SlideShare a Scribd company logo
1 of 23
Download to read offline
Platoon Control of Nonholonomic Robots
using Quintic Bezier Splines
Kaustav Mondal
Department of Electrical Engineering
Arizona State University
Final Project Presentation
EGR 598(Audit)
December 8, 2018
Professor:
Dr. Yan Chen
Outline
Introduction to Platoon
Contributions of Work
Hardware representation.
Error Dynamics of Kanayama controller
Inner loop control design
Outer loop control design
Minimum Jerk Trajectory Generation
Trajectory Planner for Leader of Platoon
Trajectory Planner for Follower of Platoon
Localization using Particle Filter
Software and Hardware results.
References
2/23
Introduction to Platoon
Advantages
inter vehicle distance reduces, increases capacity of road
fewer collision
Reduced aerodynamic drag → Greater fuel efficiency
Disadvantages
Not a feasible scenario in densely populated roads.
Inter-vehicular communication prone to hackers.
3/23
String Stability
G(s) =
δi (s)
δi−1(s)
(1)
The system is string stable if
||G(s)||∞ < 1 (Sheikholeslam, 1990)
The impulse response g(t) does not change sign i.e. g(t) > 0
∀ t ≥ 0 (Rajamani, 1995).
δss for all vehicles have same sign.
Figure: String Unstable Figure: String Stable
4/23
Contributions of Work
Use of Frenet Coordinate System to generate a minimum jerk
trajectory planner
Merging ideas from Constant Time-gap platooning policy and
Kanayama nonlinear controller(Kanayama 1990) for trajectory
tracking to form a novel way of doing platooning.
Real-time implementation of constant time-gap platooning
policy on differential drive robots using ROS.
5/23
Hardware
Nonlinear Dynamic Vehicle Model



Iw + r2
d2
w
1
4
md2
w + I r2
d2
w
1
4
md2
w I
r2
d2
w
1
4
md2
w I Iw + r2
d2
w
1
4
md2
w + I



˙ωr
˙ωl
=


0 − r2
dw
mc dω
r2
dw
mc dω 0

 ωr
ωl
+
τr
τl
Nonlinear Speed Force Torque Model
m +
2Iw
r2
˙v − mc dω2
= F, I +
d2
w
2r2
Iw ˙ω + mc dωv = τ (2)
Figure: Hardware Representation
6/23
Nominal Parameter Values
Par Definition
Nominal
Value
m Mass of fully loaded vehicle, m = mc + 2mw 3400 g
mc Mass of base plus components, mc = mb + mcomp (ex-
cludes wheels-motors)
2760 g
mb Mass of base (excl components-wheels-motors) 1769 g
mcomp Mass: components on base (excl wheels-motors) 993 g
mw Mass of single wheel-motor combination 320 g
Ic Chassis moment of inertia of about vertical 30 m2
Iw Wheel+motor moment of inertia about axle 1.67 µ kg m2
I Total inertia: I = Ic + mc d2
+ 0.5mw d2
w + Iw 42.4 g m2
r Radius of wheels 4.2 cm
l Length of robot chassis/base 28 cm
w Width of robot chassis/base 25 cm
AR Aspect ratio = l / w 1.12
dw Distance between two wheels (at midpoint) ≈ 25 cm
d Distance c.g. lies forward of wheel axles 2.5 cm
la Armature inductance 1.729 mH
ra Armature resistance 3.01 Ω
kb Back EMF constant 9.5 mV/rad/s
kt Torque constant 9.5 mNm/A
kg Motor-wheel gear (down) ratio 50
β Speed damping constant 3.29 µNms
7/23
Error Dynamics
Given that (xr , yr , θr ) and (x, y, θ) describe the pose of the leader
and follower, respectively, it follows that (xr − x, yr − y, θr − θ)
defines errors in inertial coordinates. Errors (e1, e2, e3) in the
follower’s xbyb body frame.


