SlideShare a Scribd company logo
1 of 26
Download to read offline
AC Analysis of
BJT and MOSFET
Inverting Amplifiers
Assoc Prof Chang Chip Hong email: echchang@ntu.edu.sg
EE2002 Analog Electronics
EE2002 Analog Electronics
Lesson Objectives
AC Analysis of BJT and MOSFET Inverting Amplifiers 2
At the end of this lesson, you should be able to:
• Draw small signal model for BJT and MOSFET
• Calculate the small signal parameters of BJT and MOSFET
• Construct AC equivalent circuit of BJT and MOSFET inverting amplifiers
• Calculate the following performance characteristics of C-E and C-S amplifiers
- Voltage gain
- Input resistance
- Output resistance
EE2002 Analog Electronics
Hybrid-Pi Model of BJT
AC Analysis of BJT and MOSFET Inverting Amplifiers 3
• This hybrid-pi small-signal model is
the intrinsic low-frequency
representation of the BJT.
• Small-signal parameters are
controlled by the Q-point and are
independent of geometry of BJT.
Transconductance:
Output resistance:
ic
gmvbe
ib
E
CB
vbe rp ro vce
40C
m C
T
I
g I
V
 
where 25 mV@25 CT
kT
V
q
  
Input resistance:
m
r
g
p


–
+
–
+
A CE A
o
C C
V V V
r
I I

  if
EE2002 Analog Electronics
Equivalent Forms of Small-Signal
Model for BJT
AC Analysis of BJT and MOSFET Inverting Amplifiers 4
Voltage-controlled current source gmvbe can be transformed into current-controlled
current source.
gmvbe
ib
E
CB
vbe
rp ro
ic
 ib
ib
E
CB
vbe rp ro
ic
Basic relationship ic=  ib is useful
for both dc and ac analysis when
BJT is in forward-active region.
be b
m be m b b
ce
c b b
o
v i r
g v g i r i
v
i i i
r
p
p 
 

 
  
–
+
–
+
EE2002 Analog Electronics
VCC
E
Q
RC
RE
C1  
C2  
C3  
B
C
RB
RC
RI
vi
+
-
RL
RI
RB2
RB1
vi
+
-
Q
C
B
E RL
+
vo
-
1 2B B BR R R
• The ac equivalent circuit is
constructed by assuming that all
capacitances have zero
impedance at signal frequency and
dc voltage source is ac ground.
• Assume that Q-point has already
been calculated from DC analysis.
Hence, gm, rp , and ro of BJT can
be calculated.
AC Analysis of BJT and MOSFET Inverting Amplifiers 5
Small Signal Analysis of C-E Amplifier
with Fully Bypass RE
EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 6
C-E Amplifier with Fully Bypass RE:
Voltage Gain
c o m be L
vt m L
b be be
v v g v R
A g R
v v v
-
    -
Terminal voltage gain between
base and collector is:
Overall voltage gain from source vi
to output voltage vo across RL is:
o c b b
v vt
i b i i
v v v v
A A
v v v v
    
RI
vi
+
- RB ro RL
+
vo
-
B C
E
rp
RC
gmvbe
+
vbe
-
0L C L
R r R R 
B
v m L
I B
R r
A g R
R R r
p
p
   -   
B
R rp
EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 7
C-E Amplifier with Fully Bypass RE:
Input Resistance
C1  
VCC
1 2B B BR R R
RI
RB2
vi
Q
RB1
RC C2  
C3  
+
-
RL
Rin
vx
+
-
ix
RE
 x x B
x
in
x
B
v i R r
v
R
i
R r
p
p



RB rp ro RL
+
vo
-
B C
E
RC
gmvbe
+
vbe
-
B
R rp
EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 8
C-E Amplifier with Fully Bypass RE:
Output Resistance
C1  
0
x x
x m be
C o
x x
be x
C o
v v
i g v
R r
v v
v i
R r
  
   
VCC
RI
Q
RB2
RB1 C2  
C3  
RL
Rour
1 2B B BR R R
vx
+
-
RB ro
RI
B C
E
rp RC
gmvbe
+
vbe
-
ix
RE
RC
vi
+
-
1
1 1x
out C o
x C o
out C
v
R R r
i R r
R R
-
 
    
 
 if
EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 9
C-E Amplifier with Fully Bypass RE:
Example
Problem: Find voltage gain, input
and output resistances.
Given:  = 65, VA = 50 V
Find the Q-point from dc equivalent circuit:
 3 3
100 10 0.7 66 16 10 ( 5) 0B BI I     - 
3.71 μA
65 241 μA
66 245 μA
B
C B
E B
I
I I
I I

 
 
