SlideShare a Scribd company logo
1 of 28
KULIAH III
                           MEKANIKA TEKNIK TI
                             MOMEN GAYA




          OLEH:
    ALIEF WIKARTA, ST
JURUSAN TEKNIK MESIN
FTI – ITS SURABAYA, 2007
Apa yang dipelajari sekarang ?
Mengetahui dan memahami maksud dari
momen gaya, momen kopel, dan cara
memindah gaya
Apa itu momen gaya ?




The moment of a force about a point provides a measure of the
tendency for rotation (sometimes called a torque).
MOMENT IN 2-D (continued)
 In the 2-D case, the magnitude of the moment is
       Mo = F d




As shown, d is the perpendicular distance from point O to the
line of action of the force.

In 2-D, the direction of MO is either clockwise or
counter-clockwise depending on the tendency for rotation.
Moment in 2-D

                       F               Fy     F
         a
  b                                           Fx
   O                       b       a
                               O
    d
As shown, d is the         Often it is easier to
perpendicular distance     determine MO by using the
from point O to the line   components of F as shown.
of action of the force.
                           MO = (FY a) – (FX b)
MO = F d
and the direction is       CCW = (+)
counter-clockwise.         CW = (-)
Example 1
                              Given: A 40 N force is
                                     applied to the wrench.
                               Find: The moment of the
                                     force at O.
                               Plan: 1) Resolve the force
                                     along x and y axes.
                                    2) Determine MO using
                                    scalar analysis.

Solution: + ↑ Fy = - 40 cos 20° N
          + → Fx = - 40 sin 20° N
+ MO = {-(40 cos 20°)(200) + (40 sin 20°)(30)}N·mm
     = -7107 N·mm = - 7.11 N·m
EXAMPLE 2


                                 Given: A 400 N force is
                                        applied to the frame
                                        and θ = 20°.
                                 Find: The moment of the
                                       force at A.


                                 Plan:
1) Resolve the force along x and y axes.
2) Determine MA using scalar analysis.
EXAMPLE 2 (continued)




                          Solution
+ ↑ Fy = -400 cos 20° N
 + → Fx = -400 sin 20° N
 + MA = {(400 cos 20°)(2) + (400 sin 20°)(3)} N·m
       = 1160 N·m
CONCEPT QUESTION

                                                          F = 10 N
1. What is the moment of the 10 N force
   about point A (MA)?
   A) 10 N·m        B) 30 N·m C) 13 N·m
                                                          d=3m
                                                • A
   D) (10/3) N·m    E) 7 N·m
2. If a force of magnitude F can be applied in four different 2-D
   configurations (P,Q,R, & S), select the cases resulting in the
   maximum and minimum torque values on the nut. (Max, Min).
  A) (Q, P)           B) (R, S)
                                                                   S
  C) (P, R)           D) (Q, S)                                R
                                                      P    Q
10 N                          5N
                 3m       P     2m

3. Using the CCW direction as positive, the net moment of the
   two forces about point P is
    A) 10 N ·m         B) 20 N ·m         C) - 20 N ·m
    D) 40 N ·m         E) - 40 N ·m
Apa itu momen kopel ?
Moment of a Couple
                                        A couple is defined as two
                                        parallel forces with the same
                                        magnitude but opposite in
                                        direction separated by a
                                        perpendicular distance d.



The moment of a couple is defined as
MO = F d (using a scalar analysis) or as
MO = r × F (using a vector analysis).
Here r is any position vector from the line of action of
–F to the line of action of F.
Problem Solving
 A                                    B




A torque or moment of 12 N · m is required to rotate the wheel.
Which one of the two grips of the wheel above will require less
force to rotate the wheel?
Problem Solving (2-D)
A                   B




    M=Fd                M=Fd
    12 = F 0.4          12 = F 0.3
    F = 30 N            F = 40 N
PROBLEM SOLVING - SCALAR

                          Given: Two couples act on the
                                 beam. The resultant couple is
                                 zero.
                          Find: The magnitudes of the forces
                                P and F and the distance d.


