SlideShare a Scribd company logo
1 of 7
Download to read offline
Filter Designs
By Katherine Quinn
Obtain the spectrum of a sinusoid with an amplitude of 1 volt peak-to-peak (Vpp), frequency of 10khz, and a phase of 0.1
rad. First, find the exact spectrum using the Fourier Transform, and then compute the spectrum using DFT. Assume that
the signal is sampled at 4 times the Nyquist rate. You can use MATLAB or any other programming language to compute
DFT. Plot both spectra. Use dBv to represent spectra.
Exact Spectrum Double Sided Spectrum
Single Sided Spectrum
Repeat the previous steps when the sinusoid is replaced with a square wave with peak-to peak amplitude of 2 volts ,zero
dc level, and a period of sec10 mT  . In order to determine the Nyquist frequency, assume that the spectrum of a square
wave is negligible for where is the fundamental frequency of the square wave.
Exact Spectrum Double-Sided Spectrum
Single Sided Spectrum
0
0
1
T
f 03 ff 
dB
fH
fH
c
20
)(
)(
log10
2
10   dB
f
f
c
20
)(1
1
log10
2
10 


 2
10
20
1
1
log 210 







n
kHz
kHz
 2
21
1
log 210 
 n 
100
1
21
1
2

 n
 n2
21100   n2
299       n2
2ln99ln  
 
 
n
2ln2
99ln
 31467831.3n  4n
))(( af
n
kk
g
C 
f
an
k
kg
L
))((
 ))(( RkR a
))((
1
1
af kk
g
C  
)50)(100002(
7654.0
1

C  9
1 106343869.243 
C  nFC 2431 
)(
))(( 2
2
f
a
k
kg
L  
)100002(
)50)(8478.1(
2

L  3
2 10470432519.1 
L  mHL 47.12 
))((
3
3
af kk
g
C  
)50)(100002(
8478.1
3

C  9
3 101730077.588 
C  nFC 5883 
)(
))(( 4
4
f
a
k
kg
L  
)100002(
)50)(7654.0(
4

L  3
4 106090859672. 
L  mHL 609.4 
Design a maximally flat, low pass filter with the cut-off frequency of 10kHz and an attenuation of 20 dB at 5kHz. Use
amplitude scaling so that the filter is terminated onto a 50 Ω resistance. Use PSpice (free student version is available
online) to simulate/ validate the response of your circuit.
Decibel attenuation to find order:
Maximally Flat Low Pass Filter (4th Order)
Component Calculations:
element values for n=4 order low pass filter:
g1=0.7654 g2=1.8478 g3=1.8478 g4=0.7654 g5=1
Maximally Flat Low pass Filter Design
dB
fH
fH c
20
)(
)(
log10
2
10   dB
f
fc
20
)(1
1
log10
2
10 


 2
5
10
1
1
log 210 







n
kHz
kHz
 2
21
1
log 210 
 n 
100
1
21
1
2

 n
 n2
21100   n2
299       n2
2ln99ln  
 
 
n
2ln2
99ln
 31467831.3n  4n
))(( 1
1
f
a
kg
k
L  
)100002)(7654.0(
50
1

L  3
1 1003968476.1 
L  mHL 11 
))()((
1
2
2
fa kkg
C  
)8478.1)(50)(100002(
1
2

C  9
2 102642527.172 
C  nFC 1722 
))(( 3
3
f
a
kg
k
L  
)100002)(8478.1(
50
3

L  3
3 104306606318. 
L  mHL 431.3 
))()((
1
4
4
fa kkg
C  
)7654.0)(50)(100002(
1
4

