SlideShare a Scribd company logo
1 of 1
Download to read offline
Evaluating the effect of rotor-driven yaw control on wind
turbine drivetrain loads
• In today’s world, wind turbines are one of the best
methods of harnessing renewable energy because of their
design simplicity and relevant efficiency. It produces
around 2 MW of power which enough to power around
2000 homes.
• Figure 1: Traditional Wind turbine
• To protect the gearbox bearings, large misalignments
on the order of 15° are tolerated before correcting
the yaw angle; this misalignment reduces efficiency.
• To close this gap of inefficiency, this project is
embarked.
Jay Bhatt, Dr. David Burris
University of DelawareIntroduction
Objectives
“The objective of this pilot is to demonstrate that
cyclic pitch control can be used for blade-driven
wind turbine yaw to significantly improve the
response to changes in wind direction while
significantly reducing drivetrain loads.”- Dr. Burris
Aims of this project include:
 To demonstrate that cyclic pitch is a viable
means to control wind turbine yaw
 To show that the use of cyclic pitch to
control yaw significantly decreases the non-
torque loads on the drivetrain, which have
implicated in premature bearing failure.
The Prototype
Conclusions/Results
References
Acknowledgements
• Ronald E. McNair scholars program
• Dr. Burris and his panel of graduate students
• Mr. Scott Nelson
• Bottasso, C. (2014). Cyclic pitch control for the reduction of ultimate loads on wind turbines. Journal of
Physics.Conference Series, 524(1)
• Boxwell, M. (2015). Wind turbines vs solar panels. Retrieved 7/19, 2015, from
http://solarelectricityhandbook.com/Solar-Articles/wind-turbines.html
• Boxwell, M. (2015). Wind turbines vs solar panels.http://solarelectricityhandbook.com/Solar-Articles/wind-
turbines.html
• Geyler, M., & Caselitz, P. (2007). Individual blade pitch control design for load reduction on large wind turbines.
European Wind Energy Conference (EWEC 2007), Milano, Italy, may, pp. 7-10.
• Kragh, K. (2014). Sensor comparison study for load alleviating wind turbine pitch control. Wind Energy
(Chichester, England), 17(12), 1891; 1891-1904; 1904.
• Larsen, T. J., Madsen, H. A., & Thomsen, K. (2005). Active load reduction using individual pitch, based on local
blade flow measurements. Wind Energy, 8(1), 67-80.
• Schlipf, D., Schuler, S., Grau, P., Allgöwer, F., & Kühn, M. (2010). Look-ahead cyclic pitch control using lidar.
• Hold uniform pitch constant, and then
simply induce effects through cyclic pitch
(Cluster Graphs One)
• Hold cyclic pitch constant and then simply
induce effects through uniform pitch
(Cluster Graphs Two)
After the data was acquired, it was clear to see
that cyclic pitch does not induce a pitch
