SlideShare a Scribd company logo
1 of 6
Download to read offline
IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS)
e-ISSN: 2278-3008, p-ISSN:2319-7676. Volume 6, Issue 5 (May. – Jun. 2013), PP 20-25
www.iosrjournals.org
www.iosrjournals.org 20 | Page
The Protective Role Of High Dietary Protein On Arsenic Induced
Hepatotoxicity In Albino Rat Model;A Possible Role Of
Antioxidants.
Dr. Shyamal Kanti Das
Krishnath College, University of Kalyani, Berhampore, Murshidabad, West Bengal, India.
Abstract: The objective of the present investigation was to study the protective role of High dietary protein on
arsenic induced hepatotoxicity model in adult male albino rats. Hepatotoxicity in rats was caused by arsenic tri
oxide at a dose of 3mg- /ml/kg body weight. Hepamerz, a drug used as standard hepatoprotective agent, was
administered orally as standard hepatoprotective agent for 14 consecutive days prior to arsenic treatment at a
dose of 10mg- /ml/kg body weight. This drug has many side effects. These side effects have prompted the
scientific world for the search of alternative natural remedies of liver damage. The High dietary protein was
administered orally to rats along with arsenic. The biochemical parameters were investigated. The results
indicated that biochemical changes produced by arsenic were restored to almost normal by High protein diet.
The High protein diet produced hepatoprotective effect through the modulation of antioxidant - mediated
mechanism by altering serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate
transaminase (SGPT), alkaline phosphatase (ALP), superoxide dismutase (SOD) and catalase (CAT) activities
and reduced glutathione (GSH) and lipid peroxidation (LPO) levels - against arsenic induced hepatotoxicity
model in rats.
Key words:- Arsenic trioxide, Hepamerz, hepatotoxicity, High protein diet.
I. Introduction
Arsenical compounds are environmentally toxic with multiple effects in animal and human
populations. We are exposed to arsenic mainly through water, food and drugs. The main source of
environmental arsenic exposure is drinking water. The frequent uses of arsenic are as herbicides, insecticides,
rodenticides and food preservatives. It has become evident that increasing human activities have modified the
global cycle of heavy metals and metalloids, including the toxic non-essential elements like arsenic (As)
[1].
Arsenic is one of the most abundant and potential carcinogen [2]
which is present in the nature in the stable
from as trivalent arsenate (As+3
) or Pentavalent arsenate (As+5
). The permissible limit for arsenic in drinking
water is 0.05 mg/lit as per WHO [3].
A survey of 25000 tube wells in West Bengal in India reveals that the
average As Concentration reaches to 0.3 mg/lit and even it reaches up to 3 mg/lit of water. During the process of
arsenic metabolism, Inorganic arsenic is first methylated to monomethyl arsenic (MMA) and then to dimethyl
arsenic acid (DMA) followed by its excretion from the body. In this process of biomethylation, constant
depletion of methyl causes DNA hypomethylation that leads to generation of mutation followed by
carcinogenesis [2].
Arsenic affects the mitochondrial enzymes, impairs the cellular respiration and causes cellular
toxicity. It can also substitute phosphate intermediates, which could theoretically slow down the metabolism and
interrupt the production of energy.On the other hand Hepamerz has been reported as a liver protective drug
which partly corrects these toxicities [4]
. But it has many side effects like vomiting,nausea, headache etc. It is
reported earlier that aqueous leaf extract of moringa olifera has an antioxidant effect [5].
Dietary Proteins have
also been found to have antioxidant activities [6].
Wheat and pea are both good sources of dietary plant protein,
while casein is an animal protein. The antioxidant activities of pea, wheat and casein has been studied using
different liposomal models and the results show a minimization in lipid per oxidation, thus preventing the
damage produced by the free radicals [6].
The main aim of our study is to find out the relationship between
arsenic generated oxidative stress and cellular damage using rat as a model and also the dietary protein how far
counteract this arsenic induced oxidative stress.
1.1. Animals Used and Maintenance
Thirty-six male Wistar strain adult albino rats of age approximately 120 days and weighing 150- 200 g
were used in the following studies. The animals were individually housed and maintained under standard
laboratory conditions with natural dark and light cycle (approximately 12--h light/10--h dark cycle) and room
temperature (271o
C) and constant humidity (60%) in accordance with the ‘Institutional Ethical Committee’
rules and regulations. A control diet composed of 71% carbohydrate,18% protein,7% fat and a mixtureof salt
and vitamins were given. Drinking water was supplied ad libitum. Animals were randomly divided equally into
The Protective Role Of High Dietary Protein On Arsenic Induced Hepatotoxicity In Albino Rat
www.iosrjournals.org 21 | Page
six groups of six each which are as follows: control group, arsenic treated experimental group, high protein
supplemented control group, Hepamerz treated control group, high protein along with arsenic treated
experimental group and Hepamerz pretreated arsenic treated experimental group. The high protein diet means
pea (37g/100g of diet) which contributed 8.5% of protein and casein (9g/100g of diet) which contributed
additional 9% protein in formulation of a high protein (27%) diet [6]. In addition to the normal diet, high protein
diet was given to the group of high protein supplemented control group and high protein along with arsenic
treated experimental group.The control group was kept in the laboratory condition for 42 (28+14=42) days. A
dose of 3 mg/ml/kg body weight /day of arsenic was given orally through orogastric cannula daily for 28 days to
each of the 2nd
, 5th
and 6th
group of the animals. The dose was standardised in our laboratory. In the 4th
and 6th
groups, i.e., Hepamerz treated control group and Hepamerz pretreated arsenic treated experimental group, a dose
of 5 ml of liver protective drug Hepamerz was administered for 14 days. After that, arsenic at a dose of 3 mg
/ml/kg body weight was administered orally for about 28 days. Body weights of the rats were recorded everyday
and maintained in the laboratory throughout the experimental period.
II. Biochemical Estimations
The biochemical results are obtained by estimation of parameters (e.g. SGOT, SGPT, ALP, SOD,
CAT, GSH and LPO) attached to the study on rats.
1.2. Collection of serum
Rats were sacrificed by cervical dislocation after 28 days of arsenic treatment. Blood sample was
collected by heart puncture and serum was separated by centrifugation (3000 rpm at 4o
C for 10 min). The liver
was immediately removed.
1.3. Estimation of SGPT, SGOT and ALP levels
Tissue and serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate
transaminase (SGPT) activities were measured according to the method of Kind and King [7],
alkaline
phosphatase (ALP) activity was measured according to the procedure of Reitman and Frankel[8].
1.4.Measurement of SOD
Superoxide dismutase (SOD) was estimated by the method of Mishra and Fridovich [9]
and Roy et
al[10].
Brain tissue samples were homogenised with 5 ml of ice--cold 0.1 M phosphate buffer (pH--7.4). The
homogenates are then centrifuged at 3000 rpm for 10 min. Afterthat, 0.1 ml of sample was mixed with 0.8 ml of
TDB. Reaction was started by the addition of 4 l of nicotinamide adenine dinucleotide phosphate (NADPH).
Then, 25 l of ethylenediaminetetraacetic acid- manganese chloride (EDTA-MnCl2) mixture was added to it.
Thereafter, spectrophotometric readings were recorded at 340 nm. After recording of the spectrophotometric
readings, 0.1 ml of mercaptoethanol was added to this mixture and again spectrophotometric readings were
recorded at 340 nm.
1.5.Measurement of LPO
Lipid peroxidation was measured according to the method of Bhattacharya et al. [11]
.and Roy et
al.[10]Brain tissue samples were homogenized with 5 ml of ice-cold 0.1 M phosphate buffer (pH-7.4). The
homogenates were then centrifuged at 3000 rpm for 10 min. After that, 0.5 ml of sample was mixed with 1 ml of
TDB and then the mixture was incubated at 37o
C for 1 hour. To this, 0.5 ml of trichloroacetic acid (TCA) was
added, vortexed and the absorbance was read at 350 nm. After recording of the spectrophotometric reading, 1 ml
sample was mixed with 500 l mercaptoethanol and again the absorbance was read at 350 nm.
1.6.Measurement of CAT
Catalase activity was estimated by the method of Cohen et al. [12]
and Roy et al., [10].Brain tissue
samples were homogenised with 5 ml of ice-cold 0.1 M phosphate buffer (pH-7.4). The homogenates were then
centrifuged at 3000 rpm for 10 min. The precipitate was then stirred with the addition of 15 ml of ice-cold 0.1 M
phosphate buffer and allowed to stand in cold condition with occasional shaking. The shaking procedure was
repeated for thrice. 1 ml of sample was added to 9 ml of H2O2. The rate of decomposition of H2O2 was measured
spectrophotometrically from the changes in absorbance at 350 nm. The activity of CAT was expressed as
percentage of inhibition unit.
1.7.Measurement of GSH
Reduced glutathione was measured according to the method of Ellman [13].
Equal quantity of
homogenate was mixed with 10% TCA and centrifuged to separate the proteins. To 0.01 ml of this supernatant,
2 ml of phosphate buffer (pH-8.4), 0.5 ml of 5, 5-dithiobis (2-nitrobenzoic acid) and 0.4 ml of double distilled
The Protective Role Of High Dietary Protein On Arsenic Induced Hepatotoxicity In Albino Rat
www.iosrjournals.org 22 | Page
water were added. The mixture was vortexed and the absorbance was read at 412 nm within 15 min. The
concentration of GSH was expressed as g/g of tissue.
III. Statistical Analysis
The data were expressed as MEAN  SEM (SEM means standard error of mean) and were analysed
statistically using one-way analysis of variance (one-way ANOVA), followed by multiple comparison‘t’- test,
which was used for statistical evaluation of the data. In addition to this, two-tailed Student’s‘t’- test was
performed to determine the level of significance between the means. Difference below the probability level 0.05
was considered statistically significant.
IV. Results
Twenty-eight days after the introduction of arsenic treatment, the SGOT, SGPT, ALP, SOD and CAT
activities, GSH and LPO levels were estimated.
There was a sharp rise (P<0.001) in SGOT, SGPT and ALP activities in the arsenic treated
experimental group as compared to the control group. The SGOT, SGPT and ALP activities were significantly
(P<0.001) decreased in High protein supplemented control group compared to the control group. High protein
supplement significantly (P<0.001) made reduction of SGOT, SGPT and ALP activities in High protein
pretreated arsenic treated experimental group compared to the arsenic treated experimental group. There were a
sharp declines (P<0.001) in SGOT, SGPT and ALP activities in the Hepamerz treated control group compared
to the control group. The SGOT, SGPT and ALP activities were significantly (P<0.001) decreased in Hepamerz
treated control group in comparison to High protein treated control group. The SGOT, SGPT and ALP activities
were significantly (P<0.001) decreased in Hepamerz pretreated arsenic treated experimental group when
compared to arsenic treated experimental group. The results are shown in Table 1.
There was a sharp decline (P<0.001) in SOD activity both in serum and liver in the arsenic treated
experimental group as compared to the control group. The SOD activity was significantly (P<0.001) increased
in High protein treated control group compared to the control group, both in serum and liver. High protein led
to significantly (P<0.001) increase SOD activity in High protein pretreated arsenic treated experimental group
in comparison to arsenic treated experimental group, both in serum and liver. There was a sharp increase
(P<0.001) in SOD activity both in serum and liver in the Hepamerz treated control group compared to the
control group. The SOD activity was significantly (P<0.001) increased in Hepamerz treated control group in
comparison to High protein treated control group both in serum and liver. The SOD activity was significantly
(P<0.001) increased in Hepamerz pretreated arsenic treated experimental group compared to the arsenic treated
experimental group both in serum and liver. The results are shown in Tables 2 and 3.
There was a sharp rise (P<0.001) in LPO level both in serum and liver in the arsenic treated
experimental group as compared to the control group. The LPO level was significantly (P<0.001) decreased in
High protein treated control group compared to the control group, both in serum and liver. High protein
significantly (P<0.001) decreased LPO level in High protein pretreated arsenic treated experimental group in
comparison to arsenic treated experimental group, both in serum and liver. There was a sharp decline (P<0.001)
in LPO level both in serum and liver in the Hepamerz treated control group when compared to the control
group. The LPO level was significantly (P<0.001) decreased in Hepamerz treated control group compared to the
High protein treated control group, both in serum and liver. The LPO level was significantly (P<0.001)