                          PLAN:
1) Use definition of a couple to find P and F.
2) Resolve the 300 N force in x and y directions.
3) Determine the net moment.
4) Equate the net moment to zero to find d.
Solution:
                                                           From the definition of a




                   It w
                                                           couple

               +

                      as g
                                                           P = 500 N and
                ΣM

                          ive
                                                           F = 300 N.
                   =

                   n th
                    - (5

                       at t
                        00)
 Resolve the 300 N force into vertical and horizontal
                            he n
                             (2 )
 components. The vertical component is (300 cos 30º) N and
                                  et m
                                   + (3

 the horizontal component is (300 sin 30º) N.
                                       om
                                        00

                                           ent
                                           co s

                                                equ
                                                 30º

                                                    a ls
                                                     )(d)




Now solve this equation for d.
                                                         zer
                                                          + (3




d = (1000 – 60 sin 30º) / (300 cos 30º) = 3.96 m
                                                             o.
                                                                00

                                                                 So
                                                                   s
CONCEPT QUESTION

1. In statics, a couple is defined as __________ separated by a
   perpendicular distance.
  A) two forces in the same direction.
  B) two forces of equal magnitude.
 C) two forces of equal magnitude acting in the same direction.
  D) two forces of equal magnitude acting in opposite directions.

2. F1 and F2 form a couple. The moment              F 1
   of the couple is given by ____ .
                                               r1
                                                              r2
  A) r1 × F1          B) r2 × F1
  C) F2 × r1         D) r2 × F2                 F 2
3. A couple is applied to the beam as shown. Its moment
   equals _____ N·m.
                                           50 N
  A) 50              B) 60
                                         1m       2m           5
                                                       3
  C) 80              D) 100
                                                           4
Apa itu memindah gaya ?

              Several forces and a
              couple moment are
              acting on this vertical
              section of an I-beam.
              Can you replace them
              with just one force and
              one couple moment at
              point O that will have
              the same external
              effect? If yes, how will
              you do that?
AN EQUIVALENT SYSTEM




                               =


   When a number of forces and couple moments are acting on a
body, it is easier to understand their overall effect on the body if
they are combined into a single force and couple moment having
the same external effect
The two force and couple systems are called equivalent systems
since they have the same external effect on the body.
Equivalent Force – Couple Systems




Moving a force from A to O, when both points are on the
vectors’ line of action, does not change the external effect.
Hence, a force vector is called a sliding vector. (But the
internal effect of the force on the body does depend on
where the force is applied).
Equivalent Force – Couple Systems




Moving a force from point A to O (as shown above) requires
creating an additional couple moment. Since this new couple
moment is a “free” vector, it can be applied at any point P on the
body.
Equivalent Force – Couple Systems




If the force system lies in the x-y plane (the 2-D case), then the
reduced equivalent system can be obtained using the following
three scalar equations.
Problem Solving (2-D)
                              Given: A 2-D force and couple
                                    system as shown.
                              Find: The equivalent resultant force
                                    and couple moment acting at
                                    A and then the equivalent
                                    single force location along
                                    the beam AB.
                            Plan:
1) Sum all the x and y components of the forces to find FRA.
2) Find and sum all the moments resulting from moving each
   force to A.
3) Shift the FRA to a distance d such that d = MRA/FRy
Problem Solving (2-D)
                                   + → ΣFRx = 25 + 35 sin 30°
                                               = 42.5 N
              FR                   + ↑ ΣFRy = - 20 - 35 cos 30°
     d
                                               = - 50.31 N
                                   +     MRA   = - 35 cos30° (0.2)
                                                 - 20(0.6) + 25(0.3)
FR = ( 42.52 + (-50.31)2 )1/2 = 65.9 N         = - 10.56 N.m
θ = tan-1 ( 50.31/42.5) = 49.8 ° (Kw IV)
The equivalent single force FR can be located on the
beam AB at a distance d measured from A.
d = MRA/FRy = - 10.56/(-50.31) = 0.21 m.
CONCEPT QUESTION

1. A general system of forces and couple moments acting on a
   rigid body can be reduced to a ___ .
  A) single force.
  B) single moment.
  C) single force and two moments.
  D) single force and a single moment.


