SlideShare a Scribd company logo
1 of 7
座屈荷重
1. 支持条件から境界条件を決定できる
目標
2. 座屈荷重を決定できる
1/7
3. 端末条件係数と座屈長さを説明できる
柱の支持条件と境界条件
回転端
y=0
y 方向変位なし
モーメントなし
M=0
dx
d y
2
2 =0∴
固定端
y=0
y 方向変位なし
軸線の傾きなし
d x
d y
= 0=θ
自由端
y= δ
y 方向変位を仮定
δ
dx
d y2
2
=−
EI
M
y 方向変位による曲げモーメント
2/7( )M =− P δ − y
y
固定端ー回転端:境界条件
固定端
y=0,
d x
d y
= 0
回転端
y=0, M=0
dx
d y
2
2 =0∴
O
P
3/7
固定端ー回転端:固定端
回転
=y x=0
dx
d y
2
2
=
0B + D=
=0α2
− B
x=0
O
P
ℓ
y=Asinαx + Bcosαx + Cx + D
一般解
=
EI
P
α2
x
固定
回転端
B=0 α=0
D=0
∵
4/7
y
固定端ー回転端:回転端
回転
=y x=ℓ
dx
dy
x=
=
ℓ
Asinα + Bcosα + Cℓ ℓ =0ℓ + D
Acosα − Bsinα + Cℓ ℓ =0α α
O
P
ℓ
y=Asinαx + Bcosαx + Cx + D
一般解
=
EI
P
α2
x
固定
=2.0457
ℓ 2
π2
EIPB座屈荷重
sinα − cosαℓ ℓ =0A αℓ( )
tan ℓα = ℓα
ℓα ~− 4.4934…(0でない最小解)
(数値的に解く)
固定端
B=0 D=0回転端
5/7
y
端末条件係数と座屈長さ
固定ー自由 固定ー回転 固定ー固定回転ー回転
PB= L
ℓ 2
π2 EI L : 端末条件係数
L=1 4 L=2.0457 L=1 L=4
ℓ
=
ℓ0
2
π2 EI
ℓ0 =ℓ L : 座屈長さ
6/7
まとめ:座屈荷重の決定
1. 境界条件
2. 座屈荷重の決定
3. 端末条件係数と座屈長さ PB= L
ℓ 2
π2 EI
固定ー自由
L=1 4
固定ー回転
L=2.0457
回転ー回転
L=1
固定ー固定
L=4
7/7
固定端
y=0,
d x
d y
= 0
回転端
y=0,
dx
d y
2
2 =0 y= δ,
dx
d y2
2
=−
EI
M
自由端
① 境界条件の選択 ② 一般解の定数決定 ③ 座屈荷重の決定
ℓ0 =ℓ L座屈長さ
支持条件
端末条件係数

More Related Content

What's hot

01.MULTI STAGE AMPLIFIER (L 1).ppt
01.MULTI STAGE AMPLIFIER (L 1).ppt01.MULTI STAGE AMPLIFIER (L 1).ppt
01.MULTI STAGE AMPLIFIER (L 1).pptMahbubUzZaman7
 
Dinamica dos bloquinhos com atrito resumo
Dinamica dos bloquinhos com atrito   resumoDinamica dos bloquinhos com atrito   resumo
Dinamica dos bloquinhos com atrito resumoNS Aulas Particulares
 
Root locus cap_9_parte_4_pt
Root locus cap_9_parte_4_ptRoot locus cap_9_parte_4_pt
Root locus cap_9_parte_4_ptFernando Passold
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Matthew Leingang
 
名震台北逾甲子 台北古早神將一覽表
名震台北逾甲子 台北古早神將一覽表名震台北逾甲子 台北古早神將一覽表
名震台北逾甲子 台北古早神將一覽表guest0b64f57
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Simen Li
 
Dinamica dos bloquinhos sem atrito resumo
Dinamica dos bloquinhos sem atrito  resumoDinamica dos bloquinhos sem atrito  resumo
Dinamica dos bloquinhos sem atrito resumoNS Aulas Particulares
 
Lesson 8 the definite integrals
Lesson 8 the definite integralsLesson 8 the definite integrals
Lesson 8 the definite integralsLawrence De Vera
 
Trabalho mecanico potencia - rendimento - resumo
Trabalho mecanico   potencia - rendimento - resumoTrabalho mecanico   potencia - rendimento - resumo
Trabalho mecanico potencia - rendimento - resumoNS Aulas Particulares
 
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of GaziantepFormul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of GaziantepErdi Karaçal
 