decreased in Hepamerz pretreated arsenic treated experimental group when compared to the arsenic treated
experimental group, both in serum and liver. The results are shown in Tables-2 and 3.
There was a sharp decline (P<0.001) in CAT activity both in serum and liver in the arsenic treated
experimental group as compared to the control group. The CAT activity was significantly (P<0.001) increased
in High protein treated control group when compared to the control group, both in serum and liver. High protein
significantly (P<0.001) increased CAT activity in High protein pretreated arsenic treated experimental group in
comparison to arsenic treated experimental group, both in serum and liver. There was a sharp increase (P<0.001)
in CAT activity, both in serum and liver in the Hepamerz treated control group compared to the control group.
The CAT activity was significantly (P<0.001) increased in Hepamerz treated control group in comparison to
High protein treated control group, both in serum and liver. The CAT activity was significantly (P<0.001)
increased in Hepamerz pretreated arsenic treated experimental group when compared to the arsenic treated
experimental group, both in serum and liver. The results are shown in Tables-2 and 3.
There was a sharp decline (P<0.001) in GSH level both in serum and liver in the arsenic treated
experimental group as compared to the control group. The GSH level was significantly (P<0.001) increased in
High protein treated control group compared to the control group, both in serum and liver. High protein
significantly (P<0.001) increased GSH level in High protein pretreated arsenic treated experimental group in
comparison to arsenic treated experimental group, both in serum and liver. There was a sharp increase (P<0.001)
in GSH level, both in serum and liver in the Hepamerz treated control group compared to the control group. The
The Protective Role Of High Dietary Protein On Arsenic Induced Hepatotoxicity In Albino Rat
www.iosrjournals.org 23 | Page
GSH level was significantly (P<0.001) increased in Hepamerz treated control group when compared to the High
protein treated control group, both in serum and liver. The GSH level was significantly (P<0.001) increased in
Hepamerz pretreated arsenic treated experimental group compared to arsenic treated experimental group both in
serum and liver. The results are shown in Tables-2 and 3.
V. Discussion
The present study evaluates the protective role of High dietary protein on arsenic induced
hepatotoxicity in albino rat model with the possible involvement of the antioxidants. SGPT, SGOT and ALP are
the most sensitive tests employed in the diagnosis of hepatic disease. Extensive liver damage by arsenic itself
decreases its rate of metabolism and other substrates for hepatic microsomal enzymes. It is evident from the
results of the present investigation that treatment with High dietary protein significantly decreased the SGPT,
SGOT and ALP activities .These findings can be explained by alterations of the LPO level and antioxidant
activities such as that of SOD, CAT and GSH, both in serum and liver tissue.
Free radicals play a crucial role in the pathogenesis of liver damage. LPO can be used as an index for
measuring the damage that occurs in membranes of tissue as a result of free radical generation [14,15].
In our
present study, oral administration of arsenic, significantly increased the LPO level. Significant elevation of LPO
level observed in arsenic treated experimental- group is possibly due to the generation of free radicals via auto-
oxidation or through metal ion or superoxide catalysed oxidation process. In the present study, High dietary
protein significantly decreased LPO level at a dose of 400 mg/kg body weight compared to other groups. High
dietary protein was found to have excellent scavenging effect on LPO, which was well comparable with the
standard drug Hepamerz. Endogenous antioxidant status in arsenic-induced experimental rat group was
evaluated here by noting the activities of CAT, SOD and GSH as these are the important biomarkers for
scavenging free radicals[16].
The primary role of CAT is to scavenge H2O2 that has been generated by free radicals or by SOD in its
removal of superoxide anions, and convert it in to water [17].
The destruction of superoxide radicals is catalysed
by SOD, which is an important defense system against oxidative damage. From our experimental results of the
aforesaid antioxidant enzyme activities in serum and liver tissues, it is clear that arsenic significantly led to
reduction of SOD, CAT, GSH activities in arsenic treated experimental group compared to control group, High
dietary protein treated control group, Hepamerz treated control group, Hepamerz pretreated arsenic treated
experimental group and High dietary protein pretreated arsenic treated experimental group..
Glutathione is an endogenous antioxidant, which is present majorly in the reduced form within the
cells. It prevents the hydroxyl radical generation by interacting with free radicals. During this defensive process,
GSH is converted to oxidised form under the influence of the enzyme glutathione peroxidase (GPX). The
decreased level of GSH in arsenic treated experimental group seen in our study indicates that there was an
increased generation of free radicals and the GSH was depleted during the process of combating oxidative stress
[18,19].
This has probably been possible either from the low level of reactive oxygen species (ROS) production or
through a rapid dissolution of ROS that has further been strengthened by the elevated activities of important
antioxidant defense enzymes CAT and SOD, studied in this experiment. Extract showed the presence of
flavonoids. Arsenic causes lipid peroxidation by generation of Reactive Oxygen Species (ROS) [20,21].
Our
results also support this view. In recent studies [6-8] dietary proteins have been found to have antioxidant
activities. Wheat and Pea are both good sources of dietary plant protein while casein is an animal protein. The
antioxidant properties of milk casein have been established [22].
It is also reported that casein phosphopeptides
(Cpp) and casein hydrolyses bind with per oxidant and thus lipid per oxidation is suppressed [22-24].
Our findings
also supported that pea and casein has an antioxidant properties. In our present experiment arsenic trioxide
induced oxidative stress. On the other hand supplementation of specific proteins with normal diet causes
significant recovery from all of these toxic effects.
The salient findings of our present study suggest that High dietary protein provide a good source of
antioxidants that could offer potential protective effects against LPO and which could be exploited to make a
hepato protective formulation.
Table 1: Effect of High dietary protein (HDP) on SGPT, SGOT and ALT activity in arsenic- induced
hepatotoxic rat model
Group (n) SGPT (IU/l) SGOT (IU/l) ALT (IU/l)
Control 51.89  0.09 57.85  0.02 58.83  0.05
Arsenic treated 132.34  1.04***
131.66  0.42***
134.02  0.25***
HDP+ Control 44.31  0.02*
45.72  0.03*
43.76  0.04*
HDP+ Arsenic 100.23  0.45**
103.46  0.09**
105.38  0.06**
Hepamerz + Control 41.66  0.02*
41.43  0.03*
38.02  0.04*
Hepamerz + Arsenic 83.61  0.12**
85.84  0.09**
85.37  0.14**
The Protective Role Of High Dietary Protein On Arsenic Induced Hepatotoxicity In Albino Rat
www.iosrjournals.org 24 | Page
Values are mean  SEM, n = 6. Data were analyzed statistically using one-way ANOVA test followed by
multiple comparison t–tests. *
P < 0.001 when compared with control group; **
P < 0.001 when compared with
arsenic treated group; ***
P < 0.001 when compared with other mentioned groups.
Table 2: Effect of HDP on serum antioxidant enzymatic changes in arsenic- induced hepatotoxic rat
model
Group (n) SOD (% inhibition unit) LPO (nmol of
[TBARS /-g] mol of
tissue)
CAT (% inhibition unit) GSH (g/g of tissue)
Control 13.61  0.09 5.01  0.01 14.61  0.02 32.35  0.09
Arsenic treated 25.23  0.05***
12.62  0.02***
26.45  0.03***
3.59  0.04***
HDP + Control 10.24  0.02*
2.37  0.02*
10.17  0.03*
35.54  0.09*
HDP + Arsenic 17.27  0.04**
9.57  0.03**
20.13  0.05**
11.34  0.06**
Hepamerz + Control 16.92  0.02*
1.69  0.03*
8.47  0.04*
38.78  0.04*
Hepamerz + Arsenic 16.15  0.02**
7.12  0.03**
18.36  0.03**
14.43  0.10**
Note: TBARS- Thio-barbituric acid reactive substances.
Values are mean  SEM, n = 6. Data were analyzed statistically using one-way ANOVA Test followed
by multiple comparison t–test. *
P < 0.001 when compared with control group; **
P < 0.001 when compared with
arsenic treated group; ***
P < 0.001 when compared with other mentioned groups.
Table 3: Effect of HDP on tissue antioxidant enzymatic changes in arsenic induced hepatotoxic rat model
Group (n) SOD (% inhibition
unit)
LPO (nmol of
[TBARS /-g] mol of
tissue)
CAT (% inhibition
unit)
GSH (g/g of tissue)
Control 12.24  0.03 6.13  0.01 15.02  0.02 32.25  0.03
Arsenic treated 24.23  0.03***
13.33  0.02***
27.66  0.04***
3.75  0.06***
HDP + Control 10.22  0.02*
2.76  0.03*
10.11  0.03*
37.58  0.03*
HDP + Arsenic 17.21  0.01**
8.53  0.04**
18.94  0.04**
13.56  0.04**
Hepamerz + Control 14.87  0.02*
1.68  0.01*
8.83  0.04*
39.47  0.02*
Hepamerz + Arsenic 16.32  0.01**
6.78  0.04**
16.32  0.06**
14.54  0.02**
Note: TBARS- Thio-barbituric acid reactive substances.
Values are mean  SEM, n = 6. Data were analyzed statistically using one-way ANOVA Test followed
by multiple comparison t–tests. *
p < 0.001 when compared with control group; **
p < 0.001 when compared with
arsenic treated group; ***
p < 0.001 when compared with other mentioned groups.
References
[1]. Clarkson T. Envioron, Health Prospect 1995; 103: 9-12.
[2]. Roy P, Saha A. Metabolism and toxicity of arsenic: A human carcinogen Current Sc 2002; 82 :38 – 45
[3]. Mandal BK, Roychowdhury T, Samanta, G, BasuGK, Chowdhury PP, Chanda C. Current science1996; 70: 976 – 986.
[4]. Maryam S, Shahzad AW, Ahmad S, Bhatti AS, Aziz K. Combination therapy of isoniazid and hepamerz (L--ornithine, L--aspartate) -
-effects on liver and kidney functions of rabbits. Annals 2010; 16:95--9.
[5]. Das SK, Roy C.The protective role of aegle marmelos on aspirin-induced gastro-duodenal ulceration in albino rat model:a possible
involvement of antioxidants . The Saudi Journal of Gastroenterology 2012;18:188-194.
[6]. Mukherjee S,Das D,Darbar D, Mitra C. Dietary intervenetion affects arsenic-generated nitric oxide and reactive oxygen intermediate
toxicity in islet cells of rats.Current Science 2003;85:786-793.
[7]. Kind PR, King EJ. Method of practical clinical biochemistry. In: Invarley H, Gowenlock AH, editors. London: Bell Meditors; 1980.
p. 899-900.
[8]. Reitman S, Frankel,SA.Colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic
transaminases.Am J Clin Pathol 1957;28:56-63.
[9]. Mishra HP, Fridovich I. The generation of radical during superoxide auto oxidation of hemoglobin. J Biol Chem 1972; 34: 30 – 7.
[10]. Roy C, Ghosh TK, Guha D. The antioxidative role of Benincasa hispida on colchicine induced experimental rat model of
Alzheimer’s disease. Biogenic Amines 2007; 21: 44-57.
[11]. Bhattacharya SK, Bhattacharya A, Das K, Muruganandam AV, Sairam K. Further investigations on the antioxidant activity of
Ocimam sanctum using different paradigms of oxidative stress in rats. J Nat Rem 2001; 1: 6 – 16.
[12]. Cohen G, Dembiec D, Marcus J. Measurement of Catalase activity in tissue extracts. Anal Biochem 1970; 34: 30 – 7.
[13]. .Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1959; 82: 70-7.
[14]. Dianzani MU. Lipid peroxidation in ethanol poisoning: A critical reconsideration. Alcohol 1985;- 20:- 161-73.
[15]. Husain K, Somani SM. Interaction of exercise and ethanol on hepatic and plasma antioxidant system in rat. Pathophysiology 1997;
4: 69-74.
[16]. Venkateswaran S, Pari L. Effect of Coccinia indica leaves on antioxidant status in streptozotocin—induced diabetic rats. J
Ethnopharmacol 2003;84: 163-68.
[17]. Riviere S, Birlouez--Aragon I, Nourhashemi F, Vellas B. Low plasma vitamin C in Alzheimer patients despite an adequate diet. Int J
Paediatric Psychiatry 1998; 13: 749-54.
[18]. Reiter RJ. Melatonin: lowering the high price of free radicals. News Physiol Sci 2000; 15: 246-50.
The Protective Role Of High Dietary Protein On Arsenic Induced Hepatotoxicity In Albino Rat
www.iosrjournals.org 25 | Page
[19]. Schulz JB, Lindenau J, Seyfried J, Dichgans J. Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 2000; 267: 4904-
11.
[20]. Xu Y, Wang Y, Zeng Q, Li X, Li B, Jin Y, Sun X, Sun G. Association ofoxidative stress with arsenic methylation in chronic arsenic-
exposed children and adults. Toxicol Appl Pharmacol 2008 Jul 1. (Epub ahead of print).
[21]. .Osbaldo Ramos, Leticia Carrizales, Leticia Yanez, Jesus Mejia, Lilia Batres, deogracias Ortiz, Fernanado Diaz- Barriaga: Arsenic
Increased Lipid Peroxidation in Rats Tissues by a Mechanism Independent of Glutathione Levels. Environmental Health
Perspectives1995 103;
[22]. Cervato G, Cazzola R, Cerstaro B Int. Studies on the antioxidants activity of milk caseins. J ood Sci Nutr 1999 ;50 : 291-6.
[23]. Diaz M, Decker EA.: Antioxidants mechanisms of caseinophosphopeptides andcasein hydrolysates and their application in ground
beef. J Agric Food chem 2004; 52: 8208-13.
[24]. Taylor MJ, Richardson T. Antioxidants acitivity of skim milk: effects of sonication. J Dairy Sci. 1980; 73: 1938-42.

