SlideShare a Scribd company logo
1 of 75
IMPACT OF READY-MIX INSECTICIDES ON INSECT
PESTS OF COTTON
Speaker
Gaurang Rudani
M. Sc. (Agri.) Entomology
Semester :- 3rd
04-AGRMA-02290-2020
Major Guide
Dr. Sushma Deb
Assistant Professor
Department of Agril. Entomology
C. P. College of Agriculture
S. D. Agricultural University
Sardarkrushinagar
Minor Guide
Dr. Manisha Shinde
Assistant Professor (Pl. Pathology)
Department of Plant Pathology
Polytechnic in Agriculture
S. D. Agricultural University
Deesa
.
1. Introduction
2. Classification of ready-mix insecticides
3. Mode of action of ready-mix insecticides
4. Efficacy of ready-mix insecticides on insect
pests of cotton
5. Efficacy of ready-mix insecticides on natural
enemies
6. Advantage and disadvantage of ready-mix
insecticides
7. Conclusion
8. Future thrust
Content
.
INTRODUCTION
Cotton is one of the most important commercial crop known as “king of natural
fiber” and world over commonly referred as “white gold” which belongs to family
Malvaceae and genus Gossypium.
In India, apart from providing 60 per cent of the fiber used in textile industries, the
crop is also a source for 11.5 lakh tonnes of oil, 90 lakh tonnes of animal feed and
about 200 lakh tonnes of cotton stalk that is used for fuel and value addition as
particle boards (Bhamare et al. 2018).
About 60 million people including 4.5 million farmers in India depend on cotton
for their livelihood.
4
.
 Cotton production in India during 2020-21 was around 360 lakh bales of 170 kg from
133.41 lakh hectares with productivity of 459 kg lint/ ha (Annon., 2020).
Maharashtra, Gujarat and Telangana are the major cotton growing states covering
around 70 % area under cotton cultivation and around 62 % of cotton production in
India.
Cotton crop is subjected to damage by 162 pest species right from emergence till the
final picking among which 25 pests are reported to cause damage to cotton crop at
different growth stages.
The use of insecticides has played a major role in increasing cotton productivity from
the last three decades.
Cotton crop alone contributes around 19% of total pesticide consumption in India
5
 Combinations of two or more insecticides having different mode of
action into a single spray solution which expose insects to each
insecticide at the same time known as insecticide mixture.
.
6
Tank Mixtures Pre packed Mixtures
 There are two types of insecticide mixtures:-
Classification of insecticide mixtures
7
.
• Insecticides are mixed in the field directly by
farmers.
• Mixed insecticide may have physical
incompatibility which leads to separation,
flocculation, agglomeration and coagulation of
the ingredients and results in performance
problems.
• Also clog equipment, pump and tank.
1. Tank Mixture
8
.
• It is scientifically developed and tested
products based on compatibility.
• Final product is a ‘ready to use’
material.
 Ready mix insecticide further classified into two
types:-
2. Pre-pack mixture (Ready mix)
A. High risk B. Low risk
9
.
A. High risk
 Control same type of insect species and biological stage.
 Target population is fully susceptible to all toxicants in the mixture.
 E.g. LANCER GOLD- Acephate 50% + Imidacloprid 1.8% SP
B. Low risk
 Used against two different insect pests such as chewing and sucking individuals.
 One of the compounds effective against chewing insects + interferes with the
normal physiology of sucking pests making them more susceptible to 2nd
compound.
 2nd compound specific against sucking pests.
 E.g. POLYTRIN C- Profenofos 40% + Cypermethrin 4% EC
10
.
 Use of single insecticide molecule lead to development of
resistance within in short time.
 In ready mix insecticides chances for the development of cross
resistance is less or it may take long time.
 Ready mix insecticides benefit for Insecticide Resistance
Management (IRM) when appropriately incorporated into
rotation strategies with additional mode(s) of action.
Significance of ready mix insecticide
11
Ideal characteristics of insecticide mixture
1
•Mixtures should be compatible with each
individual component.
2
• Should have additive or synergistic action
3
• Should have broad spectrum activity.
4
• Safe to farmer’s health and environment.
12
Action of ready mix insecticides
 Insecticides are mixed either for synergism or potentiation
 Synergism
→ It involves an increased toxic effect when mixing two compounds
together, which by themselves are harmful to pests.
 Potentiation
→ It refers to the toxicity of a given pesticide being enhanced by the
addition of a less or non-toxic pesticide.
13
Synergistic action
 When two chemicals or insecticides combined together they
produces a greater effect than the sum of the individual effect.
(1 + 3 >>> 4) not just 4
(Maybe 10 times or more)
E.g. Pyrethroids (enhances activity of OP) + OP compounds (chlorpyriphos)
Gangtok, Sikkkim Das, 2014
14
Potentiation action
This effect results when one substance that does not
normally have a toxic effect is added to another chemical,
making the second chemical much more toxic.
(0 + 2 >>> 2) not just 2
Source:- https://www.ccohs.ca/oshanswers/chemicals/synergism.html#:~:text=Potentiation
15
Ready mix insecticides registered
for agriculture use
A number of insecticides belonging to different chemical groups have been
registered in India and these are being used against diverse pests of various crops.
As on July 1, 2021, total 672 pesticides have been registered under section 9(3) of
the Insecticides Act, 1968 for use in India, among which 80 are ready mix
insecticides.
18
Ready mix insecticides registered for use
in cotton
Table 2: Ready mix insecticides registered for use in cotton in India
Ready mix insecticide
Common name
of the pest
Dosage per hectare
Waiting
period in
days
a.i. (g)
Formulation
(gm/ml)
Dilution
(Litre)
Acephate 50% + Bifenthrin 10% WDG Leaf hopper, Thrips, Bollworms 400 + 80 800 500-750 20
Acephate 25% + Fenvalerate 3% EC American bollworm, Sucking Insects 500 + 60 2000 500
15
Acephate 50% + Imidacloprid 1.8% SP
Aphid, Jassids, Thrips, White flies,
Bollworms
518 1000 500 40
Acetamiprid 1.1% + Cypermethrin 5.5% EC Aphids, Jassids, Thrips, Bollworms 10 + 50 1000 400-1000 30
Buprofezin 15.00% + Acephate 35.00% WP Jassids, Thrips & White fly 187.5 + 437.5 1250 500 -
Buprofezin 20.00% + Acephate 50.00% WP Thrips, Jassids, Mealy bug 250 + 625 1250 500 15
Cypermethrin 10% + Indoxacarb 10% SC Jassids, Thrips and Bollworm 50 + 50 500 400-1000 7
Chlorantraniliprole 9.30% + Lambda-
cyhalothrin 04.60% ZC
Bollworms complex 37.50 250 500 20
19
Ready mix insecticide Common name
of the pest
Dosage / hectare
Waiting
period in
days
a. i. (g)
Formulation
(gm/ml)
Dilution
(Litre)
Cypermethrin 3% + Quinalphos 20% EC
American Bollworm, Spotted
Bollworm, Jassids
30 + 200 to
37.5 + 250
1000-1250 500-600 15
Chlorpyrifos 50% + Cypermethrin 5% EC
Aphid, Jassids, Thrips, Whitefly,
Spodoptera, Spotted Bollworm,
Pink Bollworm, American
Bollworm
500 + 50 1000 500-1000 15
Chlorpyriphos 16% + Alphacypermethrin 1% EC
Spotted Bollworm, Pink Bollworm,
American Bollworm
425 2500 500-750 15
Deltamethrin 1% + Triazophos 35% EC
Spotted Bollworm, Pink
Bollworm, American
Bollworm, White flies
10 + 350 to
12.5 + 450
1000-1250 600-1000 21
Diafenthiuron 47% + Bifenthrin 9.4% SC
Thrips, Leaf hoppers, White fly,
Aphids
293.75 + 58.7 625 500 30
Ethion 40% + Cypermethrin 5% EC American Bollworm 400 + 50 1000 500 15
Fipronil 4% + Acetamiprid 4% SC Aphid, Jassids & White fly 40 + 40 1000 500 30
20
IRAC Guidelines stated that, the insecticide mixtures
may offer benefits for Insecticide Resistance
Management(IRM) when appropriately incorporated into
rotation strategies with additional modes of action.
IRAC, 2021
21
IRAC mixture statement for IRM, 2021
IRAC, 2021
Recommended dosage
Residual activity
Cross resistance
Mode of action
22
Recommended dosage
Mixture statement -1
 Insecticides used at rates higher or lower
than recommended on the label can result in
resistance and/or unwanted effects on non-
target organisms and the environment.
 i.e. Buprofezin 15.00% + Acephate 35.00%
WP 187.5 + 437.5 gm a. i./ ha
23
Mode of Action
Mixture statement -2
 Mixtures with components having the same IRAC mode of action
classification are not recommended for IRM.
 Chlorpyrifos + Aldicarb
 Thiamethoxam 12.60% + Lambda- cyhalothrin 09.50% ZC
24
Cross resistance
Mixture statement -3
When using mixtures, consider any known cross-resistance
issues between the individual components for the targeted
pests.
Mixtures become less effective if resistance is already
developing to one or both active ingredients.
Increase the chances for the development of resistance.
25
Residual activity
Mixture statement -4
• The IRM benefits of an insecticide mixture are
greatest if the two components have similar periods of
residual insecticidal activity.
• Mixtures of insecticides with unequal periods of
residual insecticide activity may offer an IRM benefit
for the period where both insecticides are active.
 e.g.
1. Chlorpyrifos 50.00% + Cypermethrin 05.00% EC
2. Acephate 50% + Imidacloprid 1.8% SP
15 days
26
40 days
Insecticide Resistance Management (IRM)
 Effective insecticide resistance management (IRM) strategies seek to
minimize the selection of resistance to any one type of insecticide.
 In practice, alternations, sequences or rotations of compounds from
different MoA groups provide sustainable and effective IRM.
MoA a MoA b MoA c MoA d MoA a MoA b
Sequence of insecticides through season
27
Table 3: Sequence of ready mix insecticides on different insect pests of cotton
Sr.
No.
Ready mix insecticide Common name of the pest
1 Buprofezin 15.00% + Acephate 35.00% WP Jassids, Thrips & White fly
2 Acetamiprid 1.1% + Cypermethrin 5.5% EC Aphids, Jassids, Thrips, Bollworms
3 Profenofos 40% + Cypermethrin 4% EC Bollworm complex
28
29
Case studies on use of ready mix
insecticides in cotton
Review of Research
Work
30
Bollworm complex in cotton
30
Tr.
No.
Treatment
Fruiting body damage* (%) Population of boll worms (No./plant)
Trial I Trial II Trial I Trial II
PTC PM PRC PTC PM PRC PTC PM PRC PTC PM PRC
T1 Flubendiamide + Thiacloprid-480 SC @ 72 gm a.i./ha 6.05
0.70
(4.80)b
89.58 7.80
0.95
(5.59)
abc
89.85 3.33
0.33
(0.91)a
85.86 5.70
1.10
(1.26)ab
75.03
T2 Flubendiamide + Thiacloprid-480 SC @ 96 gm a.i./ha 7.63
0.53
(4.18)ab
93.76 9.00
1.00
(5.74)abc
90.74 4.33
0.40
(0.95)a
86.82 6.50
1.20
(1.30)ab
76.11
T3 Flubendiamide + Thiacloprid-480 SC @ 120 gm a.i./ha 8.68
0.53
(4.18)ab
94.51 8.60
0.75
(4.97)a
92.73 5.00
0.17
(0.82)a
95.29 5.50
0.85
(1.16)a
80.00
T4 Flubendiamide 480 SC @ 60 gm a.i./ha 7.33
0.60
(4.44)ab
92.64 7.10
1.15
(6.16)c
86.50 3.67
0.17
(0.82)a
93.39 6.20
0.65
(1.07)a
86.43
T5 Thiacloprid 240 SC @ 60 gm a.i./ha 7.13
4.86
(12.74)c
38.17 8.50
6.00
(14.18)d
41.18 3.33
1.57
(1.44)b
32.95 6.40
2.75
(1.80)c
44.39
T6 Spinosad 45SC + Imidacloprid 200 SL @ 90+ 30 g a.i. /ha 7.21
0.67
(4.70)b
91.63 7.60
1.05
(5.88)bc
88.49 3.33
0.53
(1.01)a
77.29 6.50
1.75
(1.50)bc
65.16
T7 Indoxacarb 14.5 SC + Imidacloprid 200 SL @ 75+30 g a.i./ha 7.14
0.49
(4.01)a
93.78 8.20
0.85
(5.29)ab
91.36 3.00
0.34
(0.91)a
84.07 6.30
1.20
(1.30)ab
75.35
T8 Untreated control 8.10
8.93
(17.39)d
- 9.00
10.80
(19.19)e
- 4.33
3.04
(1.88)c
- 6.60
5.10
(2.37)d
-
SEd - 0.282 - - 0.375 - - 0.109 - - 0.150 -
CD (0.05 %) - 0.604 - - 0.804 - - 0.235 - - 0.321 -
Table 4: Efficacy of Flubendiamide + Thiacloprid - 480 SC against bollworms in cotton
PTC – Pretreatment count; PM – Pooled mean; PRC – Percent reduction over control,; Values in parentheses are “x+0.5 (* arc sine) transformed values; In a column means
followed by a common letter are not significantly different by DNMRT (P=0.05)
Coimbatore, Tamil Nadu Kumar et al., 2010 31
Tr.
No.
Treatment
Dosage g
a.i./ha
Pre count
Days after 1st spray
1 3 7 14
T1
Cypermethrin 10% +
Indoxacarb 10% SC
40 + 40
10.97
(19.34)
6.09
(14.25)
7.41
(15.77)
8.27
(16.69)
9.21
(17.64)
T2
Cypermethrin 10% +
Indoxacarb 10% SC
50 + 50
11.08
(19.43)
5.87
(14.02)
6.78
(15.07)
7.56
(15.93)
8.88
(17.33)
T3
Cypermethrin 10% +
Indoxacarb 10% SC
60 + 60
10.99
(19.36)
5.24
(13.25)
5.49
(13.55)
7.32
(15.69)
8.06
(16.49)
T4
Cypermethrin 10% +
Indoxacarb 10% SC
75 + 75
11.18
(19.53)
5.11
(13.06)
5.28
(13.28)
7.04
(15.38)
7.87
(16.29)
T5
Cypermethrin 10% +
Indoxacarb 10% SC
100 + 100
11.23
(19.58)
4.13
(11.72)
4.67
(12.56)
6.33
(14.57)
7.15
(15.51)
T6
Cypermethrin 10% +
Indoxacarb 10% SC
200 + 200
10.91
(19.28)
3.91
(11.40)
4.28
(11.94)
5.98
(14.15)
6.70
(14.50)
T7 Cypermethrin 10% EC 50
10.54
(18.94)
6.13
(14.30)
7.43
(15.79)
9.31
(17.75)
10.79
(19.16)
T8 Cypermethrin 10% EC 75
11.41
(19.73)
5.87
(13.98)
6.14
(14.34)
7.19
(15.52)
9.24
(17.68)
T9 Indoxacarb 10% SC 50
10.89
(19.27)
5.36
(13.38)
5.69
(13.79)
7.13
(15.38)
7.87
(16.29)
T10 Indoxacarb 10% SC 75
11.27
(19.59)
3.78
(11.21)
4.57
(12.34)
6.17
(14.38)
7.03
(15.37)
T11 Untreated control -
10.81
(19.18)
11.27
(19.61)
12.31
(20.53)
14.61
(22.46)
16.92
(24.26)
SE ± - 0.31 0.38 0.38 0.35 0.37
CD at 5% - NS 1.14 1.14 1.03 1.1
Table 5: Effect of combi-product on per cent infestation of bollworm in fruiting bodies
Figures in parentheses indicate arcsine transformed values.
Akola, Maharashtra Surpam et al., 2015 32
Table 6: Effect of different insecticides against fruiting body damage due to bollworm complex in cotton
Tr.
No.
Treatment
Dose
a. i/ha
Conc.
%
First Spray Second Spray Third Spray
Mean
PTC
7
DAS
14
DAS
7
DAS
14
DAS
7
DAS
14
DAS
T1 Chlorantraniliprole 9.3% +
Lambda cyhalothrin 4.6% ZC
37.5 g 0.006 %
12.38
(20.37)
4.88
(12.51)
6.50
(14.74)
5.82
(13.91)
6.89
(15.19)
5.44
(13.31)
6.79
(15.10)
6.05
(14.20)
T2 Flubendiamide 19.92% +
Thiacloprid 19.92%SC
48 + 48 g 0.02 %
12.94
(20.81)
5.24
(13.02)
6.59
(14.86)
5.86
(14.00)
6.98
(15.31)
6.42
(14.65)
7.02
(15.35)
6.35
(14.58)
T3 Profenophos 40% +
Cypermethrine 4% EC
440 g 0.088 %
10.29
(18.49)
6.94
(15.23)
8.55
(16.98)
7.22
(15.55)
8.71
(17.15)
7.35
(15.67)
8.87
(17.14)
7.94
(16.35)
T4 Cypermethrin 3 % +
Quinalphos 20% EC
230 g 0.046 %
17.79
(24.75)
12.33
(20.54)
14.31
(22.03)
12.97
(20.73)
15.04
(22.80)
12.60
(20.51)
14.3
(21.19)
13.59
(21.58)
T5 Indoxacarb 14.5% +
Acetamiprid 7.7 % SC
88.8 g 0.046 %
12.99
(21.07)
4.67
(12.42)
6.09
(14.22)
5.23
(13.08)
6.00
(14.11)
5.06
(12.53)
6.07
(13.24)
5.52
(13.57)
T6 Thiamethoxam 12.6% +
Lambda cyhalothrin 9.5 % ZC
44 g 0.008 %
11.94
(20.05)
5.70
(13.70)
7.19
(15.42)
6.81
(14.93)
7.86
(16.23)
7.01
(14.98)
7.27
(15.47)
6.97
(15.18)
T7 Chlorantraniliprole 8.8 % +
Thiamethoxam 17.5 % SC
150 g 0.026 %
11.62
(19.81)
3.71
(10.99)
5.70
(13.71)
4.98
(12.87)
5.30
(13.29)
4.93
(12.82)
5.82
(13.84)
5.00
(12.87)
T8 Novaluron 5.25% +
Indoxacarb 4.5% SC
43.31+ 37.13 g 0.019 %
11.87
(20.12)
6.54
(14.57)
7.61
(15.79)
7.07
(15.39)
8.68
(16.84)
7.12
(15.28)
8.36
(16.67)
7.5
(15.95)
T9 Spinatorum 10% +
Sulfoxaflor 30% WG
120 g 0.002 %
11.60
(19.86)
5.28
(13.04)
6.78
(14.93)
6.18
(14.12)
7.55
(15.84)
7.00
(15.22)
7.12
(15.47)
6.65
(14.93)
T10 Untreated control - -
12.51
(20.68)
30.9
(33.74)
48.85
(44.32)
72.14
(58.12)
84.73
(66.97)
91.72
(73.29)
96.12
(78.61)
70.74
(57.23)
SE ± - 1.38 1.34 1.38 1.06 1.45 1.70 0.59
CD @ 0.5% NS 4.15 4.03 4.14 3.18 4.35 5.10 1.78
CV % - 15.04 12.46 12.45 8.61 12.09 13.25 5.26
Figure in parentheses are angular transformed values. PTC- Pre treatment count, DAS- Days after spraying `
Parbhani , Maharashtra Bhujade et al., 2018 33
Tr.
No.
Treatments Dose ml a.i./ha
H. armigera (Pooled means of two seasons)
After first spray After second spray
Pre-count 7 DAS 14 DAS 7 DAS 14 DAS
T1
Acetamiprid 0.4% +
Cypermethrin 2% EC
10 + 50
10.17
(3.17)*
5.75
(2.47)
7.93
(2.88)
4.48
(2.22)
5.49
(2.43)
T2
Acetamiprid 0.4% +
Cypermethrin 2% EC
20 + 100
10.10
(3.16)
3.65
(2.00)
6.46
(2.61)
3.26
(1.92)
4.28
(2.16)
T3
Acetamiprid 0.4% +
Cypermethrin 2% EC
40+200
11.48
(3.37)
2.26
(1.64)
5.36
(2.40)
2.01
(1.56)
3.11
(1.87)
T4
Acetamiprid 0.4% +
Quinalphos 20 % EC
10 + 500
10.73
(3.20)
4.69
(2.25)
7.00
(2.70)
2.95
(1.81)
4.73
(2.26)
T5
Acetamiprid 0.4% +
Quinalphos 20 % EC
20 + 1000
10.60
(3.23)
3.00
(1.81)
5.59
(2.43)
2.35
(1.63)
4.03
(2.10)
T6
Acetamiprid 0.4% +
Quinalphos 20 % EC
40 + 2000
9.53
(3.04)
1.51
(1.36)
3.92
(2.07)
0.83
(1.13)
2.64
(1.76)
T7
Acetamiprid 0.4% +
Chlorpyrifos 20 % EC
10 + 500
9.73
(3.09)
5.23
(2.37)
7.04
(2.70)
3.36
(2.00)
5.04
(2.33)
T8
Acetamiprid 0.4% +
Chlorpyrifos 20 % EC
20 + 1000
10.85
(3.25)
3.83
(2.56)
7.62
(2.43)
2.38
(1.64)
4.11
(2.12)
T9
Acetamiprid 0.4% +
Chlorpyrifos 20 % EC
40 + 2000
11.35
(3.38)
2.14
(1.58)
4.15
(2.13)
1.21
(1.24)
2.89
(1.83)
T10 Acetamiprid 20 SP 20
9.55
(3.04)
6.60
(2.56)
8.13
(2.82)
5.61
(2.39)
6.24
(2.53)
T11 Quinalphos 25 EC 500
9.55
(3.07)
5.55
(2.42)
6.96
(2.65)
4.49
(2.15)
5.52
(2.41)
T12 Chlorpyrifos 20 EC 500
10.56
(3.17)
5.62
(2.42)
7.42
(2.74)
4.69
(2.22)
5.93
(2.47)
T13 Cypermethrin 10 EC 75
10.40
(3.22)
6.89
(2.69)
8.52
(2.96)
5.06
(2.28)
6.56
(2.62)
T14
Untreated control 10.45
(3.21)
11.90
(3.46)
13.60
(3.68)
14.49
(3.78)
15.69
(3.93)
SE ± 0.272 0.142 0.095 0.126 0.077
CD N. S. 0.412 0.278 0.365 0.224
Table 7 (a): Effect of insecticidal combinations on per cent square damage due to Helicoverpa armigera in cotton
*Figures in parentheses are Arc Sine transformed values, DAS=Days after spray
Parbhani , Maharashtra Bhamare and Wadnerkar, 2018 34
Tr. No. Treatments Dose ml a.i./ha
E. vittella (Pooled means of two seasons)
After first spray After second spray
Pre- count 7 Das 14 Das 7 Das 14 Das
T1
Acetamiprid 0.4% +
Cypermethrin 2% EC
10+50 2.96
(1.86)
1.70
(1.45)
2.44
(1.70)
1.88
(1.52)
2.09
(1.60)
T2
Acetamiprid 0.4% +
Cypermethrin 2% EC
20+100 2.46
(1.69)
1.31
(1.30)
2.14
(1.60)
1.62
(1.40)
1.72
(1.49)
T3
Acetamiprid 0.4% +
Cypermethrin 2% EC
40+200 2.55
(1.71)
0.77
(1.09)
1.45
(1.38)
1.10
(1.26)
1.30
(1.37)
T4
Acetamiprid 0.4% +
Quinalphos 20 % EC
10+500 2.15
(1.62)
1.51
(1.40)
1.86
(1.52)
1.35
(1.21)
1.63
(1.45)
T5
Acetamiprid 0.4% +
Quinalphos 20 % EC
20+1000 2.61
(1.75)
1.17
(1.29)
1.64
(1.45)
1.08
(1.11)
1.28
(1.33)
T6
Acetamiprid 0.4% +
Quinalphos 20 % EC
40+2000 2.66
(1.80)
0.69
(1.04)
1.21
(1.30)
0.39
(0.85)
1.08
(1.25)
T7
Acetamiprid 0.4% +
Chlorpyrifos 20 % EC
10+500 3.17
(1.92)
1.71
(1.48)
2.54
(1.74)
1.42
(1.25)
1.90
(1.54)
T8
Acetamiprid 0.4% +
Chlorpyrifos 20 % EC
20+1000 2.45
(1.73)
1.26
(1.33)
1.99
(1.57)
1.16
(1.08)
1.30
(1.34)
T9
Acetamiprid 0.4% +
Chlorpyrifos 20 % EC
40+2000 2.57
(1.77)
0.83
(1.12)
1.73
(1.50)
0.56
(0.89)
1.23
(1.30)
T10 Acetamiprid 20 SP 20 2.56
(1.75)
2.03
(1.56)
2.43
(1.70)
2.32
(1.61)
2.35
(1.68)
T11 Quinalphos 25 EC 500 2.60
(1.77)
1.76
(1.48)
2.44
(1.70)
2.04
(1.51)
2.13
(1.62)
T12 Chlorpyrifos 20 EC 500 2.42
(1.74)
2.03
(1.59)
2.40
(1.69)
2.05
(1.46)
2.10
(1.60)
T13 Cypermethrin 10 EC 75 2.74
(1.81)
2.06
(1.59)
2.49
(1.72)
2.19
(1.53)
2.33
(1.67)
T14 Untreated control - 3.00
(1.87)
3.24
(1.88)
3.59
(2.01)
4.56
(2.06)
5.09
(2.34)
SE± 0.078 0.055 0.108 0.045 0.069
CD N.S. 0.160 0.315 0.134 0.202
Table 7 (b): Effect of insecticidal combinations on per cent square damage due to Earias vittella in cotton
*Figures in parentheses are Arc Sine transformed values, DAS=Days after spray
Parbhani , Maharashtra Bhamare and Wadnerkar, 2018 35
36
Table 8: Efficacy of different novel insecticides against bollworms and yield of cotton
Tr.
No.
Chemical
Dose
(g a.i.)/ ha
Helicoverpa armigera
(larvae/plant)
Pectinophora
gossypiella
(larvae/10
bolls) at 120
DAS
Yield (q/ha)
1DBS 7DAS
T1 Spinetoram 10 + Sulfoxaflor 40 WG 120 2.95 0.50 (1.00) 2.39 (1.70) 13.72 (3.76)
T2 Spinetoram 10 + Sulfoxaflor 40 WG 140 2.01 0.39 (0.94) 2.27 (1.66) 14.27 (3.83)
T3
Spinetoram 12 SC 30 2.14 0.72 (1.10) 2.61 (1.76) 12.00 (3.53)
T4 Sulfoxaflor 24 SC 90 2.01 2.13 (1.62) 4.02 (2.13) 8.04 (2.89)
T5
Spinetoram 12 SC 36 2.15 0.52 (1.01) 2.54 (1.74) 11.79 (3.50)