moment.
However, the data was too noisy to make any
feasible conclusions, so future consideration
include replacing the scissor link, better
securing the blade hub and a different method
of transferring the motor rotation for more
reliable transmission of power.
Experimental
Methodology/Conclusion
-150
-100
-50
0
50
100
150
200
250
time(s)
0.151
0.284
0.416
0.55
0.687
0.819
0.952
1.085
1.218
1.352
1.488
1.621
1.755
1.889
2.022
2.156
2.29
2.423
2.557
2.69
2.824
2.959
3.093
3.226
3.361
3.495
3.631
3.765
3.9
4.036
4.171
4.304
4.439
4.573
4.708
4.842
4.977
5.113
5.247
5.382
5.516
5.651
5.784
5.919
6.053
6.186
6.321
6.455
6.59
6.725
6.859
6.994
7.127
7.262
7.398
7.532
7.667
7.801
7.936
8.07
8.204
8.339
8.474
8.609
8.743
8.878
9.012
9.146
9.281
9.416
9.551
9.685
9.82
9.954
10.089
10.223
10.357
10.492
10.627
10.761
10.896
11.031
11.165
11.3
11.435
11.569
11.704
11.839
11.974
12.109
12.244
12.379
12.513
12.648
12.782
12.917
13.052
13.187
Pitch
Pitch
-100
0
100
200
time(s)
0.151
0.284
0.416
0.55
0.687
0.819
0.952
1.085
1.218
1.352
1.488
1.621
1.755
1.889
2.022
2.156
2.29
2.423
2.557
2.69
2.824
2.959
3.093
3.226
3.361
3.495
3.631
3.765
3.9
4.036
4.171
4.304
4.439
4.573
4.708
4.842
4.977
5.113
5.247
5.382
5.516
5.651
5.784
5.919
6.053
6.186
6.321
6.455
6.59
6.725
6.859
6.994
7.127
7.262
7.398
7.532
7.667
7.801
7.936
8.07
8.204
8.339
8.474
8.609
8.743
8.878
9.012
9.146
9.281
9.416
9.551
9.685
9.82
9.954
10.089
10.223
10.357
10.492
10.627
10.761
10.896
11.031
11.165
11.3
11.435
11.569
11.704
11.839
11.974
12.109
12.244
12.379
12.513
12.648
12.782
12.917
13.052
13.187
Yaw
Yaw
-4
-2
0
2
4
6
time(s)
0.148
0.276
0.405
0.534
0.667
0.796
0.925
1.054
1.183
1.313
1.443
1.574
1.704
1.834
1.963
2.093
2.223
2.352
2.482
2.612
2.742
2.872
3.002
3.132
3.262
3.392
3.523
3.654
3.785
3.916
4.048
4.179
4.308
4.439
4.569
4.7
4.83
4.961
5.093
5.223
5.354
5.484
5.615
5.745
5.875
6.006
6.135
6.265
6.396
6.527
6.657
6.788
6.918
7.049
7.179
7.31
7.441
7.572
7.703
7.833
7.964
8.094
8.224
8.355
8.485
8.616
8.747
8.878
9.008
9.139
9.27
9.4
9.531
9.662
9.792
9.923
10.053
10.184
10.314
10.445
10.575
10.706
10.837
10.967
11.098
11.229
11.36
11.49
11.621
11.752
11.883
12.013
12.145
12.275
12.406
12.537
12.668
12.798
12.929
13.06
Torque
Torque
-30
-20
-10
0
10
20
30
time(s)
0.151
0.284
0.416
0.55
0.687
0.819
0.952
1.085
1.218
1.352
1.488
1.621
1.755
1.889
2.022
2.156
2.29
2.423
2.557
2.69
2.824
2.959
3.093
3.226
3.361
3.495
3.631
3.765
3.9
4.036
4.171
4.304
4.439
4.573
4.708
4.842
4.977
5.113
5.247
5.382
5.516
5.651
5.784
5.919
6.053
6.186
6.321
6.455
6.59
6.725
6.859
6.994
7.127
7.262
7.398
7.532
7.667
7.801
7.936
8.07
8.204
8.339
8.474
8.609
8.743
8.878
9.012
9.146
9.281
9.416
9.551
9.685
9.82
9.954
10.089
10.223
