SlideShare a Scribd company logo
1 of 8
Download to read offline
Example 1: Voltage Divider
31.25 nF
500 mHvg
vo
-
+
2 kΩ
Find the steady-state expression for vo(t) if vg(t) = 64 cos(8000t).
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 3
Overview of Sinusoidal Steady-State Analysis
• Nodal analysis
• Mesh analysis
• Superposition
• Source transformation
• Thevenin and Norton Equivalents
• Op Amps
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 1
Example 1: Workspace
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 4
Phasor Circuit Analysis Steps
Phasor (sinusoidal steady-state) analysis generally consists of four
steps.
1. Transform all independent sources to their phasor equivalent
2. Calculate the impedance (Z) of all passive circuit elements
3. Apply analysis methods that we learned earlier this term
4. Apply inverse phasor transform to obtain time-domain
expression for currents and voltages of interest
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 2
Example 3: Source Transformation
15 mH
v1
v2
vo
-
+
20 Ω
30 Ω 25/6 µF
Use source transformations to solve for the steady-state part of
vo(t). The sinusoidal voltage sources are:
v1(t) = 240 cos(4000t + 53.13◦
) V
v2(t) = 96 sin(4000t) V
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 7
Example 2: Current Divider
1 H
ig
io
50 Ω 250 Ω
20 µF
Find the steady-state expression for io(t) if
ig(t) = 125 cos(500t) mA.
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 5
Example 3: Workspace (1)
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 8
Example 2: Workspace
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 6
Example 4: Workspace
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 11
Example 3: Workspace (2)
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 9
Example 5: Node-Voltage Method
Vo
-+
5 Ω
j2 Ω
j3 Ω
-j3 Ω
5∠0◦
A 5∠-90◦
V
Use the node-voltage method to find the phasor voltage Vo.
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 12
Example 4: Kirchhoff’s Laws
Vg
Ia
Ib
Ic
5 Ω
15 Ω25 Ω
j25Ω -j15Ω
2∠45◦
A
The phasor current Ib is 5∠45◦
A.
1. Find Ia, Ib, and Vg.
2. If ω = 800 rads/s, write the expressions for ia(t), ic(t), and
vg(t).
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 10
Example 6: Workspace
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 15
Example 5: Workspace
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 13
Example 7: Node-Voltage Method
Vo
-
+
2.5 I1I1
8 Ω
j5 Ω
-j10 Ω 15∠0◦
A
Use the node-voltage method to find the phasor voltage Vo.
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 16
Example 6: Mesh-Current Method
Ib
Ia
Ic
Id
5 Ω
5 Ω
j5 Ω -j5 Ω
2∠0◦
A
50∠0◦
V100∠0◦
V
Use the mesh-current method to find the branch currents Ia, Ib, Ic,
and Id.
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 14
Example 8: Workspace (1)
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 19
Example 7: Workspace
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 17
Example 8: Workspace (2)
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 20
Example 8: Th´evenin & Norton Equivalents
a
b
1 Ω
12 Ω
12 Ω
12 Ω12 Ω
j12 Ω
-j12 Ω
87∠0◦
V
Find the Th´evenin and Norton equivalents of the circuit in the
phasor domain.
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 18
Example 10: Superposition
15 mH
v1
v2
vo
-
+
20 Ω
30 Ω 25/6 µF
Use superposition to solve for the steady-state part of vo(t). The
sinusoidal voltage sources are:
v1(t) = 240 cos(2000t + 53.13◦
) V
v2(t) = 96 sin(8000t) V
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 23
Example 9: Th´evenin & Norton Equivalents
b
a
0.02 Vo
Vo
-
+
40 Ω
600 Ω j150 Ω -j150 Ω
75∠0◦
V
Find the Th´evenin and Norton equivalents of the circuit in the
phasor domain.
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 21
Example 10: Workspace (1)
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 24
Example 9: Workspace
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 22
Example 11: Workspace (1)
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 27
Example 10: Workspace (2)
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 25
Example 11: Workspace (2)
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 28
Example 11: Operational Amplifiers
100 pF
50 pF
vg
vo
-
+
10 kΩ20 kΩ
25 kΩ
40 kΩ
Find the steady-state expression for vo(t) given that
vg(t) = 2 cos(105
t) V.
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 26
Example 12: Workspace (2)
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 31
Example 12: Operational Amplifiers
0.1 nF
vo
-
+
vg
20 kΩ
80 kΩ
160 kΩ
200 kΩ
Find the steady-state expression for vo(t) when
vg(t) = 20 cos(106
t) V.
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 29
Example 12: Workspace (1)
Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 30