More Related Content

What's hot

Impact_of_di-_2-ethylhexyl_phthalate_on
Impact_of_di-_2-ethylhexyl_phthalate_onImpact_of_di-_2-ethylhexyl_phthalate_on
Impact_of_di-_2-ethylhexyl_phthalate_onKalaivani Manokaran
 
Austin Journal of Pharmacology and Therapeutics
Austin Journal of Pharmacology and TherapeuticsAustin Journal of Pharmacology and Therapeutics
Austin Journal of Pharmacology and TherapeuticsAustin Publishing Group
 
Hepatoprotective Effect of Cestrum parqui L. aerial parts and Phytochemical ...
Hepatoprotective Effect of Cestrum parqui  L. aerial parts and Phytochemical ...Hepatoprotective Effect of Cestrum parqui  L. aerial parts and Phytochemical ...
Hepatoprotective Effect of Cestrum parqui L. aerial parts and Phytochemical ...Jing Zang
 
Tenderization of camel meat by using fresh ginger (zingiber officinale) extract
Tenderization of camel meat by using fresh ginger (zingiber officinale) extractTenderization of camel meat by using fresh ginger (zingiber officinale) extract
Tenderization of camel meat by using fresh ginger (zingiber officinale) extractAlexander Decker
 
In-Vitro and In-Vitro antiinflammtory activity of proton pump inhibitors
In-Vitro and In-Vitro antiinflammtory activity of proton pump inhibitorsIn-Vitro and In-Vitro antiinflammtory activity of proton pump inhibitors
In-Vitro and In-Vitro antiinflammtory activity of proton pump inhibitorsShital Magar
 
Antioxidant Activity of Indian Medicinal Rice (Oryza Sativa L.) cv. Njavara
Antioxidant Activity of Indian Medicinal Rice (Oryza Sativa L.) cv. NjavaraAntioxidant Activity of Indian Medicinal Rice (Oryza Sativa L.) cv. Njavara
Antioxidant Activity of Indian Medicinal Rice (Oryza Sativa L.) cv. NjavaraIJAEMSJORNAL
 
Dose-dependent hepatotoxicity effects of Zinc oxide nanoparticles
Dose-dependent hepatotoxicity effects of Zinc oxide nanoparticlesDose-dependent hepatotoxicity effects of Zinc oxide nanoparticles
Dose-dependent hepatotoxicity effects of Zinc oxide nanoparticlesNanomedicine Journal (NMJ)
 
In-vitro evaluation of Antioxidant and Anti-diabetic activity of leaf extract...
In-vitro evaluation of Antioxidant and Anti-diabetic activity of leaf extract...In-vitro evaluation of Antioxidant and Anti-diabetic activity of leaf extract...
In-vitro evaluation of Antioxidant and Anti-diabetic activity of leaf extract...SREEJITH P S
 