10.357
10.492
10.627
10.761
10.896
11.031
11.165
11.3
11.435
11.569
11.704
11.839
11.974
12.109
12.244
12.379
12.513
12.648
12.782
12.917
13.052
13.187
Thrust
Thrust
-150
-100
-50
0
50
100
150
200
250
time(s)
0.0882
0.1736
0.262
0.3484
0.4354
0.5223
0.6083
0.6943
0.7803
0.8668
0.9523
1.0386
1.1252
1.211
1.2975
1.3872
1.4729
1.5594
1.6493
1.7358
1.8232
1.9133
1.9995
2.0868
2.1729
2.2604
2.3462
2.433
2.5197
2.6068
2.6929
2.7793
2.866
2.9525
3.0408
3.1278
3.2147
3.301
3.3877
3.4735
3.5598
3.6469
3.7349
3.823
3.9115
3.9983
4.0836
4.1723
4.2612
4.3479
4.4341
4.521
4.6083
4.6947
4.783
4.871
4.9572
5.0436
5.1305
5.2176
5.3037
5.3905
5.4774
5.5649
5.6513
5.7383
5.8254
5.9113
5.9999
6.0899
6.1797
6.27
6.3605
6.4508
6.541
6.6314
6.7208
6.811
6.9014
6.9916
7.0823
7.173
7.2633
7.354
7.444
7.5344
7.6245
7.7146
Pitch
-40
-20
0
20
40
60
80
100
time(s)
0.0882
0.1736
0.262
0.3484
0.4354
0.5223
0.6083
0.6943
0.7803
0.8668
0.9523
1.0386
1.1252
1.211
1.2975
1.3872
1.4729
1.5594
1.6493
1.7358
1.8232
1.9133
1.9995
2.0868
2.1729
2.2604
2.3462
2.433
2.5197
2.6068
2.6929
2.7793
2.866
2.9525
3.0408
3.1278
3.2147
3.301
3.3877
3.4735
3.5598
3.6469
3.7349
3.823
3.9115
3.9983
4.0836
4.1723
4.2612
4.3479
4.4341
4.521
4.6083
4.6947
4.783
4.871
4.9572
5.0436
5.1305
5.2176
5.3037
5.3905
5.4774
5.5649
5.6513
5.7383
5.8254
5.9113
5.9999
6.0899
6.1797
6.27
6.3605
6.4508
6.541
6.6314
6.7208
6.811
6.9014
6.9916
7.0823
7.173
7.2633
7.354
7.444
7.5344
7.6245
7.7146
Yaw
-2
-1
0
1
2
3
4
5
6
time(s)
0.0882
0.1736
0.262
0.3484
0.4354
0.5223
0.6083
0.6943
0.7803
0.8668
0.9523
1.0386
1.1252
1.211
1.2975
1.3872
1.4729
1.5594
1.6493
1.7358
1.8232
1.9133
1.9995
2.0868
2.1729
2.2604
2.3462
2.433
2.5197
2.6068
2.6929
2.7793
2.866
2.9525
3.0408
3.1278
3.2147
3.301
3.3877
3.4735
3.5598
3.6469
3.7349
3.823
3.9115
3.9983
4.0836
4.1723
4.2612
4.3479
4.4341
4.521
4.6083
4.6947
4.783
4.871
4.9572
5.0436
5.1305
5.2176
5.3037
5.3905
5.4774
5.5649
5.6513
5.7383
5.8254
5.9113
5.9999
6.0899
6.1797
6.27
6.3605
6.4508
6.541
6.6314
6.7208
6.811
6.9014
6.9916
7.0823
7.173
7.2633
7.354
7.444
7.5344
7.6245
7.7146
Torque
-10
-8
-6
-4
-2
0
2
4
6
8
time(s)
0.0882
0.1736
0.262
0.3484
0.4354
0.5223
0.6083
0.6943
0.7803
0.8668
0.9523
1.0386
1.1252
1.211
1.2975
1.3872
1.4729
1.5594
1.6493
1.7358
1.8232
1.9133
1.9995
2.0868
2.1729
2.2604
2.3462
2.433
2.5197
2.6068
2.6929
2.7793
2.866
2.9525
3.0408
3.1278
3.2147
3.301
3.3877
3.4735
3.5598
3.6469
3.7349
3.823
3.9115
3.9983
4.0836
4.1723
4.2612
4.3479
4.4341
4.521
4.6083
4.6947
4.783
4.871
4.9572
5.0436
5.1305
5.2176
5.3037
5.3905
5.4774
5.5649
5.6513
5.7383
5.8254
5.9113
5.9999
6.0899
6.1797
6.27
6.3605
6.4508
6.541
6.6314
6.7208
6.811
6.9014
6.9916
7.0823
7.173
7.2633
7.354
7.444
7.5344
7.6245
7.7146
Thrust