e1
e2
e3

 =


cos θ sin θ 0
− sin θ cos θ 0
0 0 1




xr − x
yr − y
θr − θ

 (3)
˙xe = ωye − v + vr cos θe (4)
˙ye = −ωxe + vr sin θe (5)
˙θe = ωr − ω (6)
Figure: Error Transformation
8/23
Inner Loop Control Design
Assuming the plant P[e→ωr,l ] to be decoupled,
Kinner = kI2×2
where k = g(s+z)
s
b
s+b , g = 5, z = 10, b = 200.
Figure: Inner-Loop System
Figure: Sensitivities So = Si , To = Ti for Coupled P[e→[v,ω]]
9/23
Outer Loop Control Design
Feedforward Term
vff
ωff
=
vr cos e3
ωr
(7)
Feedback Controller (Kanayama
1990)
vfb
ωfb
=
−kx xe
−vr ky kθye − vr kθ sin θe
(8)
Figure: Outer-Loop System
Substituting feedforward and feedback terms, the new error
dynamics :
˙xe = −kx xe + ωye (9)
˙ye = −ωxe + vr sin θe (10)
˙θe = −vr kθky ye − vr kθ sin θe (11)
10/23
Outer Loop Control Design
Linearized error dynamics near qe = [ xe ye θe ]T = 0:
˙qe = Aqe A =


−kx ωr 0
−ωr 0 vr
0 −vr kθky −vr kθ

 (12)
Φ(s) = det(sI − A) = s3 + a2s2 + a1s + ao where
a2 = kx + vr kθ,
a1 = v2
r ky kθ + vr kx kθ + ω2
r ,
ao = vr ω2
r kθ + v2
r kx ky kθ.
A is hurwitz if a2a1 > ao.
vr > 0, kx , ky , kθ > 0 (Assumption)
kx = 0.75, ky = 4, kth = 4.5 (Hardware Implementation)
If ˙vr and ˙ωr are sufficiently small (Low, 2012), the equilibrium
qe = 0 is locally exponentially stable. Lyapunov analysis and
Barlabat’s Lemma have been used.
11/23
Minimum Jerk Trajectory Generation
x∗
(t) = argmin
x(t)
T
0
L(
...
x , ¨x, ˙x, x, t)dt = argmin
x(t)
T
0
...
x (t)dt (13)
We solve the Euler Lagrange Equation:
∂L
∂x
−
d
dt
(
∂L
∂ ˙x
) +
d2
dt2
(
∂L
∂¨x
) −
d3
dt3
(
∂L
∂x(3)
) = 0 (14)
x(t) =
∞
n=0
αntn
(15)
x∗(t) = α0 + α1t + α2t2 + α3t3 + α4t4 + α5t5
6 coefficients, 6 tunable parameters, 6 boundary conditions
Initial Condition [xi , ˙xi , ¨xi ], Final Condition [xf , ˙xf , ¨xf ]
α0 = xi , α1 = ˙xi , α2 = 1
2 ¨xi