2. The original force and couple system and an equivalent
   force-couple system have the same _____ effect on a body.
   A) internal                  B) external
   C) internal and external     D) microscopic
CONCEPT QUESTION
                                                     •Z
3. The forces on the pole can be reduced to               S
   a single force and a single moment at             •R
   point ____ .                                      • Q
   A) P           B) Q          C) R
                                                     •P       Y
   D) S           E) Any of these points.       X
4. Consider two couples acting on a body. The simplest possible
   equivalent system at any arbitrary point on the body will have
  A) one force and one couple moment.
  B) one force.
  C) one couple moment.
  D) two couple moments.
241 wikarta-kuliah-iii-momen-gaya

More Related Content

What's hot

DERET PANGKAT & METODE DERET PANGKAT
DERET PANGKAT & METODE DERET PANGKATDERET PANGKAT & METODE DERET PANGKAT
DERET PANGKAT & METODE DERET PANGKAT
yuni dwinovika
 
[7] resultan sistem gaya
[7] resultan sistem gaya[7] resultan sistem gaya
[7] resultan sistem gaya
Syahrir Qoim
 
Matematika Teknik - Diferensial
Matematika Teknik - DiferensialMatematika Teknik - Diferensial
Matematika Teknik - Diferensial
Reski Aprilia
 

What's hot (20)

Pengantar metode numerik
Pengantar metode numerikPengantar metode numerik
Pengantar metode numerik
 
Modul 2 pd linier orde n
Modul 2 pd linier orde nModul 2 pd linier orde n
Modul 2 pd linier orde n
 
Fisika Dasar I Persamaan Diferensial Firdayanti
Fisika Dasar I Persamaan Diferensial FirdayantiFisika Dasar I Persamaan Diferensial Firdayanti
Fisika Dasar I Persamaan Diferensial Firdayanti
 
ROTASI. Fisika Teknik 1
ROTASI. Fisika Teknik 1ROTASI. Fisika Teknik 1
ROTASI. Fisika Teknik 1
 
06 momen inersia 3
06  momen inersia 306  momen inersia 3
06 momen inersia 3
 
Modul TKP M2KB3 - Mekanika Bahan
Modul TKP M2KB3 - Mekanika Bahan Modul TKP M2KB3 - Mekanika Bahan
Modul TKP M2KB3 - Mekanika Bahan
 
Modul persamaan diferensial 1
Modul persamaan diferensial 1Modul persamaan diferensial 1
Modul persamaan diferensial 1
 
Contoh soal getaran bebas tanpa redaman
Contoh soal getaran bebas tanpa redamanContoh soal getaran bebas tanpa redaman
Contoh soal getaran bebas tanpa redaman
 
Statika dan mekanika dasar- PORTAL
Statika dan mekanika dasar- PORTALStatika dan mekanika dasar- PORTAL
Statika dan mekanika dasar- PORTAL
 
Solusi Persamaan Laplace Dua Dimensi Untuk Metode Numerik
Solusi Persamaan Laplace Dua Dimensi Untuk Metode NumerikSolusi Persamaan Laplace Dua Dimensi Untuk Metode Numerik
Solusi Persamaan Laplace Dua Dimensi Untuk Metode Numerik
 
Mekanika fluida dan sifat sifat fluida
Mekanika fluida dan sifat sifat fluidaMekanika fluida dan sifat sifat fluida
Mekanika fluida dan sifat sifat fluida
 
DERET PANGKAT & METODE DERET PANGKAT
DERET PANGKAT & METODE DERET PANGKATDERET PANGKAT & METODE DERET PANGKAT
DERET PANGKAT & METODE DERET PANGKAT
 
Mekanika klasik (3) bagian 1
Mekanika klasik (3) bagian 1Mekanika klasik (3) bagian 1
Mekanika klasik (3) bagian 1
 
MEKANIKA REKAYASA 3 (METODE CROSS DAN METODE TAKABEYA)
MEKANIKA REKAYASA 3 (METODE CROSS DAN METODE TAKABEYA)MEKANIKA REKAYASA 3 (METODE CROSS DAN METODE TAKABEYA)
MEKANIKA REKAYASA 3 (METODE CROSS DAN METODE TAKABEYA)
 
RUMUS INTERPOLASI A.ppt
RUMUS INTERPOLASI A.pptRUMUS INTERPOLASI A.ppt
RUMUS INTERPOLASI A.ppt
 
[7] resultan sistem gaya
[7] resultan sistem gaya[7] resultan sistem gaya
[7] resultan sistem gaya
 
Sistem Persamaan Linear (SPL) Aljabar Linear Elementer
Sistem Persamaan Linear (SPL) Aljabar Linear ElementerSistem Persamaan Linear (SPL) Aljabar Linear Elementer
Sistem Persamaan Linear (SPL) Aljabar Linear Elementer
 