More Related Content

What's hot

Alumni14 - Presentation by Prof.Rangan Banerjee, Global Perspective on Consum...
Alumni14 - Presentation by Prof.Rangan Banerjee, Global Perspective on Consum...Alumni14 - Presentation by Prof.Rangan Banerjee, Global Perspective on Consum...
Alumni14 - Presentation by Prof.Rangan Banerjee, Global Perspective on Consum...
IITBAA
 
(3) kinetic energy
(3) kinetic energy(3) kinetic energy
(3) kinetic energy
physics101
 

What's hot (19)

Review Paper of Savonius Vertical Axis Wind Turbine Rotor Blade
Review Paper of Savonius Vertical Axis Wind Turbine Rotor BladeReview Paper of Savonius Vertical Axis Wind Turbine Rotor Blade
Review Paper of Savonius Vertical Axis Wind Turbine Rotor Blade
 
Design and Experimental Analysis of Solar air Conditioner
Design and Experimental Analysis of Solar air ConditionerDesign and Experimental Analysis of Solar air Conditioner
Design and Experimental Analysis of Solar air Conditioner
 
A Review and Aspects of High Altitude Wind Power Generation
A Review and Aspects of High Altitude Wind Power GenerationA Review and Aspects of High Altitude Wind Power Generation
A Review and Aspects of High Altitude Wind Power Generation
 
IRJET - A Review on Gravity based Power Generation System
IRJET - A Review on Gravity based Power Generation SystemIRJET - A Review on Gravity based Power Generation System
IRJET - A Review on Gravity based Power Generation System
 
IRJET - Multi-Hybrid Renewable Energy Source based on Solar, Wind and Biogas ...
IRJET - Multi-Hybrid Renewable Energy Source based on Solar, Wind and Biogas ...IRJET - Multi-Hybrid Renewable Energy Source based on Solar, Wind and Biogas ...
IRJET - Multi-Hybrid Renewable Energy Source based on Solar, Wind and Biogas ...
 
New Directions for Wind Turbines
New Directions for Wind TurbinesNew Directions for Wind Turbines
New Directions for Wind Turbines
 
IRJET- Design of Solar Rooftop Plant for JSSATEN
IRJET- Design of Solar Rooftop Plant for JSSATENIRJET- Design of Solar Rooftop Plant for JSSATEN
IRJET- Design of Solar Rooftop Plant for JSSATEN
 
Alumni14 - Presentation by Prof.Rangan Banerjee, Global Perspective on Consum...
Alumni14 - Presentation by Prof.Rangan Banerjee, Global Perspective on Consum...Alumni14 - Presentation by Prof.Rangan Banerjee, Global Perspective on Consum...
Alumni14 - Presentation by Prof.Rangan Banerjee, Global Perspective on Consum...
 
OFFSHORE WIND ENERGY
OFFSHORE WIND ENERGYOFFSHORE WIND ENERGY
OFFSHORE WIND ENERGY
 
A PROPOSAL FOR WIND-ENERGY CONVERSION FOR LOW WIND–SPEED AREAS OF INDIA
  A PROPOSAL FOR WIND-ENERGY CONVERSION FOR LOW WIND–SPEED AREAS OF INDIA  A PROPOSAL FOR WIND-ENERGY CONVERSION FOR LOW WIND–SPEED AREAS OF INDIA
A PROPOSAL FOR WIND-ENERGY CONVERSION FOR LOW WIND–SPEED AREAS OF INDIA
 
Session 3A - Samuel Sanchez
Session 3A - Samuel SanchezSession 3A - Samuel Sanchez
Session 3A - Samuel Sanchez
 
SELMA: structural optimization of offshore jacket structure and composite blade
SELMA: structural optimization of offshore jacket structure and composite bladeSELMA: structural optimization of offshore jacket structure and composite blade
SELMA: structural optimization of offshore jacket structure and composite blade
 
Structural degradation of a large composite wind turbine blade in a full-scal...
Structural degradation of a large composite wind turbine blade in a full-scal...Structural degradation of a large composite wind turbine blade in a full-scal...
Structural degradation of a large composite wind turbine blade in a full-scal...
 
Presentation for MSc Thesis
Presentation for MSc ThesisPresentation for MSc Thesis
Presentation for MSc Thesis
 
Solar mission
Solar missionSolar mission
Solar mission
 
Floating Solar PV - An Introduction
Floating Solar PV -  An Introduction Floating Solar PV -  An Introduction
Floating Solar PV - An Introduction
 
IRJET- Solar Energy: Potential and Policies of India
IRJET- Solar Energy: Potential and Policies of IndiaIRJET- Solar Energy: Potential and Policies of India
IRJET- Solar Energy: Potential and Policies of India
 
Photovoltaic panels tilt angle optimization
Photovoltaic panels tilt angle optimizationPhotovoltaic panels tilt angle optimization
Photovoltaic panels tilt angle optimization
 
(3) kinetic energy
(3) kinetic energy(3) kinetic energy
(3) kinetic energy
 

Similar to Evaluating the effect of rotor-driven yaw control on2

harnessing-the-power-of-wind-an-in-depth-look-into-the-world-of-wind-energy.pdf
harnessing-the-power-of-wind-an-in-depth-look-into-the-world-of-wind-energy.pdfharnessing-the-power-of-wind-an-in-depth-look-into-the-world-of-wind-energy.pdf
harnessing-the-power-of-wind-an-in-depth-look-into-the-world-of-wind-energy.pdf
ssuser1f9208
 