T6 Sulfoxaflor 24 SC 108 2.12 1.89 (1.55) 3.78 (2.07) 10.71 (3.33)
T7 Pyriproxyfen 5 + Fenpropathrin 15 EC 37.5+112.5 2.24 1.42 (1.39) 3.31 (1.95) 9.10 (3.07)
T8 Pyriproxyfen 5 EC 37.5 2.35 1.79 (1.51) 3.68 (2.04) 8.84 (3.03)
T9 Fenpropathrin 15 EC 112.5 2.18 1.73 (1.49) 3.62 (2.03) 8.55 (3.01)
T10
Control (Unsprayed) -- 2.04 2.72 (1.79) 8.70 (3.03) 3.90 (2.09)
T11
Control (Water spray) -- 2.25 2.80 (1.82) 8.50 (3.00) 4.07 (2.12)
F Test NS S S S
SEd 0.36 0.01 0.02 0.12
CD (P = 0.05) 0.12 0.05 0.05 0.35
CV % 6.34 5.65 8.34 8.72
DBS: Day before spray , DAS: Day after spray Figures in parentheses are square root transformed values
Raichur, Karnataka Hanchinal et al., 2018 36
Tr.
No.
Treatment
Dose ml
/L
Bollworm complex damage in green fruiting bodies (%)
Damage at
harvest
(%)
Pre-
treatment
1st spray 2nd spray 3rd spray
7DAS 14DAS Mean 7DAS 14DAS Mean 7DAS 14DAS Mean
T1
Pyriproxifen 5 % +
Fenpropathrin 15 % EC
1 ml
8.30
(2.88)
5.48
(2.34)
8.93
(2.98)
7.21
(2.66)
4.04
(2.00)
6.31
(2.50)
5.17
(2.25)
3.68
(1.92)
4.13
(2.03)
3.91
(1.97)
37.33
(37.59)
T2
Cypermethrin 3 % +
Quinalphos 20 % EC
2 ml
7.38
(2.71)
4.18
(2.04)
7.24
(2.69)
5.71
(2.37)
3.78
(1.94)
7.05
(2.65)
5.41
(2.30)
2.76
(1.66)
3.90
(1.97)
3.33
(1.82)
28.00
(31.91)
T3
Novaluron 5.25 % +
Indoxacarb 4.5% SC
1.75 ml
7.34
(2.70)
3.70
(2.92)
7.35
(2.70)
5.53
(2.31)
3.08
(1.75)
6.27
(2.49)
4.67
(2.12)
1.87
(1.36)
3.72
(1.93)
2.79
(1.64)
21.33
(27.49)
T4
Thiamethoxam 12.6 % +
Lambda cyhalothrin 9.5 %
ZC
0.4 ml
6.66
(2.58)
3.98
(1.99)
6.10
(2.47)
5.04
(2.23)
3.57
(1.88)
6.93
(2.63)
5.25
(2.26)
2.55
(1.59)
4.28
(2.07)
3.42
(1.83)
22.67
(28.41)
T5
Indoxacarb 14.5 % +
Acetamiprid 7.7 % SC
1 ml
7.00
(2.63)
2.27
(1.48)
6.41
(2.53)
4.34
(2.00)
1.54
(1.24)
6.53
(2.54)
4.04
(1.89)
2.41
(1.54)
3.39
(1.83)
2.90
(1.69)
19.56
(26.17)
T6
Profenofos 40 % +
Cypermethrin 4 % EC
2 ml
8.52
(2.90)
3.34
(1.82)
5.84
(2.42)
4.59
(2.12)
2.95
(1.70)
6.24
(2.49)
4.60
(2.10)
2.29
(1.51)
3.61
(1.90)
2.95
(1.70)
20.44
(26.81)
T7 Untreated control -
9.30
(3.04)
14.02
(3.74)
14.70
(3.83)
14.36
(3.79)
13.40
(3.66)
10.14
(3.18)
11.77
(3.42)
9.74
(3.12)
8.14
(2.85)
8.94
(2.98)
48.44
(44.11)
SE (m) ± 0.13 0.10 0.12 0.11 0.11 0.12 0.12 0.08 0.07 0.08 1.63
CD at 5 % - 0.30 0.37 0.34 0.35 0.36 0.36 0.24 0.22 0.23 5.02
Table 9: Average per cent bollworm complex damage in green fruiting bodies of cotton
Note: Figures in parentheses are corresponding square root transformation values. DAS– Days After Spraying
Akola, Maharashtra Borude et al., 2018 37
Sucking pests in cotton
38
Tr. No. Treatments
Mean numbers of aphids/ leaf**
Aphids/leaf
1st spray 2nd spray 3rd spray
T1
Spirotetramat 12% + imidacloprid 36% - 480 SC @500
ml / ha
2.47
(5.83)
2.87
(8.23)
2.69
(7.23)
T2
Spirotetramat 12% + imidacloprid 36% - 480 SC @
625 ml / ha
1.79
(2.99)
2.34
(5.47)
2.27
(4.68)
T3
Spirotetramat 12% + imidacloprid 36% - 480 SC @ 750
ml / ha
2.53
(6.40)
2.60
(6.76)
2.51
(6.30)
T4 Spirotetramat 150 OD @ 600 ml / ha
2.26
(4.85)
2.71
(7.34)
2.52
(6.35)
T5 Imidacloprid 200 SL @ 900 ml / ha
2.57
(6.60)
2.65
(7.08)
2.47
(6.10)
T6 Profenophos 50 EC @ 1250 ml/ha
2.54
(6.45)
2.69
(7.23)
2.76
(7.61)
T7 Thiamethoxam 25 WG @ 600 ml / ha
2.66
(7.07)
2.65
(7.02)
2.75
(7.56)
T8 Untreated (Control)
3.75
(14.06)
3.73
(13.91)
3.66
(13.39)
Y 0.023 0.024 0.019
T 0.132 0.089 0.089
Y x T 0.064 0.067 0.054
Y 0.63 0.066 0.054
T 0.521 0.298 0.299
Y x T 0.179 0.187 0.152
CV% 7.07 7.17 5.94
Figures in parentheses are retransformed value ** Pooled mean of two years
Table 10(a): Evaluation of new combination product Spirotetramat 12% + Imidacloprid 36% - 480 SC against sucking pests of cotton
SDAU, Dantiwada Patel et al., 2010 39
Tr. No. Treatments
Mean numbers of Leaf hopper/ leaf**
Leaf hoppers/leaf
1st spray 2nd spray 3rd spray
T1
Spirotetramat 12% + imidacloprid 36% - 480 SC @500
ml / ha
1.90
(3.61)
2.02
(4.84)
1.95
(3.80)
T2
Spirotetramat 12% + imidacloprid 36% - 480 SC @
625 ml / ha
1.54
(1.89)
1.75
(3.06)
1.55
(2.53)
T3
Spirotetramat 12% + imidacloprid 36% - 480 SC @
750 ml / ha
1.72
(2.95)
1.98
(3.45)
1.80
(3.24)
T4 Spirotetramat 150 OD @ 600 ml / ha
1.95
(3.80)
2.12
(4.49)
2.06
(4.24)
T5 Imidacloprid 200 SL @ 900 ml / ha
2.14
(4.57)
2.18
(4.75)
2.47
(6.10)
T6 Profenophos 50 EC @ 1250 ml/ha
2.27
(5.15)
2.24
(5.01)
2.31
(5.33)
T7 Thiamethoxam 25 WG @ 600 ml / ha
2.15
(4.62)
2.28
(5.19)
2.30
(5.29)
T8
Untreated (Control) 2.95
(8.70)
2.87
(8.23)
3.07
(9.42)
Y 0.011 0.11 0.010
T 0.181 0.179 0.257
Y x T 0.032 0.030 0.027
Y 0.032 0.073 0.027
T 0.174 0.206 0.211
Y x T 0.090 0.085 0.76
CV% 5.46 4.17 3.66
Figures in parentheses are retransformed value ** Pooled mean of two years
Table10(b): Evaluation of new combination product Spirotetramat 12% + Imidacloprid 36% - 480 SC against sucking pests of cotton
SDAU, Dantiwada Patel et al., 2010 40
Tr. No. Treatments
Mean numbers of thrips/ leaf**
Thrips /leaf
1st spray 2nd spray 3rd spray
T1
Spirotetramat 12% + imidacloprid 36% - 480 SC
@500 ml / ha
2.49
(6.20)
2.79
(7.78)
2.57
(6.60)
T2
Spirotetramat 12% + imidacloprid 36% - 480
SC @ 625 ml / ha
2.03
(3.98)
2.26
(4.71)
1.90
(3.26)
T3
Spirotetramat 12% + imidacloprid 36% - 480
SC @ 750 ml / ha
2.34
(5.47)
2.61
(6.81)
2.44
(5.95)
T4 Spirotetramat 150 OD @ 600 ml / ha
2.35
(5.52)
2.63
(7.01)
2.01
(3.81)
T5 Imidacloprid 200 SL @ 900 ml / ha
2.56
(6.55)
2.60
(6.76)
2.49
(6.20)
T6 Profenophos 50 EC @ 1250 ml/ha
2.62
(6.93)
2.72
(7.39)
2.71
(7.34)
T7 Thiamethoxam 25 WG @ 600 ml / ha
2.66
(7.07)
2.71
(7.34)
2.71
(7.34)
T8 Untreated (Control)
3.58
(12.81)
3.54
(12.53)
3.38
(11.42)
Y 0.011 0.020 0.016
T 0.181 0.106 0.140
Y x T 0.032 0.058 0.045
Y 0.011 0.058 0.42
T 0.29 0.334 0.470
Y x T 0.035 0.163 0.128
CV% 6.38 6.28 5.15
Figures in parentheses are retransformed value ** Pooled mean of two years
Table 10(c): Evaluation of new combination product Spirotetramat 12% + Imidacloprid 36% - 480 SC against sucking pests of cotton
SDAU, Dantiwada Patel et al., 2010 41
Tr. No. Treatments
Mean numbers of Whiteflies/ leaf**
Whiteflies/leaf
1st spray 2nd spray 3rd spray
T1
Spirotetramat 12% + imidacloprid 36% - 480 SC @500
ml / ha
1.82
(2.58)
1.93
(3.72)
2.02
(4.08)
T2
Spirotetramat 12% + imidacloprid 36% - 480 SC @
625 ml / ha
1.37
(1.94)
1.68
(2.82)
1.66
(2.68)
T3
Spirotetramat 12% + imidacloprid 36% - 480 SC @ 750
ml / ha
1.71
(2.93)
1.84
(3.38)
2.00
(4.00)
T4 Spirotetramat 150 OD @ 600 ml / ha
1.71
(2.92)
1.93
(3.72)
2.30
(5.29)
T5 Imidacloprid 200 SL @ 900 ml / ha
2.12
(4.49)
1.99
(3.96)
2.29
(5.24)
T6 Profenophos 50 EC @ 1250 ml/ha
2.21
(4.88)
2.40
(5.76)
2.44
(5.95)
T7 Thiamethoxam 25 WG @ 600 ml / ha
2.26
(5.10)
2.38
(5.66)
2.59
(6.70)
T8 Untreated (Control)
2.85
(8.12)
2.94
(8.64)
3.12
(9.73)
Y 0.11 0.014 0.014
T 0.209 0.176 0.223
Y x T 0.032 0.040 0.039
Y 0.031 0.039 0.038
T 0.299 0.144 0.566
Y x T 0.089 0.111 0.109
CV% 5.92 5.53 4.93
Figures in parentheses are retransformed value ** Pooled mean of two years
Table 10(d): Evaluation of new combination product Spirotetramat 12% + Imidacloprid 36% - 480 SC against sucking pests of cotton
SDAU, Dantiwada Patel et al., 2010 42
Tr. No. Treatment
Aphids (No./ Plant)
Trial I Trial II
PTC PM PRC PTC PM PRC
T1 Flubendiamide + Thiacloprid 480 SC @ 72 g a.i. /ha 18.33
0.47
(0.98)a
96.37 20.30
1.60
(1.45)c
89.13
T2 Flubendiamide + Thiacloprid 480 SC @ 96 g a.i. /ha 23.00
0.24
(0.86)a
98.55 26.40
0.50
(1.00)ab
97.39
T3 Flubendiamide +Thiacloprid 480 SC @ 120 g a.i. /ha 20.00
0.10
(0.77)a
99.29 22.30
0.25
(0.87)a
98.45
T4 Flubendiamide 480 SC @ 60 g a.i. /ha 19.33
8.57
(3.01)b
37.21 21.90
12.85
(3.65)d
19.11
T5 Thiacloprid 240 SC @ 60 g a.i. /ha 25.00
0.04
(0.73)a
99.80 27.60
1.50
(1.41)c
92.51
T6 Spinosad 45 SC + Imidacloprid 200 SL @ 90+30 g a.i. /ha 21.00
0.04
(0.73)a
99.76 23.90
1.05
(1.24)bc
93.94
T7 Indoxacarb 14.5 SC + Imidacloprid 200 SL @ 75+30 g a.i./ha 23.33
0.27
(0.87)a
98.39 27.00
1.05
(1.24)bc
94.64
T8 Untreated control 15.67
11.07
(3.40)b
21.30
15.45
(3.99)d
SEd ±
0.263 0.143
CD (0.05 %) 0.565 0.308
Table 11(a): Efficacy of Flubendiamide + Thiacloprid - 480 SC against aphids in cotton
PTC- Pre treatment count; PM – Pooled mean; PRC – Percent reduction over control; Values in parentheses are “x+0.5
transformed values; In a column means followed by a common letter are not significantly different by DMRT (P=0.05)
Coimbatore, Tamil Nadu Kumar et al., 2010 43
Tr. No. Treatment
Jassids (No./plant)
Trial I Trial II
PTC PM PRC PTC PM PRC
T1 Flubendiamide + Thiacloprid 480 SC @ 72 g a.i. /ha 20.00 1.14 (1.28)a 90.20 21.00 2.30 (1.67)b 79.58
T2 Flubendiamide + Thiacloprid 480 SC @ 96 g a.i. /ha 17.33 0.70 (1.10)a 93.02 20.10 1.40 (1.38)ab 87.01
T3 Flubendiamide +Thiacloprid 480 SC @ 120 g a.i. /ha 22.33
0.40
(0.95)a
96.91 21.90
0.90
(1.18)ab
92.34
T4 Flubendiamide 480 SC @ 60 g a.i. /ha 21.67 7.47 (2.82)b 40.48 21.50 8.75 (3.04)c 24.10
T5 Thiacloprid 240 SC @ 60 g a.i. /ha 20.33 0.57 (1.03)a 95.16 22.90 1.15 (1.28)ab 90.63
T6 Spinosad 45 SC + Imidacloprid 200 SL @ 90+30 g a.i. /ha 27.00 0.44 (0.97)a 97.22 27.20 0.70 (1.10)a 95.20
T7 Indoxacarb 14.5 SC + Imidacloprid 200 SL @ 75+30 g a.i./ha 22.00 0.30 (0.89)a 97.64 25.40 0.60 (1.05)a 95.59
T8 Untreated control 15.67 9.07 (3.09)b 20.70 11.10 (3.41)c
SEd ± 0.271 0.259
CD (0.05 %) 0.581 0.555
Table 11(b): Efficacy of Flubendiamide + Thiacloprid - 480 SC against jassids in cotton
PTC- Pre treatment count; PM – Pooled mean; PRC – Percent reduction over control; Values in parentheses are “x+0.5
transformed values; In a column means followed by a common letter are not significantly different by DMRT (P=0.05)
Coimbatore, Tamil Nadu Kumar et al., 2010 44
Tr. no. Treatments
Dosage
gram or ml. a.i./ha
Pre- count
Number of aphid per plant
(Days after 1st spray)
1 3 7 14
T1
Cypermethrin 10% +
indoxacarb 10% SC
40 + 40
32.66
(5.75)
11.30
(3.41)
13.56
(3.73)
15.61
(4.00)
18.35
(4.33)
T2
Cypermethrin 10% +
indoxacarb 10% SC
50 + 50
33.87
(5.86)
9.10
(3.09)
11.30
(3.43)
14.13
(3.82)
16.72
(4.14)
T3
Cypermethrin 10% +
indoxacarb 10% SC
60 + 60
37.15
(6.13)
7.78
(2.85)
9.11
(3.09)
13.39
(3.72)
15.29
(3.97)
T4
Cypermethrin 10% +
indoxacarb 10% SC
75 + 75
31.39
(5.64)
6.81
(2.70)
7.10
(2.75)
9.33
(3.13)
11.93
(3.52)
T5
Cypermethrin 10% +
indoxacarb 10% SC
100 + 100
33.80
(6.36)
5.15
(2.37)
6.30
(2.60)
9.12
(3.10)
11.03
(3.39)
T6
Cypermethrin 10% +
indoxacarb 10% SC
200 + 200
36.89
(6.11)
4.60
(2.31)
5.90
(2.52)
8.54
(3.00)
10.63
(3.35)
T7 Cypermethrin 10% EC 50
39.10
(6.04)
8.30
(2.36)
11.84
(3.51)
17.36
(4.22)
24.19
(4.96)
T8 Cypermethrin 10% EC 75
34.40
(5.90)
7.13
(2.83)
9.77
(3.20)
14.64
(3.89)
20.71
(4.60)
T9 Indoxacarb 10% SC 50
35.10
(5.96)
11.90
(3.52)
16.56
(4.13)
24.11
(4.96)
32.42
(5.73)
T10 Indoxacarb 10% SC 75
34.80
(5.94)
9.90
(3.22)
15.86
(4.04)
21.52
(4.69)
27.32
(5.27)
T11 Untreated control
31.10
(5.62)
33.40
(5.82)
35.82
(6.02)
38.67
(6.25)
44.24
(6.68)
S.E. + 0.17 0.12 0.08 0.07 0.06
C.D. (P=0.05) NS 0.35 0.24 0.20 0.19
Table 12 (a) : Effect of combi-product on cotton aphids
Figures in parentheses indicate √x+0.5 values. NS=Non-significant
Akola, Maharashtra Surpam et al., 2015 45
Tr.
No.
Treatments
Dosage
gram or ml a.i./ha
Pre- count
Number of thrips/plant
Days after 1st spray
1 3 7 14
T1
Cypermethrin 10% +
indoxacarb 10% SC
40 + 40
63.57
(8.00)
23.54
(4.90)
27.34
(5.27)
30.54
(5.57)
33.26
(5.80)
T2
Cypermethrin 10% +
indoxacarb 10% SC
50 + 50
64.18
(8.05)
21.63
(4.70)
24.15
(4.96)
27.85
(5.32)
31.35
(5.64)
T3
Cypermethrin 10% +
indoxacarb 10% SC
60 + 60
64.83
(8.08)
17.96
(4.29)
20.53
(4.58)
24.20
(4.96)
27.15
(5.25)
T4
Cypermethrin 10% +
indoxacarb 10% SC
75 + 75
65.78
(8.14)
16.08
(4.07)
19.15
(4.43)
23.51
(4.90)
25.81
(5.12)
T5
Cypermethrin 10% +
indoxacarb 10% SC
100 + 100
69.14
(8.34)
15.38
(3.98)
17.54
(4.24)
21.68
(4.70)
23.62
(4.91)
T6
Cypermethrin 10% +
indoxacarb 10% SC
200 + 200
70.34
(8.41)
13.73
(3.77)
14.80
(3.90)
18.73
(4.38)
20.84
(4.61)
T7 Cypermethrin 10% EC 50
71.67
(8.49)
22.20
(4.76)
25.58
(5.10)
36.07
(6.04)
40.78
(6.41)
T8 Cypermethrin 10% EC 75
7.187
(8.50)
19.94
(4.52)
21.29
(4.66)
31.18
(5.62)
35.16
(5.97)
T9 Indoxacarb 10% SC 50
73.18
(8.58)
25.67
(5.11)
28.48
(5.35)
43.27
(6.61)
49.23
(7.04)
T10 Indoxacarb 10% SC 75
69.91
(8.39)
22.23
(4.79)
23.66
(4.91)
35.19
(5.98)
41.10
(6.44)
T11 Untreated control
72.80
(8.56)
73.96
(8.62)
74.78
(8.67)
76.67
(8.78)
79.18
(8.92)
S.E. + 0.07 0.06 0.08 0.09 0.12
C.D. (P=0.05) NS 0.17 0.24 0.28 0.33
Table 12 (b) : Effect of combi-product on thrips
Akola, Maharashtra Surpam et al., 2015
Figures in parentheses indicate √x+0.5 values. NS=Non-significant 46
Tr. No. Treatment Dose (g or ml ai/ha)
Number of leaf hopper per leaf
1 DBS 7 DAFS 7 DASS 7 DATS Mean
T1 Spinetoram 10 + Sulfoxaflor 30 WG 120
2.07
(1.75)
0.4
(1.18)
0.66
(1.28)
0.76
(1.32)
0.61
(1.26)
T2 Spinetoram 10 + Sulfoxaflor 30 WG 140
2.33
(1.82)
0.30
(1.14)
0.53
(1.23)
0.60
(1.26)
0.48
(1.21)
T3 Spinetoram 10 WG 30
2.23
(1.80)
1.70
(1.64)
1.70
(1.64)
2.20
(1.78)
1.87
(1.69)
T4 Sulfoxaflor 30 WG 90
2.73
(1.93)
0.42
(1.19)
0.73
(1.31)
0.60
(1.26)
0.58
(1.25)
T5 Spinetoram 10 WG 36
2.41
(1.85)
1.67
(1.63)
2.10
(1.76)
2.63
(1.90)
2.13
(1.77)
T6 Sulfoxaflor 30 WG 108
2.13
(1.77)
0.30
(1.14)
0.67
(1.29)
0.53
(1.23)
0.50
(1.22)
T7 Pyriproxyfen 5 EC + Fenpropathrin 15 EC 37.5 + 112.5
1.90
(1.70)
1.47
(1.57)
1.53
(1.59)
2.07
(1.75)
1.69
(1.64)
T8 Pyriproxyfen 5 EC 37.5
2.27
(1.00)
1.43
(1.55)
1.50
(1.58)
2.13
(1.76)
1.69
(1.64)
T9 Fenpropathrin 15 EC 112.5
2.03
(1.81)
1.30
(1.51)
1.83
(1.68)
2.17
(1.78)
1.77
(1.66)
T10 Control Water spray
2.13
(1.74)
2.43
(1.85)
4.10
(2.25)
4.20
(2.28)
3.59
(2.13)
T11 Control Unsprayed
2.03
(1.77)
2.53
(1.87)
4.20
(2.28)
4.40
(2.32)
3.71
(2.17)
S.Em + 0.15 0.06 0.09 0.07 0.16
C.D (p=0.05) NS 0.19 0.27 0.20 0.46
C.V % 12.28 8.83 9.17 5.92 16.49
Table 13(a) : Efficacy of newer insecticides against leaf hoppers, Amrasca biguttula biguttula in cotton.
Bangalore, Karnataka Ambarish et al., 2017
DBS: Day before spraying, DAFS: Days after the first spray, DASS: Days after the second spray,
DATS: Days after the third spray Figures in parentheses indicate √ x +1 transformed values
47
Table 13(b) : Efficacy of newer insecticides against whiteflies, Bemisia tabaci in cotton
Tr. No. Treatment Dose (g. or ml ai/ha)
Number of whiteflies per leaf
1 DBS 7 DAFS 7 DASS 7 DATS Mean
T1 Spinetoram 10 + Sulfoxaflor 30 WG 120
1.50
(1.58)
0.37
(1.17)
0.60
(1.26)
0.40
(1.18)
0.46
(1.21)
T2 Spinetoram 10 + Sulfoxaflor 30 WG 140
1.47
(1.57)
0.35
(1.16)
0.50
(1.22)
0.37
(1.17)
0.41
(1.19)
T3 Spinetoram 10 WG 30
1.53
(1.59)
0.77
(1.33)
0.73
(1.32)
0.73
(1.32)
0.74
(1.32)
T4 Sulfoxaflor 30 WG 90
1.83
(1.68)
0.40
(1.18)
0.57
(1.25)
0.43
(1.20)
0.47
(1.21)
T5 Spinetoram 10 WG 36
2.00
(1.73)
0.67
(1.29)
0.80
(1.34)
1.20
(1.48)
0.89
(1.37)
T6 Sulfoxaflor 30 WG 108
1.67
(1.63)
0.47
(1.21)
0.70
(1.30)
0.50
(1.22)
0.56
(1.25)
T7 Pyriproxyfen 5 EC + Fenpropathrin 15 EC 37.5 + 112.5
1.43
(1.56)
0.50
(1.22)
0.73
(1.32)
0.40
(1.18))
0.54
(1.24)
T8 Pyriproxyfen 5 EC 37.5
1.57
(1.60)
0.53
(1.24)
0.67
(1.29)
0.50
(1.22)
0.57
(1.25)
T9 Fenpropathrin 15 EC 112.5
2.13
(1.77)
1.40
(1.55)
1.03
(1.43)
1.20
(1.48)
1.21
(1.49)
T10 Control Water spray
1.57
(1.60)
1.87
(1.69)
2.30
(1.82)
3.60
(2.14)
2.59
(1.89)
T11 Control Un sprayed
1.64
(1.62)
1.93
(1.71)
2.77
(1.94)
3.93
(2.22)
2.88
(1.97)
S.Em + 1.12 0.07 0.07 0.06 0.06
C.D (p=0.05) 0.35 0.21 0.21 0.18 0.19
C.V % 12.77 14.81 12.41 8.95 10.89
Bangalore, Karnataka Ambarish et al., 2017
DBS: Day before spraying, DAFS: Days after the first spray, DASS: Days after the second spray,
DATS: Days after the third spray Figures in parentheses indicate √ x +1 transformed values
48
Tr. No. Insecticide
Dose
(g or ml a.i.) / ha
Av. Population of leaf hopper at
different crop stage*
(Mean of three sprays)
Percent reduction of pest over
control
1 DBS 7 DAS
T1 Spinetoram 10 + Sulfoxaflor 40 WG 120 9.91 2.11 82.12
T2 Spinetoram 10 + Sulfoxaflor 40 WG 140 10.30 1.81 84.67
T3
Spinetoram 12 SC 30 9.92 5.48 53.57
T4 Sulfoxaflor 24 SC 90 10.31 2.47 79.08
T5
Spinetoram 12 SC 36 9.87 5.42 54.08
T6 Sulfoxaflor 24 SC 108 9.60 2.62 77.79
T7 Pyriproxyfen 5 + Fenpropathrin 15 EC 37.5+ 112.5 9.82 2.27 80.75
T8
Pyriproxyfen 5 EC 37.5 10.06 2.52 78.65
T9 Fenpropathrin 15 EC 112.5 9.70 2.64 77.64
T10 Control (Unsprayed)
-- 10.09 11.80 --
T11 Control (Water spray)
-- 10.04 11.02 --
Table 14(a) : Efficacy of different insecticides against leaf hopper, Amrasca biguttula biguttula on cotton
Raichur, Karnataka Hanchinal et al., 2018
*- Square root transformed values; DBS – Day before spray; DAS – Days after spray 49
Tr. No. Insecticide Dose (g. or ml a.i.)/ ha
Av. Population of thrips at different
crop stage* (Mean of three sprays % reduction of pest over control
1 DBS 7 DAS
T1 Spinetoram 10 + Sulfoxaflor 40 WG 120 8.49 2.20 78.74
T2 Spinetoram 10 + Sulfoxaflor 40 WG 140 8.17 2.01 80.53
T3
Spinetoram 12 SC 30 8.36 2.44 76.37
T4 Sulfoxaflor 24 SC 90 8.18 3.94 61.91
T5
Spinetoram 12 SC 36 8.02 2.52 75.61
T6 Sulfoxaflor 24 SC 108 8.11 2.89 72.06
T7
Pyriproxyfen 5 + Fenpropathrin 15
EC
37.5+112.5 8.40 3.23 68.78
T8
Pyriproxyfen 5 EC 37.5 8.48 3.08 70.25
T9 Fenpropathrin 15 EC 112.5 7.94 2.88 72.17
T10
Control (Unsprayed) -- 8.35 10.34 --
T11
Control (Water spray) -- 8.37 11.12 --
Table 14(b) : Efficacy of different novel insecticides against thrips, Thrips tabaci on cotton
*- Square root transformed values; DBS – Day before spray; DAS – Days after spray
Raichur, Karnataka Hanchinal et al., 2018 50
Tr.
No.
Treatment
Dose
(g a.i./ha)
Mean whitefly population per 3 leaves
Overall
Mean
Reduction
over control
(%)
Yield
(kg/ha)
1st spray 2nd spray
PT 1 DAS 5 DAS 10 DAS PT 1 DAS 5 DAS 10 DAS
T1 Dinotefuran 20 SG 80
11.97
(3.53)
5.94
(2.53)
4.12
(2.14)
4.45
(2.22)
4.93
(2.33)
3.45
(1.98)
2.33
(1.68)
2.88
(1.83)
5.01 64.04 334.84
T2 Sulfoxaflor 24 SC 50
12.00
(3.53)
6.19
(2.58)
3.55
(2.01)
3.38
(1.96)
3.99
(2.11)
2.26
(1.66)
2.06
(1.60)
1.85
(1.53)
4.41 68.39 342.27
T3 Buprofezin 25 SC 200
12.45
(3.59)
9.03
(3.08)
2.48
(1.72)
1.11
(1.26)
1.56
(1.43)
1.07
(1.25)
0.83
(1.15)
0.89
(1.17)
3.67 73.67 346.92
T4 Imidacloprid 17.8 SL 50
13.50
(3.74)
6.50
(2.64)
2.99
(1.86)
1.54
(1.42)
2.17
(1.63)
1.21
(1.30)
0.81
(1.14)
0.96
(1.20)
3.71 73.40 346.67
T5 Spiromesifen 24 SC 120
12.67
(3.62)
4.78
(2.29)
1.19
(1.30)
0.71
(1.10)
1.24
(1.31)
0.50
(1.00)
0.35
(0.92)
0.48
(0.98) 2.74 80.39 361.56
T6 Clothianidin 48 WDG 50
11.80
(3.50)
6.58
(2.66)
2.44
(1.71)
1.77
(1.50)
2.32
(1.67)
1.37
(1.36)
1.00
(1.22)
1.11
(1.26)
3.55 74.60 371.25
T7 Dinotefuran 20 SG +
Buprofezin 25 SC
(20+150)
13.20
(3.70)
8.38
(2.97)
4.64
(2.26)
2.69
(1.78)
3.59
(2.02)
1.66
(1.46)
1.14
(1.28)
0.95
(1.20)
4.53 67.51 336.06
T8 Sulfoxaflor 24 SC +
Buprofezin 25 SC
(25+150)
12.61
(3.62)
6.26
(2.60)
2.94
(1.85)
1.38
(1.37)
1.78
(1.50)
1.43
(1.38)
0.40
(0.94)
0.38
(0.93)
3.39 75.73 354.25
T9 Flonicamid 50 WG 50
12.90
(3.66)
10.19
(3.26)
4.77
(2.29)
2.11
(1.61)
2.60
(1.76)
2.04
(1.59)
1.45
(1.39)
1.19
(1.30)
4.65 66.60 338.69
T10 Flonicamid 50 WG +
Buprofezin 25 SC
(25+150)
12.86
(3.65)
10.84
(3.36
3.98
(2.11)
1.14
(1.28)
1.64
(1.46)
1.31
(1.34)
0.66
(1.07)
0.60
(1.04)
4.13 70.44 342.50
T11 Flupyradifurone
200 SL
200
11.95
(3.52)
5.07
(2.36)
2.32
(1.67)
0.78
(1.13)
1.15
(1.28)
0.43
(1.96)
0.24
(0.86)
0.20
(0.83)
2.77 80.15 361.11
T12 Spiromesifen 24 SC +
Imidacloprid 17.8 SL
(60+30)
11.83
(3.51)
2.98
(1.86
1.03
(1.23)
0.48
(0.98)
0.88
(1.17)
0.45
(0.96)
0.19
(0.83)
0.11
(0.78)
2.24 83.94 379.72
T13 Control -
12.89
(3.65)
13.06
(3.68)
13.45
(3.73)
13.92
(3.79)
14.08
(3.81)
14.20
(3.83)
14.67
(3.89)
15.34
(3.97)
13.95 - 123.98
SEm ± 0.354 0.077 0.038 0.017 0.034 0.031 0.023 0.012
- -
5.011
CD at 5% - NS 0.314 0.490 0.083 0.118 0.105 0.085 0.041
- -
15.891
Table 15 : Effect of insecticides against whitefly, Bemisia tabaci in cotton (Pooled)