What's hot (16)

01.MULTI STAGE AMPLIFIER (L 1).ppt
01.MULTI STAGE AMPLIFIER (L 1).ppt01.MULTI STAGE AMPLIFIER (L 1).ppt
01.MULTI STAGE AMPLIFIER (L 1).ppt
 
Active filters
Active filtersActive filters
Active filters
 
Dinamica dos bloquinhos com atrito resumo
Dinamica dos bloquinhos com atrito   resumoDinamica dos bloquinhos com atrito   resumo
Dinamica dos bloquinhos com atrito resumo
 
Root locus cap_9_parte_4_pt
Root locus cap_9_parte_4_ptRoot locus cap_9_parte_4_pt
Root locus cap_9_parte_4_pt
 
15 mosfet threshold voltage
15 mosfet threshold voltage15 mosfet threshold voltage
15 mosfet threshold voltage
 
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (slides)
 
名震台北逾甲子 台北古早神將一覽表
名震台北逾甲子 台北古早神將一覽表名震台北逾甲子 台北古早神將一覽表
名震台北逾甲子 台北古早神將一覽表
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
 
Lar calc10 ch04_sec3
Lar calc10 ch04_sec3Lar calc10 ch04_sec3
Lar calc10 ch04_sec3
 
Fluids in Physics
Fluids in PhysicsFluids in Physics
Fluids in Physics
 
Dinamica dos bloquinhos sem atrito resumo
Dinamica dos bloquinhos sem atrito  resumoDinamica dos bloquinhos sem atrito  resumo
Dinamica dos bloquinhos sem atrito resumo
 
Lesson 8 the definite integrals
Lesson 8 the definite integralsLesson 8 the definite integrals
Lesson 8 the definite integrals
 
Trabalho mecanico potencia - rendimento - resumo
Trabalho mecanico   potencia - rendimento - resumoTrabalho mecanico   potencia - rendimento - resumo
Trabalho mecanico potencia - rendimento - resumo
 
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of GaziantepFormul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
 
Math12 lesson11
Math12 lesson11Math12 lesson11
Math12 lesson11
 
Variaveis complexas
Variaveis complexasVariaveis complexas
Variaveis complexas
 

More from Kazuhiro Suga

【Word】「きれいに」式を書く
【Word】「きれいに」式を書く【Word】「きれいに」式を書く
【Word】「きれいに」式を書くKazuhiro Suga
 
【Word】「きれいに」表を作る
【Word】「きれいに」表を作る【Word】「きれいに」表を作る
【Word】「きれいに」表を作るKazuhiro Suga
 
【材料力学】主応力と主せん断応力 (II-09-2 2020)
【材料力学】主応力と主せん断応力 (II-09-2 2020)【材料力学】主応力と主せん断応力 (II-09-2 2020)
【材料力学】主応力と主せん断応力 (II-09-2 2020)Kazuhiro Suga
 
【材料力学】3次元空間のひずみ (II-08-1 2020)
【材料力学】3次元空間のひずみ (II-08-1 2020)【材料力学】3次元空間のひずみ (II-08-1 2020)
【材料力学】3次元空間のひずみ (II-08-1 2020)Kazuhiro Suga
 
【材料力学】3次元空間の応力 (II-07-1 2020)
【材料力学】3次元空間の応力 (II-07-1 2020)【材料力学】3次元空間の応力 (II-07-1 2020)
【材料力学】3次元空間の応力 (II-07-1 2020)Kazuhiro Suga
 
【材料力学】相反定理 (II-05-1 2020)
【材料力学】相反定理 (II-05-1 2020)【材料力学】相反定理 (II-05-1 2020)
【材料力学】相反定理 (II-05-1 2020)Kazuhiro Suga
 
【材料力学】座屈 (II-03-1 2020)
【材料力学】座屈 (II-03-1 2020)【材料力学】座屈 (II-03-1 2020)
【材料力学】座屈 (II-03-1 2020)Kazuhiro Suga
 
【材料力学】特別な丸棒のねじり (II-02-1 2020)
【材料力学】特別な丸棒のねじり (II-02-1 2020)【材料力学】特別な丸棒のねじり (II-02-1 2020)
【材料力学】特別な丸棒のねじり (II-02-1 2020)Kazuhiro Suga
 
【材料力学】ねじり剛性 (II-01-3 2020)
【材料力学】ねじり剛性 (II-01-3 2020)【材料力学】ねじり剛性 (II-01-3 2020)
【材料力学】ねじり剛性 (II-01-3 2020)Kazuhiro Suga
 