Persamaan differensial-biasa
Persamaan differensial-biasaPersamaan differensial-biasa
Persamaan differensial-biasa
 
momen inersia.ppt
momen inersia.pptmomen inersia.ppt
momen inersia.ppt
 
Matematika Teknik - Diferensial
Matematika Teknik - DiferensialMatematika Teknik - Diferensial
Matematika Teknik - Diferensial
 

Viewers also liked

Modul mekanika teknik 1
Modul mekanika teknik 1Modul mekanika teknik 1
Modul mekanika teknik 1
Ibrahim Husain
 
[6] kesetimbangan partikel & fbd
[6] kesetimbangan partikel & fbd[6] kesetimbangan partikel & fbd
[6] kesetimbangan partikel & fbd
Syahrir Qoim
 
Pengertian gaya,vektor,resultan dan menyusun gaya
Pengertian gaya,vektor,resultan dan menyusun gayaPengertian gaya,vektor,resultan dan menyusun gaya
Pengertian gaya,vektor,resultan dan menyusun gaya
Wicah
 
Bab ii-sistem-perletakan-dan-gaya-reaksi
Bab ii-sistem-perletakan-dan-gaya-reaksiBab ii-sistem-perletakan-dan-gaya-reaksi
Bab ii-sistem-perletakan-dan-gaya-reaksi
Masnia Siti
 
Static equilibrium chartres
Static equilibrium chartresStatic equilibrium chartres
Static equilibrium chartres
Nikki Ting
 

Viewers also liked (20)

Modul mekanika teknik 1
Modul mekanika teknik 1Modul mekanika teknik 1
Modul mekanika teknik 1
 
[8] momen kopel
[8] momen kopel[8] momen kopel
[8] momen kopel
 
Mekanika teknik
Mekanika teknikMekanika teknik
Mekanika teknik
 
[6] kesetimbangan partikel & fbd
[6] kesetimbangan partikel & fbd[6] kesetimbangan partikel & fbd
[6] kesetimbangan partikel & fbd
 
mekanika rekayasa
mekanika rekayasamekanika rekayasa
mekanika rekayasa
 
Penjumlahan Vektor
Penjumlahan VektorPenjumlahan Vektor
Penjumlahan Vektor
 
analisa-struktur
analisa-strukturanalisa-struktur
analisa-struktur
 
KESETIMBANGAN BENDA TEGAR
KESETIMBANGAN BENDA TEGARKESETIMBANGAN BENDA TEGAR
KESETIMBANGAN BENDA TEGAR
 
Praktikum vektor gaya
Praktikum vektor gayaPraktikum vektor gaya
Praktikum vektor gaya
 
Rpp mek-tek-1-gabung-d3
Rpp mek-tek-1-gabung-d3Rpp mek-tek-1-gabung-d3
Rpp mek-tek-1-gabung-d3
 
GAYA
GAYAGAYA
GAYA
 
Mer 3.1 pendahuluan
Mer 3.1 pendahuluanMer 3.1 pendahuluan
Mer 3.1 pendahuluan
 
Pengertian gaya,vektor,resultan dan menyusun gaya
Pengertian gaya,vektor,resultan dan menyusun gayaPengertian gaya,vektor,resultan dan menyusun gaya
Pengertian gaya,vektor,resultan dan menyusun gaya
 
Kegagalan konstruksi
Kegagalan konstruksiKegagalan konstruksi
Kegagalan konstruksi
 
equilibrium-of-rigid-body
equilibrium-of-rigid-bodyequilibrium-of-rigid-body
equilibrium-of-rigid-body
 
Bab ii-sistem-perletakan-dan-gaya-reaksi
Bab ii-sistem-perletakan-dan-gaya-reaksiBab ii-sistem-perletakan-dan-gaya-reaksi
Bab ii-sistem-perletakan-dan-gaya-reaksi
 
Static Equilibrium, Reactions, and Supports
Static Equilibrium, Reactions, and SupportsStatic Equilibrium, Reactions, and Supports
Static Equilibrium, Reactions, and Supports
 
Perencanaan gaya gaya pondasi pada bangunan gedung dengan 1 basement
Perencanaan gaya gaya pondasi pada bangunan gedung dengan 1 basementPerencanaan gaya gaya pondasi pada bangunan gedung dengan 1 basement
Perencanaan gaya gaya pondasi pada bangunan gedung dengan 1 basement
 