Effects of silver nanoparticle (Ag NP) on oxidative stress biomarkers in rat
Effects of silver nanoparticle (Ag NP) on oxidative stress biomarkers in ratEffects of silver nanoparticle (Ag NP) on oxidative stress biomarkers in rat
Effects of silver nanoparticle (Ag NP) on oxidative stress biomarkers in ratNanomedicine Journal (NMJ)
 
Effect of Ethanolic Extract of Momordica charantia on Blood Sugar Level in No...
Effect of Ethanolic Extract of Momordica charantia on Blood Sugar Level in No...Effect of Ethanolic Extract of Momordica charantia on Blood Sugar Level in No...
Effect of Ethanolic Extract of Momordica charantia on Blood Sugar Level in No...RahulGupta2015
 
Biochemical and pharmacological study of biologically active preparation of p...
Biochemical and pharmacological study of biologically active preparation of p...Biochemical and pharmacological study of biologically active preparation of p...
Biochemical and pharmacological study of biologically active preparation of p...inventionjournals
 

What's hot (17)

Impact_of_di-_2-ethylhexyl_phthalate_on
Impact_of_di-_2-ethylhexyl_phthalate_onImpact_of_di-_2-ethylhexyl_phthalate_on
Impact_of_di-_2-ethylhexyl_phthalate_on
 
Artemisia absinthium
Artemisia absinthiumArtemisia absinthium
Artemisia absinthium
 
Austin Journal of Pharmacology and Therapeutics
Austin Journal of Pharmacology and TherapeuticsAustin Journal of Pharmacology and Therapeutics
Austin Journal of Pharmacology and Therapeutics
 
Protective Effect of Taxifolin on Cisplatin-Induced Nephrotoxicity in Rats
Protective Effect of Taxifolin on Cisplatin-Induced Nephrotoxicity in RatsProtective Effect of Taxifolin on Cisplatin-Induced Nephrotoxicity in Rats
Protective Effect of Taxifolin on Cisplatin-Induced Nephrotoxicity in Rats
 
Hepatoprotective Effect of Cestrum parqui L. aerial parts and Phytochemical ...
Hepatoprotective Effect of Cestrum parqui  L. aerial parts and Phytochemical ...Hepatoprotective Effect of Cestrum parqui  L. aerial parts and Phytochemical ...
Hepatoprotective Effect of Cestrum parqui L. aerial parts and Phytochemical ...
 
28 hari
28 hari28 hari
28 hari
 
Tenderization of camel meat by using fresh ginger (zingiber officinale) extract
Tenderization of camel meat by using fresh ginger (zingiber officinale) extractTenderization of camel meat by using fresh ginger (zingiber officinale) extract
Tenderization of camel meat by using fresh ginger (zingiber officinale) extract
 
In-Vitro and In-Vitro antiinflammtory activity of proton pump inhibitors
In-Vitro and In-Vitro antiinflammtory activity of proton pump inhibitorsIn-Vitro and In-Vitro antiinflammtory activity of proton pump inhibitors
In-Vitro and In-Vitro antiinflammtory activity of proton pump inhibitors
 
1 (3)
1 (3)1 (3)
1 (3)
 
Antioxidant Activity of Indian Medicinal Rice (Oryza Sativa L.) cv. Njavara
Antioxidant Activity of Indian Medicinal Rice (Oryza Sativa L.) cv. NjavaraAntioxidant Activity of Indian Medicinal Rice (Oryza Sativa L.) cv. Njavara
Antioxidant Activity of Indian Medicinal Rice (Oryza Sativa L.) cv. Njavara
 
Anti-diabetic - 복사본
Anti-diabetic - 복사본Anti-diabetic - 복사본
Anti-diabetic - 복사본
 
Antioxidative activities of kefir
Antioxidative activities of kefirAntioxidative activities of kefir
Antioxidative activities of kefir
 
Dose-dependent hepatotoxicity effects of Zinc oxide nanoparticles
Dose-dependent hepatotoxicity effects of Zinc oxide nanoparticlesDose-dependent hepatotoxicity effects of Zinc oxide nanoparticles
Dose-dependent hepatotoxicity effects of Zinc oxide nanoparticles
 
In-vitro evaluation of Antioxidant and Anti-diabetic activity of leaf extract...
In-vitro evaluation of Antioxidant and Anti-diabetic activity of leaf extract...In-vitro evaluation of Antioxidant and Anti-diabetic activity of leaf extract...
In-vitro evaluation of Antioxidant and Anti-diabetic activity of leaf extract...
 
Effects of silver nanoparticle (Ag NP) on oxidative stress biomarkers in rat
Effects of silver nanoparticle (Ag NP) on oxidative stress biomarkers in ratEffects of silver nanoparticle (Ag NP) on oxidative stress biomarkers in rat
Effects of silver nanoparticle (Ag NP) on oxidative stress biomarkers in rat
 
Effect of Ethanolic Extract of Momordica charantia on Blood Sugar Level in No...
Effect of Ethanolic Extract of Momordica charantia on Blood Sugar Level in No...Effect of Ethanolic Extract of Momordica charantia on Blood Sugar Level in No...
Effect of Ethanolic Extract of Momordica charantia on Blood Sugar Level in No...
 
Biochemical and pharmacological study of biologically active preparation of p...
Biochemical and pharmacological study of biologically active preparation of p...Biochemical and pharmacological study of biologically active preparation of p...
Biochemical and pharmacological study of biologically active preparation of p...
 

Viewers also liked

Simple Thinking Makes Chemistry Metabolic and Interesting - A Review Article
Simple Thinking Makes Chemistry Metabolic and Interesting - A Review ArticleSimple Thinking Makes Chemistry Metabolic and Interesting - A Review Article
Simple Thinking Makes Chemistry Metabolic and Interesting - A Review ArticleIOSR Journals
 
Ethnobotanical Euphorbian plants of North Maharashtra Region
Ethnobotanical Euphorbian plants of North Maharashtra RegionEthnobotanical Euphorbian plants of North Maharashtra Region
Ethnobotanical Euphorbian plants of North Maharashtra RegionIOSR Journals
 
“Prevalent Clinical Entities Of Hilly Regions, Aetio-Pathogenesis Factors, An...
“Prevalent Clinical Entities Of Hilly Regions, Aetio-Pathogenesis Factors, An...“Prevalent Clinical Entities Of Hilly Regions, Aetio-Pathogenesis Factors, An...
“Prevalent Clinical Entities Of Hilly Regions, Aetio-Pathogenesis Factors, An...IOSR Journals
 
Novel Way to Isolate Adipose Derive Mesenchymal Stem Cells & Its Future Clini...
Novel Way to Isolate Adipose Derive Mesenchymal Stem Cells & Its Future Clini...Novel Way to Isolate Adipose Derive Mesenchymal Stem Cells & Its Future Clini...
Novel Way to Isolate Adipose Derive Mesenchymal Stem Cells & Its Future Clini...IOSR Journals
 
m - projective curvature tensor on a Lorentzian para – Sasakian manifolds
m - projective curvature tensor on a Lorentzian para – Sasakian manifoldsm - projective curvature tensor on a Lorentzian para – Sasakian manifolds
m - projective curvature tensor on a Lorentzian para – Sasakian manifoldsIOSR Journals
 
Leather Quality Estimation Using an Automated Machine Vision System
Leather Quality Estimation Using an Automated Machine Vision SystemLeather Quality Estimation Using an Automated Machine Vision System
Leather Quality Estimation Using an Automated Machine Vision SystemIOSR Journals
 
Influence of chimney effect on the radon effective dose of the lung simulated...
Influence of chimney effect on the radon effective dose of the lung simulated...Influence of chimney effect on the radon effective dose of the lung simulated...
Influence of chimney effect on the radon effective dose of the lung simulated...IOSR Journals
 
Analysis characteristics of power PV cells and wind turbine from power genera...
Analysis characteristics of power PV cells and wind turbine from power genera...Analysis characteristics of power PV cells and wind turbine from power genera...
Analysis characteristics of power PV cells and wind turbine from power genera...IOSR Journals
 
How effective are the interventions related to physical activities and nutrit...
How effective are the interventions related to physical activities and nutrit...How effective are the interventions related to physical activities and nutrit...
How effective are the interventions related to physical activities and nutrit...IOSR Journals
 
Chemical Examination of Sandbox (Hura Crepitans) Seed: Amino Acid and Seed Pr...
Chemical Examination of Sandbox (Hura Crepitans) Seed: Amino Acid and Seed Pr...Chemical Examination of Sandbox (Hura Crepitans) Seed: Amino Acid and Seed Pr...
Chemical Examination of Sandbox (Hura Crepitans) Seed: Amino Acid and Seed Pr...IOSR Journals
 
Derivational Error of Albert Einstein
Derivational Error of Albert EinsteinDerivational Error of Albert Einstein
Derivational Error of Albert EinsteinIOSR Journals
 
Capacity Spectrum Method for RC Building with Cracked and Uncracked Section
Capacity Spectrum Method for RC Building with Cracked and Uncracked SectionCapacity Spectrum Method for RC Building with Cracked and Uncracked Section
Capacity Spectrum Method for RC Building with Cracked and Uncracked SectionIOSR Journals
 

Viewers also liked (20)

Simple Thinking Makes Chemistry Metabolic and Interesting - A Review Article
Simple Thinking Makes Chemistry Metabolic and Interesting - A Review ArticleSimple Thinking Makes Chemistry Metabolic and Interesting - A Review Article
Simple Thinking Makes Chemistry Metabolic and Interesting - A Review Article
 
E012542629
E012542629E012542629
E012542629
 
M1802037781
M1802037781M1802037781
M1802037781
 
L012328593
L012328593L012328593
L012328593
 
P01813101103
P01813101103P01813101103
P01813101103
 
N1103048593
N1103048593N1103048593
N1103048593
 
K012556370
K012556370K012556370
K012556370
 
N01741100102
N01741100102N01741100102
N01741100102
 
I012527580
I012527580I012527580
I012527580
 
Ethnobotanical Euphorbian plants of North Maharashtra Region
Ethnobotanical Euphorbian plants of North Maharashtra RegionEthnobotanical Euphorbian plants of North Maharashtra Region
Ethnobotanical Euphorbian plants of North Maharashtra Region
 
“Prevalent Clinical Entities Of Hilly Regions, Aetio-Pathogenesis Factors, An...
“Prevalent Clinical Entities Of Hilly Regions, Aetio-Pathogenesis Factors, An...“Prevalent Clinical Entities Of Hilly Regions, Aetio-Pathogenesis Factors, An...
“Prevalent Clinical Entities Of Hilly Regions, Aetio-Pathogenesis Factors, An...
 