Values in the parentheses are “(x+0.5) transformed values; DAS = Days after spraying; PT = Pre-treatment count; NS = Not significant
Nadia, West Bengal Ghosal et al., 2018 51
Tr.
No.
Treatments
Conc.
in %
No. of thrips/ leaf days after spray Pooled
over
periods
Pooled
over
Sprays
1 3 5 7 10 15
T1
Thiamethoxam 12.6% + Lambda -
cyhalothrin 9.5% - 22.1 ZC
0.0088
1.70a
(2.39)
1.64a
(2.19)
1.30a
(1.19)
1.08a
(0.67)
0.87a
(0.26)
0.71a
(0.00)
1.22a
(0.99)
1.67a
(2.29)
T2
Profenophos 40% + Cypermethrin
4% - 44 EC
0.088
2.59b
(6.21)
2.34b
(4.98)
2.11b
(3.95)
1.89b
(3.07)
1.56b
(1.93)
1.49c
(1.72)
2.00c
(3.50)
2.42c
(5.36)
T3
Deltamethrin 1% + Triazophos
35% - 36 EC
0.045
2.51b
(5.80)
2.21b
(4.38)
2.06b
(3.74)
1.79b
(2.70)
1.50b
(1.75)
1.40c
(1.46)
1.91c
(3.15)
2.35c
(5.02)
T4
β-cyfluthrin 8.49% + Imidacloprid
19.8 % - 28.30 OD
0.010
2.44b
(5.45)
2.18b
(4.25)
2.02b
(3.58)
1.77b
(2.63)
1.46b
(1.63)
1.29c
(1.16)
1.86c
(2.96)
2.31c
(4.84)
T5
Acephate 50% +
Imidacloprid 1.8% SP
0.100
1.62a
(2.12)
1.49a
(1.72)
1.24a
(1.04)
0.94a
(0.38)
0.71a
(0.00)
0.71a
(0.00)
1.12a
(0.75)
1.59a
(2.03)
T6
Buprofezin 15% +
Acephate 35% - 50 WP
0.125
1.78a
(2.67)
1.77a
(2.63)
1.41a
(1.49)
1.19a
(0.92)
1.07a
(0.64)
0.98b
(0.46)
1.37b
(1.38)
1.78b
(2.67)
T7 Fipronil 5% SC 0.015
1.75a
(2.56)
1.69a
(2.36)
1.35a
(1.32)
1.17a
(0.87)
1.01a
(0.52)
0.83ab
(0.19)
1.30ab
(1.19)
1.73b
(2.49)
T8 Control (water spray) -
3.37c
(10.86)
3.29c
(10.32)
3.30c
(10.39)
3.23c
(9.93)
3.24c
(10.00)
3.34d
(10.66)
3.29d
(10.32)
3.39d
(10.99)
S. Em. ± - 0.15 0.11 0.12 0.10 0.11 0.07 0.06 0.04
P - - - - - - - 0.04 0.03
T x P - - - - - - - 0.11 0.08
C.V. % - 12.08 9.57 9.57 10.19 13.50 9.12 11.25 11.39
Table 16: Bio-efficacy of ready-mix insecticides against Scirtothrips dorsalis in Bt cotton
Anand, Gujarat Padaliya et al., 2018
Notes: Figures in parentheses are retransformed values of Treatment mean with letter(s) in common are non-significant by
DNMRT at 5% level of significance √ x +5 52
Tr. No. Treatment
Dosage
(g a.i /ha)
Dosage in
formulation (g
or ml/ha)
Pre treatment
population /plant
Mean mortality of whitefly
after pooling of three
round sprays (%)
5 DAS 10 DAS 15 DAS
T1
Diafenthiuron 40.5% +
Acetamiprid 3.9% WP
81 + 3.12 400 15.33
74.3
(59.9)b
70.2
(57.2)b
55.5
(48.5)bc
T2
Diafenthiuron 40.5% +
Acetamiprid 3.9% WP
101.25 + 3.90 500 15.93
81.8
(65.2)a
76.0
(61.0)ab
67.4
(55.5)a
T3
Diafenthiuron 40.5% +
Acetamiprid 3.9% WP
121.50 + 4.68 600 16.67
83.1
(66.1)a
77.9
(62.3)a
69.7
(56.9)a
T4 Diafenthiuron 50 WP 300 600 17.67
71.1
(57.8)b
62.2
(52.2)c
50.4
(45.5)c
T5 Acetamiprid 20 SP 20 100 16.93
73.7
(59.5)b
71.3
(57.9)b
60.5
(51.4)b
T6 Imidacloprid 17.8 SL 22.25 150 16.73
65.4
(54.3)c
57.4
(49.6)c
44.2
(42.0)c
T7 Untreated control - - 15.87
0.0
(4.1)d
0.0
(4.1)d
0.0
(4.1)d
S Em(±) 1.3 1.4 1.2
LSD (0.05) 3.9 4.2 3.7
CV (%) 0.6 0.7 0.7
Similar alphabets represents the homogeneous means group due to Duncan’s Multiple Range Test
* Values in the parentheses are angular transformed, DAS: Days after spray
Table 17(a) : Efficacy of insecticide against whitefly in cotton.
Nadia, West Bengal Bala et al., 2018 53
Tr. No. Treatment
Dosage
(g a.i /ha)
Dosage in
formulation (g or
ml/ha)
Pre treatment
population /plant
Mean mortality of thrips
after pooling of three
round sprays (%)
5 DAS 10 DAS 15 DAS
T1
Diafenthiuron 40.5% +
Acetamiprid 3.9% WP
81 + 3.12 400 15.33
81.4
(64.8)b
68.8
(56.4)ab
62.7
(52.7)ab
T2
Diafenthiuron 40.5% +
Acetamiprid 3.9% WP
101.25 + 3.90 500 15.93
86.6
(69.0)ab
73.8
(59.5)ab
66.8
(55.1)a
T3
Diafenthiuron 40.5% +
Acetamiprid 3.9% WP
121.50 +
4.68
600 16.67
89.2
(71.3)a
77.3
(61.9)a
71.6
(58.1)a
T4 Diafenthiuron 50 WP 300 600 17.67
70.9
(57.7)c
59.0
(50.5)bc
47.8
(44.1)bc
T5 Acetamiprid 20 SP 20 100 16.93
78.1
(62.4)b
65.4
(54.3)b
65.4
(49.3)b
T6 Imidacloprid 17.8 SL 22.25 150 16.73
69.9
(57.1)c
54.7
(48.0)c
40.9
(40.0)c
T7 Untreated control - - 15.87
0.00
(4.1)d
0.00
(4.1)d
0.0
(4.1)d
S Em(±) 1.4 2.0 1.8
LSD (0.05) 4.5 6.0 5.4
CV (%) 0.6 1.0 1.0
Similar alphabets represents the homogeneous means group due to Duncan’s Multiple Range Test
* Values in the parentheses are angular transformed, DAS: Days after spray
Table 17(b): Efficacy of insecticide against thrips in cotton.
Nadia, West Bengal Bala et al., 2018 54
Table 18(a) : Bio-efficacy of different insecticides against aphids, Aphis gossypii in Bt cotton
Tr. No. Treatment
No. of aphids/leaf (days after spray)
Before spray 5 10 15 Pooled
T1 Diafenthiuron 25 + Pyriproxyfen 5 SE @ 500 ml/ha
3.79
(13.86)
2.60
(6.26)
2.92
(8.03)
3.09
(9.05)
2.87
(7.74)
T2 Diafenthiuron 25 + Pyriproxyfen 5 SE @ 750 ml/ha
3.77
(13.71)
2.62
(6.36)
2.94
(8.14)
3.10
(9.11)
2.88
(7.79)
T3 Diafenthiuron 25 + Pyriproxyfen 5 SE @ 1000 ml/ha
3.75
(13.56)
2.03
(3.62)
2.30
(4.79)
2.49
(5.70)
2.27
(4.65)
T4 Diafenthiuron 25 + Pyriproxyfen 5 SE @ 1250 ml/ha
3.72
(13.34)
1.95
(3.30)
2.24
(4.52)
2.44
(5.45)
2.21
(4.38)
T5 Diafenthiuron 50 WP @ 600 g/ha
3.91
(14.79)
2.44
(5.45)
2.74
(7.01)
2.92
(8.03)
2.70
(6.79)
T6 Pyriproxyfen 10 EC @ 1000 ml/ha
3.89
(14.63)
2.70
(6.79)
2.98
(8.38)
3.21
(9.80)
2.97
(8.32)
T7 Pyriproxyfen 10 @ 1000 ml/ha(market sample)
3.90
(14.71)
2.76
(7.12)
3.02
(8.62)
3.23
(9.93)
3.00
(8.50)
T8 Untreated control
3.96
(15.18)
3.07
(8.92)
3.34
(10.66)
3.54
(12.03)
3.31
(10.5)
ANOVA
Treatment (T)
C. V.%
S. Em.
±
CD
(5%)
S. Em.
±
CD
(5%)
S. Em.
±.
CD
(5%)
S. Em.
±
CD
(5%)
S.Em.
±.
CD
(5%)
0.09 NS 0.06 0.17 0.06 0.16 0.06 0.16 0.04 0.10
11.15 9.89 8.32 7.99
Anand, Gujarat Thumar et al., 2018
Note: Figures in parentheses are retransformed values; these outside are transformed values √ x +5 55
Table 18(b) : Bio-efficacy of different insecticides against jassids Amrasca biguttula biguttula in Bt cotton
Tr. No. Treatment
No. of jassids/leaf (days after spray)
Before
spray
5 10 15 Pooled
T1 Diafenthiuron 25 + Pyriproxyfen 5 SE@ 500 ml/ha
4.04
(15.82)
2.77
(7.17)
3.11
(9.17)
3.33
(10.59)
3.07
(8.92)
T2 Diafenthiuron 25 + Pyriproxyfen 5 SE@ 750 ml/ha
4.09
(16.23)
2.80
(7.34)
3.12
(9.23)
3.34
(10.66)
3.09
(9.05)
T3 Diafenthiuron 25 + Pyriproxyfen 5 SE@ 1000 ml/ha
4.10
(16.31)
2.23
(4.47)
2.47
(5.60)
2.70
(6.79)
2.47
(5.60)
T4 Diafenthiuron 25 + Pyriproxyfen 5 SE@ 1250 ml/ha
4.08
(16.15)
2.16
(4.17)
2.39
(5.21)
2.63
(6.42)
2.39
(5.21)
T5 Diafenthiuron 50 WP@ 600 g/ha
4.15
(16.72)
2.66
(6.58)
2.92
(8.03)
3.16
(9.49)
2.91
(7.97)
T6 Pyriproxyfen 10 EC (GSP sample) @ 1000 ml/ha
4.15
(16.72)
2.89
(7.85)
3.16
(9.49)
3.40
(11.06)
3.15
(9.42)
T7 Pyriproxyfen 10 @ 1000 ml/ha(market sample)
4.10
(16.31)
2.92
(8.03)
3.20
(9.74)
3.42
(11.20)
3.18
(9.61)
T8 Untreated control
4.19
(17.06)
3.27
(10.19)
3.54
(12.03)
3.69
(13.12)
3.50
(11.75)
ANOVA
Treatment (T)
C. V.%
S. Em.
±
CD
(5%)
S. Em.
±
CD
(5%)
S. Em.
±.
CD
(5%)
S. Em.
±
CD
(5%)
S. Em.
±.
CD
(5%)
0.11 NS 0.06 0.16 0.06 0.17 0.06 0.17 004 0.11
12.86 9.03 8.61 8.05 9.77
Anand, Gujarat Thumar et al., 2018
Note: Figures in parentheses are retransformed values; these outside are transformed values √ x +5 56
Tr. No. Treatment
Dosage
(g a.i /ha)
Dosage in
formulation
(g or ml /ha)
Pre treatment
population/ 3
leaves
Mean mortality of whitefly
after 1st round sprays (%)
Mean mortality of whitefly
after 2snd round sprays (%)
3 DAS 7 DAS 10 DAS 3 DAS 7 DAS 10 DAS
T1
Diafenthiuron 40.5% +
Acetamiprid 3.9% WP
81 + 3.12 400 13.33
71.83
(58.27)*
64.77
(53.89)
50.66
(45.67)
74.39
(59.93)
65.17
(54.13)
54.06
(47.62)
T2
Diafenthiuron 40.5% +
Acetamiprid 3.9% WP
101.25 + 3.90 500
12.00 77.21
(61.83)
69.13
(56.56)
57.56
(49.64)
77.32
(61.90)
65.93
(54.59)
59.98
(51.05)
T3
Diafenthiuron 40.5% +
Acetamiprid 3.9% WP
121.50 +
4.68
600 12.67 79.61
(63.51)
72.78
(58.87)
63.13
(52.91)
81.14
(64.63)
74.51
(60.00)
67.02
(55.25)
T4 Imidacloprid 17.8 SL 22.5 150 13.00
69.89
(57.03)
65.03
(54.05)
51.45
(46.12)
70.85
(57.64)
64.20
(53.55)
56.73
(49.16)
T5 Diafenthiuron 50 WP 360 600 11.67 71.77
(58.22)
61.37
(51.87)
46.37
(43.21)
73.24
(59.17)
61.96
(52.21)
49.91
(45.24)
T6 Acetamiprid 20 SP 20 100 11.33
58.73
(50.32)
49.72
(45.13)
42.29
(40.86)
54.63
(47.95)
45.11
(42.48)
40.71
(39.94)
T7 Untreated control - - 12.33 0.00
(4.05)
0.00
(4.05)
0.00
(4.05)
0.00
(4.05)
0.00
(4.05)
0.00
(4.05)
S Em(±) 1.29 1.34 1.82 1.32 1.32 1.07
CD (0.05) 3.98 4.13 5.59 4.07 4.06 3.31
CV (%) 1.60 0.71 1.11 0.60 0.71 0.63
*Values in the parentheses are angular transformed, DAS: Days after spray
Table 19(a) : Management whitefly by using of different insecticides in Bt-cotton.
Nadia, West Bengal Bala et al., 2020 57
Tr. No. Treatment
Dosage
(g a.i /ha)
Dosage in
formulation (g or
ml /ha)
Pre treatment
population/ 3
leaves
Mean mortality of thrips
after 1st round sprays (%)
Mean mortality of thrips
after 2snd round sprays (%)
3 DAS 7 DAS 10 DAS 3 DAS 7 DAS 10 DAS
T1
Diafenthiuron 40.5% +
Acetamiprid 3.9% WP
81 + 3.12 400 16.44
80.91
(64.46)*
66.12
(54.71)
59.33
(50.70)
80.08
(63.85)
68.54
(56.19)
64.49
(53.72)
T2
Diafenthiuron 40.5% +
Acetamiprid 3.9% WP
101.25 + 3.90 500 15.33
85.44
(67.98)
72.30
(58.56)
62.57
(52.59)
85.85
(68.32)
73.41
(59.29)
71.32
(57.94)
T3
Diafenthiuron 40.5% +
Acetamiprid 3.9% WP
121.50 +
4.68
600 16.40 89.27
(71.35)
77.61
(62.11)
70.15
(57.06)
87.66
(69.87)
76.50
(61.34)
75.65
(60.77)
T4 Imidacloprid 17.8 SL 22.5 150 16.47
77.77
(62.21)
60.49
(51.35)
54.00
(47.58)
77.58
(62.08)
70.64
(57.50)
58.53
(50.20)
T5 Diafenthiuron 50 WP 360 600 15.20 70.58
(57.47)
59.05
(50.51)
49.80
(45.20)
66.68
(55.05)
60.29
(51.23)
43.64
(41.63)
T6 Acetamiprid 20 SP 20 100 15.67
67.36
(55.46)
52.12
(46.50)
39.63
(39.26)
65.97
(54.61)
58.85
(50.39)
42.22
(40.81)
T7 Untreated control - - 16.93 0.00
(4.05)
0.00
(4.05)
0.00
(4.05)
0.00
(4.05)
0.00
(4.05)
0.00
(4.05)
S Em(±) 1.22 1.74 2.10 1.10 2.57 1.50
CD (0.05) 3.74 5.07 6.47 3.38 7.90 4.63
CV (%) 0.52 0.90 1.21 0.47 1.30 0.84
*Values in the parentheses are angular transformed, DAS: Days after spray
Table 19(b) : Management thrips by using of different insecticides in Bt-cotton.
Nadia, West Bengal Bala et al., 2020 58
Ready mix insecticide Insect pest References
Spirotetramat 12% + imidacloprid 36% - 480 SC Aphid, jassids, thrips and whiteflies Patel et al.,2010
Flubendiamide +Thiacloprid 480 SC Bollworms, aphids, whitefly and leaf hopper Kumar et al., 2010
Cypermethrin 10% + Indoxacarb 10% SC Bollworm complex Surpam et al., 2015
Spinetoram 10% + Sulfoxaflor 30% WG Whiteflies and leaf hoppers Ambarish et al., 2017
Spinetoram 10% + Sulfoxaflor 40% WG American bollworm, pink bollworm, leaf hopper and thrips Hanchinal et al., 2018
Indoxacarb 14.5 % + Acetamiprid 7.7 % SC Bollworm complex Borude et al., 2018
Chlorantraniliprole 8.8 % + Thiamethoxam 17.5 % SC Bollworm complex Rambhau et al., 2018
Acetamiprid 0.4% + Quinalphos 20 % EC American bollworm and spotted boll worm Bhamare et al.., 2018
Spiromesifen 24 SC + Imidacloprid 17.8 SL whitefly Ghosal et al., 2018
Acephate 50% + Imidacloprid 1.8% SP Thrips Padaliya et al., 2018
Diafenthiuron 25% + pyriproxyfen 5% SE Aphids, jassids, whiteflies and thrips Thumar et al., 2018
Diafenthiuron 40.5% + Acetamiprid 3.9% WP Whitefly and thrips Bala et al., 2020
Table 20: Ready mix insecticides effective against insect pests of cotton
59
60
Efficacy of ready mix insecticides on
natural enemies
Table 21(a) : Effect of insecticides on population of natural enemies (lady bird beetle) in cotton ecosystem
Tr. No. Treatment Dose ml /L
Average population of ladybird beetles (No / plant) at
7DAS 14DAS Mean
T1
Pyriproxifen 5 % +
Fenpropathrin 15 % EC
1 ml
0.56
(0.74)
1.07
(1.03)
0.81
(0.88)
T2
Cypermethrin 3 % +
Quinalphos 20 % EC
2 ml
0.53
(0.68)
1.13
(1.06)
0.83
(0.87)
T3
Novaluron 5.25 % +
Indoxacarb 4.5% SC
1.75 ml
0.62
(0.78)
0.91
(0.92)
0.77
(0.85)
T4
Thiamethoxam 12.6 % +
Lambda cyhalothrin 9.5 % ZC
0.4 ml
0.40
(0.60)
1.20
(1.09)
0.80
(0.85)
T5
Indoxacarb 14.5 % +
Acetamiprid 7.7 % SC
1 ml
0.60
(0.77)
1.07
(1.03)
0.83
(0.90)
T6
Profenofos 40 % +
Cypermethrin 4 % EC
2
0.59
(0.69)
1.04
(1.98)
0.82
(0.84)
T7 Untreated control -
2.02
(1.40)
2.80
(1.66)
2.41
(1.53)
SE (m) ± 0.16 0.15 0.16
CD at 5 % NS NS NS
Note: Figures in parentheses are corresponding square root transformation values. DAS– Days After Spraying
Akola, Maharashtra Borude et al., 2018 61
Table 21(b) : Effect of insecticides on population of natural enemies (Chrysopa) in cotton ecosystem
Tr. No.
Treatment
Dose ml /L
Average population of chrysopa (No / plant) at
7DAS 14DAS Mean
T1
Pyriproxifen 5 % +
Fenpropathrin 15 % EC 1 ml
0.18
(0.81)
0.31
(0.89)
0.24
(0.85)
T2
Cypermethrin 3 % +
Quinalphos 20 % EC 2 ml
0.07
(0.75)
0.20
(0.83)
0.13
(0.79)
T3
Novaluron 5.25 % +
Indoxacarb 4.5% SC 1.75 ml
0.29
(0.88)
0.36
(0.91)
0.32
(0.90)
T4
Thiamethoxam 12.6 % +
Lambda cyhalothrin 9.5 % ZC 0.4 ml
0.13
(0.79)
0.18
(0.82)
0.16
(0.80)
T5
Indoxacarb 14.5 % +
Acetamiprid 7.7 % SC 1 ml
0.22
(0.83)
0.29
(0.88)
0.26
(0.86)
T6
Profenofos 40 % +
Cypermethrin 4 % EC
2
0.00
(0.71)
0.11
(0.78)
0.06
(0.74)
T7 Untreated control -
0.73
(1.11)
0.69
(1.08)
0.71
(1.10)
SE (m) ± 0.08 0.29 0.19
CD at 5 % NS NS NS
Note: Figures in parentheses are corresponding square root transformation values. DAS– Days After Spraying
Akola, Maharashtra Borude et al., 2018 62
Table 21(c) : Effect of insecticides on population of natural enemies (spiders) in cotton ecosystem
Tr. No.
Treatment
Dose ml /L
Average population of spiders (No / plant) at
7DAS 14DAS Mean
T1
Pyriproxifen 5 % +
Fenpropathrin 15 % EC 1 ml
0.00
(0.71)
0.16
(0.81)
0.08
(0.76)
T2
Cypermethrin 3 % +
Quinalphos 20 % EC 2 ml
0.11
(0.78)
0.22
(0.85)
0.17
(0.81)
T3
Novaluron 5.25 % +
Indoxacarb 4.5% SC 1.75 ml
0.22
(0.84)
0.29
(0.88)
0.26
(0.86)
T4
Thiamethoxam 12.6 % +
Lambda cyhalothrin 9.5 % ZC 0.4 ml
0.20
(0.83)
0.27
(0.87)
0.23
(0.85)
T5
Indoxacarb 14.5 % +
Acetamiprid 7.7 % SC 1 ml
0.13
(0.79)
0.31
(0.89)
0.22
(0.84)
T6
Profenofos 40 % +
Cypermethrin 4 % EC
2
0.16
(0.80)
0.33
(0.90)
0.24
(0.85)
T7 Untreated control -
0.64
(1.07)
0.73
(1.11)
0.69
(1.09)
SE (m) ± 0.08 0.07 0.07
CD at 5 % NS NS NS
Note: Figures in parentheses are corresponding square root transformation values. DAS– Days After Spraying
Akola, Maharashtra Borude et al., 2018 63
Tr. No. Treatment
Dose
(g a.i./ha)
Mean no. of coccinelid complex per plant
(mean of two sprays)
PT 1 DAS 5 DAS 10 DAS
T1 Dinotefuran 20 SG 80
2.06
(1.60)
1.33
(1.35)
1.48
(1.40)
1.54
(1.42)
T2 Sulfoxaflor 24 SC 50
1.86
(1.53)
1.30
(1.34)
1.49
(1.41)
1.55
(1.43)
T3 Buprofezin 25 SC 200
2.09
(1.60)
1.56
(1.43)
1.71
(1.48)
1.82
(1.52)
T4 Imidacloprid 17.8 SL 50
1.91
(1.55)
1.21
(1.30)
1.29
(1.33)
1.37
(1.36)
T5 Spiromesifen 24 SC 120
2.04
(1.59)
1.80
(1.51)
1.93
(1.55)
1.98
(1.57)
T6 Clothianidin 48 WDG 50
2.11
(1.61)
1.27
(1.33)
1.37
(1.36)
1.42
(1.38)
T7
Dinotefuran 20 SG +
Buprofezin 25 SC
(20+150)
1.99
(1.57)
1.62
(1.45)
1.68
(1.47)
1.73
(1.49)
T8
Sulfoxaflor 24 SC +
Buprofezin 25 SC
(25+150)
1.80
(1.51)
1.33
(1.35)
1.44
(1.39)
1.55
(1.43)
T9 Flonicamid 50 WG 50
2.01
(1.58)
1.81
(1.51)
1.94
(1.56)
1.99
(1.57)
T10
Flonicamid 50 WG +
Buprofezin 25 SC
(25+150)
2.10
(1.61)
1.61
(1.45)
1.80
(1.51)
1.87
(1.53)
T11
Flupyradifurone
200 SL
200
1.91
(1.55)
1.61
(1.45)
1.68
(1.47)
1.76
(1.50)
T12
Spiromesifen 24 SC +
Imidacloprid 17.8 SL
(60+30)
1.97
(1.57)
1.50
(1.41)
1.68
(1.47)
1.73
(1.49)
T13 Control -
2.07
(1.60)
2.11
(1.61)
2.18
(1.63)
2.23
(1.65)
SEm ± - 0.099 0.083 0.090 0.096
CD at 5% - NS 0.289 NS NS
Table 22(a) : Effect of insecticides on non target organisms in cotton (Pooled)
Nadia, West Bengal Ghosal et al., 2018
Values in the parentheses are “(x+0.5) transformed values; NS = Not significant; DAS = Days after spraying;
PT = Pre-treatment count 64
Tr. No. Treatment
Dose
(g a.i./ha)
Mean no. of spider complex per plant
(mean of two sprays)
PT 1 DAS 5 DAS 10 DAS
T1 Dinotefuran 20 SG 80
2.06
(1.6)
1.56
(1.43)
1.62
(1.45)
1.69
(1.47)
T2 Sulfoxaflor 24 SC 50
2.14
(1.62)
1.63
(1.45)
1.74
(1.49)
1.77
(1.50)
T3 Buprofezin 25 SC 200
2.08
(1.60)
1.83
(1.52)
1.89
(1.54)
1.93
(1.55)
T4 Imidacloprid 17.8 SL 50
2.02
(1.58)
1.37
(1.36)
1.42
(1.38)
1.50
(1.41)
T5 Spiromesifen 24 SC 120
2.22
(1.64)
1.97
(1.57)
2.03
(1.59)
2.07
(1.60)
T6 Clothianidin 48 WDG 50
2.11
(1.61)
1.43
(1.38)
1.49
(1.41)
1.54
(1.42)
T7
Dinotefuran 20 SG +
Buprofezin 25 SC
(20+150)
2.01
(1.58)
1.62
(1.45)
1.67
(1.47)
1.71
(1.48)
T8
Sulfoxaflor 24 SC +
Buprofezin 25 SC
(25+150)
2.01
(1.58)
1.70
(1.48)
1.76
(1.50)
1.79
(1.51)
T9 Flonicamid 50 WG 50
2.16
(1.63)
1.98
(1.57)
2.08
(1.60)
2.12
(1.61)
T10
Flonicamid 50 WG +
Buprofezin 25 SC
(25+150)
2.19
(1.64)
2.01
(1.58)
2.04
(1.59)
2.07
(1.60)
T11
Flupyradifurone
200 SL
200
2.24
(1.65)
1.91
(1.55)
2.00
(1.58)
2.03
(1.59)
T12
Spiromesifen 24 SC +
Imidacloprid 17.8 SL
(60+30)
2.10
(1.61)
1.78
(1.50)
1.87
(1.53)
1.92
(1.55)
T13 Control -
2.15
(1.62)
2.17
(1.63)
2.32
(1.67)
2.38
(1.69)
SEm ± - 0.097 0.084 0.088 0.092
CD at 5% - NS 0.264 NS NS
Table 22(b) : Effect of insecticides on non target organisms in cotton (Pooled)
Nadia, West Bengal Ghosal et al., 2018
Values in the parentheses are “(x+0.5) transformed values; NS = Not significant; DAS = Days after spraying; PT = Pre-treatment count 65
66
Advantages of Pesticide Mixture
Broad spectrum of activity
Control more than one pest or pest species
Synergistic joint action with high efficacy
Lower quantity as well as cost
Saving time
Less number of spray
Help in insecticide resistant management
67
68
Disadvantages of Pesticide Mixture
Incompatibility with mixture lead to
crystal and flake development
Some mixture may cause plant injury
Antagonism effect of mixture reduced
the efficacy of mixture
69
Guidelines for evaluating pesticide mixtures
→ Pest population to be controlled should be susceptible to each
used in mixture.
→ Target pest should exhibit no cross resistance to mixture.
→ Mixture should have significant potential effect to reduce the
dosage.
→ Mixture should have no mammalian toxicity.
70
71
Conclusion
 Due to repetitive use of single insecticide for particular pest management lead to
the development of insecticide resistance and pest resurgence, so prevention of
that we need to go for insecticide mixture which have two different insecticides
with different mode of action.
 To overcome the cost of application, number of application and to draw a
sustainable pest management programme we need to search better alternative,
ready mix insecticide are one of them.
71
72
Insecticides mixture which are effective against Bollworm complex
(Based on study)
1. Flubendiamide + Thiacloprid 480 SC @ 120 g a.i/ha,
2. Cypermethrin 10% + Indoxacarb 10% SC @ 200 + 200 g a.i./ha,
3. Chlorantraniliprole 8.8% + Thiamethoxam 17.5% SC @ 150 g a.i./ha,
4. Acetamiprid 0.4% + Quinalphos 20 % EC @ 40 + 2000 g a.i./ha,
5. Spinetoram 10%+ Sulfoxaflor 40%WG @ 140 g.a.i/ha,
6. Indoxacarb 14.5 % + Acetamiprid 7.7 % SC
72
73
Insecticides mixture which are effective against sucking pests
(Based on study)
73
1.
Spirotetramat 12% + Imidacloprid 36% -
480 SC @ 625 ml/ha
6.
Spiromesifen 24 SC + Imidacloprid 17.8 SL @
60+30 g a.i./ha
2.
Flubendiamide + Thiacloprid 480 SC @ 120
g a.i/ha
7.
Acephate 50% + Imidacloprid 1.8% - 51.8 SP @
0.1 %
3.
Cypermethrin 10 % + Indoxacarb 10 % SC
@ 200 + 200 g a.i./ha
8.
Diafenthiuron 40.5% + acetamiprid 3.9% WP @
600 g/ha
4.
Spinetoram 10% w/w + Sulfoxaflor 30%
w/w WG @ 140 g a.i./ha
9.
Diafenthiuron 25 + Pyriproxyfen 5 SE@ 1250
ml/ha
5. Spinetoram 10%+ Sulfoxaflor 40%WG @ 140 g.a.i/ha
Future thrust
 Need not divert attention from the implementation of alternative pest
management strategies.
 The concept of mixtures may be extended to botanicals and other
insect growth regulators for effective pest management.
 Need to test different combinations of insecticides for its resistance and
persistency.
 Need to monitor residue levels of ready-mix insecticides in different
crops.
 Need to develop antidotes for ready mix insecticides.
74
75