Integrating renewable energy technologies to reduce large ship fule consumpti...
Integrating renewable energy technologies to reduce large ship fule consumpti...Integrating renewable energy technologies to reduce large ship fule consumpti...
Integrating renewable energy technologies to reduce large ship fule consumpti...
cahouser
 
Wind Energy For Geoscience Students
Wind Energy For Geoscience Students Wind Energy For Geoscience Students
Wind Energy For Geoscience Students
Keshav Letourneau
 

Similar to Evaluating the effect of rotor-driven yaw control on2 (20)

Pre-Swirl Augmented Vertical Axis Wind Turbine
Pre-Swirl Augmented Vertical Axis Wind TurbinePre-Swirl Augmented Vertical Axis Wind Turbine
Pre-Swirl Augmented Vertical Axis Wind Turbine
 
Effectual and Lossless Electrical Power Generation Methodology using Wind-Len...
Effectual and Lossless Electrical Power Generation Methodology using Wind-Len...Effectual and Lossless Electrical Power Generation Methodology using Wind-Len...
Effectual and Lossless Electrical Power Generation Methodology using Wind-Len...
 
ppt.pptx
ppt.pptxppt.pptx
ppt.pptx
 
Offshore Wind Turbine Modeling
Offshore Wind Turbine ModelingOffshore Wind Turbine Modeling
Offshore Wind Turbine Modeling
 
ACP R&T_2022 - Poster - Long-Distance Wakes_Stoelinga.pdf
ACP R&T_2022 - Poster - Long-Distance Wakes_Stoelinga.pdfACP R&T_2022 - Poster - Long-Distance Wakes_Stoelinga.pdf
ACP R&T_2022 - Poster - Long-Distance Wakes_Stoelinga.pdf
 
IRJET- Power Generation with the Application of Vortex Wind Turbine
IRJET- Power Generation with the Application of Vortex Wind TurbineIRJET- Power Generation with the Application of Vortex Wind Turbine
IRJET- Power Generation with the Application of Vortex Wind Turbine
 
Module 5.1
Module 5.1Module 5.1
Module 5.1
 
IRJET- Manufacturing System of Hybrid Vertical Axis Wind Turbine
IRJET- Manufacturing System of Hybrid Vertical Axis Wind TurbineIRJET- Manufacturing System of Hybrid Vertical Axis Wind Turbine
IRJET- Manufacturing System of Hybrid Vertical Axis Wind Turbine
 
Design of Savonius model wind turbine for power catchment
Design of Savonius model wind turbine for power catchmentDesign of Savonius model wind turbine for power catchment
Design of Savonius model wind turbine for power catchment
 
harnessing-the-power-of-wind-an-in-depth-look-into-the-world-of-wind-energy.pdf
harnessing-the-power-of-wind-an-in-depth-look-into-the-world-of-wind-energy.pdfharnessing-the-power-of-wind-an-in-depth-look-into-the-world-of-wind-energy.pdf
harnessing-the-power-of-wind-an-in-depth-look-into-the-world-of-wind-energy.pdf
 
Study and Analysis on Bladeless Wind Turbine
Study and Analysis on Bladeless Wind TurbineStudy and Analysis on Bladeless Wind Turbine
Study and Analysis on Bladeless Wind Turbine
 
013_20160726_Wind energy
013_20160726_Wind energy013_20160726_Wind energy
013_20160726_Wind energy
 
IRJET- Vortex Bledless Wind Turbine “A New Approach to More Efficient Wind En...
IRJET- Vortex Bledless Wind Turbine “A New Approach to More Efficient Wind En...IRJET- Vortex Bledless Wind Turbine “A New Approach to More Efficient Wind En...
IRJET- Vortex Bledless Wind Turbine “A New Approach to More Efficient Wind En...
 
Vortex bladeless wind generator ppt
Vortex bladeless wind generator pptVortex bladeless wind generator ppt
Vortex bladeless wind generator ppt
 
Study on Fresh and Hardened Properties of Self-Compacting Mortar Containing G...
Study on Fresh and Hardened Properties of Self-Compacting Mortar Containing G...Study on Fresh and Hardened Properties of Self-Compacting Mortar Containing G...
Study on Fresh and Hardened Properties of Self-Compacting Mortar Containing G...
 
