covered with O-specific chains.
  34. FIGURE 7-31 Role of lectin-ligand interactions in lymphocyte movement to the site of an infection or injury. A neutrophil circulating through a capillary is slowed by transient interactions between P-selectin molecules in the plasma membrane of the capillary endothelial cells and glycoprotein ligands for P-selectin on the neutrophil surface. As it interacts with successive P-selectin molecules, the neutrophil rolls along the capillary surface. Near a site of inflammation, stronger interactions between integrin in the capillary surface and its ligand in the neutrophil surface lead to tight adhesion. The neutrophil stops rolling and, under the influence of signals sent out from the site of inflammation, begins extravasation—escape through the capillary wall—as it moves toward the site of inflammation.