T3
T4
T5
3T2
4T3
5T4
6T 12T2
20T3

 ×


α3
α4
α5

 =


xf − (xi + ˙xi T + 1
2
¨xT2
)
˙xf − ( ˙xi + ¨xi T)
¨xf − ¨xi

 (16)
12/23
Conversion : Cartesian → Frenet
The center line determines the ideal path.
s denotes covered arc length of the center line.
d denotes perpendicular offset from center line
−→
tr , −→nr are tangential and normal vectors at a certain point on
reference path.
Conversion of cartesian coordinate frame to frenet frame
(Werling 2010).
−→x (s(t), d(t)) = −→r (s(t)) + d(t)−→nr (s(t)) (17)
where s(t) denotes the covered arc length of the center line,
−→
tx , −→nx are tangential and normal vectors of resulting
trajectory −→x (s(t), d(t))
13/23
Generation of Trajectories
Generation of 1D trajectories for s(arc length) and d(deviation).
argmin
s(t)
Cs (t)
s.t. t ∈ [t1, t2],
where
Cs (t) = k1
t2
t1
...
s (t)dt + k2t2 +
k3(sref (t2) − s(t2))2
t1 = t0
t2 = t0 + T
Jerk optimal trajectory from
[si , ˙si , ¨si , t1] → [starget , ˙starget , ¨starget , t2]
argmin
d(t)
Cd (t)
s.t. t ∈ [t1, t2],
where
Cd (t) = k4
t0+T
t0
...
d (t)dt +
k5t2 + k6(dref (t2) − d(t2))2
t1 = t0
t2 = t0 + T
Jerk optimal trajectory from
[di , ˙di , ¨di , t1] → [dtarget , 0, 0, t2]
Neglecting trajectories which intersect with obstacles, we select the
trajectory with the minimum Cs(t) + Cd (t).
14/23
Trajectory Planner: Leader
Trajectory Planner for Leader
Velocity keeping trajectory planner.
[s0, ˙s0, ¨s0, t1] → [ ˙starget , ¨starget , t2]
[d0, ˙d0, ¨d0, t1] → [d, 0, 0, t2] where dtarget − < d < dtarget +
Minimize the cost functional
argmin
s(t)
k1
t2
t1
...
s (t)dt + k2t2 + k3( ˙starget (t2) − ˙s(t2))2
s.t. t ∈ [t1, t2],
argmin
d(t)
k4
t2
t1
...
d (t)dt + k4t2 + k6(dtarget (t2) − d(t2))2
s.t. t ∈ [t1, t2],
s∗(t) = 4
n=0 αntn (Quartic Polynomial)
d∗(t) = 5
n=0 αntn (Quintic Polynomial)
Target point is tracked by leader using Kanayama nonlinear
controller(Kanayama 1990).
15/23
Trajectory Planner: Leader
d is varied to generate a family of trajectories
Trajectories which intersect with obstacles are neglected
Trajectory with minimum jerk is selected.
Figure: Family of Trajectories
Figure: Avoiding Obstacles
Software Demonstration (ROS) Link (CLICK HERE)
Hardware Demonstration (ROS) Link (CLICK HERE)
16/23
Trajectory Planner: Follower
Trajectory Planner for follower
Use of Constant time-gap law for safety.
[starget, ˙starget, ¨starget, t1] → [slv , ˙slv , ¨slv , t2]
starget = slv − (D0 + τ ˙slv )
˙starget = ˙slv − τ ¨slv
¨starget = ¨slv
[slv , ˙slv , ¨slv , t2] represents position of Leader.
[starget, ˙starget, ¨starget, t1] represents desired position of Follower.
D0 is the standstill distance between robots
τ is the time-constant of the Constant time-gap law.
[dtarget, ˙dtarget, ¨dtarget, t1] → [dlv , 0, 0, t2]
dv is the perpendicular deviation from reference trajectory.
The target point is tracked by follower using Kanayama
Controller(Kanayama 1990).
17/23
Trajectory Planner: Follower
Figure: Follower Trajectory
Software Demonstration (ROS) Link (CLICK HERE)
18/23
Localization
Adaptive Monte Carlo Localization (http://wiki.ros.org/amcl)
Localizes against pre-existing map in 2D space.
Map generated using SLAM (http://wiki.ros.org/gmapping)
Kullback Leibler divergence (KLD Sampling)
Variable Particle Size
Sample size is proportional to error between odometry position and
sample based position.
Smaller sample size when particles have converged.
Use of Odometry data for Prediction step.
Use of Lidar Scan data for Update step.
Figure: Uncertain Initial Position Figure: Updated Position
19/23
Constant Timegap Policy (τ = 1 sec)
Platoon of 3 robots
D0 = 1 meter, τ = 1 sec
Inter robot distance
converges to 1 meter at
standstill.
Inter robot distance
amplifies down the platoon
Velocity amplifies during
transients.
No String Stability.
Hardware Demonstration
Link Link (CLICK HERE)
20/23
Constant Timegap Policy (τ = 2 sec)
Platoon of 3 robots
D0 = 1 meter, τ = 2 sec
Inter robot distance
converges to 1 meter at
standstill.
Inter robot distance
amplifies down the platoon
Velocity amplifies during
transients.
No String Stability.
21/23
Platoon with Obstacle
Figure: Robot deviation from the reference
D0 = 1 meter, τ = 1 sec
No string stability of lateral deviation.
Deviation amplifies !!
Hardware Demonstration Link
3 robots Link (CLICK HERE)
2 robots Link (CLICK HERE)
22/23
References
S. Sheikholeslam, C.A. Desoer, Longitudinal Control of a
Platoon of Vehicles with no Communication of Lead Vehicle
Information: A System Level Study, IEEE transactions on
Vehicle Technology, Vol. 42, No.4, 1993.
S. Sheikholeslam, C.A. Desoer, Longitudinal Control of
Platoons, American Control Conference(ACC), pp. 291-296,
IEEE, 1990.
R. Rajamani, Vehicle Dynamics and Control, Springer Science,
1995.
Y. Kanayama, Y. Kimura, F. Miyazaki, T. Noguchi, A stable
tracking control method for an autonomous mobile robot,
1990.
C. Low, A trajectory tracking control scheme design for
nonholonomic wheeled mobile robots with low-level control
systems, 2012 IEEE 51st Annual Conf on Decision and
Control (CDC), pp. 536543, IEEE, 2012.
23/23