More Related Content

What's hot

Insect pest or crucifers
Insect pest or crucifersInsect pest or crucifers
Insect pest or crucifersagriyouthnepal
 
Insect pest of cotton 1
Insect pest of cotton 1Insect pest of cotton 1
Insect pest of cotton 1venug3016
 
award winning ppt on Pest of pulses by nagesh
 award winning ppt on Pest of pulses  by nagesh award winning ppt on Pest of pulses  by nagesh
award winning ppt on Pest of pulses by nageshNagesh sadili
 
Diseases of black gram green gram, cowpea & soybean
Diseases of black gram green gram, cowpea & soybeanDiseases of black gram green gram, cowpea & soybean
Diseases of black gram green gram, cowpea & soybeanAbhishek Malpani
 
insect pest management in cotton crop
insect pest management in cotton cropinsect pest management in cotton crop
insect pest management in cotton cropAryan Vats
 
Insect pests of cucurbits
Insect pests of cucurbitsInsect pests of cucurbits
Insect pests of cucurbitsagriyouthnepal
 
Pest and diseases of Honeybees
Pest and diseases of HoneybeesPest and diseases of Honeybees
Pest and diseases of HoneybeesAVKaaviya
 
Invasive pests in India
Invasive pests in IndiaInvasive pests in India
Invasive pests in IndiaGopi Anand
 
Insect pests of ground nut
Insect pests of ground nutInsect pests of ground nut
Insect pests of ground nutvenug3016
 
Insect pests of apple
Insect pests of  appleInsect pests of  apple
Insect pests of appleDrThippaiahM
 

What's hot (20)

Whiteflies
WhitefliesWhiteflies
Whiteflies
 
Pest of potato.
Pest of potato.Pest of potato.
Pest of potato.
 
Insect pest or crucifers
Insect pest or crucifersInsect pest or crucifers
Insect pest or crucifers
 
Legal control.
Legal control.   Legal control.
Legal control.
 
Insect pest of cotton 1
Insect pest of cotton 1Insect pest of cotton 1
Insect pest of cotton 1
 
Pest of litchi
Pest of litchiPest of litchi
Pest of litchi
 
Diseases of cotton
Diseases of cottonDiseases of cotton
Diseases of cotton
 
Pest of oilseeds
Pest of oilseedsPest of oilseeds
Pest of oilseeds
 
Pest of onion
Pest of onionPest of onion
Pest of onion
 
award winning ppt on Pest of pulses by nagesh
 award winning ppt on Pest of pulses  by nagesh award winning ppt on Pest of pulses  by nagesh
award winning ppt on Pest of pulses by nagesh
 
Diseases of black gram green gram, cowpea & soybean
Diseases of black gram green gram, cowpea & soybeanDiseases of black gram green gram, cowpea & soybean
Diseases of black gram green gram, cowpea & soybean
 
insect pest management in cotton crop
insect pest management in cotton cropinsect pest management in cotton crop
insect pest management in cotton crop
 
Insect pests of cucurbits
Insect pests of cucurbitsInsect pests of cucurbits
Insect pests of cucurbits
 
integrated pest management practices for cotton
integrated pest management practices for cottonintegrated pest management practices for cotton
integrated pest management practices for cotton
 
Pest and diseases of Honeybees
Pest and diseases of HoneybeesPest and diseases of Honeybees
Pest and diseases of Honeybees
 
Invasive pests in India
Invasive pests in IndiaInvasive pests in India
Invasive pests in India
 
Cotton jassid
Cotton jassidCotton jassid
Cotton jassid
 
Enemies of honey bee (APIS MELLIFERA) II Hornets, birds, ants and other enemi...
Enemies of honey bee (APIS MELLIFERA) II Hornets, birds, ants and other enemi...Enemies of honey bee (APIS MELLIFERA) II Hornets, birds, ants and other enemi...
Enemies of honey bee (APIS MELLIFERA) II Hornets, birds, ants and other enemi...
 