Energy Generation By Using Small Hydro Power-An Analysis
Energy Generation By Using Small Hydro Power-An AnalysisEnergy Generation By Using Small Hydro Power-An Analysis
Energy Generation By Using Small Hydro Power-An Analysis
 
Maglev windmill
Maglev windmillMaglev windmill
Maglev windmill
 
Integrating renewable energy technologies to reduce large ship fule consumpti...
Integrating renewable energy technologies to reduce large ship fule consumpti...Integrating renewable energy technologies to reduce large ship fule consumpti...
Integrating renewable energy technologies to reduce large ship fule consumpti...
 
Wind Energy For Geoscience Students
Wind Energy For Geoscience Students Wind Energy For Geoscience Students
Wind Energy For Geoscience Students
 
INTRODUCTION wind energy and its type .pptx
INTRODUCTION wind energy and its type .pptxINTRODUCTION wind energy and its type .pptx
INTRODUCTION wind energy and its type .pptx
 

Evaluating the effect of rotor-driven yaw control on2

  • 1. Evaluating the effect of rotor-driven yaw control on wind turbine drivetrain loads • In today’s world, wind turbines are one of the best methods of harnessing renewable energy because of their design simplicity and relevant efficiency. It produces around 2 MW of power which enough to power around 2000 homes. • Figure 1: Traditional Wind turbine • To protect the gearbox bearings, large misalignments on the order of 15° are tolerated before correcting the yaw angle; this misalignment reduces efficiency. • To close this gap of inefficiency, this project is embarked. Jay Bhatt, Dr. David Burris University of DelawareIntroduction Objectives “The objective of this pilot is to demonstrate that cyclic pitch control can be used for blade-driven wind turbine yaw to significantly improve the response to changes in wind direction while significantly reducing drivetrain loads.”- Dr. Burris Aims of this project include:  To demonstrate that cyclic pitch is a viable means to control wind turbine yaw  To show that the use of cyclic pitch to control yaw significantly decreases the non- torque loads on the drivetrain, which have implicated in premature bearing failure. The Prototype Conclusions/Results References Acknowledgements • Ronald E. McNair scholars program • Dr. Burris and his panel of graduate students • Mr. Scott Nelson • Bottasso, C. (2014). Cyclic pitch control for the reduction of ultimate loads on wind turbines. Journal of Physics.Conference Series, 524(1) • Boxwell, M. (2015). Wind turbines vs solar panels. Retrieved 7/19, 2015, from http://solarelectricityhandbook.com/Solar-Articles/wind-turbines.html • Boxwell, M. (2015). Wind turbines vs solar panels.http://solarelectricityhandbook.com/Solar-Articles/wind- turbines.html • Geyler, M., & Caselitz, P. (2007). Individual blade pitch control design for load reduction on large wind turbines. European Wind Energy Conference (EWEC 2007), Milano, Italy, may, pp. 7-10. • Kragh, K. (2014). Sensor comparison study for load alleviating wind turbine pitch control. Wind