Novel Way to Isolate Adipose Derive Mesenchymal Stem Cells & Its Future Clini...
Novel Way to Isolate Adipose Derive Mesenchymal Stem Cells & Its Future Clini...Novel Way to Isolate Adipose Derive Mesenchymal Stem Cells & Its Future Clini...
Novel Way to Isolate Adipose Derive Mesenchymal Stem Cells & Its Future Clini...
 
m - projective curvature tensor on a Lorentzian para – Sasakian manifolds
m - projective curvature tensor on a Lorentzian para – Sasakian manifoldsm - projective curvature tensor on a Lorentzian para – Sasakian manifolds
m - projective curvature tensor on a Lorentzian para – Sasakian manifolds
 
Leather Quality Estimation Using an Automated Machine Vision System
Leather Quality Estimation Using an Automated Machine Vision SystemLeather Quality Estimation Using an Automated Machine Vision System
Leather Quality Estimation Using an Automated Machine Vision System
 
Influence of chimney effect on the radon effective dose of the lung simulated...
Influence of chimney effect on the radon effective dose of the lung simulated...Influence of chimney effect on the radon effective dose of the lung simulated...
Influence of chimney effect on the radon effective dose of the lung simulated...
 
Analysis characteristics of power PV cells and wind turbine from power genera...
Analysis characteristics of power PV cells and wind turbine from power genera...Analysis characteristics of power PV cells and wind turbine from power genera...
Analysis characteristics of power PV cells and wind turbine from power genera...
 
How effective are the interventions related to physical activities and nutrit...
How effective are the interventions related to physical activities and nutrit...How effective are the interventions related to physical activities and nutrit...
How effective are the interventions related to physical activities and nutrit...
 
Chemical Examination of Sandbox (Hura Crepitans) Seed: Amino Acid and Seed Pr...
Chemical Examination of Sandbox (Hura Crepitans) Seed: Amino Acid and Seed Pr...Chemical Examination of Sandbox (Hura Crepitans) Seed: Amino Acid and Seed Pr...
Chemical Examination of Sandbox (Hura Crepitans) Seed: Amino Acid and Seed Pr...
 
Derivational Error of Albert Einstein
Derivational Error of Albert EinsteinDerivational Error of Albert Einstein
Derivational Error of Albert Einstein
 
Capacity Spectrum Method for RC Building with Cracked and Uncracked Section
Capacity Spectrum Method for RC Building with Cracked and Uncracked SectionCapacity Spectrum Method for RC Building with Cracked and Uncracked Section
Capacity Spectrum Method for RC Building with Cracked and Uncracked Section
 

Similar to The Protective Role Of High Dietary Protein On Arsenic Induced Hepatotoxicity In Albino Rat Model;A Possible Role Of Antioxidants.

Protective effects of commelina benghalensis linn (root) extract on ethanol i...
Protective effects of commelina benghalensis linn (root) extract on ethanol i...Protective effects of commelina benghalensis linn (root) extract on ethanol i...
Protective effects of commelina benghalensis linn (root) extract on ethanol i...IJSIT Editor
 
In vivo study on the efficacy of hypoglycemic activity of Spirulina plantesis...
In vivo study on the efficacy of hypoglycemic activity of Spirulina plantesis...In vivo study on the efficacy of hypoglycemic activity of Spirulina plantesis...
In vivo study on the efficacy of hypoglycemic activity of Spirulina plantesis...Open Access Research Paper
 
ANTIOXIDANT ACTIVITY AND HEPATOPROTECTIVE EFFECT OF POMEGRANATE PEEL AND WHEY...
ANTIOXIDANT ACTIVITY AND HEPATOPROTECTIVE EFFECTOF POMEGRANATE PEEL AND WHEY...ANTIOXIDANT ACTIVITY AND HEPATOPROTECTIVE EFFECTOF POMEGRANATE PEEL AND WHEY...
ANTIOXIDANT ACTIVITY AND HEPATOPROTECTIVE EFFECT OF POMEGRANATE PEEL AND WHEY...Anurag Raghuvanshi
 
IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...
IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...
IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...iosrphr_editor
 
IOSR Journal of Pharmacy (IOSRPHR)
IOSR Journal of Pharmacy (IOSRPHR)IOSR Journal of Pharmacy (IOSRPHR)
IOSR Journal of Pharmacy (IOSRPHR)iosrphr_editor
 
Hepatoprotective activity of sida
Hepatoprotective activity of sidaHepatoprotective activity of sida
Hepatoprotective activity of sidaJohn Valdivia
 
Hepatoprotective Activity of Cinnamon Zeylanicum Leaves against Alcohol Induc...
Hepatoprotective Activity of Cinnamon Zeylanicum Leaves against Alcohol Induc...Hepatoprotective Activity of Cinnamon Zeylanicum Leaves against Alcohol Induc...
Hepatoprotective Activity of Cinnamon Zeylanicum Leaves against Alcohol Induc...IJERA Editor
 
Protective Effect of Alysicarpus Monilifer L., Against CCl4 induced Hepatotox...
Protective Effect of Alysicarpus Monilifer L., Against CCl4 induced Hepatotox...Protective Effect of Alysicarpus Monilifer L., Against CCl4 induced Hepatotox...
Protective Effect of Alysicarpus Monilifer L., Against CCl4 induced Hepatotox...ijtsrd
 
Studying the Analgesic, Anti-inflammatory and Antipyretic Properties of The A...
Studying the Analgesic, Anti-inflammatory and Antipyretic Properties of The A...Studying the Analgesic, Anti-inflammatory and Antipyretic Properties of The A...
Studying the Analgesic, Anti-inflammatory and Antipyretic Properties of The A...iosrphr_editor
 
Evaluation of antioxidant activities of Cyperusrotundus (Ethanolic extract an...
Evaluation of antioxidant activities of Cyperusrotundus (Ethanolic extract an...Evaluation of antioxidant activities of Cyperusrotundus (Ethanolic extract an...
Evaluation of antioxidant activities of Cyperusrotundus (Ethanolic extract an...iosrphr_editor
 

Similar to The Protective Role Of High Dietary Protein On Arsenic Induced Hepatotoxicity In Albino Rat Model;A Possible Role Of Antioxidants. (20)

Fd Chem, 2012
Fd Chem, 2012Fd Chem, 2012
Fd Chem, 2012
 
Protective effects of commelina benghalensis linn (root) extract on ethanol i...
Protective effects of commelina benghalensis linn (root) extract on ethanol i...Protective effects of commelina benghalensis linn (root) extract on ethanol i...
Protective effects of commelina benghalensis linn (root) extract on ethanol i...
 
In vivo study on the efficacy of hypoglycemic activity of Spirulina plantesis...
In vivo study on the efficacy of hypoglycemic activity of Spirulina plantesis...In vivo study on the efficacy of hypoglycemic activity of Spirulina plantesis...
In vivo study on the efficacy of hypoglycemic activity of Spirulina plantesis...
 
Food Chem-2008
Food Chem-2008Food Chem-2008
Food Chem-2008
 
journalism journals
journalism journalsjournalism journals
journalism journals
 
research on journaling
research on journalingresearch on journaling
research on journaling
 
ANTIOXIDANT ACTIVITY AND HEPATOPROTECTIVE EFFECT OF POMEGRANATE PEEL AND WHEY...
ANTIOXIDANT ACTIVITY AND HEPATOPROTECTIVE EFFECTOF POMEGRANATE PEEL AND WHEY...ANTIOXIDANT ACTIVITY AND HEPATOPROTECTIVE EFFECTOF POMEGRANATE PEEL AND WHEY...
ANTIOXIDANT ACTIVITY AND HEPATOPROTECTIVE EFFECT OF POMEGRANATE PEEL AND WHEY...
 
IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...
IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...
IOSR Journal of Pharmacy (IOSRPHR), www.iosrphr.org, call for paper, research...
 
IOSR Journal of Pharmacy (IOSRPHR)
IOSR Journal of Pharmacy (IOSRPHR)IOSR Journal of Pharmacy (IOSRPHR)
IOSR Journal of Pharmacy (IOSRPHR)
 
Hepatoprotective activity of sida
Hepatoprotective activity of sidaHepatoprotective activity of sida
Hepatoprotective activity of sida
 
Abstract
AbstractAbstract
Abstract
 
Hepatoprotective Activity of Cinnamon Zeylanicum Leaves against Alcohol Induc...
Hepatoprotective Activity of Cinnamon Zeylanicum Leaves against Alcohol Induc...Hepatoprotective Activity of Cinnamon Zeylanicum Leaves against Alcohol Induc...
Hepatoprotective Activity of Cinnamon Zeylanicum Leaves against Alcohol Induc...
 