Insect pests of ground nut
Insect pests of ground nutInsect pests of ground nut
Insect pests of ground nut
 
Insect pests of apple
Insect pests of  appleInsect pests of  apple
Insect pests of apple
 

Similar to Impact of Ready-mix insecticides on insect pests of cotton seminar

Aafreen credit seminar ii
Aafreen credit seminar iiAafreen credit seminar ii
Aafreen credit seminar iiSKUAST Kashmir
 
Pesticide to kill locusts
Pesticide to kill locustsPesticide to kill locusts
Pesticide to kill locustsSidruAkhtar
 
HERBICIDE ANTIDOTES & HERBICIDE MIXTURE.ppt
HERBICIDE ANTIDOTES & HERBICIDE MIXTURE.pptHERBICIDE ANTIDOTES & HERBICIDE MIXTURE.ppt
HERBICIDE ANTIDOTES & HERBICIDE MIXTURE.pptanildeva2
 
Integrated pest management (ipm)
Integrated pest management (ipm)Integrated pest management (ipm)
Integrated pest management (ipm)Snehal mane
 
L10 - Herbicide Mixture and Utility in Agriculture, Herbicide Compatibility w...
L10 - Herbicide Mixture and Utility in Agriculture, Herbicide Compatibility w...L10 - Herbicide Mixture and Utility in Agriculture, Herbicide Compatibility w...
L10 - Herbicide Mixture and Utility in Agriculture, Herbicide Compatibility w...Jasmine765538
 
Biopestiside types and mass multiplication.pptx
Biopestiside types and mass multiplication.pptxBiopestiside types and mass multiplication.pptx
Biopestiside types and mass multiplication.pptxAvadhutBankar
 
Everett dietrick
Everett dietrickEverett dietrick
Everett dietrickDrMcBug
 
pheromone traps for assessment and monitoring محطة بحوث وقاية النباتات 2019.pptx
pheromone traps for assessment and monitoring محطة بحوث وقاية النباتات 2019.pptxpheromone traps for assessment and monitoring محطة بحوث وقاية النباتات 2019.pptx
pheromone traps for assessment and monitoring محطة بحوث وقاية النباتات 2019.pptxAbdallah Albeltagy
 
Selection and Use of Insecticides for Organic Production - New Mexico State U...
Selection and Use of Insecticides for Organic Production - New Mexico State U...Selection and Use of Insecticides for Organic Production - New Mexico State U...
Selection and Use of Insecticides for Organic Production - New Mexico State U...Fiona9864
 
Apply chemical control measures
Apply chemical control measuresApply chemical control measures
Apply chemical control measuresRICHIEDLEGANDIN
 
Mutation Breeding as a tool for aphid resistance in Indian mustard
Mutation Breeding as a tool for aphid resistance in Indian mustardMutation Breeding as a tool for aphid resistance in Indian mustard
Mutation Breeding as a tool for aphid resistance in Indian mustardSushrutMohapatra
 
Combination insecticides in india and their uses
Combination insecticides in india and their usesCombination insecticides in india and their uses
Combination insecticides in india and their usesSubhomay Sinha
 
Integrated Pest Management (IPM)
Integrated Pest Management (IPM)Integrated Pest Management (IPM)
Integrated Pest Management (IPM)Vikas Kashyap
 

Similar to Impact of Ready-mix insecticides on insect pests of cotton seminar (20)

Aaf credit srminar ii
Aaf credit srminar iiAaf credit srminar ii
Aaf credit srminar ii
 
Aafreen credit seminar ii
Aafreen credit seminar iiAafreen credit seminar ii
Aafreen credit seminar ii
 
Pesticide to kill locusts
Pesticide to kill locustsPesticide to kill locusts
Pesticide to kill locusts
 
Integrated management of_spodoptera_litura_a_rewiew
Integrated management of_spodoptera_litura_a_rewiewIntegrated management of_spodoptera_litura_a_rewiew
Integrated management of_spodoptera_litura_a_rewiew
 
HERBICIDE ANTIDOTES & HERBICIDE MIXTURE.ppt
HERBICIDE ANTIDOTES & HERBICIDE MIXTURE.pptHERBICIDE ANTIDOTES & HERBICIDE MIXTURE.ppt
HERBICIDE ANTIDOTES & HERBICIDE MIXTURE.ppt
 
bioherbicides.pptx
bioherbicides.pptxbioherbicides.pptx
bioherbicides.pptx
 
Integrated pest management (ipm)
Integrated pest management (ipm)Integrated pest management (ipm)
Integrated pest management (ipm)
 
L10 - Herbicide Mixture and Utility in Agriculture, Herbicide Compatibility w...
L10 - Herbicide Mixture and Utility in Agriculture, Herbicide Compatibility w...L10 - Herbicide Mixture and Utility in Agriculture, Herbicide Compatibility w...
L10 - Herbicide Mixture and Utility in Agriculture, Herbicide Compatibility w...
 
Bioherbicides
BioherbicidesBioherbicides
Bioherbicides
 
Biopestiside types and mass multiplication.pptx
Biopestiside types and mass multiplication.pptxBiopestiside types and mass multiplication.pptx
Biopestiside types and mass multiplication.pptx
 
Everett dietrick
Everett dietrickEverett dietrick
Everett dietrick
 
pheromone traps for assessment and monitoring محطة بحوث وقاية النباتات 2019.pptx
pheromone traps for assessment and monitoring محطة بحوث وقاية النباتات 2019.pptxpheromone traps for assessment and monitoring محطة بحوث وقاية النباتات 2019.pptx
pheromone traps for assessment and monitoring محطة بحوث وقاية النباتات 2019.pptx
 
Selection and Use of Insecticides for Organic Production - New Mexico State U...
Selection and Use of Insecticides for Organic Production - New Mexico State U...Selection and Use of Insecticides for Organic Production - New Mexico State U...
Selection and Use of Insecticides for Organic Production - New Mexico State U...
 
ENTO 231_L.No.5_Integrated Pest Management.ppt
ENTO 231_L.No.5_Integrated Pest Management.pptENTO 231_L.No.5_Integrated Pest Management.ppt
ENTO 231_L.No.5_Integrated Pest Management.ppt
 
Apply chemical control measures
Apply chemical control measuresApply chemical control measures
Apply chemical control measures
 
Mutation Breeding as a tool for aphid resistance in Indian mustard
Mutation Breeding as a tool for aphid resistance in Indian mustardMutation Breeding as a tool for aphid resistance in Indian mustard
Mutation Breeding as a tool for aphid resistance in Indian mustard
 
Combination insecticides in india and their uses
Combination insecticides in india and their usesCombination insecticides in india and their uses
Combination insecticides in india and their uses
 
PESTICIDE USES RK DE 2019.ppt
PESTICIDE USES RK DE 2019.pptPESTICIDE USES RK DE 2019.ppt
PESTICIDE USES RK DE 2019.ppt
 
INSECTICIDE RESISTANCE MANAGEMENT STRATEGY-NAIK
INSECTICIDE RESISTANCE MANAGEMENT STRATEGY-NAIKINSECTICIDE RESISTANCE MANAGEMENT STRATEGY-NAIK
INSECTICIDE RESISTANCE MANAGEMENT STRATEGY-NAIK
 
Integrated Pest Management (IPM)
Integrated Pest Management (IPM)Integrated Pest Management (IPM)
Integrated Pest Management (IPM)
 

More from Gaurang Rudani

sclerites of thoraci segment in insect
sclerites of thoraci segment in insectsclerites of thoraci segment in insect
sclerites of thoraci segment in insectGaurang Rudani
 
nematode interation with other organism
nematode interation with other organism nematode interation with other organism
nematode interation with other organism Gaurang Rudani
 
intra & extra cellular microorganism and their role in insect physiology
intra & extra cellular microorganism and their role in insect physiologyintra & extra cellular microorganism and their role in insect physiology
intra & extra cellular microorganism and their role in insect physiologyGaurang Rudani
 
role of carbohydrade, lipids and water in insect digetion
role of carbohydrade, lipids and water in insect digetionrole of carbohydrade, lipids and water in insect digetion
role of carbohydrade, lipids and water in insect digetionGaurang Rudani
 
Sugarcane seed production
Sugarcane seed productionSugarcane seed production
Sugarcane seed productionGaurang Rudani
 
Cotton pink bollworm survey
Cotton pink bollworm survey  Cotton pink bollworm survey
Cotton pink bollworm survey Gaurang Rudani
 

More from Gaurang Rudani (10)

sclerites of thoraci segment in insect
sclerites of thoraci segment in insectsclerites of thoraci segment in insect
sclerites of thoraci segment in insect
 
nematode interation with other organism
nematode interation with other organism nematode interation with other organism
nematode interation with other organism
 
Bajara blister beetle
Bajara blister beetleBajara blister beetle
Bajara blister beetle
 
intra & extra cellular microorganism and their role in insect physiology
intra & extra cellular microorganism and their role in insect physiologyintra & extra cellular microorganism and their role in insect physiology
intra & extra cellular microorganism and their role in insect physiology
 
role of carbohydrade, lipids and water in insect digetion
role of carbohydrade, lipids and water in insect digetionrole of carbohydrade, lipids and water in insect digetion
role of carbohydrade, lipids and water in insect digetion
 
Vermicomposting
Vermicomposting Vermicomposting
Vermicomposting
 
Sugarcane seed production
Sugarcane seed productionSugarcane seed production
Sugarcane seed production
 
Apple scab disease
Apple scab diseaseApple scab disease
Apple scab disease
 
Cotton pink bollworm survey
Cotton pink bollworm survey  Cotton pink bollworm survey
Cotton pink bollworm survey
 
bt brinjal
bt brinjalbt brinjal
bt brinjal
 

Recently uploaded

Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 

Recently uploaded (20)

Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 

Impact of Ready-mix insecticides on insect pests of cotton seminar

  • 1.
  • 2. IMPACT OF READY-MIX INSECTICIDES ON INSECT PESTS OF COTTON Speaker Gaurang Rudani M. Sc. (Agri.) Entomology Semester :- 3rd 04-AGRMA-02290-2020 Major Guide Dr. Sushma Deb Assistant Professor Department of Agril. Entomology C. P. College of Agriculture S. D. Agricultural University Sardarkrushinagar Minor Guide Dr. Manisha Shinde Assistant Professor (Pl. Pathology) Department of Plant Pathology Polytechnic in Agriculture S. D. Agricultural University Deesa
  • 3. . 1. Introduction 2. Classification of ready-mix insecticides 3. Mode of action of ready-mix insecticides 4. Efficacy of ready-mix insecticides on insect pests of cotton 5. Efficacy of ready-mix insecticides on natural enemies 6. Advantage and disadvantage of ready-mix insecticides 7. Conclusion 8. Future thrust Content
  • 4. . INTRODUCTION Cotton is one of the most important commercial crop known as “king of natural fiber” and world over commonly referred as “white gold” which belongs to family Malvaceae and genus Gossypium. In India, apart from providing 60 per cent of the fiber used in textile industries, the crop is also a source for 11.5 lakh tonnes of oil, 90 lakh tonnes of animal feed and about 200 lakh tonnes of cotton stalk that is used for fuel and value addition as particle boards (Bhamare et al. 2018). About 60 million people including 4.5 million farmers in India depend on cotton for their livelihood. 4
  • 5. .  Cotton production in India during 2020-21 was around 360 lakh bales of 170 kg from 133.41 lakh hectares with productivity of 459 kg lint/ ha (Annon., 2020). Maharashtra, Gujarat and Telangana are the major cotton growing states covering around 70 % area under cotton cultivation and around 62 % of cotton production in India. Cotton crop is subjected to damage by 162 pest species right from emergence till the final picking among which 25 pests are reported to cause damage to cotton crop at different growth stages. The use of insecticides has played a major role in increasing cotton productivity from the last three decades. Cotton crop alone contributes around 19% of total pesticide consumption in India 5
  • 6.  Combinations of two or more insecticides having different mode of action into a single spray solution which expose insects to each insecticide at the same time known as insecticide mixture. . 6
  • 7. Tank Mixtures Pre packed Mixtures  There are two types of insecticide mixtures:- Classification of insecticide mixtures 7
  • 8. . • Insecticides are mixed in the field directly by farmers. • Mixed insecticide may have physical incompatibility which leads to separation, flocculation, agglomeration and coagulation of the ingredients and results in performance problems. • Also clog equipment, pump and tank. 1. Tank Mixture 8
  • 9. . • It is scientifically developed and tested products based on compatibility. • Final product is a ‘ready to use’ material.  Ready mix insecticide further classified into two types:- 2. Pre-pack mixture (Ready mix) A. High risk B. Low risk 9
  • 10. . A. High risk  Control same type of insect species and biological stage.  Target population is fully susceptible to all toxicants in the mixture.  E.g. LANCER GOLD- Acephate 50% + Imidacloprid 1.8% SP B. Low risk  Used against two different insect pests such as chewing and sucking individuals.  One of the compounds effective against chewing insects + interferes with the normal physiology of sucking pests making them more susceptible to 2nd compound.  2nd compound specific against sucking pests.  E.g. POLYTRIN C- Profenofos 40% + Cypermethrin 4% EC 10
  • 11. .  Use of single insecticide molecule lead to development of resistance within in short time.  In ready mix insecticides chances for the development of cross resistance is less or it may take long time.  Ready mix insecticides benefit for Insecticide Resistance Management (IRM) when appropriately incorporated into rotation strategies with additional mode(s) of action. Significance of ready mix insecticide 11
  • 12. Ideal characteristics of insecticide mixture 1 •Mixtures should be compatible with each individual component. 2 • Should have additive or synergistic action 3 • Should have broad spectrum activity. 4 • Safe to farmer’s health and environment. 12
  • 13. Action of ready mix insecticides  Insecticides are mixed either for synergism or potentiation  Synergism → It involves an increased toxic effect when mixing two compounds together, which by themselves are harmful to pests.  Potentiation → It refers to the toxicity of a given pesticide being enhanced by the addition of a less or non-toxic pesticide. 13
  • 14. Synergistic action  When two chemicals or insecticides combined together they produces a greater effect than the sum of the individual effect. (1 + 3 >>> 4) not just 4 (Maybe 10 times or more) E.g. Pyrethroids (enhances activity of OP) + OP compounds (chlorpyriphos) Gangtok, Sikkkim Das, 2014 14
  • 15. Potentiation action This effect results when one substance that does not normally have a toxic effect is added to another chemical, making the second chemical much more toxic. (0 + 2 >>> 2) not just 2 Source:- https://www.ccohs.ca/oshanswers/chemicals/synergism.html#:~:text=Potentiation 15
  • 16. Ready mix insecticides registered for agriculture use
  • 17. A number of insecticides belonging to different chemical groups have been registered in India and these are being used against diverse pests of various crops. As on July 1, 2021, total 672 pesticides have been registered under section 9(3) of the Insecticides Act, 1968 for use in India, among which 80 are ready mix insecticides. 18
  • 18. Ready mix insecticides registered for use in cotton
  • 19. Table 2: Ready mix insecticides registered for use in cotton in India Ready mix insecticide Common name of the pest Dosage per hectare Waiting period in days a.i. (g) Formulation (gm/ml) Dilution (Litre) Acephate 50% + Bifenthrin 10% WDG Leaf hopper, Thrips, Bollworms 400 + 80 800 500-750 20 Acephate 25% + Fenvalerate 3% EC American bollworm, Sucking Insects 500 + 60 2000 500 15 Acephate 50% + Imidacloprid 1.8% SP Aphid, Jassids, Thrips, White flies, Bollworms 518 1000 500 40 Acetamiprid 1.1% + Cypermethrin 5.5% EC Aphids, Jassids, Thrips, Bollworms 10 + 50 1000 400-1000 30 Buprofezin 15.00% + Acephate 35.00% WP Jassids, Thrips & White fly 187.5 + 437.5 1250 500 - Buprofezin 20.00% + Acephate 50.00% WP Thrips, Jassids, Mealy bug 250 + 625 1250 500 15 Cypermethrin 10% + Indoxacarb 10% SC Jassids, Thrips and Bollworm 50 + 50 500 400-1000 7 Chlorantraniliprole 9.30% + Lambda- cyhalothrin 04.60% ZC Bollworms complex 37.50 250 500 20 19
  • 20. Ready mix insecticide Common name of the pest Dosage / hectare Waiting period in days a. i. (g) Formulation (gm/ml) Dilution (Litre) Cypermethrin 3% + Quinalphos 20% EC American Bollworm, Spotted Bollworm, Jassids 30 + 200 to 37.5 + 250 1000-1250 500-600 15 Chlorpyrifos 50% + Cypermethrin 5% EC Aphid, Jassids, Thrips, Whitefly, Spodoptera, Spotted Bollworm, Pink Bollworm, American Bollworm 500 + 50 1000 500-1000 15 Chlorpyriphos 16% + Alphacypermethrin 1% EC Spotted Bollworm, Pink Bollworm, American Bollworm 425 2500 500-750 15 Deltamethrin 1% + Triazophos 35% EC Spotted Bollworm, Pink Bollworm, American Bollworm, White flies 10 + 350 to 12.5 + 450 1000-1250 600-1000 21 Diafenthiuron 47% + Bifenthrin 9.4% SC Thrips, Leaf hoppers, White fly, Aphids 293.75 + 58.7 625 500 30 Ethion 40% + Cypermethrin 5% EC American Bollworm 400 + 50 1000 500 15 Fipronil 4% + Acetamiprid 4% SC Aphid, Jassids & White fly 40 + 40 1000 500 30 20
  • 21. IRAC Guidelines stated that, the insecticide mixtures may offer benefits for Insecticide Resistance Management(IRM) when appropriately incorporated into rotation strategies with additional modes of action. IRAC, 2021 21
  • 22. IRAC mixture statement for IRM, 2021 IRAC, 2021 Recommended dosage Residual activity Cross resistance Mode of action 22
  • 23. Recommended dosage Mixture statement -1  Insecticides used at rates higher or lower than recommended on the label can result in resistance and/or unwanted effects on non- target organisms and the environment.  i.e. Buprofezin 15.00% + Acephate 35.00% WP 187.5 + 437.5 gm a. i./ ha 23
  • 24. Mode of Action Mixture statement -2  Mixtures with components having the same IRAC mode of action classification are not recommended for IRM.  Chlorpyrifos + Aldicarb  Thiamethoxam 12.60% + Lambda- cyhalothrin 09.50% ZC 24
  • 25. Cross resistance Mixture statement -3 When using mixtures, consider any known cross-resistance issues between the individual components for the targeted pests. Mixtures become less effective if resistance is already developing to one or both active ingredients. Increase the chances for the development of resistance. 25
  • 26. Residual activity Mixture statement -4 • The IRM benefits of an insecticide mixture are greatest if the two components have similar periods of residual insecticidal activity. • Mixtures of insecticides with unequal periods of residual insecticide activity may offer an IRM benefit for the period where both insecticides are active.  e.g. 1. Chlorpyrifos 50.00% + Cypermethrin 05.00% EC 2. Acephate 50% + Imidacloprid 1.8% SP 15 days 26 40 days
  • 27. Insecticide Resistance Management (IRM)  Effective insecticide resistance management (IRM) strategies seek to minimize the selection of resistance to any one type of insecticide.  In practice, alternations, sequences or rotations of compounds from different MoA groups provide sustainable and effective IRM. MoA a MoA b MoA c MoA d MoA a MoA b Sequence of insecticides through season 27
  • 28. Table 3: Sequence of ready mix insecticides on different insect pests of cotton Sr. No. Ready mix insecticide Common name of the pest 1 Buprofezin 15.00% + Acephate 35.00% WP Jassids, Thrips & White fly 2 Acetamiprid 1.1% + Cypermethrin 5.5% EC Aphids, Jassids, Thrips, Bollworms 3 Profenofos 40% + Cypermethrin 4% EC Bollworm complex 28
  • 29. 29 Case studies on use of ready mix insecticides in cotton Review of Research Work
  • 31. Tr. No. Treatment Fruiting body damage* (%) Population of boll worms (No./plant) Trial I Trial II Trial I Trial II PTC PM PRC PTC PM PRC PTC PM PRC PTC PM PRC T1 Flubendiamide + Thiacloprid-480 SC @ 72 gm a.i./ha 6.05 0.70 (4.80)b 89.58 7.80 0.95 (5.59) abc 89.85 3.33 0.33 (0.91)a 85.86 5.70 1.10 (1.26)ab 75.03 T2 Flubendiamide + Thiacloprid-480 SC @ 96 gm a.i./ha 7.63 0.53 (4.18)ab 93.76 9.00 1.00 (5.74)abc 90.74 4.33 0.40 (0.95)a 86.82 6.50 1.20 (1.30)ab 76.11 T3 Flubendiamide + Thiacloprid-480 SC @ 120 gm a.i./ha 8.68 0.53 (4.18)ab 94.51 8.60 0.75 (4.97)a 92.73 5.00 0.17 (0.82)a 95.29 5.50 0.85 (1.16)a 80.00 T4 Flubendiamide 480 SC @ 60 gm a.i./ha 7.33 0.60 (4.44)ab 92.64 7.10 1.15 (6.16)c 86.50 3.67 0.17 (0.82)a 93.39 6.20 0.65 (1.07)a 86.43 T5 Thiacloprid 240 SC @ 60 gm a.i./ha 7.13 4.86 (12.74)c 38.17 8.50 6.00 (14.18)d 41.18 3.33 1.57 (1.44)b 32.95 6.40 2.75 (1.80)c 44.39 T6 Spinosad 45SC + Imidacloprid 200 SL @ 90+ 30 g a.i. /ha 7.21 0.67 (4.70)b 91.63 7.60 1.05 (5.88)bc 88.49 3.33 0.53 (1.01)a 77.29 6.50 1.75 (1.50)bc 65.16 T7 Indoxacarb 14.5 SC + Imidacloprid 200 SL @ 75+30 g a.i./ha 7.14 0.49 (4.01)a 93.78 8.20 0.85 (5.29)ab 91.36 3.00 0.34 (0.91)a 84.07 6.30 1.20 (1.30)ab 75.35 T8 Untreated control 8.10 8.93 (17.39)d - 9.00 10.80 (19.19)e - 4.33 3.04 (1.88)c - 6.60 5.10 (2.37)d - SEd - 0.282 - - 0.375 - - 0.109 - - 0.150 - CD (0.05 %) - 0.604 - - 0.804 - - 0.235 - - 0.321 - Table 4: Efficacy of Flubendiamide + Thiacloprid - 480 SC against bollworms in cotton PTC – Pretreatment count; PM – Pooled mean; PRC – Percent reduction over control,; Values in parentheses are “x+0.5 (* arc sine) transformed values; In a column means followed by a common letter are not significantly different by DNMRT (P=0.05) Coimbatore, Tamil Nadu Kumar et al., 2010 31
  • 32. Tr. No. Treatment Dosage g a.i./ha Pre count Days after 1st spray 1 3 7 14 T1 Cypermethrin 10% + Indoxacarb 10% SC 40 + 40 10.97 (19.34) 6.09 (14.25) 7.41 (15.77) 8.27 (16.69) 9.21 (17.64) T2 Cypermethrin 10% + Indoxacarb 10% SC 50 + 50 11.08 (19.43) 5.87 (14.02) 6.78 (15.07) 7.56 (15.93) 8.88 (17.33) T3 Cypermethrin 10% + Indoxacarb 10% SC 60 + 60 10.99 (19.36) 5.24 (13.25) 5.49 (13.55) 7.32 (15.69) 8.06 (16.49) T4 Cypermethrin 10% + Indoxacarb 10% SC 75 + 75 11.18 (19.53) 5.11 (13.06) 5.28 (13.28) 7.04 (15.38) 7.87 (16.29) T5 Cypermethrin 10% + Indoxacarb 10% SC 100 + 100 11.23 (19.58) 4.13 (11.72) 4.67 (12.56) 6.33 (14.57) 7.15 (15.51) T6 Cypermethrin 10% + Indoxacarb 10% SC 200 + 200 10.91 (19.28) 3.91 (11.40) 4.28 (11.94) 5.98 (14.15) 6.70 (14.50) T7 Cypermethrin 10% EC 50 10.54 (18.94) 6.13 (14.30) 7.43 (15.79) 9.31 (17.75) 10.79 (19.16) T8 Cypermethrin 10% EC 75 11.41 (19.73) 5.87 (13.98) 6.14 (14.34) 7.19 (15.52) 9.24 (17.68) T9 Indoxacarb 10% SC 50 10.89 (19.27) 5.36 (13.38) 5.69 (13.79) 7.13 (15.38) 7.87 (16.29) T10 Indoxacarb 10% SC 75 11.27 (19.59) 3.78 (11.21) 4.57 (12.34) 6.17 (14.38) 7.03 (15.37) T11 Untreated control - 10.81 (19.18) 11.27 (19.61) 12.31 (20.53) 14.61 (22.46) 16.92 (24.26) SE ± - 0.31 0.38 0.38 0.35 0.37 CD at 5% - NS 1.14 1.14 1.03 1.1 Table 5: Effect of combi-product on per cent infestation of bollworm in fruiting bodies Figures in parentheses indicate arcsine transformed values. Akola, Maharashtra Surpam et al., 2015 32
  • 33. Table 6: Effect of different insecticides against fruiting body damage due to bollworm complex in cotton Tr. No. Treatment Dose a. i/ha Conc. % First Spray Second Spray Third Spray Mean PTC 7 DAS 14 DAS 7 DAS 14 DAS 7 DAS 14 DAS T1 Chlorantraniliprole 9.3% + Lambda cyhalothrin 4.6% ZC 37.5 g 0.006 % 12.38 (20.37) 4.88 (12.51) 6.50 (14.74) 5.82 (13.91) 6.89 (15.19) 5.44 (13.31) 6.79 (15.10) 6.05 (14.20) T2 Flubendiamide 19.92% + Thiacloprid 19.92%SC 48 + 48 g 0.02 % 12.94 (20.81) 5.24 (13.02) 6.59 (14.86) 5.86 (14.00) 6.98 (15.31) 6.42 (14.65) 7.02 (15.35) 6.35 (14.58) T3 Profenophos 40% + Cypermethrine 4% EC 440 g 0.088 % 10.29 (18.49) 6.94 (15.23) 8.55 (16.98) 7.22 (15.55) 8.71 (17.15) 7.35 (15.67) 8.87 (17.14) 7.94 (16.35) T4 Cypermethrin 3 % + Quinalphos 20% EC 230 g 0.046 % 17.79 (24.75) 12.33 (20.54) 14.31 (22.03) 12.97 (20.73) 15.04 (22.80) 12.60 (20.51) 14.3 (21.19) 13.59 (21.58) T5 Indoxacarb 14.5% + Acetamiprid 7.7 % SC 88.8 g 0.046 % 12.99 (21.07) 4.67 (12.42) 6.09 (14.22) 5.23 (13.08) 6.00 (14.11) 5.06 (12.53) 6.07 (13.24) 5.52 (13.57) T6 Thiamethoxam 12.6% + Lambda cyhalothrin 9.5 % ZC 44 g 0.008 % 11.94 (20.05) 5.70 (13.70) 7.19 (15.42) 6.81 (14.93) 7.86 (16.23) 7.01 (14.98) 7.27 (15.47) 6.97 (15.18) T7 Chlorantraniliprole 8.8 % + Thiamethoxam 17.5 % SC 150 g 0.026 % 11.62 (19.81) 3.71 (10.99) 5.70 (13.71) 4.98 (12.87) 5.30 (13.29) 4.93 (12.82) 5.82 (13.84) 5.00 (12.87) T8 Novaluron 5.25% + Indoxacarb 4.5% SC 43.31+ 37.13 g 0.019 % 11.87 (20.12) 6.54 (14.57) 7.61 (15.79) 7.07 (15.39) 8.68 (16.84) 7.12 (15.28) 8.36 (16.67) 7.5 (15.95) T9 Spinatorum 10% + Sulfoxaflor 30% WG 120 g 0.002 % 11.60 (19.86) 5.28 (13.04) 6.78 (14.93) 6.18 (14.12) 7.55 (15.84) 7.00 (15.22) 7.12 (15.47) 6.65 (14.93) T10 Untreated control - - 12.51 (20.68) 30.9 (33.74) 48.85 (44.32) 72.14 (58.12) 84.73 (66.97) 91.72 (73.29) 96.12 (78.61) 70.74 (57.23) SE ± - 1.38 1.34 1.38 1.06 1.45 1.70 0.59 CD @ 0.5% NS 4.15 4.03 4.14 3.18 4.35 5.10 1.78 CV % - 15.04 12.46 12.45 8.61 12.09 13.25 5.26 Figure in parentheses are angular transformed values. PTC- Pre treatment count, DAS- Days after spraying ` Parbhani , Maharashtra Bhujade et al., 2018 33
  • 34. Tr. No. Treatments Dose ml a.i./ha H. armigera (Pooled means of two seasons) After first spray After second spray Pre-count 7 DAS 14 DAS 7 DAS 14 DAS T1 Acetamiprid 0.4% + Cypermethrin 2% EC 10 + 50 10.17 (3.17)* 5.75 (2.47) 7.93 (2.88) 4.48 (2.22) 5.49 (2.43) T2 Acetamiprid 0.4% + Cypermethrin 2% EC 20 + 100 10.10 (3.16) 3.65 (2.00) 6.46 (2.61) 3.26 (1.92) 4.28 (2.16) T3 Acetamiprid 0.4% + Cypermethrin 2% EC 40+200 11.48 (3.37) 2.26 (1.64) 5.36 (2.40) 2.01 (1.56) 3.11 (1.87) T4 Acetamiprid 0.4% + Quinalphos 20 % EC 10 + 500 10.73 (3.20) 4.69 (2.25) 7.00 (2.70) 2.95 (1.81) 4.73 (2.26) T5 Acetamiprid 0.4% + Quinalphos 20 % EC 20 + 1000 10.60 (3.23) 3.00 (1.81) 5.59 (2.43) 2.35 (1.63) 4.03 (2.10) T6 Acetamiprid 0.4% + Quinalphos 20 % EC 40 + 2000 9.53 (3.04) 1.51 (1.36) 3.92 (2.07) 0.83 (1.13) 2.64 (1.76) T7 Acetamiprid 0.4% + Chlorpyrifos 20 % EC 10 + 500 9.73 (3.09) 5.23 (2.37) 7.04 (2.70) 3.36 (2.00) 5.04 (2.33) T8 Acetamiprid 0.4% + Chlorpyrifos 20 % EC 20 + 1000 10.85 (3.25) 3.83 (2.56) 7.62 (2.43) 2.38 (1.64) 4.11 (2.12) T9 Acetamiprid 0.4% + Chlorpyrifos 20 % EC 40 + 2000 11.35 (3.38) 2.14 (1.58) 4.15 (2.13) 1.21 (1.24) 2.89 (1.83) T10 Acetamiprid 20 SP 20 9.55 (3.04) 6.60 (2.56) 8.13 (2.82) 5.61 (2.39) 6.24 (2.53) T11 Quinalphos 25 EC 500 9.55 (3.07) 5.55 (2.42) 6.96 (2.65) 4.49 (2.15) 5.52 (2.41) T12 Chlorpyrifos 20 EC 500 10.56 (3.17) 5.62 (2.42) 7.42 (2.74) 4.69 (2.22) 5.93 (2.47) T13 Cypermethrin 10 EC 75 10.40 (3.22) 6.89 (2.69) 8.52 (2.96) 5.06 (2.28) 6.56 (2.62) T14 Untreated control 10.45 (3.21) 11.90 (3.46) 13.60 (3.68) 14.49 (3.78) 15.69 (3.93) SE ± 0.272 0.142 0.095 0.126 0.077 CD N. S. 0.412 0.278 0.365 0.224 Table 7 (a): Effect of insecticidal combinations on per cent square damage due to Helicoverpa armigera in cotton *Figures in parentheses are Arc Sine transformed values, DAS=Days after spray Parbhani , Maharashtra Bhamare and Wadnerkar, 2018 34
  • 35. Tr. No. Treatments Dose ml a.i./ha E. vittella (Pooled means of two seasons) After first spray After second spray Pre- count 7 Das 14 Das 7 Das 14 Das T1 Acetamiprid 0.4% + Cypermethrin 2% EC 10+50 2.96 (1.86) 1.70 (1.45) 2.44 (1.70) 1.88 (1.52) 2.09 (1.60) T2 Acetamiprid 0.4% + Cypermethrin 2% EC 20+100 2.46 (1.69) 1.31 (1.30) 2.14 (1.60) 1.62 (1.40) 1.72 (1.49) T3 Acetamiprid 0.4% + Cypermethrin 2% EC 40+200 2.55 (1.71) 0.77 (1.09) 1.45 (1.38) 1.10 (1.26) 1.30 (1.37) T4 Acetamiprid 0.4% + Quinalphos 20 % EC 10+500 2.15 (1.62) 1.51 (1.40) 1.86 (1.52) 1.35 (1.21) 1.63 (1.45) T5 Acetamiprid 0.4% + Quinalphos 20 % EC 20+1000 2.61 (1.75) 1.17 (1.29) 1.64 (1.45) 1.08 (1.11) 1.28 (1.33) T6 Acetamiprid 0.4% + Quinalphos 20 % EC 40+2000 2.66 (1.80) 0.69 (1.04) 1.21 (1.30) 0.39 (0.85) 1.08 (1.25) T7 Acetamiprid 0.4% + Chlorpyrifos 20 % EC 10+500 3.17 (1.92) 1.71 (1.48) 2.54 (1.74) 1.42 (1.25) 1.90 (1.54) T8 Acetamiprid 0.4% + Chlorpyrifos 20 % EC 20+1000 2.45 (1.73) 1.26 (1.33) 1.99 (1.57) 1.16 (1.08) 1.30 (1.34) T9 Acetamiprid 0.4% + Chlorpyrifos 20 % EC 40+2000 2.57 (1.77) 0.83 (1.12) 1.73 (1.50) 0.56 (0.89) 1.23 (1.30) T10 Acetamiprid 20 SP 20 2.56 (1.75) 2.03 (1.56) 2.43 (1.70) 2.32 (1.61) 2.35 (1.68) T11 Quinalphos 25 EC 500 2.60 (1.77) 1.76 (1.48) 2.44 (1.70) 2.04 (1.51) 2.13 (1.62) T12 Chlorpyrifos 20 EC 500 2.42 (1.74) 2.03 (1.59) 2.40 (1.69) 2.05 (1.46) 2.10 (1.60) T13 Cypermethrin 10 EC 75 2.74 (1.81) 2.06 (1.59) 2.49 (1.72) 2.19 (1.53) 2.33 (1.67) T14 Untreated control - 3.00 (1.87) 3.24 (1.88) 3.59 (2.01) 4.56 (2.06) 5.09 (2.34) SE± 0.078 0.055 0.108 0.045 0.069 CD N.S. 0.160 0.315 0.134 0.202 Table 7 (b): Effect of insecticidal combinations on per cent square damage due to Earias vittella in cotton *Figures in parentheses are Arc Sine transformed values, DAS=Days after spray Parbhani , Maharashtra Bhamare and Wadnerkar, 2018 35