C  9
4 108739041.415 
C  nFC 1722 
Design a maximally-flat, High pass filter with the cut off frequency of 10 kHz and an attenuation of 20 dB at 5 kHz. Use
amplitude scaling so that the filter is terminated at 50Ω resistance. Use PSpice to simulate/ validate the response of your
circuit.
Decibel attenuation to find order:
Maximally Flat High Pass Filter (4th Order):
Component Calculations:
element values for n=4 order high pass filter
g1=0.7654 g2=1.8478 g3=1.8478 g4=0.7654 g5=1
Maximally Flat High Pass Filter Design:
))((
'
fn
a
kg
k
LC 
))()((
1
'
fan kkg
CL 












12
022
2
21
1
)0(
)(
ff
ff
Tk
H
fH
n
1
1
))(coscos(
))(coshcosh(
{
1
1
)(





x
x
xn
xnn xT


  
 
 
10
1
2
))((
gf
k
L a





)6703.1100002(
)50(1.0
1



L  6
1 106426220.47 
L  HL 6.471 
)2( 0
2
2


f
kg
L a


)1.0)(100002(
)1926.1(50
2

L  3
2 10490409257.9 
L  mHL 49.92 
))(100002)(( 2
2
akg
C


 
)50)(1926.1)(100002(
)1.0(
2

C  9
2 1069041474.26 
C  nFC 7.262 
))(2( 0
1
1
akf
g
C




)50)(1.0)(100002(
6703.1
1

C  6
1 10316730026.5 
C  FC 3.51 
30
3
2
))((
gf
k
L a





)3661.2100002(
)50(1.0
3



L  6
3 1063233656.33 
L  HL 6.333 
))(2( 0
3
3
akf
g
C




)50)(1.0)(100002(
3661.2
3

C  6
3 10316730026.5 
C  FC 3.53 
)2( 0
4
4


f
kg
L a


)1.0)(100002(
)8419.0(50
4

L  3
4 10699627329.6 
L  mHL 7.64 
))(100002)(( 2
4
akg
C


 
)50)(8419.0)(100002(
)1.0(
4

C  9
2 1080851481.37 
C  nFC 8.372 
205.99)9841.1)(50()( 5  gkR a
 100R
Design an ER-BPF with maximum ripple of 0.5 dB with a center frequency of 10 kHz and 10% bandwidth ( 1.0 ).
Assume that the filter provides an attenuation of 20 dB at 0ff  = .
*Ripple:
*In this case
* For n = 4:
Equal Ripple Band Pass Filter:
Component Calculations:
*element values for n=4 order of 0.5dB Ripple
g1=1.6703 g2=1.1926 g3=2.3661 g4=0.8419 g5=1.9841
 


02
'
f
L
LinductorL

in series with capacitor (C')
Lf02 



Cf
LinductorC
02
)'(




in parallel with capacitor (C')


02 f
C

   020 22 ffff 
))(coshcosh()(2 1
xnxTx n

 dB
n
20
))2(cosh(cosh122.1
1
log10 1210 






 
dBdB 20
898.1148
1
log1020
))2(cosh4(cosh122.1
1
log10 101210 












 
)1(log10 2
10 kRipple  )1(log105.0 2
10 k 205.0
110 k 122018454.02
k
)060281473.3(10  dB6.30
TruedBdB  206.30 4n
Equal Ripple Band Pass Filter Design:
Simulation Results:
Low Pass Filter
High Pass Filter
Band Pass Filter
Experiment Results:
Sine Wave Output Square Wave Output
Low Pass Filter: High Pass Filter:
Band Pass Filter
4kHz 10kHz 20kHz

More Related Content

What's hot

Decision directed carrier signal
Decision directed carrier signalDecision directed carrier signal
Decision directed carrier signalsunil kumar
 
TGS Arcis- East Coast- Nova Scotia Renaissance phase
TGS Arcis- East Coast- Nova Scotia Renaissance phaseTGS Arcis- East Coast- Nova Scotia Renaissance phase
TGS Arcis- East Coast- Nova Scotia Renaissance phaseTGS
 
Bilinear z transformaion
Bilinear z transformaionBilinear z transformaion
Bilinear z transformaionNguyen Si Phuoc
 