Lesson 12 centroid of an area
Lesson 12 centroid of an areaLesson 12 centroid of an area
Lesson 12 centroid of an area
 
Static equilibrium chartres
Static equilibrium chartresStatic equilibrium chartres
Static equilibrium chartres
 

Similar to 241 wikarta-kuliah-iii-momen-gaya

Mekanikateknik 140330175907-phpapp01
Mekanikateknik 140330175907-phpapp01Mekanikateknik 140330175907-phpapp01
Mekanikateknik 140330175907-phpapp01
frans2014
 
Engmech 04 (resultant_nonconcurrent_force_system)
Engmech 04 (resultant_nonconcurrent_force_system)Engmech 04 (resultant_nonconcurrent_force_system)
Engmech 04 (resultant_nonconcurrent_force_system)
physics101
 
Engmech 05 (equilibrium_of_concurrent_force_system)
Engmech 05 (equilibrium_of_concurrent_force_system)Engmech 05 (equilibrium_of_concurrent_force_system)
Engmech 05 (equilibrium_of_concurrent_force_system)
physics101
 
Engmech 06 (equilibrium of non_concurrent force system)
Engmech 06 (equilibrium of non_concurrent force system)Engmech 06 (equilibrium of non_concurrent force system)
Engmech 06 (equilibrium of non_concurrent force system)
physics101
 
6161103 4.3 moment of force vector formulation
6161103 4.3 moment of force   vector formulation6161103 4.3 moment of force   vector formulation
6161103 4.3 moment of force vector formulation
etcenterrbru
 
16201806 bahan-ajar-ptm117-mekanika-teknik
16201806 bahan-ajar-ptm117-mekanika-teknik16201806 bahan-ajar-ptm117-mekanika-teknik
16201806 bahan-ajar-ptm117-mekanika-teknik
Dedy Wonkso
 

Similar to 241 wikarta-kuliah-iii-momen-gaya (20)

Mekanikateknik 140330175907-phpapp01
Mekanikateknik 140330175907-phpapp01Mekanikateknik 140330175907-phpapp01
Mekanikateknik 140330175907-phpapp01
 
Engmech 04 (resultant_nonconcurrent_force_system)
Engmech 04 (resultant_nonconcurrent_force_system)Engmech 04 (resultant_nonconcurrent_force_system)
Engmech 04 (resultant_nonconcurrent_force_system)
 
ME 245_ 2.pptx
ME 245_ 2.pptxME 245_ 2.pptx
ME 245_ 2.pptx
 
Lecture Notes For Section 4.5
Lecture  Notes For  Section 4.5Lecture  Notes For  Section 4.5
Lecture Notes For Section 4.5
 
Ch 3_rajib1.pptx
Ch 3_rajib1.pptxCh 3_rajib1.pptx
Ch 3_rajib1.pptx
 
Ch12 ssm
Ch12 ssmCh12 ssm
Ch12 ssm
 
Problemas (67) del Capítulo III de física II Ley de Gauss
Problemas (67) del Capítulo III de física II   Ley de GaussProblemas (67) del Capítulo III de física II   Ley de Gauss
Problemas (67) del Capítulo III de física II Ley de Gauss
 
Ch26 ssm
Ch26 ssmCh26 ssm
Ch26 ssm
 
Solution i ph o 26
Solution i ph o 26Solution i ph o 26
Solution i ph o 26
 
Unit 1. force system, solved problems on force system.pdf
Unit 1. force system, solved problems on force system.pdfUnit 1. force system, solved problems on force system.pdf
Unit 1. force system, solved problems on force system.pdf
 
Engmech 05 (equilibrium_of_concurrent_force_system)
Engmech 05 (equilibrium_of_concurrent_force_system)Engmech 05 (equilibrium_of_concurrent_force_system)
Engmech 05 (equilibrium_of_concurrent_force_system)
 
Solb98mc 090504233342-phpapp02
Solb98mc 090504233342-phpapp02Solb98mc 090504233342-phpapp02
Solb98mc 090504233342-phpapp02
 
Engmech 06 (equilibrium of non_concurrent force system)
Engmech 06 (equilibrium of non_concurrent force system)Engmech 06 (equilibrium of non_concurrent force system)
Engmech 06 (equilibrium of non_concurrent force system)
 