  • 36. 36 Table 8: Efficacy of different novel insecticides against bollworms and yield of cotton Tr. No. Chemical Dose (g a.i.)/ ha Helicoverpa armigera (larvae/plant) Pectinophora gossypiella (larvae/10 bolls) at 120 DAS Yield (q/ha) 1DBS 7DAS T1 Spinetoram 10 + Sulfoxaflor 40 WG 120 2.95 0.50 (1.00) 2.39 (1.70) 13.72 (3.76) T2 Spinetoram 10 + Sulfoxaflor 40 WG 140 2.01 0.39 (0.94) 2.27 (1.66) 14.27 (3.83) T3 Spinetoram 12 SC 30 2.14 0.72 (1.10) 2.61 (1.76) 12.00 (3.53) T4 Sulfoxaflor 24 SC 90 2.01 2.13 (1.62) 4.02 (2.13) 8.04 (2.89) T5 Spinetoram 12 SC 36 2.15 0.52 (1.01) 2.54 (1.74) 11.79 (3.50) T6 Sulfoxaflor 24 SC 108 2.12 1.89 (1.55) 3.78 (2.07) 10.71 (3.33) T7 Pyriproxyfen 5 + Fenpropathrin 15 EC 37.5+112.5 2.24 1.42 (1.39) 3.31 (1.95) 9.10 (3.07) T8 Pyriproxyfen 5 EC 37.5 2.35 1.79 (1.51) 3.68 (2.04) 8.84 (3.03) T9 Fenpropathrin 15 EC 112.5 2.18 1.73 (1.49) 3.62 (2.03) 8.55 (3.01) T10 Control (Unsprayed) -- 2.04 2.72 (1.79) 8.70 (3.03) 3.90 (2.09) T11 Control (Water spray) -- 2.25 2.80 (1.82) 8.50 (3.00) 4.07 (2.12) F Test NS S S S SEd 0.36 0.01 0.02 0.12 CD (P = 0.05) 0.12 0.05 0.05 0.35 CV % 6.34 5.65 8.34 8.72 DBS: Day before spray , DAS: Day after spray Figures in parentheses are square root transformed values Raichur, Karnataka Hanchinal et al., 2018 36
  • 37. Tr. No. Treatment Dose ml /L Bollworm complex damage in green fruiting bodies (%) Damage at harvest (%) Pre- treatment 1st spray 2nd spray 3rd spray 7DAS 14DAS Mean 7DAS 14DAS Mean 7DAS 14DAS Mean T1 Pyriproxifen 5 % + Fenpropathrin 15 % EC 1 ml 8.30 (2.88) 5.48 (2.34) 8.93 (2.98) 7.21 (2.66) 4.04 (2.00) 6.31 (2.50) 5.17 (2.25) 3.68 (1.92) 4.13 (2.03) 3.91 (1.97) 37.33 (37.59) T2 Cypermethrin 3 % + Quinalphos 20 % EC 2 ml 7.38 (2.71) 4.18 (2.04) 7.24 (2.69) 5.71 (2.37) 3.78 (1.94) 7.05 (2.65) 5.41 (2.30) 2.76 (1.66) 3.90 (1.97) 3.33 (1.82) 28.00 (31.91) T3 Novaluron 5.25 % + Indoxacarb 4.5% SC 1.75 ml 7.34 (2.70) 3.70 (2.92) 7.35 (2.70) 5.53 (2.31) 3.08 (1.75) 6.27 (2.49) 4.67 (2.12) 1.87 (1.36) 3.72 (1.93) 2.79 (1.64) 21.33 (27.49) T4 Thiamethoxam 12.6 % + Lambda cyhalothrin 9.5 % ZC 0.4 ml 6.66 (2.58) 3.98 (1.99) 6.10 (2.47) 5.04 (2.23) 3.57 (1.88) 6.93 (2.63) 5.25 (2.26) 2.55 (1.59) 4.28 (2.07) 3.42 (1.83) 22.67 (28.41) T5 Indoxacarb 14.5 % + Acetamiprid 7.7 % SC 1 ml 7.00 (2.63) 2.27 (1.48) 6.41 (2.53) 4.34 (2.00) 1.54 (1.24) 6.53 (2.54) 4.04 (1.89) 2.41 (1.54) 3.39 (1.83) 2.90 (1.69) 19.56 (26.17) T6 Profenofos 40 % + Cypermethrin 4 % EC 2 ml 8.52 (2.90) 3.34 (1.82) 5.84 (2.42) 4.59 (2.12) 2.95 (1.70) 6.24 (2.49) 4.60 (2.10) 2.29 (1.51) 3.61 (1.90) 2.95 (1.70) 20.44 (26.81) T7 Untreated control - 9.30 (3.04) 14.02 (3.74) 14.70 (3.83) 14.36 (3.79) 13.40 (3.66) 10.14 (3.18) 11.77 (3.42) 9.74 (3.12) 8.14 (2.85) 8.94 (2.98) 48.44 (44.11) SE (m) ± 0.13 0.10 0.12 0.11 0.11 0.12 0.12 0.08 0.07 0.08 1.63 CD at 5 % - 0.30 0.37 0.34 0.35 0.36 0.36 0.24 0.22 0.23 5.02 Table 9: Average per cent bollworm complex damage in green fruiting bodies of cotton Note: Figures in parentheses are corresponding square root transformation values. DAS– Days After Spraying Akola, Maharashtra Borude et al., 2018 37
  • 38. Sucking pests in cotton 38
  • 39. Tr. No. Treatments Mean numbers of aphids/ leaf** Aphids/leaf 1st spray 2nd spray 3rd spray T1 Spirotetramat 12% + imidacloprid 36% - 480 SC @500 ml / ha 2.47 (5.83) 2.87 (8.23) 2.69 (7.23) T2 Spirotetramat 12% + imidacloprid 36% - 480 SC @ 625 ml / ha 1.79 (2.99) 2.34 (5.47) 2.27 (4.68) T3 Spirotetramat 12% + imidacloprid 36% - 480 SC @ 750 ml / ha 2.53 (6.40) 2.60 (6.76) 2.51 (6.30) T4 Spirotetramat 150 OD @ 600 ml / ha 2.26 (4.85) 2.71 (7.34) 2.52 (6.35) T5 Imidacloprid 200 SL @ 900 ml / ha 2.57 (6.60) 2.65 (7.08) 2.47 (6.10) T6 Profenophos 50 EC @ 1250 ml/ha 2.54 (6.45) 2.69 (7.23) 2.76 (7.61) T7 Thiamethoxam 25 WG @ 600 ml / ha 2.66 (7.07) 2.65 (7.02) 2.75 (7.56) T8 Untreated (Control) 3.75 (14.06) 3.73 (13.91) 3.66 (13.39) Y 0.023 0.024 0.019 T 0.132 0.089 0.089 Y x T 0.064 0.067 0.054 Y 0.63 0.066 0.054 T 0.521 0.298 0.299 Y x T 0.179 0.187 0.152 CV% 7.07 7.17 5.94 Figures in parentheses are retransformed value ** Pooled mean of two years Table 10(a): Evaluation of new combination product Spirotetramat 12% + Imidacloprid 36% - 480 SC against sucking pests of cotton SDAU, Dantiwada Patel et al., 2010 39
  • 40. Tr. No. Treatments Mean numbers of Leaf hopper/ leaf** Leaf hoppers/leaf 1st spray 2nd spray 3rd spray T1 Spirotetramat 12% + imidacloprid 36% - 480 SC @500 ml / ha 1.90 (3.61) 2.02 (4.84) 1.95 (3.80) T2 Spirotetramat 12% + imidacloprid 36% - 480 SC @ 625 ml / ha 1.54 (1.89) 1.75 (3.06) 1.55 (2.53) T3 Spirotetramat 12% + imidacloprid 36% - 480 SC @ 750 ml / ha 1.72 (2.95) 1.98 (3.45) 1.80 (3.24) T4 Spirotetramat 150 OD @ 600 ml / ha 1.95 (3.80) 2.12 (4.49) 2.06 (4.24) T5 Imidacloprid 200 SL @ 900 ml / ha 2.14 (4.57) 2.18 (4.75) 2.47 (6.10) T6 Profenophos 50 EC @ 1250 ml/ha 2.27 (5.15) 2.24 (5.01) 2.31 (5.33) T7 Thiamethoxam 25 WG @ 600 ml / ha 2.15 (4.62) 2.28 (5.19) 2.30 (5.29) T8 Untreated (Control) 2.95 (8.70) 2.87 (8.23) 3.07 (9.42) Y 0.011 0.11 0.010 T 0.181 0.179 0.257 Y x T 0.032 0.030 0.027 Y 0.032 0.073 0.027 T 0.174 0.206 0.211 Y x T 0.090 0.085 0.76 CV% 5.46 4.17 3.66 Figures in parentheses are retransformed value ** Pooled mean of two years Table10(b): Evaluation of new combination product Spirotetramat 12% + Imidacloprid 36% - 480 SC against sucking pests of cotton SDAU, Dantiwada Patel et al., 2010 40
  • 41. Tr. No. Treatments Mean numbers of thrips/ leaf** Thrips /leaf 1st spray 2nd spray 3rd spray T1 Spirotetramat 12% + imidacloprid 36% - 480 SC @500 ml / ha 2.49 (6.20) 2.79 (7.78) 2.57 (6.60) T2 Spirotetramat 12% + imidacloprid 36% - 480 SC @ 625 ml / ha 2.03 (3.98) 2.26 (4.71) 1.90 (3.26) T3 Spirotetramat 12% + imidacloprid 36% - 480 SC @ 750 ml / ha 2.34 (5.47) 2.61 (6.81) 2.44 (5.95) T4 Spirotetramat 150 OD @ 600 ml / ha 2.35 (5.52) 2.63 (7.01) 2.01 (3.81) T5 Imidacloprid 200 SL @ 900 ml / ha 2.56 (6.55) 2.60 (6.76) 2.49 (6.20) T6 Profenophos 50 EC @ 1250 ml/ha 2.62 (6.93) 2.72 (7.39) 2.71 (7.34) T7 Thiamethoxam 25 WG @ 600 ml / ha 2.66 (7.07) 2.71 (7.34) 2.71 (7.34) T8 Untreated (Control) 3.58 (12.81) 3.54 (12.53) 3.38 (11.42) Y 0.011 0.020 0.016 T 0.181 0.106 0.140 Y x T 0.032 0.058 0.045 Y 0.011 0.058 0.42 T 0.29 0.334 0.470 Y x T 0.035 0.163 0.128 CV% 6.38 6.28 5.15 Figures in parentheses are retransformed value ** Pooled mean of two years Table 10(c): Evaluation of new combination product Spirotetramat 12% + Imidacloprid 36% - 480 SC against sucking pests of cotton SDAU, Dantiwada Patel et al., 2010 41
  • 42. Tr. No. Treatments Mean numbers of Whiteflies/ leaf** Whiteflies/leaf 1st spray 2nd spray 3rd spray T1 Spirotetramat 12% + imidacloprid 36% - 480 SC @500 ml / ha 1.82 (2.58) 1.93 (3.72) 2.02 (4.08) T2 Spirotetramat 12% + imidacloprid 36% - 480 SC @ 625 ml / ha 1.37 (1.94) 1.68 (2.82) 1.66 (2.68) T3 Spirotetramat 12% + imidacloprid 36% - 480 SC @ 750 ml / ha 1.71 (2.93) 1.84 (3.38) 2.00 (4.00) T4 Spirotetramat 150 OD @ 600 ml / ha 1.71 (2.92) 1.93 (3.72) 2.30 (5.29) T5 Imidacloprid 200 SL @ 900 ml / ha 2.12 (4.49) 1.99 (3.96) 2.29 (5.24) T6 Profenophos 50 EC @ 1250 ml/ha 2.21 (4.88) 2.40 (5.76) 2.44 (5.95) T7 Thiamethoxam 25 WG @ 600 ml / ha 2.26 (5.10) 2.38 (5.66) 2.59 (6.70) T8 Untreated (Control) 2.85 (8.12) 2.94 (8.64) 3.12 (9.73) Y 0.11 0.014 0.014 T 0.209 0.176 0.223 Y x T 0.032 0.040 0.039 Y 0.031 0.039 0.038 T 0.299 0.144 0.566 Y x T 0.089 0.111 0.109 CV% 5.92 5.53 4.93 Figures in parentheses are retransformed value ** Pooled mean of two years Table 10(d): Evaluation of new combination product Spirotetramat 12% + Imidacloprid 36% - 480 SC against sucking pests of cotton SDAU, Dantiwada Patel et al., 2010 42
  • 43. Tr. No. Treatment Aphids (No./ Plant) Trial I Trial II PTC PM PRC PTC PM PRC T1 Flubendiamide + Thiacloprid 480 SC @ 72 g a.i. /ha 18.33 0.47 (0.98)a 96.37 20.30 1.60 (1.45)c 89.13 T2 Flubendiamide + Thiacloprid 480 SC @ 96 g a.i. /ha 23.00 0.24 (0.86)a 98.55 26.40 0.50 (1.00)ab 97.39 T3 Flubendiamide +Thiacloprid 480 SC @ 120 g a.i. /ha 20.00 0.10 (0.77)a 99.29 22.30 0.25 (0.87)a 98.45 T4 Flubendiamide 480 SC @ 60 g a.i. /ha 19.33 8.57 (3.01)b 37.21 21.90 12.85 (3.65)d 19.11 T5 Thiacloprid 240 SC @ 60 g a.i. /ha 25.00 0.04 (0.73)a 99.80 27.60 1.50 (1.41)c 92.51 T6 Spinosad 45 SC + Imidacloprid 200 SL @ 90+30 g a.i. /ha 21.00 0.04 (0.73)a 99.76 23.90 1.05 (1.24)bc 93.94 T7 Indoxacarb 14.5 SC + Imidacloprid 200 SL @ 75+30 g a.i./ha 23.33 0.27 (0.87)a 98.39 27.00 1.05 (1.24)bc 94.64 T8 Untreated control 15.67 11.07 (3.40)b 21.30 15.45 (3.99)d SEd ± 0.263 0.143 CD (0.05 %) 0.565 0.308 Table 11(a): Efficacy of Flubendiamide + Thiacloprid - 480 SC against aphids in cotton PTC- Pre treatment count; PM – Pooled mean; PRC – Percent reduction over control; Values in parentheses are “x+0.5 transformed values; In a column means followed by a common letter are not significantly different by DMRT (P=0.05) Coimbatore, Tamil Nadu Kumar et al., 2010 43
  • 44. Tr. No. Treatment Jassids (No./plant) Trial I Trial II PTC PM PRC PTC PM PRC T1 Flubendiamide + Thiacloprid 480 SC @ 72 g a.i. /ha 20.00 1.14 (1.28)a 90.20 21.00 2.30 (1.67)b 79.58 T2 Flubendiamide + Thiacloprid 480 SC @ 96 g a.i. /ha 17.33 0.70 (1.10)a 93.02 20.10 1.40 (1.38)ab 87.01 T3 Flubendiamide +Thiacloprid 480 SC @ 120 g a.i. /ha 22.33 0.40 (0.95)a 96.91 21.90 0.90 (1.18)ab 92.34 T4 Flubendiamide 480 SC @ 60 g a.i. /ha 21.67 7.47 (2.82)b 40.48 21.50 8.75 (3.04)c 24.10 T5 Thiacloprid 240 SC @ 60 g a.i. /ha 20.33 0.57 (1.03)a 95.16 22.90 1.15 (1.28)ab 90.63 T6 Spinosad 45 SC + Imidacloprid 200 SL @ 90+30 g a.i. /ha 27.00 0.44 (0.97)a 97.22 27.20 0.70 (1.10)a 95.20 T7 Indoxacarb 14.5 SC + Imidacloprid 200 SL @ 75+30 g a.i./ha 22.00 0.30 (0.89)a 97.64 25.40 0.60 (1.05)a 95.59 T8 Untreated control 15.67 9.07 (3.09)b 20.70 11.10 (3.41)c SEd ± 0.271 0.259 CD (0.05 %) 0.581 0.555 Table 11(b): Efficacy of Flubendiamide + Thiacloprid - 480 SC against jassids in cotton PTC- Pre treatment count; PM – Pooled mean; PRC – Percent reduction over control; Values in parentheses are “x+0.5 transformed values; In a column means followed by a common letter are not significantly different by DMRT (P=0.05) Coimbatore, Tamil Nadu Kumar et al., 2010 44
  • 45. Tr. no. Treatments Dosage gram or ml. a.i./ha Pre- count Number of aphid per plant (Days after 1st spray) 1 3 7 14 T1 Cypermethrin 10% + indoxacarb 10% SC 40 + 40 32.66 (5.75) 11.30 (3.41) 13.56 (3.73) 15.61 (4.00) 18.35 (4.33) T2 Cypermethrin 10% + indoxacarb 10% SC 50 + 50 33.87 (5.86) 9.10 (3.09) 11.30 (3.43) 14.13 (3.82) 16.72 (4.14) T3 Cypermethrin 10% + indoxacarb 10% SC 60 + 60 37.15 (6.13) 7.78 (2.85) 9.11 (3.09) 13.39 (3.72) 15.29 (3.97) T4 Cypermethrin 10% + indoxacarb 10% SC 75 + 75 31.39 (5.64) 6.81 (2.70) 7.10 (2.75) 9.33 (3.13) 11.93 (3.52) T5 Cypermethrin 10% + indoxacarb 10% SC 100 + 100 33.80 (6.36) 5.15 (2.37) 6.30 (2.60) 9.12 (3.10) 11.03 (3.39) T6 Cypermethrin 10% + indoxacarb 10% SC 200 + 200 36.89 (6.11) 4.60 (2.31) 5.90 (2.52) 8.54 (3.00) 10.63 (3.35) T7 Cypermethrin 10% EC 50 39.10 (6.04) 8.30 (2.36) 11.84 (3.51) 17.36 (4.22) 24.19 (4.96) T8 Cypermethrin 10% EC 75 34.40 (5.90) 7.13 (2.83) 9.77 (3.20) 14.64 (3.89) 20.71 (4.60) T9 Indoxacarb 10% SC 50 35.10 (5.96) 11.90 (3.52) 16.56 (4.13) 24.11 (4.96) 32.42 (5.73) T10 Indoxacarb 10% SC 75 34.80 (5.94) 9.90 (3.22) 15.86 (4.04) 21.52 (4.69) 27.32 (5.27) T11 Untreated control 31.10 (5.62) 33.40 (5.82) 35.82 (6.02) 38.67 (6.25) 44.24 (6.68) S.E. + 0.17 0.12 0.08 0.07 0.06 C.D. (P=0.05) NS 0.35 0.24 0.20 0.19 Table 12 (a) : Effect of combi-product on cotton aphids Figures in parentheses indicate √x+0.5 values. NS=Non-significant Akola, Maharashtra Surpam et al., 2015 45
  • 46. Tr. No. Treatments Dosage gram or ml a.i./ha Pre- count Number of thrips/plant Days after 1st spray 1 3 7 14 T1 Cypermethrin 10% + indoxacarb 10% SC 40 + 40 63.57 (8.00) 23.54 (4.90) 27.34 (5.27) 30.54 (5.57) 33.26 (5.80) T2 Cypermethrin 10% + indoxacarb 10% SC 50 + 50 64.18 (8.05) 21.63 (4.70) 24.15 (4.96) 27.85 (5.32) 31.35 (5.64) T3 Cypermethrin 10% + indoxacarb 10% SC 60 + 60 64.83 (8.08) 17.96 (4.29) 20.53 (4.58) 24.20 (4.96) 27.15 (5.25) T4 Cypermethrin 10% + indoxacarb 10% SC 75 + 75 65.78 (8.14) 16.08 (4.07) 19.15 (4.43) 23.51 (4.90) 25.81 (5.12) T5 Cypermethrin 10% + indoxacarb 10% SC 100 + 100 69.14 (8.34) 15.38 (3.98) 17.54 (4.24) 21.68 (4.70) 23.62 (4.91) T6 Cypermethrin 10% + indoxacarb 10% SC 200 + 200 70.34 (8.41) 13.73 (3.77) 14.80 (3.90) 18.73 (4.38) 20.84 (4.61) T7 Cypermethrin 10% EC 50 71.67 (8.49) 22.20 (4.76) 25.58 (5.10) 36.07 (6.04) 40.78 (6.41) T8 Cypermethrin 10% EC 75 7.187 (8.50) 19.94 (4.52) 21.29 (4.66) 31.18 (5.62) 35.16 (5.97) T9 Indoxacarb 10% SC 50 73.18 (8.58) 25.67 (5.11) 28.48 (5.35) 43.27 (6.61) 49.23 (7.04) T10 Indoxacarb 10% SC 75 69.91 (8.39) 22.23 (4.79) 23.66 (4.91) 35.19 (5.98) 41.10 (6.44) T11 Untreated control 72.80 (8.56) 73.96 (8.62) 74.78 (8.67) 76.67 (8.78) 79.18 (8.92) S.E. + 0.07 0.06 0.08 0.09 0.12 C.D. (P=0.05) NS 0.17 0.24 0.28 0.33 Table 12 (b) : Effect of combi-product on thrips Akola, Maharashtra Surpam et al., 2015 Figures in parentheses indicate √x+0.5 values. NS=Non-significant 46
  • 47. Tr. No. Treatment Dose (g or ml ai/ha) Number of leaf hopper per leaf 1 DBS 7 DAFS 7 DASS 7 DATS Mean T1 Spinetoram 10 + Sulfoxaflor 30 WG 120 2.07 (1.75) 0.4 (1.18) 0.66 (1.28) 0.76 (1.32) 0.61 (1.26) T2 Spinetoram 10 + Sulfoxaflor 30 WG 140 2.33 (1.82) 0.30 (1.14) 0.53 (1.23) 0.60 (1.26) 0.48 (1.21) T3 Spinetoram 10 WG 30 2.23 (1.80) 1.70 (1.64) 1.70 (1.64) 2.20 (1.78) 1.87 (1.69) T4 Sulfoxaflor 30 WG 90 2.73 (1.93) 0.42 (1.19) 0.73 (1.31) 0.60 (1.26) 0.58 (1.25) T5 Spinetoram 10 WG 36 2.41 (1.85) 1.67 (1.63) 2.10 (1.76) 2.63 (1.90) 2.13 (1.77) T6 Sulfoxaflor 30 WG 108 2.13 (1.77) 0.30 (1.14) 0.67 (1.29) 0.53 (1.23) 0.50 (1.22) T7 Pyriproxyfen 5 EC + Fenpropathrin 15 EC 37.5 + 112.5 1.90 (1.70) 1.47 (1.57) 1.53 (1.59) 2.07 (1.75) 1.69 (1.64) T8 Pyriproxyfen 5 EC 37.5 2.27 (1.00) 1.43 (1.55) 1.50 (1.58) 2.13 (1.76) 1.69 (1.64) T9 Fenpropathrin 15 EC 112.5 2.03 (1.81) 1.30 (1.51) 1.83 (1.68) 2.17 (1.78) 1.77 (1.66) T10 Control Water spray 2.13 (1.74) 2.43 (1.85) 4.10 (2.25) 4.20 (2.28) 3.59 (2.13) T11 Control Unsprayed 2.03 (1.77) 2.53 (1.87) 4.20 (2.28) 4.40 (2.32) 3.71 (2.17) S.Em + 0.15 0.06 0.09 0.07 0.16 C.D (p=0.05) NS 0.19 0.27 0.20 0.46 C.V % 12.28 8.83 9.17 5.92 16.49 Table 13(a) : Efficacy of newer insecticides against leaf hoppers, Amrasca biguttula biguttula in cotton. Bangalore, Karnataka Ambarish et al., 2017 DBS: Day before spraying, DAFS: Days after the first spray, DASS: Days after the second spray, DATS: Days after the third spray Figures in parentheses indicate √ x +1 transformed values 47
  • 48. Table 13(b) : Efficacy of newer insecticides against whiteflies, Bemisia tabaci in cotton Tr. No. Treatment Dose (g. or ml ai/ha) Number of whiteflies per leaf 1 DBS 7 DAFS 7 DASS 7 DATS Mean T1 Spinetoram 10 + Sulfoxaflor 30 WG 120 1.50 (1.58) 0.37 (1.17) 0.60 (1.26) 0.40 (1.18) 0.46 (1.21) T2 Spinetoram 10 + Sulfoxaflor 30 WG 140 1.47 (1.57) 0.35 (1.16) 0.50 (1.22) 0.37 (1.17) 0.41 (1.19) T3 Spinetoram 10 WG 30 1.53 (1.59) 0.77 (1.33) 0.73 (1.32) 0.73 (1.32) 0.74 (1.32) T4 Sulfoxaflor 30 WG 90 1.83 (1.68) 0.40 (1.18) 0.57 (1.25) 0.43 (1.20) 0.47 (1.21) T5 Spinetoram 10 WG 36 2.00 (1.73) 0.67 (1.29) 0.80 (1.34) 1.20 (1.48) 0.89 (1.37) T6 Sulfoxaflor 30 WG 108 1.67 (1.63) 0.47 (1.21) 0.70 (1.30) 0.50 (1.22) 0.56 (1.25) T7 Pyriproxyfen 5 EC + Fenpropathrin 15 EC 37.5 + 112.5 1.43 (1.56) 0.50 (1.22) 0.73 (1.32) 0.40 (1.18)) 0.54 (1.24) T8 Pyriproxyfen 5 EC 37.5 1.57 (1.60) 0.53 (1.24) 0.67 (1.29) 0.50 (1.22) 0.57 (1.25) T9 Fenpropathrin 15 EC 112.5 2.13 (1.77) 1.40 (1.55) 1.03 (1.43) 1.20 (1.48) 1.21 (1.49) T10 Control Water spray 1.57 (1.60) 1.87 (1.69) 2.30 (1.82) 3.60 (2.14) 2.59 (1.89) T11 Control Un sprayed 1.64 (1.62) 1.93 (1.71) 2.77 (1.94) 3.93 (2.22) 2.88 (1.97) S.Em + 1.12 0.07 0.07 0.06 0.06 C.D (p=0.05) 0.35 0.21 0.21 0.18 0.19 C.V % 12.77 14.81 12.41 8.95 10.89 Bangalore, Karnataka Ambarish et al., 2017 DBS: Day before spraying, DAFS: Days after the first spray, DASS: Days after the second spray, DATS: Days after the third spray Figures in parentheses indicate √ x +1 transformed values 48
  • 49. Tr. No. Insecticide Dose (g or ml a.i.) / ha Av. Population of leaf hopper at different crop stage* (Mean of three sprays) Percent reduction of pest over control 1 DBS 7 DAS T1 Spinetoram 10 + Sulfoxaflor 40 WG 120 9.91 2.11 82.12 T2 Spinetoram 10 + Sulfoxaflor 40 WG 140 10.30 1.81 84.67 T3 Spinetoram 12 SC 30 9.92 5.48 53.57 T4 Sulfoxaflor 24 SC 90 10.31 2.47 79.08 T5 Spinetoram 12 SC 36 9.87 5.42 54.08 T6 Sulfoxaflor 24 SC 108 9.60 2.62 77.79 T7 Pyriproxyfen 5 + Fenpropathrin 15 EC 37.5+ 112.5 9.82 2.27 80.75 T8 Pyriproxyfen 5 EC 37.5 10.06 2.52 78.65 T9 Fenpropathrin 15 EC 112.5 9.70 2.64 77.64 T10 Control (Unsprayed) -- 10.09 11.80 -- T11 Control (Water spray) -- 10.04 11.02 -- Table 14(a) : Efficacy of different insecticides against leaf hopper, Amrasca biguttula biguttula on cotton Raichur, Karnataka Hanchinal et al., 2018 *- Square root transformed values; DBS – Day before spray; DAS – Days after spray 49
  • 50. Tr. No. Insecticide Dose (g. or ml a.i.)/ ha Av. Population of thrips at different crop stage* (Mean of three sprays % reduction of pest over control 1 DBS 7 DAS T1 Spinetoram 10 + Sulfoxaflor 40 WG 120 8.49 2.20 78.74 T2 Spinetoram 10 + Sulfoxaflor 40 WG 140 8.17 2.01 80.53 T3 Spinetoram 12 SC 30 8.36 2.44 76.37 T4 Sulfoxaflor 24 SC 90 8.18 3.94 61.91 T5 Spinetoram 12 SC 36 8.02 2.52 75.61 T6 Sulfoxaflor 24 SC 108 8.11 2.89 72.06 T7 Pyriproxyfen 5 + Fenpropathrin 15 EC 37.5+112.5 8.40 3.23 68.78 T8 Pyriproxyfen 5 EC 37.5 8.48 3.08 70.25 T9 Fenpropathrin 15 EC 112.5 7.94 2.88 72.17 T10 Control (Unsprayed) -- 8.35 10.34 -- T11 Control (Water spray) -- 8.37 11.12 -- Table 14(b) : Efficacy of different novel insecticides against thrips, Thrips tabaci on cotton *- Square root transformed values; DBS – Day before spray; DAS – Days after spray Raichur, Karnataka Hanchinal et al., 2018 50
  • 51. Tr. No. Treatment Dose (g a.i./ha) Mean whitefly population per 3 leaves Overall Mean Reduction over control (%) Yield (kg/ha) 1st spray 2nd spray PT 1 DAS 5 DAS 10 DAS PT 1 DAS 5 DAS 10 DAS T1 Dinotefuran 20 SG 80 11.97 (3.53) 5.94 (2.53) 4.12 (2.14) 4.45 (2.22) 4.93 (2.33) 3.45 (1.98) 2.33 (1.68) 2.88 (1.83) 5.01 64.04 334.84 T2 Sulfoxaflor 24 SC 50 12.00 (3.53) 6.19 (2.58) 3.55 (2.01) 3.38 (1.96) 3.99 (2.11) 2.26 (1.66) 2.06 (1.60) 1.85 (1.53) 4.41 68.39 342.27 T3 Buprofezin 25 SC 200 12.45 (3.59) 9.03 (3.08) 2.48 (1.72) 1.11 (1.26) 1.56 (1.43) 1.07 (1.25) 0.83 (1.15) 0.89 (1.17) 3.67 73.67 346.92 T4 Imidacloprid 17.8 SL 50 13.50 (3.74) 6.50 (2.64) 2.99 (1.86) 1.54 (1.42) 2.17 (1.63) 1.21 (1.30) 0.81 (1.14) 0.96 (1.20) 3.71 73.40 346.67 T5 Spiromesifen 24 SC 120 12.67 (3.62) 4.78 (2.29) 1.19 (1.30) 0.71 (1.10) 1.24 (1.31) 0.50 (1.00) 0.35 (0.92) 0.48 (0.98) 2.74 80.39 361.56 T6 Clothianidin 48 WDG 50 11.80 (3.50) 6.58 (2.66) 2.44 (1.71) 1.77 (1.50) 2.32 (1.67) 1.37 (1.36) 1.00 (1.22) 1.11 (1.26) 3.55 74.60 371.25 T7 Dinotefuran 20 SG + Buprofezin 25 SC (20+150) 13.20 (3.70) 8.38 (2.97) 4.64 (2.26) 2.69 (1.78) 3.59 (2.02) 1.66 (1.46) 1.14 (1.28) 0.95 (1.20) 4.53 67.51 336.06 T8 Sulfoxaflor 24 SC + Buprofezin 25 SC (25+150) 12.61 (3.62) 6.26 (2.60) 2.94 (1.85) 1.38 (1.37) 1.78 (1.50) 1.43 (1.38) 0.40 (0.94) 0.38 (0.93) 3.39 75.73 354.25 T9 Flonicamid 50 WG 50 12.90 (3.66) 10.19 (3.26) 4.77 (2.29) 2.11 (1.61) 2.60 (1.76) 2.04 (1.59) 1.45 (1.39) 1.19 (1.30) 4.65 66.60 338.69 T10 Flonicamid 50 WG + Buprofezin 25 SC (25+150) 12.86 (3.65) 10.84 (3.36 3.98 (2.11) 1.14 (1.28) 1.64 (1.46) 1.31 (1.34) 0.66 (1.07) 0.60 (1.04) 4.13 70.44 342.50 T11 Flupyradifurone 200 SL 200 11.95 (3.52) 5.07 (2.36) 2.32 (1.67) 0.78 (1.13) 1.15 (1.28) 0.43 (1.96) 0.24 (0.86) 0.20 (0.83) 2.77 80.15 361.11 T12 Spiromesifen 24 SC + Imidacloprid 17.8 SL (60+30) 11.83 (3.51) 2.98 (1.86 1.03 (1.23) 0.48 (0.98) 0.88 (1.17) 0.45 (0.96) 0.19 (0.83) 0.11 (0.78) 2.24 83.94 379.72 T13 Control - 12.89 (3.65) 13.06 (3.68) 13.45 (3.73) 13.92 (3.79) 14.08 (3.81) 14.20 (3.83) 14.67 (3.89) 15.34 (3.97) 13.95 - 123.98 SEm ± 0.354 0.077 0.038 0.017 0.034 0.031 0.023 0.012 - - 5.011 CD at 5% - NS 0.314 0.490 0.083 0.118 0.105 0.085 0.041 - - 15.891 Table 15 : Effect of insecticides against whitefly, Bemisia tabaci in cotton (Pooled) Values in the parentheses are “(x+0.5) transformed values; DAS = Days after spraying; PT = Pre-treatment count; NS = Not significant Nadia, West Bengal Ghosal et al., 2018 51