 5 10 k 241 μ 16 k 245 μ 5 0CEV-  - -  - - 
+5 V
10 k
voRout
RC
C3  
C1  
Rin
vi
+
–
220 k
RB
100 k
RE
16 k
330 
RI
–5 V
RL
C2  
+5 V
10 k
IC
VCE
+
–
IE
16 k
–5 V
100 k VBE
+
–
IB
3.67 VCEV 
EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 10
AC Analysis of C-E Amplifier with
Fully Bypass RE
9.64 (223 10 220) 6.23 k
84.0
330 6.23 k
bein
v vt
I in be
vR
A A
R R v
 -     
   -   
     
40 241 μ 9.64 mSmg   
65
6.64 k
9.64 m
rp   
50 3.67
223 k
241 μ
or

  
100 k 6.64 k 6.23 kinR   
223 k 10 k 9.57 koutR   
330 
vi
+
-
100k
ro
220k
+
vo
-
B C
E
rp
10k
gmvbe
+
vbe
-
Rin
100k
223k
220k
B C
E
6.64k
10k
9.64mvbe9.64mvbe
Rout
100k
223k
330
B C
E
6.64k
10k
Small signal equivalent
EE2002 Analog Electronics
Small Signal Parameters of MOSFET
AC Analysis of BJT and MOSFET Inverting Amplifiers 11
• Since gate is insulated from channel
by gate-oxide, input resistance = .
• Small-signal parameters are
controlled by the Q-point.
• MOSFET transconductance is
geometry dependent.
   
  
2
1
2
1
n
D GS TN DS
D
m n GS TN DS
GS Q pt
K
i v V v
i
g K V V V
v


-
 - 

  - 

n n OX
W
K C
L
    
 
where
+
gmvgs
ig
S
DG
vgs ro
id
vds
–
+
–
2
2
1
1
D
m n D
GS TN
DS
o
D D
I
g K I
V V
V
r
I I


 
-

  if
1

EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 12
Small Signal Analysis of C-S
Amplifier with Fully Bypass RS
VDD
S
• AC equivalent circuit is constructed by
assuming that all capacitances have zero
impedance at signal frequency and dc
voltage sources represent ac grounds. M
RD
RS
C1  
C2  
C3  
G
D
RG
RD
RI
vi
+
-
RL
RI
RG2
RG1
vi
+
-
D
MG
S RL
+
vo
-
1 2G G GR R R
vo
• The small signal parameters, gm and ro of
the MOSFET is calculated at the Q-point,
ID and VDS.
EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 13
C-S Amplifier with Fully Bypass RS:
Voltage Gain
Terminal voltage gain between
gate and drain is:
Overall voltage gain from source vi
to output voltage vo across RL is:
RI
vi
+
-
RG ro RL
+
vo
-
G D
S
RD
gmvgs
+
vgs
-
0L D LR r R R 
m gs Ld
vt m L
g gs
g v Rv
A g R
v v
-
   -
g go o
v vt
i g i i
G
m L
I G
v vv v
A A
v v v v
R
g R
R R
    
 
 -  
 
EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 14
C-S Amplifier with Fully Bypass RS:
Input Resistance
RG2
M
RG1
RD
RS
C2  
C3  
RL
Rin
C1  
RG ro RL
+
vo
-
G D
S
RD
gmvgs
+
vgs
-
1 2G G GR R R
VDD
RI
vi
+
-
x x G
x
in
x
G
v i R
v
R
i
R



vx
+
-
ix
EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 15
C-S Amplifier with Fully Bypass RS:
Output Resistance
vi
+
-
VDD
C1  
Since vgs = 0, gmvgs = 0.
RI
RG2
RG1 C2  
Rour
RS
RD
RL
M
gmvgs
vx
+
-
RG ro
RI
G D
S
RD
+
vgs
-
ix
C3  
21 GG G
R R R
 x x D o
x
out D o
x
out D
v i R r
v
R R r
i
R R

 
 if
EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 16
C-S Amplifier with Fully Bypass RS:
Example
Problem: Find voltage gain, input and
output resistances.
Given: Kn = 500 A/V2, VTN = 1V,
 = 0.0167 V–1
DC Analysis:
61
1
6
5 10
2 10
0.4
S
GS
D
DS
I
IV
V
V


  

5 , 2 , 250 μADS GS DV V V V I   
 
2500 μ
1
2
GSD VI  - (1)
 3
110 20 10DS D IV I -   (2)
+10 V
20 k
C3  
vo
+
–
Rout
100 k
RL
RD
RG3
1 M
RG2 2 M
RG1 2 M
C2  
C1  
10 k
RI
Rin
vi
+10 V
20 k
RG3
1 M
RG2
2 M
RG1
2 M
vDS
+
–
+
–
vGS
I1
ID
IG
RD
EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 17
C-S Amplifier with Fully Bypass RS:
Example
   0.5 260 k 1 M 20 k 100 k 1 M
7.93
10 k 1 M
gsin
v vt
I in gs
m vR
A A
R R v
-   
   -     
2 2 1inR M M M  
2 500 μ 250 μ 0.5 mSm
g    
1
5
0.0167 260 k
250 μ
or