More Related Content

What's hot

solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...Sohar Carr
 
Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer Univers...
Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer Univers...Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer Univers...
Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer Univers...Erdi Karaçal
 
Dynamics of structures 5th edition chopra solutions manual
Dynamics of structures 5th edition chopra solutions manualDynamics of structures 5th edition chopra solutions manual
Dynamics of structures 5th edition chopra solutions manualSchneiderxds
 
OConnor_SimulationProject
OConnor_SimulationProjectOConnor_SimulationProject
OConnor_SimulationProjectKevin O'Connor
 
131445983 jembatan-balok-t
131445983 jembatan-balok-t131445983 jembatan-balok-t
131445983 jembatan-balok-tagustinamanru
 
Hibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionarioHibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionarioCaleb Rangel
 
solucionario del capitulo 12
solucionario del capitulo 12 solucionario del capitulo 12
solucionario del capitulo 12 jasson silva
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...Sohar Carr
 
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of GaziantepFormul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of GaziantepErdi Karaçal
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...Sohar Carr
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica...
 solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica... solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica...Sohar Carr
 
Design of an automotive differential with reduction ratio greater than 6
Design of an automotive differential with reduction ratio greater than 6Design of an automotive differential with reduction ratio greater than 6
Design of an automotive differential with reduction ratio greater than 6eSAT Publishing House
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observersSolo Hermelin
 
9789774541100
97897745411009789774541100
9789774541100sushsky1
 

What's hot (17)

Bode plot
Bode plot Bode plot
Bode plot
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
 
Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer Univers...
Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer Univers...Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer Univers...
Me307 machine elements formula sheet Erdi Karaçal Mechanical Engineer Univers...
 
Dynamics of structures 5th edition chopra solutions manual
Dynamics of structures 5th edition chopra solutions manualDynamics of structures 5th edition chopra solutions manual
Dynamics of structures 5th edition chopra solutions manual
 
OConnor_SimulationProject
OConnor_SimulationProjectOConnor_SimulationProject
OConnor_SimulationProject
 
131445983 jembatan-balok-t
131445983 jembatan-balok-t131445983 jembatan-balok-t
131445983 jembatan-balok-t
 
Hibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionarioHibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionario
 
Chapter 15
Chapter 15Chapter 15
Chapter 15
 
solucionario del capitulo 12
solucionario del capitulo 12 solucionario del capitulo 12
solucionario del capitulo 12
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
 
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of GaziantepFormul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica)...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica)...
 
Capítulo 10 mola
Capítulo 10   molaCapítulo 10   mola
Capítulo 10 mola
 
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica...
 solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica... solucionario mecanica vectorial para ingenieros - beer  & johnston (dinamica...
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica...
 