Article wjpps 1454479295 (2)
Article wjpps 1454479295 (2)Article wjpps 1454479295 (2)
Article wjpps 1454479295 (2)
 
Protective Effect of Alysicarpus Monilifer L., Against CCl4 induced Hepatotox...
Protective Effect of Alysicarpus Monilifer L., Against CCl4 induced Hepatotox...Protective Effect of Alysicarpus Monilifer L., Against CCl4 induced Hepatotox...
Protective Effect of Alysicarpus Monilifer L., Against CCl4 induced Hepatotox...
 
Studying the Analgesic, Anti-inflammatory and Antipyretic Properties of The A...
Studying the Analgesic, Anti-inflammatory and Antipyretic Properties of The A...Studying the Analgesic, Anti-inflammatory and Antipyretic Properties of The A...
Studying the Analgesic, Anti-inflammatory and Antipyretic Properties of The A...
 
Afeefa Research 1
Afeefa Research 1Afeefa Research 1
Afeefa Research 1
 
Total tannin content
Total tannin contentTotal tannin content
Total tannin content
 
D043022027
D043022027D043022027
D043022027
 
D043022027
D043022027D043022027
D043022027
 
Evaluation of antioxidant activities of Cyperusrotundus (Ethanolic extract an...
Evaluation of antioxidant activities of Cyperusrotundus (Ethanolic extract an...Evaluation of antioxidant activities of Cyperusrotundus (Ethanolic extract an...
Evaluation of antioxidant activities of Cyperusrotundus (Ethanolic extract an...
 

More from IOSR Journals (20)

A011140104
A011140104A011140104
A011140104
 
M0111397100
M0111397100M0111397100
M0111397100
 
L011138596
L011138596L011138596
L011138596
 
K011138084
K011138084K011138084
K011138084
 
J011137479
J011137479J011137479
J011137479
 
I011136673
I011136673I011136673
I011136673
 
G011134454
G011134454G011134454
G011134454
 
H011135565
H011135565H011135565
H011135565
 
F011134043
F011134043F011134043
F011134043
 
E011133639
E011133639E011133639
E011133639
 
D011132635
D011132635D011132635
D011132635
 
C011131925
C011131925C011131925
C011131925
 
B011130918
B011130918B011130918
B011130918
 
A011130108
A011130108A011130108
A011130108
 
I011125160
I011125160I011125160
I011125160
 
H011124050
H011124050H011124050
H011124050
 
G011123539
G011123539G011123539
G011123539
 
F011123134
F011123134F011123134
F011123134
 
E011122530
E011122530E011122530
E011122530
 
D011121524
D011121524D011121524
D011121524
 

Recently uploaded

BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024innovationoecd
 
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |aasikanpl
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensorsonawaneprad
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxFarihaAbdulRasheed
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫qfactory1
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naJASISJULIANOELYNV
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)riyaescorts54
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxpriyankatabhane
 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfWildaNurAmalia2
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPirithiRaju
 

Recently uploaded (20)

BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
 
OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024OECD bibliometric indicators: Selected highlights, April 2024
OECD bibliometric indicators: Selected highlights, April 2024
 
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Lajpat Nagar (Delhi) |
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort ServiceHot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensor
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by na
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
 

The Protective Role Of High Dietary Protein On Arsenic Induced Hepatotoxicity In Albino Rat Model;A Possible Role Of Antioxidants.