  
10k 
vi
+
-
2M
ro
100k
+
vo
-
G
D
S
1M
gmvgs
+
vgs
-
2M
20k
Rin
1M
260k
16.4k
G D
S
0.5mvgs
0.5mvgs
S
Rout
1M
260k
10k
G D
1M
20k
260 1 20 18.2outR k M k k  
16.4 k1 M
Small Signal Equivalent Circuit:
EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 18
C-E Amplifier with Unbypass RE:
Terminal Voltage Gain
VCC
RB2
RB1
RC
RE2 C3  
RI
vi
+
-
RL
C2  
C1  
vo
RE1
Q
vi
+
- RB
RL
+
vo
-
RC
ro
B C
E
rp
gmvbe
+
vbe
-
RI
RE1
ic
L C LR R R 
1 1 11
c c L m be L m L
vt
b be e E be m be E m E
v i R g v R g R
A
v v i R v g v R g R
  - - -
   
  
ie
1 2B B BR R R
EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 19
C-E Amplifier with Unbypass RE:
Input Resistance
vi
+
-
RI
 
 
1
1
1
1
b b b E
b
in E
b
v i r i R
v
R r R
i
p
p


  
    
Rin
vb
+
- RB
RL
+
vo
-
RC
ro
B C
E
rp
ib
+
vbe
-
RE1
(+1)ib
ib
Rin
in in BR R R
inR
RB
RL
+
vo
-
RC
ro
B C
E
rp
gmvbe
+
vbe
-
RE1
1 2B B BR R R
EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 20
C-E Amplifier with Unbypass RE:
Overall Voltage Gain
+
vb
-
Rin
RB = RB1 || RB2
RL
+
vo
-
RC
ro
B C
E
rp
gmvbe
+
vbe
-
RE1
Rin
VCC
RB2
RB1
RC
RE2 C3  
RI
vi
+
-
RL
C2  
C1  
vo
RE1
Q
o o b in
v vt
i b i I in
v v v R
A A
v v v R R
    

vi
+
-
RI
Rin
vi
+
-
RI
+
vb
-
Rin
EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 21
C-E Amplifier with Unbypass RE:
Output Resistance
Rth
RC
ro
B C
E
rp
gmvbe
+
vbe
-
RE1
vx
+
-
ix
Rout
1 2th I B BR R R R
ix
  1
be e
th
x th E
th
r
v v
r R
r
i r R R
r R
p
p
p
p
p
 
 -  
 
 -   
  1e x th Ev i r R Rp 
 x m bex o ev g v r vi -
current through ro
outR
RL
+
vo
-
RI
RB
RC
ro
B C
E
rp
gmvbe
+
vbe
-
RE1
1 2B B BR R R
Rout
vi
+
-
EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 22
C-E Amplifier with Unbypass RE:
Output Resistance
 
  
  
1
1
x x m be o e
x m x th E o
th
x th E
v i g v r v
r
i g i r R R r
r R
i r R R
p
p
p
p
 - 
  
    
  
 Rth
ro
B C
E
rp
gmvbe
+
vbe
-
RE1
vx
+
-
ix
ix
out out CR R R
RC
Rout
  11x
out m th E o
x th
v r
R g r R R r
i r R
p
p
p
          
outR
EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 23
C-S Amplifier with Unbypass RS:
Terminal Voltage Gain
VDD
RG2
RG1
RD
RS2 C3  
RI
vi
+
-
RL
C2  
C1  
vo
RS1
vi
+
- RG
RL
+
vo
-
RD
RI
RS1
id  gmvgs
L D LR R R 
1 1 11
m gs Ld d L m L
vt
g gs d S gs m gs S m S
g v Rv i R g R
A
v v i R v g v R g R
- - -
   
  
id
1 2G G GR R R
ro
G D
S
gmvgs
+
vgs
-
M
EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 24
C-S Amplifier with Unbypass RS:
Input Resistance
RG = RG1 || RG1
RL
+
vo
-
RD
RS1
Rin
in GR R
ro
G D
S
gmvgs
+
vgs
-vi
+
-
RI
Rin
RG
RL
+
vo
-
RD
RS1
1 2G G GR R R
ro
G D
gmvgs
+
vgs
-
EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 25
C-S Amplifier with Unbypass RS:
Overall Voltage Gain
VDD
RG = RG1 || RG2
RL
+
vo
-
RD
ro
G D
S
gmvgs
+
vgs
-
RS1
Rin
RG2
RG1
RD
RS2 C3  
RI
vi
+
-
RL
C2  
C1  
vo
RS1
vi
+
-
RI
go o in
v vt
i g i I in
vv v R
A A
v v v R R
    