  • 52. Tr. No. Treatments Conc. in % No. of thrips/ leaf days after spray Pooled over periods Pooled over Sprays 1 3 5 7 10 15 T1 Thiamethoxam 12.6% + Lambda - cyhalothrin 9.5% - 22.1 ZC 0.0088 1.70a (2.39) 1.64a (2.19) 1.30a (1.19) 1.08a (0.67) 0.87a (0.26) 0.71a (0.00) 1.22a (0.99) 1.67a (2.29) T2 Profenophos 40% + Cypermethrin 4% - 44 EC 0.088 2.59b (6.21) 2.34b (4.98) 2.11b (3.95) 1.89b (3.07) 1.56b (1.93) 1.49c (1.72) 2.00c (3.50) 2.42c (5.36) T3 Deltamethrin 1% + Triazophos 35% - 36 EC 0.045 2.51b (5.80) 2.21b (4.38) 2.06b (3.74) 1.79b (2.70) 1.50b (1.75) 1.40c (1.46) 1.91c (3.15) 2.35c (5.02) T4 β-cyfluthrin 8.49% + Imidacloprid 19.8 % - 28.30 OD 0.010 2.44b (5.45) 2.18b (4.25) 2.02b (3.58) 1.77b (2.63) 1.46b (1.63) 1.29c (1.16) 1.86c (2.96) 2.31c (4.84) T5 Acephate 50% + Imidacloprid 1.8% SP 0.100 1.62a (2.12) 1.49a (1.72) 1.24a (1.04) 0.94a (0.38) 0.71a (0.00) 0.71a (0.00) 1.12a (0.75) 1.59a (2.03) T6 Buprofezin 15% + Acephate 35% - 50 WP 0.125 1.78a (2.67) 1.77a (2.63) 1.41a (1.49) 1.19a (0.92) 1.07a (0.64) 0.98b (0.46) 1.37b (1.38) 1.78b (2.67) T7 Fipronil 5% SC 0.015 1.75a (2.56) 1.69a (2.36) 1.35a (1.32) 1.17a (0.87) 1.01a (0.52) 0.83ab (0.19) 1.30ab (1.19) 1.73b (2.49) T8 Control (water spray) - 3.37c (10.86) 3.29c (10.32) 3.30c (10.39) 3.23c (9.93) 3.24c (10.00) 3.34d (10.66) 3.29d (10.32) 3.39d (10.99) S. Em. ± - 0.15 0.11 0.12 0.10 0.11 0.07 0.06 0.04 P - - - - - - - 0.04 0.03 T x P - - - - - - - 0.11 0.08 C.V. % - 12.08 9.57 9.57 10.19 13.50 9.12 11.25 11.39 Table 16: Bio-efficacy of ready-mix insecticides against Scirtothrips dorsalis in Bt cotton Anand, Gujarat Padaliya et al., 2018 Notes: Figures in parentheses are retransformed values of Treatment mean with letter(s) in common are non-significant by DNMRT at 5% level of significance √ x +5 52
  • 53. Tr. No. Treatment Dosage (g a.i /ha) Dosage in formulation (g or ml/ha) Pre treatment population /plant Mean mortality of whitefly after pooling of three round sprays (%) 5 DAS 10 DAS 15 DAS T1 Diafenthiuron 40.5% + Acetamiprid 3.9% WP 81 + 3.12 400 15.33 74.3 (59.9)b 70.2 (57.2)b 55.5 (48.5)bc T2 Diafenthiuron 40.5% + Acetamiprid 3.9% WP 101.25 + 3.90 500 15.93 81.8 (65.2)a 76.0 (61.0)ab 67.4 (55.5)a T3 Diafenthiuron 40.5% + Acetamiprid 3.9% WP 121.50 + 4.68 600 16.67 83.1 (66.1)a 77.9 (62.3)a 69.7 (56.9)a T4 Diafenthiuron 50 WP 300 600 17.67 71.1 (57.8)b 62.2 (52.2)c 50.4 (45.5)c T5 Acetamiprid 20 SP 20 100 16.93 73.7 (59.5)b 71.3 (57.9)b 60.5 (51.4)b T6 Imidacloprid 17.8 SL 22.25 150 16.73 65.4 (54.3)c 57.4 (49.6)c 44.2 (42.0)c T7 Untreated control - - 15.87 0.0 (4.1)d 0.0 (4.1)d 0.0 (4.1)d S Em(±) 1.3 1.4 1.2 LSD (0.05) 3.9 4.2 3.7 CV (%) 0.6 0.7 0.7 Similar alphabets represents the homogeneous means group due to Duncan’s Multiple Range Test * Values in the parentheses are angular transformed, DAS: Days after spray Table 17(a) : Efficacy of insecticide against whitefly in cotton. Nadia, West Bengal Bala et al., 2018 53
  • 54. Tr. No. Treatment Dosage (g a.i /ha) Dosage in formulation (g or ml/ha) Pre treatment population /plant Mean mortality of thrips after pooling of three round sprays (%) 5 DAS 10 DAS 15 DAS T1 Diafenthiuron 40.5% + Acetamiprid 3.9% WP 81 + 3.12 400 15.33 81.4 (64.8)b 68.8 (56.4)ab 62.7 (52.7)ab T2 Diafenthiuron 40.5% + Acetamiprid 3.9% WP 101.25 + 3.90 500 15.93 86.6 (69.0)ab 73.8 (59.5)ab 66.8 (55.1)a T3 Diafenthiuron 40.5% + Acetamiprid 3.9% WP 121.50 + 4.68 600 16.67 89.2 (71.3)a 77.3 (61.9)a 71.6 (58.1)a T4 Diafenthiuron 50 WP 300 600 17.67 70.9 (57.7)c 59.0 (50.5)bc 47.8 (44.1)bc T5 Acetamiprid 20 SP 20 100 16.93 78.1 (62.4)b 65.4 (54.3)b 65.4 (49.3)b T6 Imidacloprid 17.8 SL 22.25 150 16.73 69.9 (57.1)c 54.7 (48.0)c 40.9 (40.0)c T7 Untreated control - - 15.87 0.00 (4.1)d 0.00 (4.1)d 0.0 (4.1)d S Em(±) 1.4 2.0 1.8 LSD (0.05) 4.5 6.0 5.4 CV (%) 0.6 1.0 1.0 Similar alphabets represents the homogeneous means group due to Duncan’s Multiple Range Test * Values in the parentheses are angular transformed, DAS: Days after spray Table 17(b): Efficacy of insecticide against thrips in cotton. Nadia, West Bengal Bala et al., 2018 54
  • 55. Table 18(a) : Bio-efficacy of different insecticides against aphids, Aphis gossypii in Bt cotton Tr. No. Treatment No. of aphids/leaf (days after spray) Before spray 5 10 15 Pooled T1 Diafenthiuron 25 + Pyriproxyfen 5 SE @ 500 ml/ha 3.79 (13.86) 2.60 (6.26) 2.92 (8.03) 3.09 (9.05) 2.87 (7.74) T2 Diafenthiuron 25 + Pyriproxyfen 5 SE @ 750 ml/ha 3.77 (13.71) 2.62 (6.36) 2.94 (8.14) 3.10 (9.11) 2.88 (7.79) T3 Diafenthiuron 25 + Pyriproxyfen 5 SE @ 1000 ml/ha 3.75 (13.56) 2.03 (3.62) 2.30 (4.79) 2.49 (5.70) 2.27 (4.65) T4 Diafenthiuron 25 + Pyriproxyfen 5 SE @ 1250 ml/ha 3.72 (13.34) 1.95 (3.30) 2.24 (4.52) 2.44 (5.45) 2.21 (4.38) T5 Diafenthiuron 50 WP @ 600 g/ha 3.91 (14.79) 2.44 (5.45) 2.74 (7.01) 2.92 (8.03) 2.70 (6.79) T6 Pyriproxyfen 10 EC @ 1000 ml/ha 3.89 (14.63) 2.70 (6.79) 2.98 (8.38) 3.21 (9.80) 2.97 (8.32) T7 Pyriproxyfen 10 @ 1000 ml/ha(market sample) 3.90 (14.71) 2.76 (7.12) 3.02 (8.62) 3.23 (9.93) 3.00 (8.50) T8 Untreated control 3.96 (15.18) 3.07 (8.92) 3.34 (10.66) 3.54 (12.03) 3.31 (10.5) ANOVA Treatment (T) C. V.% S. Em. ± CD (5%) S. Em. ± CD (5%) S. Em. ±. CD (5%) S. Em. ± CD (5%) S.Em. ±. CD (5%) 0.09 NS 0.06 0.17 0.06 0.16 0.06 0.16 0.04 0.10 11.15 9.89 8.32 7.99 Anand, Gujarat Thumar et al., 2018 Note: Figures in parentheses are retransformed values; these outside are transformed values √ x +5 55
  • 56. Table 18(b) : Bio-efficacy of different insecticides against jassids Amrasca biguttula biguttula in Bt cotton Tr. No. Treatment No. of jassids/leaf (days after spray) Before spray 5 10 15 Pooled T1 Diafenthiuron 25 + Pyriproxyfen 5 SE@ 500 ml/ha 4.04 (15.82) 2.77 (7.17) 3.11 (9.17) 3.33 (10.59) 3.07 (8.92) T2 Diafenthiuron 25 + Pyriproxyfen 5 SE@ 750 ml/ha 4.09 (16.23) 2.80 (7.34) 3.12 (9.23) 3.34 (10.66) 3.09 (9.05) T3 Diafenthiuron 25 + Pyriproxyfen 5 SE@ 1000 ml/ha 4.10 (16.31) 2.23 (4.47) 2.47 (5.60) 2.70 (6.79) 2.47 (5.60) T4 Diafenthiuron 25 + Pyriproxyfen 5 SE@ 1250 ml/ha 4.08 (16.15) 2.16 (4.17) 2.39 (5.21) 2.63 (6.42) 2.39 (5.21) T5 Diafenthiuron 50 WP@ 600 g/ha 4.15 (16.72) 2.66 (6.58) 2.92 (8.03) 3.16 (9.49) 2.91 (7.97) T6 Pyriproxyfen 10 EC (GSP sample) @ 1000 ml/ha 4.15 (16.72) 2.89 (7.85) 3.16 (9.49) 3.40 (11.06) 3.15 (9.42) T7 Pyriproxyfen 10 @ 1000 ml/ha(market sample) 4.10 (16.31) 2.92 (8.03) 3.20 (9.74) 3.42 (11.20) 3.18 (9.61) T8 Untreated control 4.19 (17.06) 3.27 (10.19) 3.54 (12.03) 3.69 (13.12) 3.50 (11.75) ANOVA Treatment (T) C. V.% S. Em. ± CD (5%) S. Em. ± CD (5%) S. Em. ±. CD (5%) S. Em. ± CD (5%) S. Em. ±. CD (5%) 0.11 NS 0.06 0.16 0.06 0.17 0.06 0.17 004 0.11 12.86 9.03 8.61 8.05 9.77 Anand, Gujarat Thumar et al., 2018 Note: Figures in parentheses are retransformed values; these outside are transformed values √ x +5 56
  • 57. Tr. No. Treatment Dosage (g a.i /ha) Dosage in formulation (g or ml /ha) Pre treatment population/ 3 leaves Mean mortality of whitefly after 1st round sprays (%) Mean mortality of whitefly after 2snd round sprays (%) 3 DAS 7 DAS 10 DAS 3 DAS 7 DAS 10 DAS T1 Diafenthiuron 40.5% + Acetamiprid 3.9% WP 81 + 3.12 400 13.33 71.83 (58.27)* 64.77 (53.89) 50.66 (45.67) 74.39 (59.93) 65.17 (54.13) 54.06 (47.62) T2 Diafenthiuron 40.5% + Acetamiprid 3.9% WP 101.25 + 3.90 500 12.00 77.21 (61.83) 69.13 (56.56) 57.56 (49.64) 77.32 (61.90) 65.93 (54.59) 59.98 (51.05) T3 Diafenthiuron 40.5% + Acetamiprid 3.9% WP 121.50 + 4.68 600 12.67 79.61 (63.51) 72.78 (58.87) 63.13 (52.91) 81.14 (64.63) 74.51 (60.00) 67.02 (55.25) T4 Imidacloprid 17.8 SL 22.5 150 13.00 69.89 (57.03) 65.03 (54.05) 51.45 (46.12) 70.85 (57.64) 64.20 (53.55) 56.73 (49.16) T5 Diafenthiuron 50 WP 360 600 11.67 71.77 (58.22) 61.37 (51.87) 46.37 (43.21) 73.24 (59.17) 61.96 (52.21) 49.91 (45.24) T6 Acetamiprid 20 SP 20 100 11.33 58.73 (50.32) 49.72 (45.13) 42.29 (40.86) 54.63 (47.95) 45.11 (42.48) 40.71 (39.94) T7 Untreated control - - 12.33 0.00 (4.05) 0.00 (4.05) 0.00 (4.05) 0.00 (4.05) 0.00 (4.05) 0.00 (4.05) S Em(±) 1.29 1.34 1.82 1.32 1.32 1.07 CD (0.05) 3.98 4.13 5.59 4.07 4.06 3.31 CV (%) 1.60 0.71 1.11 0.60 0.71 0.63 *Values in the parentheses are angular transformed, DAS: Days after spray Table 19(a) : Management whitefly by using of different insecticides in Bt-cotton. Nadia, West Bengal Bala et al., 2020 57
  • 58. Tr. No. Treatment Dosage (g a.i /ha) Dosage in formulation (g or ml /ha) Pre treatment population/ 3 leaves Mean mortality of thrips after 1st round sprays (%) Mean mortality of thrips after 2snd round sprays (%) 3 DAS 7 DAS 10 DAS 3 DAS 7 DAS 10 DAS T1 Diafenthiuron 40.5% + Acetamiprid 3.9% WP 81 + 3.12 400 16.44 80.91 (64.46)* 66.12 (54.71) 59.33 (50.70) 80.08 (63.85) 68.54 (56.19) 64.49 (53.72) T2 Diafenthiuron 40.5% + Acetamiprid 3.9% WP 101.25 + 3.90 500 15.33 85.44 (67.98) 72.30 (58.56) 62.57 (52.59) 85.85 (68.32) 73.41 (59.29) 71.32 (57.94) T3 Diafenthiuron 40.5% + Acetamiprid 3.9% WP 121.50 + 4.68 600 16.40 89.27 (71.35) 77.61 (62.11) 70.15 (57.06) 87.66 (69.87) 76.50 (61.34) 75.65 (60.77) T4 Imidacloprid 17.8 SL 22.5 150 16.47 77.77 (62.21) 60.49 (51.35) 54.00 (47.58) 77.58 (62.08) 70.64 (57.50) 58.53 (50.20) T5 Diafenthiuron 50 WP 360 600 15.20 70.58 (57.47) 59.05 (50.51) 49.80 (45.20) 66.68 (55.05) 60.29 (51.23) 43.64 (41.63) T6 Acetamiprid 20 SP 20 100 15.67 67.36 (55.46) 52.12 (46.50) 39.63 (39.26) 65.97 (54.61) 58.85 (50.39) 42.22 (40.81) T7 Untreated control - - 16.93 0.00 (4.05) 0.00 (4.05) 0.00 (4.05) 0.00 (4.05) 0.00 (4.05) 0.00 (4.05) S Em(±) 1.22 1.74 2.10 1.10 2.57 1.50 CD (0.05) 3.74 5.07 6.47 3.38 7.90 4.63 CV (%) 0.52 0.90 1.21 0.47 1.30 0.84 *Values in the parentheses are angular transformed, DAS: Days after spray Table 19(b) : Management thrips by using of different insecticides in Bt-cotton. Nadia, West Bengal Bala et al., 2020 58
  • 59. Ready mix insecticide Insect pest References Spirotetramat 12% + imidacloprid 36% - 480 SC Aphid, jassids, thrips and whiteflies Patel et al.,2010 Flubendiamide +Thiacloprid 480 SC Bollworms, aphids, whitefly and leaf hopper Kumar et al., 2010 Cypermethrin 10% + Indoxacarb 10% SC Bollworm complex Surpam et al., 2015 Spinetoram 10% + Sulfoxaflor 30% WG Whiteflies and leaf hoppers Ambarish et al., 2017 Spinetoram 10% + Sulfoxaflor 40% WG American bollworm, pink bollworm, leaf hopper and thrips Hanchinal et al., 2018 Indoxacarb 14.5 % + Acetamiprid 7.7 % SC Bollworm complex Borude et al., 2018 Chlorantraniliprole 8.8 % + Thiamethoxam 17.5 % SC Bollworm complex Rambhau et al., 2018 Acetamiprid 0.4% + Quinalphos 20 % EC American bollworm and spotted boll worm Bhamare et al.., 2018 Spiromesifen 24 SC + Imidacloprid 17.8 SL whitefly Ghosal et al., 2018 Acephate 50% + Imidacloprid 1.8% SP Thrips Padaliya et al., 2018 Diafenthiuron 25% + pyriproxyfen 5% SE Aphids, jassids, whiteflies and thrips Thumar et al., 2018 Diafenthiuron 40.5% + Acetamiprid 3.9% WP Whitefly and thrips Bala et al., 2020 Table 20: Ready mix insecticides effective against insect pests of cotton 59
  • 60. 60 Efficacy of ready mix insecticides on natural enemies
  • 61. Table 21(a) : Effect of insecticides on population of natural enemies (lady bird beetle) in cotton ecosystem Tr. No. Treatment Dose ml /L Average population of ladybird beetles (No / plant) at 7DAS 14DAS Mean T1 Pyriproxifen 5 % + Fenpropathrin 15 % EC 1 ml 0.56 (0.74) 1.07 (1.03) 0.81 (0.88) T2 Cypermethrin 3 % + Quinalphos 20 % EC 2 ml 0.53 (0.68) 1.13 (1.06) 0.83 (0.87) T3 Novaluron 5.25 % + Indoxacarb 4.5% SC 1.75 ml 0.62 (0.78) 0.91 (0.92) 0.77 (0.85) T4 Thiamethoxam 12.6 % + Lambda cyhalothrin 9.5 % ZC 0.4 ml 0.40 (0.60) 1.20 (1.09) 0.80 (0.85) T5 Indoxacarb 14.5 % + Acetamiprid 7.7 % SC 1 ml 0.60 (0.77) 1.07 (1.03) 0.83 (0.90) T6 Profenofos 40 % + Cypermethrin 4 % EC 2 0.59 (0.69) 1.04 (1.98) 0.82 (0.84) T7 Untreated control - 2.02 (1.40) 2.80 (1.66) 2.41 (1.53) SE (m) ± 0.16 0.15 0.16 CD at 5 % NS NS NS Note: Figures in parentheses are corresponding square root transformation values. DAS– Days After Spraying Akola, Maharashtra Borude et al., 2018 61
  • 62. Table 21(b) : Effect of insecticides on population of natural enemies (Chrysopa) in cotton ecosystem Tr. No. Treatment Dose ml /L Average population of chrysopa (No / plant) at 7DAS 14DAS Mean T1 Pyriproxifen 5 % + Fenpropathrin 15 % EC 1 ml 0.18 (0.81) 0.31 (0.89) 0.24 (0.85) T2 Cypermethrin 3 % + Quinalphos 20 % EC 2 ml 0.07 (0.75) 0.20 (0.83) 0.13 (0.79) T3 Novaluron 5.25 % + Indoxacarb 4.5% SC 1.75 ml 0.29 (0.88) 0.36 (0.91) 0.32 (0.90) T4 Thiamethoxam 12.6 % + Lambda cyhalothrin 9.5 % ZC 0.4 ml 0.13 (0.79) 0.18 (0.82) 0.16 (0.80) T5 Indoxacarb 14.5 % + Acetamiprid 7.7 % SC 1 ml 0.22 (0.83) 0.29 (0.88) 0.26 (0.86) T6 Profenofos 40 % + Cypermethrin 4 % EC 2 0.00 (0.71) 0.11 (0.78) 0.06 (0.74) T7 Untreated control - 0.73 (1.11) 0.69 (1.08) 0.71 (1.10) SE (m) ± 0.08 0.29 0.19 CD at 5 % NS NS NS Note: Figures in parentheses are corresponding square root transformation values. DAS– Days After Spraying Akola, Maharashtra Borude et al., 2018 62
  • 63. Table 21(c) : Effect of insecticides on population of natural enemies (spiders) in cotton ecosystem Tr. No. Treatment Dose ml /L Average population of spiders (No / plant) at 7DAS 14DAS Mean T1 Pyriproxifen 5 % + Fenpropathrin 15 % EC 1 ml 0.00 (0.71) 0.16 (0.81) 0.08 (0.76) T2 Cypermethrin 3 % + Quinalphos 20 % EC 2 ml 0.11 (0.78) 0.22 (0.85) 0.17 (0.81) T3 Novaluron 5.25 % + Indoxacarb 4.5% SC 1.75 ml 0.22 (0.84) 0.29 (0.88) 0.26 (0.86) T4 Thiamethoxam 12.6 % + Lambda cyhalothrin 9.5 % ZC 0.4 ml 0.20 (0.83) 0.27 (0.87) 0.23 (0.85) T5 Indoxacarb 14.5 % + Acetamiprid 7.7 % SC 1 ml 0.13 (0.79) 0.31 (0.89) 0.22 (0.84) T6 Profenofos 40 % + Cypermethrin 4 % EC 2 0.16 (0.80) 0.33 (0.90) 0.24 (0.85) T7 Untreated control - 0.64 (1.07) 0.73 (1.11) 0.69 (1.09) SE (m) ± 0.08 0.07 0.07 CD at 5 % NS NS NS Note: Figures in parentheses are corresponding square root transformation values. DAS– Days After Spraying Akola, Maharashtra Borude et al., 2018 63
  • 64. Tr. No. Treatment Dose (g a.i./ha) Mean no. of coccinelid complex per plant (mean of two sprays) PT 1 DAS 5 DAS 10 DAS T1 Dinotefuran 20 SG 80 2.06 (1.60) 1.33 (1.35) 1.48 (1.40) 1.54 (1.42) T2 Sulfoxaflor 24 SC 50 1.86 (1.53) 1.30 (1.34) 1.49 (1.41) 1.55 (1.43) T3 Buprofezin 25 SC 200 2.09 (1.60) 1.56 (1.43) 1.71 (1.48) 1.82 (1.52) T4 Imidacloprid 17.8 SL 50 1.91 (1.55) 1.21 (1.30) 1.29 (1.33) 1.37 (1.36) T5 Spiromesifen 24 SC 120 2.04 (1.59) 1.80 (1.51) 1.93 (1.55) 1.98 (1.57) T6 Clothianidin 48 WDG 50 2.11 (1.61) 1.27 (1.33) 1.37 (1.36) 1.42 (1.38) T7 Dinotefuran 20 SG + Buprofezin 25 SC (20+150) 1.99 (1.57) 1.62 (1.45) 1.68 (1.47) 1.73 (1.49) T8 Sulfoxaflor 24 SC + Buprofezin 25 SC (25+150) 1.80 (1.51) 1.33 (1.35) 1.44 (1.39) 1.55 (1.43) T9 Flonicamid 50 WG 50 2.01 (1.58) 1.81 (1.51) 1.94 (1.56) 1.99 (1.57) T10 Flonicamid 50 WG + Buprofezin 25 SC (25+150) 2.10 (1.61) 1.61 (1.45) 1.80 (1.51) 1.87 (1.53) T11 Flupyradifurone 200 SL 200 1.91 (1.55) 1.61 (1.45) 1.68 (1.47) 1.76 (1.50) T12 Spiromesifen 24 SC + Imidacloprid 17.8 SL (60+30) 1.97 (1.57) 1.50 (1.41) 1.68 (1.47) 1.73 (1.49) T13 Control - 2.07 (1.60) 2.11 (1.61) 2.18 (1.63) 2.23 (1.65) SEm ± - 0.099 0.083 0.090 0.096 CD at 5% - NS 0.289 NS NS Table 22(a) : Effect of insecticides on non target organisms in cotton (Pooled) Nadia, West Bengal Ghosal et al., 2018 Values in the parentheses are “(x+0.5) transformed values; NS = Not significant; DAS = Days after spraying; PT = Pre-treatment count 64
  • 65. Tr. No. Treatment Dose (g a.i./ha) Mean no. of spider complex per plant (mean of two sprays) PT 1 DAS 5 DAS 10 DAS T1 Dinotefuran 20 SG 80 2.06 (1.6) 1.56 (1.43) 1.62 (1.45) 1.69 (1.47) T2 Sulfoxaflor 24 SC 50 2.14 (1.62) 1.63 (1.45) 1.74 (1.49) 1.77 (1.50) T3 Buprofezin 25 SC 200 2.08 (1.60) 1.83 (1.52) 1.89 (1.54) 1.93 (1.55) T4 Imidacloprid 17.8 SL 50 2.02 (1.58) 1.37 (1.36) 1.42 (1.38) 1.50 (1.41) T5 Spiromesifen 24 SC 120 2.22 (1.64) 1.97 (1.57) 2.03 (1.59) 2.07 (1.60) T6 Clothianidin 48 WDG 50 2.11 (1.61) 1.43 (1.38) 1.49 (1.41) 1.54 (1.42) T7 Dinotefuran 20 SG + Buprofezin 25 SC (20+150) 2.01 (1.58) 1.62 (1.45) 1.67 (1.47) 1.71 (1.48) T8 Sulfoxaflor 24 SC + Buprofezin 25 SC (25+150) 2.01 (1.58) 1.70 (1.48) 1.76 (1.50) 1.79 (1.51) T9 Flonicamid 50 WG 50 2.16 (1.63) 1.98 (1.57) 2.08 (1.60) 2.12 (1.61) T10 Flonicamid 50 WG + Buprofezin 25 SC (25+150) 2.19 (1.64) 2.01 (1.58) 2.04 (1.59) 2.07 (1.60) T11 Flupyradifurone 200 SL 200 2.24 (1.65) 1.91 (1.55) 2.00 (1.58) 2.03 (1.59) T12 Spiromesifen 24 SC + Imidacloprid 17.8 SL (60+30) 2.10 (1.61) 1.78 (1.50) 1.87 (1.53) 1.92 (1.55) T13 Control - 2.15 (1.62) 2.17 (1.63) 2.32 (1.67) 2.38 (1.69) SEm ± - 0.097 0.084 0.088 0.092 CD at 5% - NS 0.264 NS NS Table 22(b) : Effect of insecticides on non target organisms in cotton (Pooled) Nadia, West Bengal Ghosal et al., 2018 Values in the parentheses are “(x+0.5) transformed values; NS = Not significant; DAS = Days after spraying; PT = Pre-treatment count 65
  • 67. Broad spectrum of activity Control more than one pest or pest species Synergistic joint action with high efficacy Lower quantity as well as cost Saving time Less number of spray Help in insecticide resistant management 67
  • 69. Incompatibility with mixture lead to crystal and flake development Some mixture may cause plant injury Antagonism effect of mixture reduced the efficacy of mixture 69
  • 70. Guidelines for evaluating pesticide mixtures → Pest population to be controlled should be susceptible to each used in mixture. → Target pest should exhibit no cross resistance to mixture. → Mixture should have significant potential effect to reduce the dosage. → Mixture should have no mammalian toxicity. 70
  • 71. 71 Conclusion  Due to repetitive use of single insecticide for particular pest management lead to the development of insecticide resistance and pest resurgence, so prevention of that we need to go for insecticide mixture which have two different insecticides with different mode of action.  To overcome the cost of application, number of application and to draw a sustainable pest management programme we need to search better alternative, ready mix insecticide are one of them. 71
  • 72. 72 Insecticides mixture which are effective against Bollworm complex (Based on study) 1. Flubendiamide + Thiacloprid 480 SC @ 120 g a.i/ha, 2. Cypermethrin 10% + Indoxacarb 10% SC @ 200 + 200 g a.i./ha, 3. Chlorantraniliprole 8.8% + Thiamethoxam 17.5% SC @ 150 g a.i./ha, 4. Acetamiprid 0.4% + Quinalphos 20 % EC @ 40 + 2000 g a.i./ha, 5. Spinetoram 10%+ Sulfoxaflor 40%WG @ 140 g.a.i/ha, 6. Indoxacarb 14.5 % + Acetamiprid 7.7 % SC 72
  • 73. 73 Insecticides mixture which are effective against sucking pests (Based on study) 73 1. Spirotetramat 12% + Imidacloprid 36% - 480 SC @ 625 ml/ha 6. Spiromesifen 24 SC + Imidacloprid 17.8 SL @ 60+30 g a.i./ha 2. Flubendiamide + Thiacloprid 480 SC @ 120 g a.i/ha 7. Acephate 50% + Imidacloprid 1.8% - 51.8 SP @ 0.1 % 3. Cypermethrin 10 % + Indoxacarb 10 % SC @ 200 + 200 g a.i./ha 8. Diafenthiuron 40.5% + acetamiprid 3.9% WP @ 600 g/ha 4. Spinetoram 10% w/w + Sulfoxaflor 30% w/w WG @ 140 g a.i./ha 9. Diafenthiuron 25 + Pyriproxyfen 5 SE@ 1250 ml/ha 5. Spinetoram 10%+ Sulfoxaflor 40%WG @ 140 g.a.i/ha
  • 74. Future thrust  Need not divert attention from the implementation of alternative pest management strategies.  The concept of mixtures may be extended to botanicals and other insect growth regulators for effective pest management.  Need to test different combinations of insecticides for its resistance and persistency.  Need to monitor residue levels of ready-mix insecticides in different crops.  Need to develop antidotes for ready mix insecticides. 74
  • 75. 75