  • 1. IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS) e-ISSN: 2278-3008, p-ISSN:2319-7676. Volume 6, Issue 5 (May. – Jun. 2013), PP 20-25 www.iosrjournals.org www.iosrjournals.org 20 | Page The Protective Role Of High Dietary Protein On Arsenic Induced Hepatotoxicity In Albino Rat Model;A Possible Role Of Antioxidants. Dr. Shyamal Kanti Das Krishnath College, University of Kalyani, Berhampore, Murshidabad, West Bengal, India. Abstract: The objective of the present investigation was to study the protective role of High dietary protein on arsenic induced hepatotoxicity model in adult male albino rats. Hepatotoxicity in rats was caused by arsenic tri oxide at a dose of 3mg- /ml/kg body weight. Hepamerz, a drug used as standard hepatoprotective agent, was administered orally as standard hepatoprotective agent for 14 consecutive days prior to arsenic treatment at a dose of 10mg- /ml/kg body weight. This drug has many side effects. These side effects have prompted the scientific world for the search of alternative natural remedies of liver damage. The High dietary protein was administered orally to rats along with arsenic. The biochemical parameters were investigated. The results indicated that biochemical changes produced by arsenic were restored to almost normal by High protein diet. The High protein diet produced hepatoprotective effect through the modulation of antioxidant - mediated mechanism by altering serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), alkaline phosphatase (ALP), superoxide dismutase (SOD) and catalase (CAT) activities and reduced glutathione (GSH) and lipid peroxidation (LPO) levels - against arsenic induced hepatotoxicity model in rats. Key words:- Arsenic trioxide, Hepamerz, hepatotoxicity, High protein diet. I. Introduction Arsenical compounds are environmentally toxic with multiple effects in animal and human populations. We are exposed to arsenic mainly through water, food and drugs. The main source of environmental arsenic exposure is drinking water. The frequent uses of arsenic are as herbicides, insecticides, rodenticides and food preservatives. It has become evident that increasing human activities have modified the global cycle of heavy metals and metalloids, including the toxic non-essential elements like arsenic (As) [1]. Arsenic is one of the most abundant and potential carcinogen [2] which is present in the nature in the stable from as trivalent arsenate (As+3 ) or Pentavalent arsenate (As+5 ). The permissible limit for arsenic in drinking water is 0.05 mg/lit as per WHO [3]. A survey of 25000 tube wells in West Bengal in India reveals that the average As Concentration reaches to 0.3 mg/lit and even it reaches up to 3 mg/lit of water. During the process of arsenic metabolism, Inorganic arsenic is first methylated to monomethyl arsenic (MMA) and then to dimethyl arsenic acid (DMA) followed by its excretion from the body. In this process of biomethylation, constant depletion of methyl causes DNA hypomethylation that leads to generation of mutation followed by carcinogenesis [2]. Arsenic affects the mitochondrial enzymes, impairs the cellular respiration and causes cellular toxicity. It can also substitute phosphate intermediates, which could theoretically slow down the metabolism and interrupt the production of energy.On the other hand Hepamerz has been reported as a liver protective drug which partly corrects these toxicities [4] . But it has many side effects like vomiting,nausea, headache etc. It is reported earlier that aqueous leaf extract of moringa olifera has an antioxidant effect [5]. Dietary Proteins have also been found to have antioxidant activities [6]. Wheat and pea are both good sources of dietary plant protein, while casein is an animal protein. The antioxidant activities of pea, wheat and casein has been studied using different liposomal models and the results show a minimization in lipid per oxidation, thus preventing the damage produced by the free radicals [6]. The main aim of our study is to find out the relationship between arsenic generated oxidative stress and cellular damage using rat as a model and also the dietary protein how far counteract this arsenic induced oxidative stress. 1.1. Animals Used and Maintenance Thirty-six male Wistar strain adult albino rats of age approximately 120 days and weighing 150- 200 g were used in the following studies. The animals were individually housed and maintained under standard laboratory conditions with natural dark and light cycle (approximately 12--h light/10--h dark cycle) and room temperature (271o C) and constant humidity (60%) in accordance with the ‘Institutional Ethical Committee’ rules and regulations. A control diet composed of 71% carbohydrate,18% protein,7% fat and a mixtureof salt and vitamins were given. Drinking water was supplied ad libitum. Animals were randomly divided equally into
  • 2. The Protective Role Of High Dietary Protein On Arsenic Induced Hepatotoxicity In Albino Rat www.iosrjournals.org 21 | Page six groups of six each which are as follows: control group, arsenic treated experimental group, high protein supplemented control group, Hepamerz treated control group, high protein along with arsenic treated experimental group and Hepamerz pretreated arsenic treated experimental group. The high protein diet means pea (37g/100g of diet) which contributed 8.5% of protein and casein (9g/100g of diet) which contributed additional 9% protein in formulation of a high protein (27%) diet [6]. In addition to the normal diet, high protein diet was given to the group of high protein supplemented control group and high protein along with arsenic treated experimental group.The control group was kept in the laboratory condition for 42 (28+14=42) days. A dose of 3 mg/ml/kg body weight /day of arsenic was given orally through orogastric cannula daily for 28 days to each of the 2nd , 5th and 6th group of the animals. The dose was standardised in our laboratory. In the 4th and 6th groups, i.e., Hepamerz treated control group and Hepamerz pretreated arsenic treated experimental group, a dose of 5 ml of liver protective drug Hepamerz was administered for 14 days. After that, arsenic at a dose of 3 mg /ml/kg body weight was administered orally for about 28 days. Body weights of the rats were recorded everyday and maintained in the laboratory throughout the experimental period. II. Biochemical Estimations The biochemical results are obtained by estimation of parameters (e.g. SGOT, SGPT, ALP, SOD, CAT, GSH and LPO) attached to the study on rats. 1.2. Collection of serum Rats were sacrificed by cervical dislocation after 28 days of arsenic treatment. Blood sample was collected by heart puncture and serum was separated by centrifugation (3000 rpm at 4o C for 10 min). The liver was immediately removed. 1.3. Estimation of SGPT, SGOT and ALP levels Tissue and serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) activities were measured according to the method of Kind and King [7], alkaline phosphatase (ALP) activity was measured according to the procedure of Reitman and Frankel[8]. 1.4.Measurement of SOD Superoxide dismutase (SOD) was estimated by the method of Mishra and Fridovich [9] and Roy et al[10]. Brain tissue samples were homogenised with 5 ml of ice--cold 0.1 M phosphate buffer (pH--7.4). The homogenates are then centrifuged at 3000 rpm for 10 min. Afterthat, 0.1 ml of sample was mixed with 0.8 ml of TDB. Reaction was started by the addition of 4 l of nicotinamide adenine dinucleotide phosphate (NADPH). Then, 25 l of ethylenediaminetetraacetic acid- manganese chloride (EDTA-MnCl2) mixture was added to it. Thereafter, spectrophotometric readings were recorded at 340 nm. After recording of the spectrophotometric readings, 0.1 ml of mercaptoethanol was added to this mixture and again spectrophotometric readings were recorded at 340 nm. 1.5.Measurement of LPO Lipid peroxidation was measured according to the method of Bhattacharya et al. [11] .and Roy et al.[10]Brain tissue samples were homogenized with 5 ml of ice-cold 0.1 M phosphate buffer (pH-7.4). The homogenates were then centrifuged at 3000 rpm for 10 min. After that, 0.5 ml of sample was mixed with 1 ml of TDB and then the mixture was incubated at 37o C for 1 hour. To this, 0.5 ml of trichloroacetic acid (TCA) was added, vortexed and the absorbance was read at 350 nm. After recording of the spectrophotometric reading, 1 ml sample was mixed with 500 l mercaptoethanol and again the absorbance was read at 350 nm. 1.6.Measurement of CAT Catalase activity was estimated by the method of Cohen et al. [12] and Roy et al., [10].Brain tissue samples were homogenised with 5 ml of ice-cold 0.1 M phosphate buffer (pH-7.4). The homogenates were then centrifuged at 3000 rpm for 10 min. The precipitate was then stirred with the addition of 15 ml of ice-cold 0.1 M phosphate buffer and allowed to stand in cold condition with occasional shaking. The shaking procedure was repeated for thrice. 1 ml of sample was added to 9 ml of H2O2. The rate of decomposition of H2O2 was measured spectrophotometrically from the changes in absorbance at 350 nm. The activity of CAT was expressed as percentage of inhibition unit. 1.7.Measurement of GSH Reduced glutathione was measured according to the method of Ellman [13]. Equal quantity of homogenate was mixed with 10% TCA and centrifuged to separate the proteins. To 0.01 ml of this supernatant, 2 ml of phosphate buffer (pH-8.4), 0.5 ml of 5, 5-dithiobis (2-nitrobenzoic acid) and 0.4 ml of double distilled
  • 3. The Protective Role Of High Dietary Protein On Arsenic Induced Hepatotoxicity In Albino Rat www.iosrjournals.org 22 | Page water were added. The mixture was vortexed and the absorbance was read at 412 nm within 15 min. The concentration of GSH was expressed as g/g of tissue. III. Statistical Analysis The data were expressed as MEAN  SEM (SEM means standard error of mean) and were analysed statistically using one-way analysis of variance (one-way ANOVA), followed by multiple comparison‘t’- test, which was used for statistical evaluation of the data. In addition to this, two-tailed Student’s‘t’- test was performed to determine the level of significance between the means. Difference below the probability level 0.05 was considered statistically significant. IV. Results Twenty-eight days after the introduction of arsenic treatment, the SGOT, SGPT, ALP, SOD and CAT activities, GSH and LPO levels were estimated. There was a sharp rise (P<0.001) in SGOT, SGPT and ALP activities in the arsenic treated experimental group as compared to the control group. The SGOT, SGPT and ALP activities were significantly (P<0.001) decreased in High protein supplemented control group compared to the control group. High protein supplement significantly (P<0.001) made reduction of SGOT, SGPT and ALP activities in High protein pretreated arsenic treated experimental group compared to the arsenic treated experimental group. There were a sharp declines (P<0.001) in SGOT, SGPT and ALP activities in the Hepamerz treated control group compared to the control group. The SGOT, SGPT and ALP activities were significantly (P<0.001) decreased in Hepamerz treated control group in comparison to High protein treated control group. The SGOT, SGPT and ALP activities were significantly (P<0.001) decreased in Hepamerz pretreated arsenic treated experimental group when compared to arsenic treated experimental group. The results are shown in Table 1. There was a sharp decline (P<0.001) in SOD activity both in serum and liver in the arsenic treated experimental group as compared to the control group. The SOD activity was significantly (P<0.001) increased in High protein treated control group compared to the control group, both in serum and liver. High protein led to significantly (P<0.001) increase SOD activity in High protein pretreated arsenic treated experimental group in comparison to arsenic treated experimental group, both in serum and liver. There was a sharp increase (P<0.001) in SOD activity both in serum and liver in the Hepamerz treated control group compared to the control group. The SOD activity was significantly (P<0.001) increased in Hepamerz treated control group in comparison to High protein treated control group both in serum and liver. The SOD activity was significantly (P<0.001) increased in Hepamerz pretreated arsenic treated experimental group compared to the arsenic treated experimental group both in serum and liver. The results are shown in Tables 2 and 3. There was a sharp rise (P<0.001) in LPO level both in serum and liver in the arsenic treated experimental group as compared to the control group. The LPO level was significantly (P<0.001) decreased in High protein treated control group compared to the control group, both in serum and liver. High protein significantly (P<0.001) decreased LPO level in High protein pretreated arsenic treated experimental group in comparison to arsenic treated experimental group, both in serum and liver. There was a sharp decline (P<0.001) in LPO level both in serum and liver in the Hepamerz treated control group when compared to the control group. The LPO level was significantly (P<0.001) decreased in Hepamerz treated control group compared to the High protein treated control group, both in serum and liver. The LPO level was significantly (P<0.001) decreased in Hepamerz pretreated arsenic treated experimental group when compared to the arsenic treated experimental group, both in serum and liver. The results are shown in Tables-2 and 3. There was a sharp decline (P<0.001) in CAT activity both in serum and liver in the arsenic treated experimental group as compared to the control group. The CAT activity was significantly (P<0.001) increased in High protein treated control group when compared to the control group, both in serum and liver. High protein significantly (P<0.001) increased CAT activity in High protein pretreated arsenic treated experimental group in comparison to arsenic treated experimental group, both in serum and liver. There was a sharp increase (P<0.001) in CAT activity, both in serum and liver in the Hepamerz treated control group compared to the control group. The CAT activity was significantly (P<0.001) increased in Hepamerz treated control group in comparison to High protein treated control group, both in serum and liver. The CAT activity was significantly (P<0.001) increased in Hepamerz pretreated arsenic treated experimental group when compared to the arsenic treated experimental group, both in serum and liver. The results are shown in Tables-2 and 3. There was a sharp decline (P<0.001) in GSH level both in serum and liver in the arsenic treated experimental group as compared to the control group. The GSH level was significantly (P<0.001) increased in High protein treated control group compared to the control group, both in serum and liver. High protein significantly (P<0.001) increased GSH level in High protein pretreated arsenic treated experimental group in comparison to arsenic treated experimental group, both in serum and liver. There was a sharp increase (P<0.001) in GSH level, both in serum and liver in the Hepamerz treated control group compared to the control group. The