Rin
vi
+
-
RI
+
vg
-
Rin
M
EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 26
C-S Amplifier with Unbypass RS:
Output Resistance
Rth
RD
RS1
vx
+
-
ix
Rout
1 2th I G GR R R R
ix
1
10,
s x S
g gs s x S
v i R
v v v i R

  -  -
ro
G D
S
gmvgs
+
vgs
-
 1 1x x m x S o x Sv i g i R r i R  
 11x
out m S o
x
v
R g R r
i
   
out out DR R R
 x m gsx o sv g v r vi -
current through ro
outR
RL
+
vo
-
RI
RG
RD
RS1
1 2G G GR R R
ro
G D
gmvgs
+
vgs
-
Rout
vi
+
-

More Related Content

What's hot

Common emitter amplifier by YEASIN NEWAJ
Common emitter amplifier by YEASIN NEWAJCommon emitter amplifier by YEASIN NEWAJ
Common emitter amplifier by YEASIN NEWAJYeasinNewaj
 
BJT Biasing for B.Tech Ist Year Engineering
BJT Biasing for B.Tech Ist Year EngineeringBJT Biasing for B.Tech Ist Year Engineering
BJT Biasing for B.Tech Ist Year EngineeringRaghav Bansal
 
dc biasing of bjt
dc biasing of bjtdc biasing of bjt
dc biasing of bjtabhinavmj
 
Analog & Digital Electronics
Analog & Digital ElectronicsAnalog & Digital Electronics
Analog & Digital ElectronicsPraveen Vadlamudi
 
Rec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re modelRec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re modelDr Naim R Kidwai
 
Electronics 1 : Chapter # 05 : DC Biasing BJT
Electronics 1 : Chapter # 05 : DC Biasing BJTElectronics 1 : Chapter # 05 : DC Biasing BJT
Electronics 1 : Chapter # 05 : DC Biasing BJTSk_Group
 
Bipolar junction transistor characterstics biassing and amplification, lab 9
Bipolar junction transistor characterstics biassing and amplification, lab 9Bipolar junction transistor characterstics biassing and amplification, lab 9
Bipolar junction transistor characterstics biassing and amplification, lab 9kehali Haileselassie
 
Bipolar junction transistor : Biasing and AC Analysis
Bipolar junction transistor : Biasing and AC AnalysisBipolar junction transistor : Biasing and AC Analysis
Bipolar junction transistor : Biasing and AC AnalysisTahmina Zebin
 
Hybrid model analog electronics
Hybrid model analog electronicsHybrid model analog electronics
Hybrid model analog electronicsrakesh mandiya
 
Differential amplifiers (content)
Differential amplifiers (content)Differential amplifiers (content)
Differential amplifiers (content)MahoneyKadir
 
L07 dc and ac load line
L07 dc and ac load lineL07 dc and ac load line
L07 dc and ac load lineKishor Roy
 

What's hot (20)

BIASING OF BJT
BIASING OF BJT BIASING OF BJT
BIASING OF BJT
 
Common emitter amplifier by YEASIN NEWAJ
Common emitter amplifier by YEASIN NEWAJCommon emitter amplifier by YEASIN NEWAJ
Common emitter amplifier by YEASIN NEWAJ
 
BJT Biasing for B.Tech Ist Year Engineering
BJT Biasing for B.Tech Ist Year EngineeringBJT Biasing for B.Tech Ist Year Engineering
BJT Biasing for B.Tech Ist Year Engineering
 
dc biasing of bjt
dc biasing of bjtdc biasing of bjt
dc biasing of bjt
 
Analog & Digital Electronics
Analog & Digital ElectronicsAnalog & Digital Electronics
Analog & Digital Electronics
 
Rec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re modelRec101 unit ii (part 2) bjt biasing and re model
Rec101 unit ii (part 2) bjt biasing and re model
 
Electronics 1 : Chapter # 05 : DC Biasing BJT
Electronics 1 : Chapter # 05 : DC Biasing BJTElectronics 1 : Chapter # 05 : DC Biasing BJT
Electronics 1 : Chapter # 05 : DC Biasing BJT
 
Bipolar junction transistor characterstics biassing and amplification, lab 9
Bipolar junction transistor characterstics biassing and amplification, lab 9Bipolar junction transistor characterstics biassing and amplification, lab 9
Bipolar junction transistor characterstics biassing and amplification, lab 9
 