Time-Frequency Representation of Microseismic Signals using the SST
Time-Frequency Representation of Microseismic Signals using the SSTTime-Frequency Representation of Microseismic Signals using the SST
Time-Frequency Representation of Microseismic Signals using the SSTUT Technology
 
Presentation final
Presentation finalPresentation final
Presentation finalKate Lu
 
TGS NSA- Loyal 3D
TGS NSA- Loyal 3D TGS NSA- Loyal 3D
TGS NSA- Loyal 3D TGS
 
Sat geo 03(1)
Sat geo 03(1)Sat geo 03(1)
Sat geo 03(1)lenisepti
 
"Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate""Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate"Chad Orzel
 
Acueducto calculo de potencia
Acueducto calculo de potencia Acueducto calculo de potencia
Acueducto calculo de potencia JeisonCepeda4
 
Design of IIR filters
Design of IIR filtersDesign of IIR filters
Design of IIR filtersop205
 
Basics of Analogue Filters
Basics of Analogue FiltersBasics of Analogue Filters
Basics of Analogue Filtersop205
 
TGS NSA- Firestone 3D
TGS NSA- Firestone 3DTGS NSA- Firestone 3D
TGS NSA- Firestone 3DTGS
 
Isi and nyquist criterion
Isi and nyquist criterionIsi and nyquist criterion
Isi and nyquist criterionsrkrishna341
 
Dsp U Lec08 Fir Filter Design
Dsp U   Lec08 Fir Filter DesignDsp U   Lec08 Fir Filter Design
Dsp U Lec08 Fir Filter Designtaha25
 
Parallel Implementation of the 2-D Discrete Wavelet Transform
Parallel Implementation of the 2-D Discrete Wavelet TransformParallel Implementation of the 2-D Discrete Wavelet Transform
Parallel Implementation of the 2-D Discrete Wavelet TransformDavid Bařina
 

What's hot (19)

Decision directed carrier signal
Decision directed carrier signalDecision directed carrier signal
Decision directed carrier signal
 
TGS Arcis- East Coast- Nova Scotia Renaissance phase
TGS Arcis- East Coast- Nova Scotia Renaissance phaseTGS Arcis- East Coast- Nova Scotia Renaissance phase
TGS Arcis- East Coast- Nova Scotia Renaissance phase
 
Bilinear z transformaion
Bilinear z transformaionBilinear z transformaion
Bilinear z transformaion
 
Maths3 project
Maths3 projectMaths3 project
Maths3 project
 
256 spatial encoding part 2
256 spatial encoding part 2256 spatial encoding part 2
256 spatial encoding part 2
 
Time-Frequency Representation of Microseismic Signals using the SST
Time-Frequency Representation of Microseismic Signals using the SSTTime-Frequency Representation of Microseismic Signals using the SST
Time-Frequency Representation of Microseismic Signals using the SST
 
Presentation final
Presentation finalPresentation final
Presentation final
 
Dsp ic june2013 (2)
Dsp ic june2013 (2)Dsp ic june2013 (2)
Dsp ic june2013 (2)
 
SAR_ADC__Resumo
SAR_ADC__ResumoSAR_ADC__Resumo
SAR_ADC__Resumo
 
TGS NSA- Loyal 3D
TGS NSA- Loyal 3D TGS NSA- Loyal 3D
TGS NSA- Loyal 3D
 
Sat geo 03(1)
Sat geo 03(1)Sat geo 03(1)
Sat geo 03(1)
 
"Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate""Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate"
 
Acueducto calculo de potencia
Acueducto calculo de potencia Acueducto calculo de potencia
Acueducto calculo de potencia
 
Design of IIR filters
Design of IIR filtersDesign of IIR filters
Design of IIR filters
 
Basics of Analogue Filters
Basics of Analogue FiltersBasics of Analogue Filters
Basics of Analogue Filters
 
TGS NSA- Firestone 3D
TGS NSA- Firestone 3DTGS NSA- Firestone 3D
TGS NSA- Firestone 3D
 