6161103 4.3 moment of force vector formulation
6161103 4.3 moment of force   vector formulation6161103 4.3 moment of force   vector formulation
6161103 4.3 moment of force vector formulation
 
Forces
ForcesForces
Forces
 
INPhO-2014-QP-Solutions
INPhO-2014-QP-SolutionsINPhO-2014-QP-Solutions
INPhO-2014-QP-Solutions
 
Ch27 ssm
Ch27 ssmCh27 ssm
Ch27 ssm
 
Equilibrium
EquilibriumEquilibrium
Equilibrium
 
1.4 - Forces in Space.pptx
1.4 - Forces in Space.pptx1.4 - Forces in Space.pptx
1.4 - Forces in Space.pptx
 
16201806 bahan-ajar-ptm117-mekanika-teknik
16201806 bahan-ajar-ptm117-mekanika-teknik16201806 bahan-ajar-ptm117-mekanika-teknik
16201806 bahan-ajar-ptm117-mekanika-teknik
 

241 wikarta-kuliah-iii-momen-gaya

  • 1. KULIAH III MEKANIKA TEKNIK TI MOMEN GAYA OLEH: ALIEF WIKARTA, ST JURUSAN TEKNIK MESIN FTI – ITS SURABAYA, 2007
  • 2. Apa yang dipelajari sekarang ? Mengetahui dan memahami maksud dari momen gaya, momen kopel, dan cara memindah gaya
  • 3. Apa itu momen gaya ? The moment of a force about a point provides a measure of the tendency for rotation (sometimes called a torque).
  • 4. MOMENT IN 2-D (continued) In the 2-D case, the magnitude of the moment is Mo = F d As shown, d is the perpendicular distance from point O to the line of action of the force. In 2-D, the direction of MO is either clockwise or counter-clockwise depending on the tendency for rotation.
  • 5. Moment in 2-D F Fy F a b Fx O b a O d As shown, d is the Often it is easier to perpendicular distance determine MO by using the from point O to the line components of F as shown. of action of the force. MO = (FY a) – (FX b) MO = F d and the direction is CCW = (+) counter-clockwise. CW = (-)
  • 6. Example 1 Given: A 40 N force is applied to the wrench. Find: The moment of the force at O. Plan: 1) Resolve the force along x and y axes. 2) Determine MO using scalar analysis. Solution: + ↑ Fy = - 40 cos 20° N + → Fx = - 40 sin 20° N + MO = {-(40 cos 20°)(200) + (40 sin 20°)(30)}N·mm = -7107 N·mm = - 7.11 N·m
  • 7. EXAMPLE 2 Given: A 400 N force is applied to the frame and θ = 20°. Find: The moment of the force at A. Plan: 1) Resolve the force along x and y axes. 2) Determine MA using scalar analysis.
  • 8. EXAMPLE 2 (continued) Solution + ↑ Fy = -400 cos 20° N + → Fx = -400 sin 20° N + MA = {(400 cos 20°)(2) + (400 sin 20°)(3)} N·m = 1160 N·m
  • 9. CONCEPT QUESTION F = 10 N 1. What is the moment of the 10 N force about point A (MA)? A) 10 N·m B) 30 N·m C) 13 N·m d=3m • A D) (10/3) N·m E) 7 N·m 2. If a force of magnitude F can be applied in four different 2-D configurations (P,Q,R, & S), select the cases resulting in the maximum and minimum torque values on the nut. (Max, Min). A) (Q, P) B) (R, S) S C) (P, R) D) (Q, S) R P Q
  • 10. 10 N 5N 3m P 2m 3. Using the CCW direction as positive, the net moment of the two forces about point P is A) 10 N ·m B) 20 N ·m C) - 20 N ·m D) 40 N ·m E) - 40 N ·m
  • 11. Apa itu momen kopel ?
  • 12. Moment of a Couple A couple is defined as two parallel forces with the same magnitude but opposite in direction separated by a perpendicular distance d. The moment of a couple is defined as MO = F d (using a scalar analysis) or as MO = r × F (using a vector analysis). Here r is any position vector from the line of action of –F to the line of action of F.
  • 13. Problem Solving A B A torque or moment of 12 N · m is required to rotate the wheel. Which one of the two grips of the wheel above will require less force to rotate the wheel?
  • 14. Problem Solving (2-D) A B M=Fd M=Fd 12 = F 0.4 12 = F 0.3 F = 30 N F = 40 N
  • 15. PROBLEM SOLVING - SCALAR Given: Two couples act on the beam. The resultant couple is zero. Find: The magnitudes of the forces P and F and the distance d. PLAN: 1) Use definition of a couple to find P and F. 2) Resolve the 300 N force in x and y directions. 3) Determine the net moment. 4) Equate the net moment to zero to find d.