Ce amplifiers
Ce amplifiersCe amplifiers
Ce amplifiers
 
Edcqnaunit 3 (1)
Edcqnaunit 3 (1)Edcqnaunit 3 (1)
Edcqnaunit 3 (1)
 
EC6202 ELECTRONIC DEVICES AND CIRCUITS Unit 2
EC6202 ELECTRONIC DEVICES AND CIRCUITS Unit 2EC6202 ELECTRONIC DEVICES AND CIRCUITS Unit 2
EC6202 ELECTRONIC DEVICES AND CIRCUITS Unit 2
 
Bipolar junction transistor : Biasing and AC Analysis
Bipolar junction transistor : Biasing and AC AnalysisBipolar junction transistor : Biasing and AC Analysis
Bipolar junction transistor : Biasing and AC Analysis
 
Hybrid model analog electronics
Hybrid model analog electronicsHybrid model analog electronics
Hybrid model analog electronics
 
Tarun
TarunTarun
Tarun
 
Differential amplifiers (content)
Differential amplifiers (content)Differential amplifiers (content)
Differential amplifiers (content)
 
Chapter 1 ac analysis SKEE 2253
Chapter 1 ac analysis SKEE 2253Chapter 1 ac analysis SKEE 2253
Chapter 1 ac analysis SKEE 2253
 
Eca unit i.ppt
Eca unit i.pptEca unit i.ppt
Eca unit i.ppt
 
BJT AC Analisi 5
BJT AC Analisi 5 BJT AC Analisi 5
BJT AC Analisi 5
 
L07 dc and ac load line
L07 dc and ac load lineL07 dc and ac load line
L07 dc and ac load line
 
EC8353 ELECTRONIC DEVICES AND CIRCUITS Unit 3
EC8353 ELECTRONIC DEVICES AND CIRCUITS Unit 3EC8353 ELECTRONIC DEVICES AND CIRCUITS Unit 3
EC8353 ELECTRONIC DEVICES AND CIRCUITS Unit 3
 

Similar to Ac analysis of bjt and mosfet inverting amplifiers

16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3 (powerpoint version)
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3 (powerpoint version)16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3 (powerpoint version)
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3 (powerpoint version)MahoneyKadir
 
Ac coupled amplifier (content)
Ac coupled amplifier (content)Ac coupled amplifier (content)
Ac coupled amplifier (content)MahoneyKadir
 
Bjt amplifiers
Bjt amplifiersBjt amplifiers
Bjt amplifiersGastarot
 
power point presentation on BJT for beginers
power point presentation on BJT for beginerspower point presentation on BJT for beginers
power point presentation on BJT for beginersMalleshBY1
 
Fet full explanations
Fet full explanationsFet full explanations
Fet full explanationsSridhar Done
 
01.MULTI STAGE AMPLIFIER (L 1).ppt
01.MULTI STAGE AMPLIFIER (L 1).ppt01.MULTI STAGE AMPLIFIER (L 1).ppt
01.MULTI STAGE AMPLIFIER (L 1).pptMahbubUzZaman7
 
Analog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualAnalog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualChirag Shetty
 
ddc cinverter control design process.ppt
ddc cinverter control design process.pptddc cinverter control design process.ppt
ddc cinverter control design process.pptShivamChaturvedi67
 
Hardware combinational
Hardware combinationalHardware combinational
Hardware combinationalDefri Tan
 
Lecture 06 transistorremodel
Lecture 06 transistorremodelLecture 06 transistorremodel
Lecture 06 transistorremodelIsmael Cayo Apaza
 
Oscillators
OscillatorsOscillators
Oscillators12nitin
 

Similar to Ac analysis of bjt and mosfet inverting amplifiers (20)

16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3 (powerpoint version)
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3 (powerpoint version)16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3 (powerpoint version)
16 s1 ee2002_ld_multi-stage_differential_amplifiers_v1.3 (powerpoint version)
 
Ac coupled amplifier (content)
Ac coupled amplifier (content)Ac coupled amplifier (content)
Ac coupled amplifier (content)
 
Bjt amplifiers
Bjt amplifiersBjt amplifiers
Bjt amplifiers
 
power point presentation on BJT for beginers
power point presentation on BJT for beginerspower point presentation on BJT for beginers
power point presentation on BJT for beginers
 
L13 ic based triggering circuit
L13 ic based triggering circuitL13 ic based triggering circuit
L13 ic based triggering circuit
 
Eca unit 2
Eca unit 2Eca unit 2
Eca unit 2
 
Fet full explanations
Fet full explanationsFet full explanations
Fet full explanations
 
Fet basics-1
Fet basics-1Fet basics-1
Fet basics-1
 
Small signal Analysis.ppt
Small signal Analysis.pptSmall signal Analysis.ppt
Small signal Analysis.ppt
 