Energy (Chichester, England), 17(12), 1891; 1891-1904; 1904. • Larsen, T. J., Madsen, H. A., & Thomsen, K. (2005). Active load reduction using individual pitch, based on local blade flow measurements. Wind Energy, 8(1), 67-80. • Schlipf, D., Schuler, S., Grau, P., Allgöwer, F., & Kühn, M. (2010). Look-ahead cyclic pitch control using lidar. • Hold uniform pitch constant, and then simply induce effects through cyclic pitch (Cluster Graphs One) • Hold cyclic pitch constant and then simply induce effects through uniform pitch (Cluster Graphs Two) After the data was acquired, it was clear to see that cyclic pitch does not induce a pitch moment. However, the data was too noisy to make any feasible conclusions, so future consideration include replacing the scissor link, better securing the blade hub and a different method of transferring the motor rotation for more reliable transmission of power. Experimental Methodology/Conclusion -150 -100 -50 0 50 100 150 200 250 time(s) 0.151 0.284 0.416 0.55 0.687 0.819 0.952 1.085 1.218 1.352 1.488 1.621 1.755 1.889 2.022 2.156 2.29 2.423 2.557 2.69 2.824 2.959 3.093 3.226 3.361 3.495 3.631 3.765 3.9 4.036 4.171 4.304 4.439 4.573 4.708 4.842 4.977 5.113 5.247 5.382 5.516 5.651 5.784 5.919 6.053 6.186 6.321 6.455 6.59 6.725 6.859 6.994 7.127 7.262 7.398 7.532 7.667 7.801 7.936 8.07 8.204 8.339 8.474 8.609 8.743 8.878 9.012 9.146 9.281 9.416 9.551 9.685 9.82 9.954 10.089 10.223 10.357 10.492 10.627 10.761 10.896 11.031 11.165 11.3 11.435 11.569 11.704 11.839 11.974 12.109 12.244 12.379 12.513 12.648 12.782 12.917 13.052 13.187 Pitch Pitch -100 0 100 200 time(s) 0.151 0.284 0.416 0.55 0.687 0.819 0.952 1.085 1.218 1.352 1.488 1.621 1.755 1.889 2.022 2.156 2.29 2.423 2.557 2.69 2.824 2.959 3.093 3.226 3.361 3.495 3.631 3.765 3.9 4.036 4.171 4.304 4.439 4.573 4.708 4.842 4.977 5.113 5.247 5.382 5.516 5.651 5.784 5.919 6.053 6.186 6.321 6.455 6.59 6.725 6.859 6.994 7.127 7.262 7.398 7.532 7.667 7.801 7.936 8.07 8.204 8.339 8.474 8.609 8.743 8.878 9.012 9.146 9.281 9.416 9.551 9.685 9.82 9.954 10.089 10.223 10.357 10.492 10.627 10.761 10.896 11.031 11.165 11.3 11.435 11.569 11.704 11.839 11.974 12.109 12.244 12.379 12.513 12.648 12.782 12.917 13.052 13.187 Yaw Yaw -4 -2 0 2 4 6 time(s) 0.148 0.276 0.405 0.534 0.667 0.796 0.925 1.054 1.183 1.313 1.443 1.574 1.704 1.834 1.963 2.093 2.223 2.352 2.482 2.612 2.742 2.872 3.002 3.132 3.262 3.392 3.523 3.654 3.785 3.916 4.048 4.179 4.308 4.439 4.569 4.7 4.83 4.961 5.093 5.223 5.354 5.484 5.615 5.745 5.875 6.006 6.135 6.265 6.396 6.527 6.657 6.788 6.918 7.049 7.179 7.31 7.441 7.572 7.703 7.833 7.964 8.094 8.224 8.355 8.485 8.616 8.747 8.878 9.008 9.139 9.27 9.4 9.531 9.662 9.792 9.923 10.053 10.184 10.314 10.445 10.575 10.706 10.837 10.967 11.098 11.229 11.36 11.49 11.621 11.752 11.883 12.013 12.145 12.275 12.406 12.537 12.668 12.798 12.929 13.06 Torque Torque -30 -20 -10 0 10 20 30 time(s) 0.151 0.284 0.416 0.55 0.687 0.819 0.952 1.085 1.218 1.352 1.488 1.621 1.755 1.889 2.022 2.156 2.29 2.423 2.557 2.69 2.824 2.959 3.093 