Design of an automotive differential with reduction ratio greater than 6
Design of an automotive differential with reduction ratio greater than 6Design of an automotive differential with reduction ratio greater than 6
Design of an automotive differential with reduction ratio greater than 6
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observers
 
9789774541100
97897745411009789774541100
9789774541100
 

Similar to Platoon Control of Nonholonomic Robots using Quintic Bezier Splines

Machine Design MD By S K Mondal T&Q.0003.pdf
Machine Design MD By S K Mondal T&Q.0003.pdfMachine Design MD By S K Mondal T&Q.0003.pdf
Machine Design MD By S K Mondal T&Q.0003.pdfVikasRathod56
 
Actuator Constrained Optimal Control of Formations Near the Libration Points
Actuator Constrained Optimal Control of Formations Near the Libration PointsActuator Constrained Optimal Control of Formations Near the Libration Points
Actuator Constrained Optimal Control of Formations Near the Libration PointsBelinda Marchand
 
Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...
Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...
Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...Valerio Salvucci
 
Design of windmill power generation using multi generator and single rotor (h...
Design of windmill power generation using multi generator and single rotor (h...Design of windmill power generation using multi generator and single rotor (h...
Design of windmill power generation using multi generator and single rotor (h...Alexander Decker
 
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdfSolucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdfAntonellaMeaurio
 
Julio Bravo's Master Graduation Project
Julio Bravo's Master Graduation ProjectJulio Bravo's Master Graduation Project
Julio Bravo's Master Graduation ProjectJulio Bravo
 
ENGINEERING SYSTEM DYNAMICS-TAKE HOME ASSIGNMENT 2018
ENGINEERING SYSTEM DYNAMICS-TAKE HOME ASSIGNMENT 2018ENGINEERING SYSTEM DYNAMICS-TAKE HOME ASSIGNMENT 2018
ENGINEERING SYSTEM DYNAMICS-TAKE HOME ASSIGNMENT 2018musadoto
 
Horizontal alignment of Roads
Horizontal alignment of RoadsHorizontal alignment of Roads
Horizontal alignment of RoadsLatif Hyder Wadho
 
TM plane wave scattering from finite rectangular grooves in a conducting plan...
TM plane wave scattering from finite rectangular grooves in a conducting plan...TM plane wave scattering from finite rectangular grooves in a conducting plan...
TM plane wave scattering from finite rectangular grooves in a conducting plan...Yong Heui Cho
 
IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)Claudia Sin
 
IRJET- Design and Development of Open Differential for Transmission System of...
IRJET- Design and Development of Open Differential for Transmission System of...IRJET- Design and Development of Open Differential for Transmission System of...
IRJET- Design and Development of Open Differential for Transmission System of...IRJET Journal
 
Design of a Lift Mechanism for Disabled People
Design of a Lift Mechanism for Disabled PeopleDesign of a Lift Mechanism for Disabled People
Design of a Lift Mechanism for Disabled PeopleSamet Baykul
 
Design of Flexible Pavement Using AASHTO.pptx
Design of Flexible Pavement Using AASHTO.pptxDesign of Flexible Pavement Using AASHTO.pptx
Design of Flexible Pavement Using AASHTO.pptxmohammeed3
 
solution manual of goldsmith wireless communication
solution manual of goldsmith wireless communicationsolution manual of goldsmith wireless communication
solution manual of goldsmith wireless communicationNIT Raipur
 
EENG519FinalProjectReport
EENG519FinalProjectReportEENG519FinalProjectReport
EENG519FinalProjectReportDaniel K
 
Differential calculus
Differential calculusDifferential calculus
Differential calculusChit Laplana
 

Similar to Platoon Control of Nonholonomic Robots using Quintic Bezier Splines (20)

Machine Design MD By S K Mondal T&Q.0003.pdf
Machine Design MD By S K Mondal T&Q.0003.pdfMachine Design MD By S K Mondal T&Q.0003.pdf
Machine Design MD By S K Mondal T&Q.0003.pdf
 
Actuator Constrained Optimal Control of Formations Near the Libration Points
Actuator Constrained Optimal Control of Formations Near the Libration PointsActuator Constrained Optimal Control of Formations Near the Libration Points
Actuator Constrained Optimal Control of Formations Near the Libration Points
 
Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...
Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...
Improving EV Lateral Dynamics Control Using Infinity Norm Approach with Close...
 