01.MULTI STAGE AMPLIFIER (L 1).ppt
01.MULTI STAGE AMPLIFIER (L 1).ppt01.MULTI STAGE AMPLIFIER (L 1).ppt
01.MULTI STAGE AMPLIFIER (L 1).ppt
 
19_Lecture.pptx
19_Lecture.pptx19_Lecture.pptx
19_Lecture.pptx
 
Aec manual2017 imp
Aec manual2017 impAec manual2017 imp
Aec manual2017 imp
 
Analog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualAnalog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab Manual
 
ddc cinverter control design process.ppt
ddc cinverter control design process.pptddc cinverter control design process.ppt
ddc cinverter control design process.ppt
 
Hardware combinational
Hardware combinationalHardware combinational
Hardware combinational
 
Lecture 06 transistorremodel
Lecture 06 transistorremodelLecture 06 transistorremodel
Lecture 06 transistorremodel
 
Oscillatorsppt
OscillatorspptOscillatorsppt
Oscillatorsppt
 
Oscillators
OscillatorsOscillators
Oscillators
 
Pdc manual
Pdc manualPdc manual
Pdc manual
 
Lec-8.pdf
Lec-8.pdfLec-8.pdf
Lec-8.pdf
 

Recently uploaded

Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...RKavithamani
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 

Recently uploaded (20)

Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
Privatization and Disinvestment - Meaning, Objectives, Advantages and Disadva...
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 