More Related Content

What's hot

Et201 chapter3 sinusoidal steady state circuit analysis
Et201 chapter3 sinusoidal steady state circuit analysisEt201 chapter3 sinusoidal steady state circuit analysis
Et201 chapter3 sinusoidal steady state circuit analysis
nursheda
 

What's hot (20)

Basic electronics Solid State BL therage Numerical Problems
Basic electronics  Solid State BL therage  Numerical Problems Basic electronics  Solid State BL therage  Numerical Problems
Basic electronics Solid State BL therage Numerical Problems
 
Kirchhoff law
Kirchhoff lawKirchhoff law
Kirchhoff law
 
Lecture 28 lc, rlc circuits.
Lecture 28   lc, rlc circuits.Lecture 28   lc, rlc circuits.
Lecture 28 lc, rlc circuits.
 
Rlc series and parallel_equations_from_a_de_perspective
Rlc series and parallel_equations_from_a_de_perspectiveRlc series and parallel_equations_from_a_de_perspective
Rlc series and parallel_equations_from_a_de_perspective
 
Kirchoff
KirchoffKirchoff
Kirchoff
 
Analog Electronic Circuits - Module 4
Analog Electronic Circuits - Module 4Analog Electronic Circuits - Module 4
Analog Electronic Circuits - Module 4
 
Rc and rl circuits
Rc and rl circuitsRc and rl circuits
Rc and rl circuits
 
Lab 7 diode with operational amplifiers by kehali b. haileselassie and kou
Lab 7  diode with operational amplifiers by kehali b. haileselassie and kouLab 7  diode with operational amplifiers by kehali b. haileselassie and kou
Lab 7 diode with operational amplifiers by kehali b. haileselassie and kou
 
Analog Electronic Circuits - Module 5
Analog Electronic Circuits - Module 5Analog Electronic Circuits - Module 5
Analog Electronic Circuits - Module 5
 
kirchoff's rules
kirchoff's ruleskirchoff's rules
kirchoff's rules
 
Low pass filter and Integrator
Low pass filter and IntegratorLow pass filter and Integrator
Low pass filter and Integrator
 
Natural response for RC and RL
Natural response for RC and RLNatural response for RC and RL
Natural response for RC and RL
 
Lecture17
Lecture17Lecture17
Lecture17
 
Graphs
GraphsGraphs
Graphs
 
Et201 chapter3 sinusoidal steady state circuit analysis
Et201 chapter3 sinusoidal steady state circuit analysisEt201 chapter3 sinusoidal steady state circuit analysis
Et201 chapter3 sinusoidal steady state circuit analysis
 
ไฟฟ้ากระแส
ไฟฟ้ากระแสไฟฟ้ากระแส
ไฟฟ้ากระแส
 
Op Amp Revision Q4
Op Amp Revision Q4Op Amp Revision Q4
Op Amp Revision Q4
 
Chapter 1 ac analysis SKEE 2253
Chapter 1 ac analysis SKEE 2253Chapter 1 ac analysis SKEE 2253
Chapter 1 ac analysis SKEE 2253
 
Basic electronics Tutorial 1
Basic electronics Tutorial 1Basic electronics Tutorial 1
Basic electronics Tutorial 1
 