  • 4. The Protective Role Of High Dietary Protein On Arsenic Induced Hepatotoxicity In Albino Rat www.iosrjournals.org 23 | Page GSH level was significantly (P<0.001) increased in Hepamerz treated control group when compared to the High protein treated control group, both in serum and liver. The GSH level was significantly (P<0.001) increased in Hepamerz pretreated arsenic treated experimental group compared to arsenic treated experimental group both in serum and liver. The results are shown in Tables-2 and 3. V. Discussion The present study evaluates the protective role of High dietary protein on arsenic induced hepatotoxicity in albino rat model with the possible involvement of the antioxidants. SGPT, SGOT and ALP are the most sensitive tests employed in the diagnosis of hepatic disease. Extensive liver damage by arsenic itself decreases its rate of metabolism and other substrates for hepatic microsomal enzymes. It is evident from the results of the present investigation that treatment with High dietary protein significantly decreased the SGPT, SGOT and ALP activities .These findings can be explained by alterations of the LPO level and antioxidant activities such as that of SOD, CAT and GSH, both in serum and liver tissue. Free radicals play a crucial role in the pathogenesis of liver damage. LPO can be used as an index for measuring the damage that occurs in membranes of tissue as a result of free radical generation [14,15]. In our present study, oral administration of arsenic, significantly increased the LPO level. Significant elevation of LPO level observed in arsenic treated experimental- group is possibly due to the generation of free radicals via auto- oxidation or through metal ion or superoxide catalysed oxidation process. In the present study, High dietary protein significantly decreased LPO level at a dose of 400 mg/kg body weight compared to other groups. High dietary protein was found to have excellent scavenging effect on LPO, which was well comparable with the standard drug Hepamerz. Endogenous antioxidant status in arsenic-induced experimental rat group was evaluated here by noting the activities of CAT, SOD and GSH as these are the important biomarkers for scavenging free radicals[16]. The primary role of CAT is to scavenge H2O2 that has been generated by free radicals or by SOD in its removal of superoxide anions, and convert it in to water [17]. The destruction of superoxide radicals is catalysed by SOD, which is an important defense system against oxidative damage. From our experimental results of the aforesaid antioxidant enzyme activities in serum and liver tissues, it is clear that arsenic significantly led to reduction of SOD, CAT, GSH activities in arsenic treated experimental group compared to control group, High dietary protein treated control group, Hepamerz treated control group, Hepamerz pretreated arsenic treated experimental group and High dietary protein pretreated arsenic treated experimental group.. Glutathione is an endogenous antioxidant, which is present majorly in the reduced form within the cells. It prevents the hydroxyl radical generation by interacting with free radicals. During this defensive process, GSH is converted to oxidised form under the influence of the enzyme glutathione peroxidase (GPX). The decreased level of GSH in arsenic treated experimental group seen in our study indicates that there was an increased generation of free radicals and the GSH was depleted during the process of combating oxidative stress [18,19]. This has probably been possible either from the low level of reactive oxygen species (ROS) production or through a rapid dissolution of ROS that has further been strengthened by the elevated activities of important antioxidant defense enzymes CAT and SOD, studied in this experiment. Extract showed the presence of flavonoids. Arsenic causes lipid peroxidation by generation of Reactive Oxygen Species (ROS) [20,21]. Our results also support this view. In recent studies [6-8] dietary proteins have been found to have antioxidant activities. Wheat and Pea are both good sources of dietary plant protein while casein is an animal protein. The antioxidant properties of milk casein have been established [22]. It is also reported that casein phosphopeptides (Cpp) and casein hydrolyses bind with per oxidant and thus lipid per oxidation is suppressed [22-24]. Our findings also supported that pea and casein has an antioxidant properties. In our present experiment arsenic trioxide induced oxidative stress. On the other hand supplementation of specific proteins with normal diet causes significant recovery from all of these toxic effects. The salient findings of our present study suggest that High dietary protein provide a good source of antioxidants that could offer potential protective effects against LPO and which could be exploited to make a hepato protective formulation. Table 1: Effect of High dietary protein (HDP) on SGPT, SGOT and ALT activity in arsenic- induced hepatotoxic rat model Group (n) SGPT (IU/l) SGOT (IU/l) ALT (IU/l) Control 51.89  0.09 57.85  0.02 58.83  0.05 Arsenic treated 132.34  1.04*** 131.66  0.42*** 134.02  0.25*** HDP+ Control 44.31  0.02* 45.72  0.03* 43.76  0.04* HDP+ Arsenic 100.23  0.45** 103.46  0.09** 105.38  0.06** Hepamerz + Control 41.66  0.02* 41.43  0.03* 38.02  0.04* Hepamerz + Arsenic 83.61  0.12** 85.84  0.09** 85.37  0.14**
  • 5. The Protective Role Of High Dietary Protein On Arsenic Induced Hepatotoxicity In Albino Rat www.iosrjournals.org 24 | Page Values are mean  SEM, n = 6. Data were analyzed statistically using one-way ANOVA test followed by multiple comparison t–tests. * P < 0.001 when compared with control group; ** P < 0.001 when compared with arsenic treated group; *** P < 0.001 when compared with other mentioned groups. Table 2: Effect of HDP on serum antioxidant enzymatic changes in arsenic- induced hepatotoxic rat model Group (n) SOD (% inhibition unit) LPO (nmol of [TBARS /-g] mol of tissue) CAT (% inhibition unit) GSH (g/g of tissue) Control 13.61  0.09 5.01  0.01 14.61  0.02 32.35  0.09 Arsenic treated 25.23  0.05*** 12.62  0.02*** 26.45  0.03*** 3.59  0.04*** HDP + Control 10.24  0.02* 2.37  0.02* 10.17  0.03* 35.54  0.09* HDP + Arsenic 17.27  0.04** 9.57  0.03** 20.13  0.05** 11.34  0.06** Hepamerz + Control 16.92  0.02* 1.69  0.03* 8.47  0.04* 38.78  0.04* Hepamerz + Arsenic 16.15  0.02** 7.12  0.03** 18.36  0.03** 14.43  0.10** Note: TBARS- Thio-barbituric acid reactive substances. Values are mean  SEM, n = 6. Data were analyzed statistically using one-way ANOVA Test followed by multiple comparison t–test. * P < 0.001 when compared with control group; ** P < 0.001 when compared with arsenic treated group; *** P < 0.001 when compared with other mentioned groups. Table 3: Effect of HDP on tissue antioxidant enzymatic changes in arsenic induced hepatotoxic rat model Group (n) SOD (% inhibition unit) LPO (nmol of [TBARS /-g] mol of tissue) CAT (% inhibition unit) GSH (g/g of tissue) Control 12.24  0.03 6.13  0.01 15.02  0.02 32.25  0.03 Arsenic treated 24.23  0.03*** 13.33  0.02*** 27.66  0.04*** 3.75  0.06*** HDP + Control 10.22  0.02* 2.76  0.03* 10.11  0.03* 37.58  0.03* HDP + Arsenic 17.21  0.01** 8.53  0.04** 18.94  0.04** 13.56  0.04** Hepamerz + Control 14.87  0.02* 1.68  0.01* 8.83  0.04* 39.47  0.02* Hepamerz + Arsenic 16.32  0.01** 6.78  0.04** 16.32  0.06** 14.54  0.02** Note: TBARS- Thio-barbituric acid reactive substances. Values are mean  SEM, n = 6. Data were analyzed statistically using one-way ANOVA Test followed by multiple comparison t–tests. * p < 0.001 when compared with control group; ** p < 0.001 when compared with arsenic treated group; *** p < 0.001 when compared with other mentioned groups. References [1]. Clarkson T. Envioron, Health Prospect 1995; 103: 9-12. [2]. Roy P, Saha A. Metabolism and toxicity of arsenic: A human carcinogen Current Sc 2002; 82 :38 – 45 [3]. Mandal BK, Roychowdhury T, Samanta, G, BasuGK, Chowdhury PP, Chanda C. Current science1996; 70: 976 – 986. [4]. Maryam S, Shahzad AW, Ahmad S, Bhatti AS, Aziz K. Combination therapy of isoniazid and hepamerz (L--ornithine, L--aspartate) - -effects on liver and kidney functions of rabbits. Annals 2010; 16:95--9. [5]. Das SK, Roy C.The protective role of aegle marmelos on aspirin-induced gastro-duodenal ulceration in albino rat model:a possible involvement of antioxidants . The Saudi Journal of Gastroenterology 2012;18:188-194. [6]. Mukherjee S,Das D,Darbar D, Mitra C. Dietary intervenetion affects arsenic-generated nitric oxide and reactive oxygen intermediate toxicity in islet cells of rats.Current Science 2003;85:786-793. [7]. Kind PR, King EJ. Method of practical clinical biochemistry. In: Invarley H, Gowenlock AH, editors. London: Bell Meditors; 1980. p. 899-900. [8]. Reitman S, Frankel,SA.Colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminases.Am J Clin Pathol 1957;28:56-63. [9]. Mishra HP, Fridovich I. The generation of radical during superoxide auto oxidation of hemoglobin. J Biol Chem 1972; 34: 30 – 7. [10]. Roy C, Ghosh TK, Guha D. The antioxidative role of Benincasa hispida on colchicine induced experimental rat model of Alzheimer’s disease. Biogenic Amines 2007; 21: 44-57. [11]. Bhattacharya SK, Bhattacharya A, Das K, Muruganandam AV, Sairam K. Further investigations on the antioxidant activity of Ocimam sanctum using different paradigms of oxidative stress in rats. J Nat Rem 2001; 1: 6 – 16. [12]. Cohen G, Dembiec D, Marcus J. Measurement of Catalase activity in tissue extracts. Anal Biochem 1970; 34: 30 – 7. [13]. .Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys 1959; 82: 70-7. [14]. Dianzani MU. Lipid peroxidation in ethanol poisoning: A critical reconsideration. Alcohol 1985;- 20:- 161-73. [15]. Husain K, Somani SM. Interaction of exercise and ethanol on hepatic and plasma antioxidant system in rat. Pathophysiology 1997; 4: 69-74. [16]. Venkateswaran S, Pari L. Effect of Coccinia indica leaves on antioxidant status in streptozotocin—induced diabetic rats. J Ethnopharmacol 2003;84: 163-68. [17]. Riviere S, Birlouez--Aragon I, Nourhashemi F, Vellas B. Low plasma vitamin C in Alzheimer patients despite an adequate diet. Int J Paediatric Psychiatry 1998; 13: 749-54. [18]. Reiter RJ. Melatonin: lowering the high price of free radicals. News Physiol Sci 2000; 15: 246-50.
  • 6. The Protective Role Of High Dietary Protein On Arsenic Induced Hepatotoxicity In Albino Rat www.iosrjournals.org 25 | Page [19]. Schulz JB, Lindenau J, Seyfried J, Dichgans J. Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 2000; 267: 4904- 11. [20]. Xu Y, Wang Y, Zeng Q, Li X, Li B, Jin Y, Sun X, Sun G. Association ofoxidative stress with arsenic methylation in chronic arsenic- exposed children and adults. Toxicol Appl Pharmacol 2008 Jul 1. (Epub ahead of print). [21]. .Osbaldo Ramos, Leticia Carrizales, Leticia Yanez, Jesus Mejia, Lilia Batres, deogracias Ortiz, Fernanado Diaz- Barriaga: Arsenic Increased Lipid Peroxidation in Rats Tissues by a Mechanism Independent of Glutathione Levels. Environmental Health Perspectives1995 103; [22]. Cervato G, Cazzola R, Cerstaro B Int. Studies on the antioxidants activity of milk caseins. J ood Sci Nutr 1999 ;50 : 291-6. [23]. Diaz M, Decker EA.: Antioxidants mechanisms of caseinophosphopeptides andcasein hydrolysates and their application in ground beef. J Agric Food chem 2004; 52: 8208-13. [24]. Taylor MJ, Richardson T. Antioxidants acitivity of skim milk: effects of sonication. J Dairy Sci. 1980; 73: 1938-42.