Isi and nyquist criterion
Isi and nyquist criterionIsi and nyquist criterion
Isi and nyquist criterion
 
Dsp U Lec08 Fir Filter Design
Dsp U   Lec08 Fir Filter DesignDsp U   Lec08 Fir Filter Design
Dsp U Lec08 Fir Filter Design
 
Parallel Implementation of the 2-D Discrete Wavelet Transform
Parallel Implementation of the 2-D Discrete Wavelet TransformParallel Implementation of the 2-D Discrete Wavelet Transform
Parallel Implementation of the 2-D Discrete Wavelet Transform
 

Similar to Filter_Designs

Low pass filter and Integrator
Low pass filter and IntegratorLow pass filter and Integrator
Low pass filter and IntegratorGeorge Cibi
 
Malik - Formal Element Report
Malik - Formal Element ReportMalik - Formal Element Report
Malik - Formal Element ReportJunaid Malik
 
Filters and Tuned Amplifiers
Filters and Tuned AmplifiersFilters and Tuned Amplifiers
Filters and Tuned Amplifiersselarothitc
 
Reflections in a cubic structure
Reflections in a cubic structureReflections in a cubic structure
Reflections in a cubic structureVishnuPullanikkat
 
Design of infinite impulse response digital filters 2
Design of infinite impulse response digital filters 2Design of infinite impulse response digital filters 2
Design of infinite impulse response digital filters 2HIMANSHU DIWAKAR
 
Real 2nd order LC PLL loop analysis.pptx
Real 2nd order LC PLL loop analysis.pptxReal 2nd order LC PLL loop analysis.pptx
Real 2nd order LC PLL loop analysis.pptxSaiGouthamSunkara
 
Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processingDsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processingAmr E. Mohamed
 
Calculate the bandwidth of the composite channel
Calculate the bandwidth of the composite channelCalculate the bandwidth of the composite channel
Calculate the bandwidth of the composite channelshohel rana
 
DSP_FOEHU - Lec 10 - FIR Filter Design
DSP_FOEHU - Lec 10 - FIR Filter DesignDSP_FOEHU - Lec 10 - FIR Filter Design
DSP_FOEHU - Lec 10 - FIR Filter DesignAmr E. Mohamed
 
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptxsp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptxElisée Ndjabu
 
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter DesignDSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter DesignAmr E. Mohamed
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsSimen Li
 
L6_S18_Introduction to PLL.pptx
L6_S18_Introduction to PLL.pptxL6_S18_Introduction to PLL.pptx
L6_S18_Introduction to PLL.pptxAryanKutemate
 

Similar to Filter_Designs (20)

Low pass filter and Integrator
Low pass filter and IntegratorLow pass filter and Integrator
Low pass filter and Integrator
 
Active filters
Active filtersActive filters
Active filters
 
5th Semeste Electronics and Communication Engineering (June-2016) Question Pa...
5th Semeste Electronics and Communication Engineering (June-2016) Question Pa...5th Semeste Electronics and Communication Engineering (June-2016) Question Pa...
5th Semeste Electronics and Communication Engineering (June-2016) Question Pa...
 
Malik - Formal Element Report
Malik - Formal Element ReportMalik - Formal Element Report
Malik - Formal Element Report
 
Filters and Tuned Amplifiers
Filters and Tuned AmplifiersFilters and Tuned Amplifiers
Filters and Tuned Amplifiers
 
Reflections in a cubic structure
Reflections in a cubic structureReflections in a cubic structure
Reflections in a cubic structure
 
Filters2
Filters2Filters2
Filters2
 
Design of infinite impulse response digital filters 2
Design of infinite impulse response digital filters 2Design of infinite impulse response digital filters 2
Design of infinite impulse response digital filters 2
 
Real 2nd order LC PLL loop analysis.pptx
Real 2nd order LC PLL loop analysis.pptxReal 2nd order LC PLL loop analysis.pptx
Real 2nd order LC PLL loop analysis.pptx
 
Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processingDsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
 
Calculate the bandwidth of the composite channel
Calculate the bandwidth of the composite channelCalculate the bandwidth of the composite channel
Calculate the bandwidth of the composite channel
 
DSP_FOEHU - Lec 10 - FIR Filter Design
DSP_FOEHU - Lec 10 - FIR Filter DesignDSP_FOEHU - Lec 10 - FIR Filter Design
DSP_FOEHU - Lec 10 - FIR Filter Design
 
IC Circuits Amplifiers
IC Circuits AmplifiersIC Circuits Amplifiers
IC Circuits Amplifiers
 
FIR
 FIR FIR
FIR
 
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptxsp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
 
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter DesignDSP_2018_FOEHU - Lec 06 - FIR Filter Design
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
 
Thesis presentation
Thesis presentationThesis presentation
Thesis presentation
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked Loops
 
Active filters
Active filtersActive filters
Active filters
 
L6_S18_Introduction to PLL.pptx
L6_S18_Introduction to PLL.pptxL6_S18_Introduction to PLL.pptx
L6_S18_Introduction to PLL.pptx
 

Filter_Designs

  • 2. Obtain the spectrum of a sinusoid with an amplitude of 1 volt peak-to-peak (Vpp), frequency of 10khz, and a phase of 0.1 rad. First, find the exact spectrum using the Fourier Transform, and then compute the spectrum using DFT. Assume that the signal is sampled at 4 times the Nyquist rate. You can use MATLAB or any other programming language to compute DFT. Plot both spectra. Use dBv to represent spectra. Exact Spectrum Double Sided Spectrum Single Sided Spectrum Repeat the previous steps when the sinusoid is replaced with a square wave with peak-to peak amplitude of 2 volts ,zero dc level, and a period of sec10 mT  . In order to determine the Nyquist frequency, assume that the spectrum of a square wave is negligible for where is the fundamental frequency of the square wave. Exact Spectrum Double-Sided Spectrum Single Sided Spectrum 0 0 1 T f 03 ff 
  • 3. dB fH fH c 20 )( )( log10 2 10   dB f f c 20 )(1 1 log10 2 10     2 10 20 1 1 log 210         n kHz kHz  2 21 1 log 210   n  100 1 21 1 2   n  n2 21100   n2 299       n2 2ln99ln       n 2ln2 99ln  31467831.3n  4n ))(( af n kk g C  f an k kg L ))((  ))(( RkR a ))(( 1 1 af kk g C   )50)(100002( 7654.0 1  C  9 1 106343869.243  C  nFC 2431  )( ))(( 2 2 f a k kg L   )100002( )50)(8478.1( 2  L  3 2 10470432519.1  L  mHL 47.12  ))(( 3 3 af kk g C   )50)(100002( 8478.1 3  C  9 3 101730077.588  C  nFC 5883  )( ))(( 4 4 f a k kg L   )100002( )50)(7654.0( 4  L  3 4 106090859672.  L  mHL 609.4  Design a maximally flat, low pass filter with the cut-off frequency of 10kHz and an attenuation of 20 dB at 5kHz. Use amplitude scaling so that the filter is terminated onto a 50 Ω resistance. Use PSpice (free student version is available online) to simulate/ validate the response of your circuit. Decibel attenuation to find order: Maximally Flat Low Pass Filter (4th Order) Component Calculations: element values for n=4 order low pass filter: g1=0.7654 g2=1.8478 g3=1.8478 g4=0.7654 g5=1 Maximally Flat Low pass Filter Design