Strong Higgs Pair Production at the LHC with jet substructure
Strong Higgs Pair Production at the LHC with jet substructureStrong Higgs Pair Production at the LHC with jet substructure
Strong Higgs Pair Production at the LHC with jet substructure
 

Similar to 1780 n 10577

Nortans Theorem
Nortans TheoremNortans Theorem
Nortans Theorem
stooty s
 
Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applications
cuashok07
 
ECA - Source Transformation
ECA - Source TransformationECA - Source Transformation
ECA - Source Transformation
Hassaan Rahman
 
Elect principles 2 nortons theorem
Elect principles 2   nortons theoremElect principles 2   nortons theorem
Elect principles 2 nortons theorem
sdacey
 
theorem .ppt explanation and details for engineering
theorem .ppt  explanation and details  for engineeringtheorem .ppt  explanation and details  for engineering
theorem .ppt explanation and details for engineering
mansoorahmed156658
 

Similar to 1780 n 10577 (20)

Nortans Theorem
Nortans TheoremNortans Theorem
Nortans Theorem
 
node analysis.pptx
node analysis.pptxnode analysis.pptx
node analysis.pptx
 
Ee201 -revision_contigency_plan
Ee201  -revision_contigency_planEe201  -revision_contigency_plan
Ee201 -revision_contigency_plan
 
Circuit Theorems
Circuit TheoremsCircuit Theorems
Circuit Theorems
 
Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applications
 
node voltage,thevenin's theorem, AC Fundamentals
node voltage,thevenin's theorem, AC Fundamentals node voltage,thevenin's theorem, AC Fundamentals
node voltage,thevenin's theorem, AC Fundamentals
 
chpt10_2.ppt
chpt10_2.pptchpt10_2.ppt
chpt10_2.ppt
 
ECA - Source Transformation
ECA - Source TransformationECA - Source Transformation
ECA - Source Transformation
 
Fundamental of Electrical and Electronics Engineering.pdf
Fundamental of Electrical and Electronics Engineering.pdfFundamental of Electrical and Electronics Engineering.pdf
Fundamental of Electrical and Electronics Engineering.pdf
 
Manual 2
Manual 2Manual 2
Manual 2
 
AC Circuit Theorems Slides
AC Circuit Theorems SlidesAC Circuit Theorems Slides
AC Circuit Theorems Slides
 
Thevnin and norton
Thevnin and nortonThevnin and norton
Thevnin and norton
 
Unit 3 - Steady state Analysis.pptx
Unit 3 - Steady state Analysis.pptxUnit 3 - Steady state Analysis.pptx
Unit 3 - Steady state Analysis.pptx
 
Floyd chap 11 ac fundamentals
Floyd chap 11 ac fundamentalsFloyd chap 11 ac fundamentals
Floyd chap 11 ac fundamentals
 
Ac fundamentals
Ac fundamentalsAc fundamentals
Ac fundamentals
 
Analog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab ManualAnalog and Digital Electronics Lab Manual
Analog and Digital Electronics Lab Manual
 
Elect principles 2 nortons theorem
Elect principles 2   nortons theoremElect principles 2   nortons theorem
Elect principles 2 nortons theorem
 
theorem .ppt explanation and details for engineering
theorem .ppt  explanation and details  for engineeringtheorem .ppt  explanation and details  for engineering
theorem .ppt explanation and details for engineering
 