Ac analysis of bjt and mosfet inverting amplifiers

  • 1. AC Analysis of BJT and MOSFET Inverting Amplifiers Assoc Prof Chang Chip Hong email: echchang@ntu.edu.sg EE2002 Analog Electronics
  • 2. EE2002 Analog Electronics Lesson Objectives AC Analysis of BJT and MOSFET Inverting Amplifiers 2 At the end of this lesson, you should be able to: • Draw small signal model for BJT and MOSFET • Calculate the small signal parameters of BJT and MOSFET • Construct AC equivalent circuit of BJT and MOSFET inverting amplifiers • Calculate the following performance characteristics of C-E and C-S amplifiers - Voltage gain - Input resistance - Output resistance
  • 3. EE2002 Analog Electronics Hybrid-Pi Model of BJT AC Analysis of BJT and MOSFET Inverting Amplifiers 3 • This hybrid-pi small-signal model is the intrinsic low-frequency representation of the BJT. • Small-signal parameters are controlled by the Q-point and are independent of geometry of BJT. Transconductance: Output resistance: ic gmvbe ib E CB vbe rp ro vce 40C m C T I g I V   where 25 mV@25 CT kT V q    Input resistance: m r g p   – + – + A CE A o C C V V V r I I    if
  • 4. EE2002 Analog Electronics Equivalent Forms of Small-Signal Model for BJT AC Analysis of BJT and MOSFET Inverting Amplifiers 4 Voltage-controlled current source gmvbe can be transformed into current-controlled current source. gmvbe ib E CB vbe rp ro ic  ib ib E CB vbe rp ro ic Basic relationship ic=  ib is useful for both dc and ac analysis when BJT is in forward-active region. be b m be m b b ce c b b o v i r g v g i r i v i i i r p p          – + – +
  • 5. EE2002 Analog Electronics VCC E Q RC RE C1   C2   C3   B C RB RC RI vi + - RL RI RB2 RB1 vi + - Q C B E RL + vo - 1 2B B BR R R • The ac equivalent circuit is constructed by assuming that all capacitances have zero impedance at signal frequency and dc voltage source is ac ground. • Assume that Q-point has already been calculated from DC analysis. Hence, gm, rp , and ro of BJT can be calculated. AC Analysis of BJT and MOSFET Inverting Amplifiers 5 Small Signal Analysis of C-E Amplifier with Fully Bypass RE
  • 6. EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 6 C-E Amplifier with Fully Bypass RE: Voltage Gain c o m be L vt m L b be be v v g v R A g R v v v -     - Terminal voltage gain between base and collector is: Overall voltage gain from source vi to output voltage vo across RL is: o c b b v vt i b i i v v v v A A v v v v      RI vi + - RB ro RL + vo - B C E rp RC gmvbe + vbe - 0L C L R r R R  B v m L I B R r A g R R R r p p    -    B R rp
  • 7. EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 7 C-E Amplifier with Fully Bypass RE: Input Resistance C1   VCC 1 2B B BR R R RI RB2 vi Q RB1 RC C2   C3   + - RL Rin vx + - ix RE  x x B x in x B v i R r v R i R r p p    RB rp ro RL + vo - B C E RC gmvbe + vbe - B R rp
  • 8. EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 8 C-E Amplifier with Fully Bypass RE: Output Resistance C1   0 x x x m be C o x x be x C o v v i g v R r v v v i R r        VCC RI Q RB2 RB1 C2   C3   RL Rour 1 2B B BR R R vx + - RB ro RI B C E rp RC gmvbe + vbe - ix RE RC vi + - 1 1 1x out C o x C o out C v R R r i R r R R -           if
  • 9. EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 9 C-E Amplifier with Fully Bypass RE: Example Problem: Find voltage gain, input and output resistances. Given:  = 65, VA = 50 V Find the Q-point from dc equivalent circuit:  3 3 100 10 0.7 66 16 10 ( 5) 0B BI I     -  3.71 μA 65 241 μA 66 245 μA B C B E B I I I I I       5 10 k 241 μ 16 k 245 μ 5 0CEV-  - -  - -  +5 V 10 k voRout RC C3   C1   Rin vi + – 220 k RB 100 k RE 16 k 330  RI –5 V RL C2   +5 V 10 k IC VCE + – IE 16 k –5 V 100 k VBE + – IB 3.67 VCEV 
  • 10. EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 10 AC Analysis of C-E Amplifier with Fully Bypass RE 9.64 (223 10 220) 6.23 k 84.0 330 6.23 k bein v vt I in be vR A A R R v  -         -          40 241 μ 9.64 mSmg    65 6.64 k 9.64 m rp    50 3.67 223 k 241 μ or     100 k 6.64 k 6.23 kinR    223 k 10 k 9.57 koutR    330  vi + - 100k ro 220k + vo - B C E rp 10k gmvbe + vbe - Rin 100k 223k 220k B C E 6.64k 10k 9.64mvbe9.64mvbe Rout 100k 223k 330 B C E 6.64k 10k Small signal equivalent
  • 11. EE2002 Analog Electronics Small Signal Parameters of MOSFET AC Analysis of BJT and MOSFET Inverting Amplifiers 11 • Since gate is insulated from channel by gate-oxide, input resistance = . • Small-signal parameters are controlled by the Q-point. • MOSFET transconductance is geometry dependent.        2 1 2 1 n D GS TN DS D m n GS TN DS GS Q pt K i v V v i g K V V V v   -  -     -   n n OX W K C L        where + gmvgs ig S DG vgs ro id vds – + – 2 2 1 1 D m n D GS TN DS o D D I g K I V V V r I I     -    if 1 
  • 12. EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 12 Small Signal Analysis of C-S Amplifier with Fully Bypass RS VDD S • AC equivalent circuit is constructed by assuming that all capacitances have zero impedance at signal frequency and dc voltage sources represent ac grounds. M RD RS C1   C2   C3   G D RG RD RI vi + - RL RI RG2 RG1 vi + - D MG S RL + vo - 1 2G G GR R R vo • The small signal parameters, gm and ro of the MOSFET is calculated at the Q-point, ID and VDS.