  • 16. Solution: From the definition of a It w couple + as g P = 500 N and ΣM ive F = 300 N. = n th - (5 at t 00) Resolve the 300 N force into vertical and horizontal he n (2 ) components. The vertical component is (300 cos 30º) N and et m + (3 the horizontal component is (300 sin 30º) N. om 00 ent co s equ 30º a ls )(d) Now solve this equation for d. zer + (3 d = (1000 – 60 sin 30º) / (300 cos 30º) = 3.96 m o. 00 So s
  • 17. CONCEPT QUESTION 1. In statics, a couple is defined as __________ separated by a perpendicular distance. A) two forces in the same direction. B) two forces of equal magnitude. C) two forces of equal magnitude acting in the same direction. D) two forces of equal magnitude acting in opposite directions. 2. F1 and F2 form a couple. The moment F 1 of the couple is given by ____ . r1 r2 A) r1 × F1 B) r2 × F1 C) F2 × r1 D) r2 × F2 F 2
  • 18. 3. A couple is applied to the beam as shown. Its moment equals _____ N·m. 50 N A) 50 B) 60 1m 2m 5 3 C) 80 D) 100 4
  • 19. Apa itu memindah gaya ? Several forces and a couple moment are acting on this vertical section of an I-beam. Can you replace them with just one force and one couple moment at point O that will have the same external effect? If yes, how will you do that?
  • 20. AN EQUIVALENT SYSTEM = When a number of forces and couple moments are acting on a body, it is easier to understand their overall effect on the body if they are combined into a single force and couple moment having the same external effect The two force and couple systems are called equivalent systems since they have the same external effect on the body.
  • 21. Equivalent Force – Couple Systems Moving a force from A to O, when both points are on the vectors’ line of action, does not change the external effect. Hence, a force vector is called a sliding vector. (But the internal effect of the force on the body does depend on where the force is applied).
  • 22. Equivalent Force – Couple Systems Moving a force from point A to O (as shown above) requires creating an additional couple moment. Since this new couple moment is a “free” vector, it can be applied at any point P on the body.
  • 23. Equivalent Force – Couple Systems If the force system lies in the x-y plane (the 2-D case), then the reduced equivalent system can be obtained using the following three scalar equations.
  • 24. Problem Solving (2-D) Given: A 2-D force and couple system as shown. Find: The equivalent resultant force and couple moment acting at A and then the equivalent single force location along the beam AB. Plan: 1) Sum all the x and y components of the forces to find FRA. 2) Find and sum all the moments resulting from moving each force to A. 3) Shift the FRA to a distance d such that d = MRA/FRy
  • 25. Problem Solving (2-D) + → ΣFRx = 25 + 35 sin 30° = 42.5 N FR + ↑ ΣFRy = - 20 - 35 cos 30° d = - 50.31 N + MRA = - 35 cos30° (0.2) - 20(0.6) + 25(0.3) FR = ( 42.52 + (-50.31)2 )1/2 = 65.9 N = - 10.56 N.m θ = tan-1 ( 50.31/42.5) = 49.8 ° (Kw IV) The equivalent single force FR can be located on the beam AB at a distance d measured from A. d = MRA/FRy = - 10.56/(-50.31) = 0.21 m.
  • 26. CONCEPT QUESTION 1. A general system of forces and couple moments acting on a rigid body can be reduced to a ___ . A) single force. B) single moment. C) single force and two moments. D) single force and a single moment. 2. The original force and couple system and an equivalent force-couple system have the same _____ effect on a body. A) internal B) external C) internal and external D) microscopic
  • 27. CONCEPT QUESTION •Z 3. The forces on the pole can be reduced to S a single force and a single moment at •R point ____ . • Q A) P B) Q C) R •P Y D) S E) Any of these points. X 4. Consider two couples acting on a body. The simplest possible equivalent system at any arbitrary point on the body will have A) one force and one couple moment. B) one force. C) one couple moment. D) two couple moments.