【材料力学】許容応力と安全率 (I-12-1 2020)
【材料力学】許容応力と安全率 (I-12-1 2020)【材料力学】許容応力と安全率 (I-12-1 2020)
【材料力学】許容応力と安全率 (I-12-1 2020)Kazuhiro Suga
 
【材料力学】重ね合わせの原理を用いた不静定はりの解法 (I-11-3 2020)
【材料力学】重ね合わせの原理を用いた不静定はりの解法 (I-11-3 2020)【材料力学】重ね合わせの原理を用いた不静定はりの解法 (I-11-3 2020)
【材料力学】重ね合わせの原理を用いた不静定はりの解法 (I-11-3 2020)Kazuhiro Suga
 
【材料力学】幾何学的条件を用いた不静定はりの解法 (I-11-2 2020)
【材料力学】幾何学的条件を用いた不静定はりの解法 (I-11-2 2020)【材料力学】幾何学的条件を用いた不静定はりの解法 (I-11-2 2020)
【材料力学】幾何学的条件を用いた不静定はりの解法 (I-11-2 2020)Kazuhiro Suga
 
【材料力学】はり のたわみとたわみ角の求め方 (I-10-2 2020)
【材料力学】はり のたわみとたわみ角の求め方 (I-10-2 2020)【材料力学】はり のたわみとたわみ角の求め方 (I-10-2 2020)
【材料力学】はり のたわみとたわみ角の求め方 (I-10-2 2020)Kazuhiro Suga
 
【材料力学】はり のたわみ (I-10-1 2020)
【材料力学】はり のたわみ (I-10-1 2020)【材料力学】はり のたわみ (I-10-1 2020)
【材料力学】はり のたわみ (I-10-1 2020)Kazuhiro Suga
 
【材料力学】はり (I-08-1 2020)
【材料力学】はり (I-08-1 2020)【材料力学】はり (I-08-1 2020)
【材料力学】はり (I-08-1 2020)Kazuhiro Suga
 
【材料力学】(補足)仮想切断 (I-note-virtual_cut 2020)
【材料力学】(補足)仮想切断 (I-note-virtual_cut 2020)【材料力学】(補足)仮想切断 (I-note-virtual_cut 2020)
【材料力学】(補足)仮想切断 (I-note-virtual_cut 2020)Kazuhiro Suga
 
【材料力学】(補足)力のモーメント (I-note-moment 2020)
【材料力学】(補足)力のモーメント (I-note-moment 2020)【材料力学】(補足)力のモーメント (I-note-moment 2020)
【材料力学】(補足)力のモーメント (I-note-moment 2020)Kazuhiro Suga
 
【材料力学】熱ひずみと熱応力 (I-07-3 2020)
【材料力学】熱ひずみと熱応力 (I-07-3 2020)【材料力学】熱ひずみと熱応力 (I-07-3 2020)
【材料力学】熱ひずみと熱応力 (I-07-3 2020)Kazuhiro Suga
 
【材料力学】フックの法則 (I-05-1 2020)
【材料力学】フックの法則 (I-05-1 2020)【材料力学】フックの法則 (I-05-1 2020)
【材料力学】フックの法則 (I-05-1 2020)Kazuhiro Suga
 
【材料力学】ひずみ (I-03-2 2020)
【材料力学】ひずみ  (I-03-2 2020)【材料力学】ひずみ  (I-03-2 2020)
【材料力学】ひずみ (I-03-2 2020)Kazuhiro Suga
 

More from Kazuhiro Suga (20)

【Word】「きれいに」式を書く
【Word】「きれいに」式を書く【Word】「きれいに」式を書く
【Word】「きれいに」式を書く
 
【Word】「きれいに」表を作る
【Word】「きれいに」表を作る【Word】「きれいに」表を作る
【Word】「きれいに」表を作る
 
【材料力学】主応力と主せん断応力 (II-09-2 2020)
【材料力学】主応力と主せん断応力 (II-09-2 2020)【材料力学】主応力と主せん断応力 (II-09-2 2020)
【材料力学】主応力と主せん断応力 (II-09-2 2020)
 
【材料力学】3次元空間のひずみ (II-08-1 2020)
【材料力学】3次元空間のひずみ (II-08-1 2020)【材料力学】3次元空間のひずみ (II-08-1 2020)
【材料力学】3次元空間のひずみ (II-08-1 2020)
 