circuit theory.pptx
 circuit theory.pptx circuit theory.pptx
circuit theory.pptx
 
Lecture 8
Lecture 8Lecture 8
Lecture 8
 

1780 n 10577

  • 1. Example 1: Voltage Divider 31.25 nF 500 mHvg vo - + 2 kΩ Find the steady-state expression for vo(t) if vg(t) = 64 cos(8000t). Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 3 Overview of Sinusoidal Steady-State Analysis • Nodal analysis • Mesh analysis • Superposition • Source transformation • Thevenin and Norton Equivalents • Op Amps Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 1 Example 1: Workspace Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 4 Phasor Circuit Analysis Steps Phasor (sinusoidal steady-state) analysis generally consists of four steps. 1. Transform all independent sources to their phasor equivalent 2. Calculate the impedance (Z) of all passive circuit elements 3. Apply analysis methods that we learned earlier this term 4. Apply inverse phasor transform to obtain time-domain expression for currents and voltages of interest Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 2
  • 2. Example 3: Source Transformation 15 mH v1 v2 vo - + 20 Ω 30 Ω 25/6 µF Use source transformations to solve for the steady-state part of vo(t). The sinusoidal voltage sources are: v1(t) = 240 cos(4000t + 53.13◦ ) V v2(t) = 96 sin(4000t) V Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 7 Example 2: Current Divider 1 H ig io 50 Ω 250 Ω 20 µF Find the steady-state expression for io(t) if ig(t) = 125 cos(500t) mA. Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 5 Example 3: Workspace (1) Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 8 Example 2: Workspace Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 6
  • 3. Example 4: Workspace Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 11 Example 3: Workspace (2) Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 9 Example 5: Node-Voltage Method Vo -+ 5 Ω j2 Ω j3 Ω -j3 Ω 5∠0◦ A 5∠-90◦ V Use the node-voltage method to find the phasor voltage Vo. Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 12 Example 4: Kirchhoff’s Laws Vg Ia Ib Ic 5 Ω 15 Ω25 Ω j25Ω -j15Ω 2∠45◦ A The phasor current Ib is 5∠45◦ A. 1. Find Ia, Ib, and Vg. 2. If ω = 800 rads/s, write the expressions for ia(t), ic(t), and vg(t). Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 10
  • 4. Example 6: Workspace Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 15 Example 5: Workspace Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 13 Example 7: Node-Voltage Method Vo - + 2.5 I1I1 8 Ω j5 Ω -j10 Ω 15∠0◦ A Use the node-voltage method to find the phasor voltage Vo. Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 16 Example 6: Mesh-Current Method Ib Ia Ic Id 5 Ω 5 Ω j5 Ω -j5 Ω 2∠0◦ A 50∠0◦ V100∠0◦ V Use the mesh-current method to find the branch currents Ia, Ib, Ic, and Id. Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 14
  • 5. Example 8: Workspace (1) Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 19 Example 7: Workspace Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 17 Example 8: Workspace (2) Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 20 Example 8: Th´evenin & Norton Equivalents a b 1 Ω 12 Ω 12 Ω 12 Ω12 Ω j12 Ω -j12 Ω 87∠0◦ V Find the Th´evenin and Norton equivalents of the circuit in the phasor domain. Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 18
  • 6. Example 10: Superposition 15 mH v1 v2 vo - + 20 Ω 30 Ω 25/6 µF Use superposition to solve for the steady-state part of vo(t). The sinusoidal voltage sources are: v1(t) = 240 cos(2000t + 53.13◦ ) V v2(t) = 96 sin(8000t) V Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 23 Example 9: Th´evenin & Norton Equivalents b a 0.02 Vo Vo - + 40 Ω 600 Ω j150 Ω -j150 Ω 75∠0◦ V Find the Th´evenin and Norton equivalents of the circuit in the phasor domain. Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 21 Example 10: Workspace (1) Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 24 Example 9: Workspace Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 22
  • 7. Example 11: Workspace (1) Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 27 Example 10: Workspace (2) Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 25 Example 11: Workspace (2) Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 28 Example 11: Operational Amplifiers 100 pF 50 pF vg vo - + 10 kΩ20 kΩ 25 kΩ 40 kΩ Find the steady-state expression for vo(t) given that vg(t) = 2 cos(105 t) V. Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 26
  • 8. Example 12: Workspace (2) Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 31 Example 12: Operational Amplifiers 0.1 nF vo - + vg 20 kΩ 80 kΩ 160 kΩ 200 kΩ Find the steady-state expression for vo(t) when vg(t) = 20 cos(106 t) V. Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 29 Example 12: Workspace (1) Portland State University ECE 221 Sinusoidal Steady-State Analysis Ver. 1.21 30