  • 4. dB fH fH c 20 )( )( log10 2 10   dB f fc 20 )(1 1 log10 2 10     2 5 10 1 1 log 210         n kHz kHz  2 21 1 log 210   n  100 1 21 1 2   n  n2 21100   n2 299       n2 2ln99ln       n 2ln2 99ln  31467831.3n  4n ))(( 1 1 f a kg k L   )100002)(7654.0( 50 1  L  3 1 1003968476.1  L  mHL 11  ))()(( 1 2 2 fa kkg C   )8478.1)(50)(100002( 1 2  C  9 2 102642527.172  C  nFC 1722  ))(( 3 3 f a kg k L   )100002)(8478.1( 50 3  L  3 3 104306606318.  L  mHL 431.3  ))()(( 1 4 4 fa kkg C   )7654.0)(50)(100002( 1 4  C  9 4 108739041.415  C  nFC 1722  Design a maximally-flat, High pass filter with the cut off frequency of 10 kHz and an attenuation of 20 dB at 5 kHz. Use amplitude scaling so that the filter is terminated at 50Ω resistance. Use PSpice to simulate/ validate the response of your circuit. Decibel attenuation to find order: Maximally Flat High Pass Filter (4th Order): Component Calculations: element values for n=4 order high pass filter g1=0.7654 g2=1.8478 g3=1.8478 g4=0.7654 g5=1 Maximally Flat High Pass Filter Design: ))(( ' fn a kg k LC  ))()(( 1 ' fan kkg CL 
  • 5.             12 022 2 21 1 )0( )( ff ff Tk H fH n 1 1 ))(coscos( ))(coshcosh( { 1 1 )(      x x xn xnn xT          10 1 2 ))(( gf k L a      )6703.1100002( )50(1.0 1    L  6 1 106426220.47  L  HL 6.471  )2( 0 2 2   f kg L a   )1.0)(100002( )1926.1(50 2  L  3 2 10490409257.9  L  mHL 49.92  ))(100002)(( 2 2 akg C     )50)(1926.1)(100002( )1.0( 2  C  9 2 1069041474.26  C  nFC 7.262  ))(2( 0 1 1 akf g C     )50)(1.0)(100002( 6703.1 1  C  6 1 10316730026.5  C  FC 3.51  30 3 2 ))(( gf k L a      )3661.2100002( )50(1.0 3    L  6 3 1063233656.33  L  HL 6.333  ))(2( 0 3 3 akf g C     )50)(1.0)(100002( 3661.2 3  C  6 3 10316730026.5  C  FC 3.53  )2( 0 4 4   f kg L a   )1.0)(100002( )8419.0(50 4  L  3 4 10699627329.6  L  mHL 7.64  ))(100002)(( 2 4 akg C     )50)(8419.0)(100002( )1.0( 4  C  9 2 1080851481.37  C  nFC 8.372  205.99)9841.1)(50()( 5  gkR a  100R Design an ER-BPF with maximum ripple of 0.5 dB with a center frequency of 10 kHz and 10% bandwidth ( 1.0 ). Assume that the filter provides an attenuation of 20 dB at 0ff  = . *Ripple: *In this case * For n = 4: Equal Ripple Band Pass Filter: Component Calculations: *element values for n=4 order of 0.5dB Ripple g1=1.6703 g2=1.1926 g3=2.3661 g4=0.8419 g5=1.9841     02 ' f L LinductorL  in series with capacitor (C') Lf02     Cf LinductorC 02 )'(     in parallel with capacitor (C')   02 f C     020 22 ffff  ))(coshcosh()(2 1 xnxTx n   dB n 20 ))2(cosh(cosh122.1 1 log10 1210          dBdB 20 898.1148 1 log1020 ))2(cosh4(cosh122.1 1 log10 101210                )1(log10 2 10 kRipple  )1(log105.0 2 10 k 205.0 110 k 122018454.02 k )060281473.3(10  dB6.30 TruedBdB  206.30 4n
  • 6. Equal Ripple Band Pass Filter Design: Simulation Results: Low Pass Filter High Pass Filter Band Pass Filter
  • 7. Experiment Results: Sine Wave Output Square Wave Output Low Pass Filter: High Pass Filter: Band Pass Filter 4kHz 10kHz 20kHz