【材料力学】3次元空間の応力 (II-07-1 2020)
【材料力学】3次元空間の応力 (II-07-1 2020)【材料力学】3次元空間の応力 (II-07-1 2020)
【材料力学】3次元空間の応力 (II-07-1 2020)
 
【材料力学】相反定理 (II-05-1 2020)
【材料力学】相反定理 (II-05-1 2020)【材料力学】相反定理 (II-05-1 2020)
【材料力学】相反定理 (II-05-1 2020)
 
【材料力学】座屈 (II-03-1 2020)
【材料力学】座屈 (II-03-1 2020)【材料力学】座屈 (II-03-1 2020)
【材料力学】座屈 (II-03-1 2020)
 
【材料力学】特別な丸棒のねじり (II-02-1 2020)
【材料力学】特別な丸棒のねじり (II-02-1 2020)【材料力学】特別な丸棒のねじり (II-02-1 2020)
【材料力学】特別な丸棒のねじり (II-02-1 2020)
 
【材料力学】ねじり剛性 (II-01-3 2020)
【材料力学】ねじり剛性 (II-01-3 2020)【材料力学】ねじり剛性 (II-01-3 2020)
【材料力学】ねじり剛性 (II-01-3 2020)
 
【材料力学】許容応力と安全率 (I-12-1 2020)
【材料力学】許容応力と安全率 (I-12-1 2020)【材料力学】許容応力と安全率 (I-12-1 2020)
【材料力学】許容応力と安全率 (I-12-1 2020)
 
【材料力学】重ね合わせの原理を用いた不静定はりの解法 (I-11-3 2020)
【材料力学】重ね合わせの原理を用いた不静定はりの解法 (I-11-3 2020)【材料力学】重ね合わせの原理を用いた不静定はりの解法 (I-11-3 2020)
【材料力学】重ね合わせの原理を用いた不静定はりの解法 (I-11-3 2020)
 
【材料力学】幾何学的条件を用いた不静定はりの解法 (I-11-2 2020)
【材料力学】幾何学的条件を用いた不静定はりの解法 (I-11-2 2020)【材料力学】幾何学的条件を用いた不静定はりの解法 (I-11-2 2020)
【材料力学】幾何学的条件を用いた不静定はりの解法 (I-11-2 2020)
 
【材料力学】はり のたわみとたわみ角の求め方 (I-10-2 2020)
【材料力学】はり のたわみとたわみ角の求め方 (I-10-2 2020)【材料力学】はり のたわみとたわみ角の求め方 (I-10-2 2020)
【材料力学】はり のたわみとたわみ角の求め方 (I-10-2 2020)
 
【材料力学】はり のたわみ (I-10-1 2020)
【材料力学】はり のたわみ (I-10-1 2020)【材料力学】はり のたわみ (I-10-1 2020)
【材料力学】はり のたわみ (I-10-1 2020)
 
【材料力学】はり (I-08-1 2020)
【材料力学】はり (I-08-1 2020)【材料力学】はり (I-08-1 2020)
【材料力学】はり (I-08-1 2020)
 
【材料力学】(補足)仮想切断 (I-note-virtual_cut 2020)
【材料力学】(補足)仮想切断 (I-note-virtual_cut 2020)【材料力学】(補足)仮想切断 (I-note-virtual_cut 2020)
【材料力学】(補足)仮想切断 (I-note-virtual_cut 2020)
 
【材料力学】(補足)力のモーメント (I-note-moment 2020)
【材料力学】(補足)力のモーメント (I-note-moment 2020)【材料力学】(補足)力のモーメント (I-note-moment 2020)
【材料力学】(補足)力のモーメント (I-note-moment 2020)
 
【材料力学】熱ひずみと熱応力 (I-07-3 2020)
【材料力学】熱ひずみと熱応力 (I-07-3 2020)【材料力学】熱ひずみと熱応力 (I-07-3 2020)
【材料力学】熱ひずみと熱応力 (I-07-3 2020)
 
【材料力学】フックの法則 (I-05-1 2020)
【材料力学】フックの法則 (I-05-1 2020)【材料力学】フックの法則 (I-05-1 2020)
【材料力学】フックの法則 (I-05-1 2020)
 
【材料力学】ひずみ (I-03-2 2020)
【材料力学】ひずみ  (I-03-2 2020)【材料力学】ひずみ  (I-03-2 2020)
【材料力学】ひずみ (I-03-2 2020)
 

【材料力学】座屈荷重 (II-03-2 2020)

Editor's Notes

  1. 不静定はりの問題を解くのが簡単になる
  2. 座屈長さ=ある荷重で座屈が発生する支点間の距離