3.226 3.361 3.495 3.631 3.765 3.9 4.036 4.171 4.304 4.439 4.573 4.708 4.842 4.977 5.113 5.247 5.382 5.516 5.651 5.784 5.919 6.053 6.186 6.321 6.455 6.59 6.725 6.859 6.994 7.127 7.262 7.398 7.532 7.667 7.801 7.936 8.07 8.204 8.339 8.474 8.609 8.743 8.878 9.012 9.146 9.281 9.416 9.551 9.685 9.82 9.954 10.089 10.223 10.357 10.492 10.627 10.761 10.896 11.031 11.165 11.3 11.435 11.569 11.704 11.839 11.974 12.109 12.244 12.379 12.513 12.648 12.782 12.917 13.052 13.187 Thrust Thrust -150 -100 -50 0 50 100 150 200 250 time(s) 0.0882 0.1736 0.262 0.3484 0.4354 0.5223 0.6083 0.6943 0.7803 0.8668 0.9523 1.0386 1.1252 1.211 1.2975 1.3872 1.4729 1.5594 1.6493 1.7358 1.8232 1.9133 1.9995 2.0868 2.1729 2.2604 2.3462 2.433 2.5197 2.6068 2.6929 2.7793 2.866 2.9525 3.0408 3.1278 3.2147 3.301 3.3877 3.4735 3.5598 3.6469 3.7349 3.823 3.9115 3.9983 4.0836 4.1723 4.2612 4.3479 4.4341 4.521 4.6083 4.6947 4.783 4.871 4.9572 5.0436 5.1305 5.2176 5.3037 5.3905 5.4774 5.5649 5.6513 5.7383 5.8254 5.9113 5.9999 6.0899 6.1797 6.27 6.3605 6.4508 6.541 6.6314 6.7208 6.811 6.9014 6.9916 7.0823 7.173 7.2633 7.354 7.444 7.5344 7.6245 7.7146 Pitch -40 -20 0 20 40 60 80 100 time(s) 0.0882 0.1736 0.262 0.3484 0.4354 0.5223 0.6083 0.6943 0.7803 0.8668 0.9523 1.0386 1.1252 1.211 1.2975 1.3872 1.4729 1.5594 1.6493 1.7358 1.8232 1.9133 1.9995 2.0868 2.1729 2.2604 2.3462 2.433 2.5197 2.6068 2.6929 2.7793 2.866 2.9525 3.0408 3.1278 3.2147 3.301 3.3877 3.4735 3.5598 3.6469 3.7349 3.823 3.9115 3.9983 4.0836 4.1723 4.2612 4.3479 4.4341 4.521 4.6083 4.6947 4.783 4.871 4.9572 5.0436 5.1305 5.2176 5.3037 5.3905 5.4774 5.5649 5.6513 5.7383 5.8254 5.9113 5.9999 6.0899 6.1797 6.27 6.3605 6.4508 6.541 6.6314 6.7208 6.811 6.9014 6.9916 7.0823 7.173 7.2633 7.354 7.444 7.5344 7.6245 7.7146 Yaw -2 -1 0 1 2 3 4 5 6 time(s) 0.0882 0.1736 0.262 0.3484 0.4354 0.5223 0.6083 0.6943 0.7803 0.8668 0.9523 1.0386 1.1252 1.211 1.2975 1.3872 1.4729 1.5594 1.6493 1.7358 1.8232 1.9133 1.9995 2.0868 2.1729 2.2604 2.3462 2.433 2.5197 2.6068 2.6929 2.7793 2.866 2.9525 3.0408 3.1278 3.2147 3.301 3.3877 3.4735 3.5598 3.6469 3.7349 3.823 3.9115 3.9983 4.0836 4.1723 4.2612 4.3479 4.4341 4.521 4.6083 4.6947 4.783 4.871 4.9572 5.0436 5.1305 5.2176 5.3037 5.3905 5.4774 5.5649 5.6513 5.7383 5.8254 5.9113 5.9999 6.0899 6.1797 6.27 6.3605 6.4508 6.541 6.6314 6.7208 6.811 6.9014 6.9916 7.0823 7.173 7.2633 7.354 7.444 7.5344 7.6245 7.7146 Torque -10 -8 -6 -4 -2 0 2 4 6 8 time(s) 0.0882 0.1736 0.262 0.3484 0.4354 0.5223 0.6083 0.6943 0.7803 0.8668 0.9523 1.0386 1.1252 1.211 1.2975 1.3872 1.4729 1.5594 1.6493 1.7358 1.8232 1.9133 1.9995 2.0868 2.1729 2.2604 2.3462 2.433 2.5197 2.6068 2.6929 2.7793 2.866 2.9525 3.0408 3.1278 3.2147 3.301 3.3877 3.4735 3.5598 3.6469 3.7349 3.823 3.9115 3.9983 4.0836 4.1723 4.2612 4.3479 4.4341 4.521 4.6083 4.6947 4.783 4.871 4.9572 5.0436 5.1305 5.2176 5.3037 5.3905 5.4774 5.5649 5.6513 5.7383 5.8254 5.9113 5.9999 6.0899 6.1797 6.27 6.3605 6.4508 6.541 6.6314 6.7208 6.811 6.9014 6.9916 7.0823 7.173 7.2633 7.354 7.444 7.5344 7.6245 7.7146 Thrust