  • 13. EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 13 C-S Amplifier with Fully Bypass RS: Voltage Gain Terminal voltage gain between gate and drain is: Overall voltage gain from source vi to output voltage vo across RL is: RI vi + - RG ro RL + vo - G D S RD gmvgs + vgs - 0L D LR r R R  m gs Ld vt m L g gs g v Rv A g R v v -    - g go o v vt i g i i G m L I G v vv v A A v v v v R g R R R         -    
  • 14. EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 14 C-S Amplifier with Fully Bypass RS: Input Resistance RG2 M RG1 RD RS C2   C3   RL Rin C1   RG ro RL + vo - G D S RD gmvgs + vgs - 1 2G G GR R R VDD RI vi + - x x G x in x G v i R v R i R    vx + - ix
  • 15. EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 15 C-S Amplifier with Fully Bypass RS: Output Resistance vi + - VDD C1   Since vgs = 0, gmvgs = 0. RI RG2 RG1 C2   Rour RS RD RL M gmvgs vx + - RG ro RI G D S RD + vgs - ix C3   21 GG G R R R  x x D o x out D o x out D v i R r v R R r i R R     if
  • 16. EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 16 C-S Amplifier with Fully Bypass RS: Example Problem: Find voltage gain, input and output resistances. Given: Kn = 500 A/V2, VTN = 1V,  = 0.0167 V–1 DC Analysis: 61 1 6 5 10 2 10 0.4 S GS D DS I IV V V       5 , 2 , 250 μADS GS DV V V V I      2500 μ 1 2 GSD VI  - (1)  3 110 20 10DS D IV I -   (2) +10 V 20 k C3   vo + – Rout 100 k RL RD RG3 1 M RG2 2 M RG1 2 M C2   C1   10 k RI Rin vi +10 V 20 k RG3 1 M RG2 2 M RG1 2 M vDS + – + – vGS I1 ID IG RD
  • 17. EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 17 C-S Amplifier with Fully Bypass RS: Example    0.5 260 k 1 M 20 k 100 k 1 M 7.93 10 k 1 M gsin v vt I in gs m vR A A R R v -       -      2 2 1inR M M M   2 500 μ 250 μ 0.5 mSm g     1 5 0.0167 260 k 250 μ or     10k  vi + - 2M ro 100k + vo - G D S 1M gmvgs + vgs - 2M 20k Rin 1M 260k 16.4k G D S 0.5mvgs 0.5mvgs S Rout 1M 260k 10k G D 1M 20k 260 1 20 18.2outR k M k k   16.4 k1 M Small Signal Equivalent Circuit:
  • 18. EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 18 C-E Amplifier with Unbypass RE: Terminal Voltage Gain VCC RB2 RB1 RC RE2 C3   RI vi + - RL C2   C1   vo RE1 Q vi + - RB RL + vo - RC ro B C E rp gmvbe + vbe - RI RE1 ic L C LR R R  1 1 11 c c L m be L m L vt b be e E be m be E m E v i R g v R g R A v v i R v g v R g R   - - -        ie 1 2B B BR R R
  • 19. EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 19 C-E Amplifier with Unbypass RE: Input Resistance vi + - RI     1 1 1 1 b b b E b in E b v i r i R v R r R i p p           Rin vb + - RB RL + vo - RC ro B C E rp ib + vbe - RE1 (+1)ib ib Rin in in BR R R inR RB RL + vo - RC ro B C E rp gmvbe + vbe - RE1 1 2B B BR R R
  • 20. EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 20 C-E Amplifier with Unbypass RE: Overall Voltage Gain + vb - Rin RB = RB1 || RB2 RL + vo - RC ro B C E rp gmvbe + vbe - RE1 Rin VCC RB2 RB1 RC RE2 C3   RI vi + - RL C2   C1   vo RE1 Q o o b in v vt i b i I in v v v R A A v v v R R       vi + - RI Rin vi + - RI + vb - Rin
  • 21. EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 21 C-E Amplifier with Unbypass RE: Output Resistance Rth RC ro B C E rp gmvbe + vbe - RE1 vx + - ix Rout 1 2th I B BR R R R ix   1 be e th x th E th r v v r R r i r R R r R p p p p p    -      -      1e x th Ev i r R Rp   x m bex o ev g v r vi - current through ro outR RL + vo - RI RB RC ro B C E rp gmvbe + vbe - RE1 1 2B B BR R R Rout vi + -
  • 22. EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 22 C-E Amplifier with Unbypass RE: Output Resistance         1 1 x x m be o e x m x th E o th x th E v i g v r v r i g i r R R r r R i r R R p p p p  -              Rth ro B C E rp gmvbe + vbe - RE1 vx + - ix ix out out CR R R RC Rout   11x out m th E o x th v r R g r R R r i r R p p p            outR
  • 23. EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 23 C-S Amplifier with Unbypass RS: Terminal Voltage Gain VDD RG2 RG1 RD RS2 C3   RI vi + - RL C2   C1   vo RS1 vi + - RG RL + vo - RD RI RS1 id  gmvgs L D LR R R  1 1 11 m gs Ld d L m L vt g gs d S gs m gs S m S g v Rv i R g R A v v i R v g v R g R - - -        id 1 2G G GR R R ro G D S gmvgs + vgs - M
  • 24. EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 24 C-S Amplifier with Unbypass RS: Input Resistance RG = RG1 || RG1 RL + vo - RD RS1 Rin in GR R ro G D S gmvgs + vgs -vi + - RI Rin RG RL + vo - RD RS1 1 2G G GR R R ro G D gmvgs + vgs -
  • 25. EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 25 C-S Amplifier with Unbypass RS: Overall Voltage Gain VDD RG = RG1 || RG2 RL + vo - RD ro G D S gmvgs + vgs - RS1 Rin RG2 RG1 RD RS2 C3   RI vi + - RL C2   C1   vo RS1 vi + - RI go o in v vt i g i I in vv v R A A v v v R R       Rin vi + - RI + vg - Rin M
  • 26. EE2002 Analog Electronics AC Analysis of BJT and MOSFET Inverting Amplifiers 26 C-S Amplifier with Unbypass RS: Output Resistance Rth RD RS1 vx + - ix Rout 1 2th I G GR R R R ix 1 10, s x S g gs s x S v i R v v v i R    -  - ro G D S gmvgs + vgs -  1 1x x m x S o x Sv i g i R r i R    11x out m S o x v R g R r i     out out DR R R  x m gsx o sv g v r vi - current through ro outR RL + vo - RI RG RD RS1 1 2G G GR R R ro G D gmvgs + vgs - Rout vi + -