Design of windmill power generation using multi generator and single rotor (h...
Design of windmill power generation using multi generator and single rotor (h...Design of windmill power generation using multi generator and single rotor (h...
Design of windmill power generation using multi generator and single rotor (h...
 
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdfSolucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
 
Julio Bravo's Master Graduation Project
Julio Bravo's Master Graduation ProjectJulio Bravo's Master Graduation Project
Julio Bravo's Master Graduation Project
 
Base excitation of dynamic systems
Base excitation of dynamic systemsBase excitation of dynamic systems
Base excitation of dynamic systems
 
ENGINEERING SYSTEM DYNAMICS-TAKE HOME ASSIGNMENT 2018
ENGINEERING SYSTEM DYNAMICS-TAKE HOME ASSIGNMENT 2018ENGINEERING SYSTEM DYNAMICS-TAKE HOME ASSIGNMENT 2018
ENGINEERING SYSTEM DYNAMICS-TAKE HOME ASSIGNMENT 2018
 
Horizontal alignment of Roads
Horizontal alignment of RoadsHorizontal alignment of Roads
Horizontal alignment of Roads
 
TM plane wave scattering from finite rectangular grooves in a conducting plan...
TM plane wave scattering from finite rectangular grooves in a conducting plan...TM plane wave scattering from finite rectangular grooves in a conducting plan...
TM plane wave scattering from finite rectangular grooves in a conducting plan...
 
IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)IC Design of Power Management Circuits (III)
IC Design of Power Management Circuits (III)
 
2_1 Edit Distance.pptx
2_1 Edit Distance.pptx2_1 Edit Distance.pptx
2_1 Edit Distance.pptx
 
IRJET- Design and Development of Open Differential for Transmission System of...
IRJET- Design and Development of Open Differential for Transmission System of...IRJET- Design and Development of Open Differential for Transmission System of...
IRJET- Design and Development of Open Differential for Transmission System of...
 
Design of a Lift Mechanism for Disabled People
Design of a Lift Mechanism for Disabled PeopleDesign of a Lift Mechanism for Disabled People
Design of a Lift Mechanism for Disabled People
 
Chap2 ofdm basics
Chap2 ofdm basicsChap2 ofdm basics
Chap2 ofdm basics
 
Design of Flexible Pavement Using AASHTO.pptx
Design of Flexible Pavement Using AASHTO.pptxDesign of Flexible Pavement Using AASHTO.pptx
Design of Flexible Pavement Using AASHTO.pptx
 
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systemsAdaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
 
solution manual of goldsmith wireless communication
solution manual of goldsmith wireless communicationsolution manual of goldsmith wireless communication
solution manual of goldsmith wireless communication
 
EENG519FinalProjectReport
EENG519FinalProjectReportEENG519FinalProjectReport
EENG519FinalProjectReport
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
 

Recently uploaded

MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 

Recently uploaded (20)

MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 

Platoon Control of Nonholonomic Robots using Quintic Bezier Splines

  • 1. Platoon Control of Nonholonomic Robots using Quintic Bezier Splines Kaustav Mondal Department of Electrical Engineering Arizona State University Final Project Presentation EGR 598(Audit) December 8, 2018 Professor: Dr. Yan Chen
  • 2. Outline Introduction to Platoon Contributions of Work Hardware representation. Error Dynamics of Kanayama controller Inner loop control design Outer loop control design Minimum Jerk Trajectory Generation Trajectory Planner for Leader of Platoon Trajectory Planner for Follower of Platoon Localization using Particle Filter Software and Hardware results. References 2/23
  • 3. Introduction to Platoon Advantages inter vehicle distance reduces, increases capacity of road fewer collision Reduced aerodynamic drag → Greater fuel efficiency Disadvantages Not a feasible scenario in densely populated roads. Inter-vehicular communication prone to hackers. 3/23
  • 4. String Stability G(s) = δi (s) δi−1(s) (1) The system is string stable if ||G(s)||∞ < 1 (Sheikholeslam, 1990) The impulse response g(t) does not change sign i.e. g(t) > 0 ∀ t ≥ 0 (Rajamani, 1995). δss for all vehicles have same sign. Figure: String Unstable Figure: String Stable 4/23
  • 5. Contributions of Work Use of Frenet Coordinate System to generate a minimum jerk trajectory planner Merging ideas from Constant Time-gap platooning policy and Kanayama nonlinear controller(Kanayama 1990) for trajectory tracking to form a novel way of doing platooning. Real-time implementation of constant time-gap platooning policy on differential drive robots using ROS. 5/23
  • 6. Hardware Nonlinear Dynamic Vehicle Model    Iw + r2 d2 w 1 4 md2 w + I r2 d2 w 1 4 md2 w I r2 d2 w 1 4 md2 w I Iw + r2 d2 w 1 4 md2 w + I    ˙ωr ˙ωl =   0 − r2 dw mc dω r2 dw mc dω 0   ωr ωl + τr τl Nonlinear Speed Force Torque Model m + 2Iw r2 ˙v − mc dω2 = F, I + d2 w 2r2 Iw ˙ω + mc dωv = τ (2) Figure: Hardware Representation 6/23
  • 7. Nominal Parameter Values Par Definition Nominal Value m Mass of fully loaded vehicle, m = mc + 2mw 3400 g mc Mass of base plus components, mc = mb + mcomp (ex- cludes wheels-motors) 2760 g mb Mass of base (excl components-wheels-motors) 1769 g mcomp Mass: components on base (excl wheels-motors) 993 g mw Mass of single wheel-motor combination 320 g Ic Chassis moment of inertia of about vertical 30 m2 Iw Wheel+motor moment of inertia about axle 1.67 µ kg m2 I Total inertia: I = Ic + mc d2 + 0.5mw d2 w + Iw 42.4 g m2 r Radius of wheels 4.2 cm l Length of robot chassis/base 28 cm w Width of robot chassis/base 25 cm AR Aspect ratio = l / w 1.12 dw Distance between two wheels (at midpoint) ≈ 25 cm d Distance c.g. lies forward of wheel axles 2.5 cm la Armature inductance 1.729 mH ra Armature resistance 3.01 Ω kb Back EMF constant 9.5 mV/rad/s kt Torque constant 9.5 mNm/A kg Motor-wheel gear (down) ratio 50 β Speed damping constant 3.29 µNms 7/23
  • 8. Error Dynamics Given that (xr , yr , θr ) and (x, y, θ) describe the pose of the leader and follower, respectively, it follows that (xr − x, yr − y, θr − θ) defines errors in inertial coordinates. Errors (e1, e2, e3) in the follower’s xbyb body frame.   e1 e2 e3   =   cos θ sin θ 0 − sin θ cos θ 0 0 0 1     xr − x yr − y θr − θ   (3) ˙xe = ωye − v + vr cos θe (4) ˙ye = −ωxe + vr sin θe (5) ˙θe = ωr − ω (6) Figure: Error Transformation 8/23
  • 9. Inner Loop Control Design Assuming the plant P[e→ωr,l ] to be decoupled, Kinner = kI2×2 where k = g(s+z) s b s+b , g = 5, z = 10, b = 200. Figure: Inner-Loop System Figure: Sensitivities So = Si , To = Ti for Coupled P[e→[v,ω]] 9/23
  • 10. Outer Loop Control Design Feedforward Term vff ωff = vr cos e3 ωr (7) Feedback Controller (Kanayama 1990) vfb ωfb = −kx xe −vr ky kθye − vr kθ sin θe (8) Figure: Outer-Loop System Substituting feedforward and feedback terms, the new error dynamics : ˙xe = −kx xe + ωye (9) ˙ye = −ωxe + vr sin θe (10) ˙θe = −vr kθky ye − vr kθ sin θe (11) 10/23
  • 11. Outer Loop Control Design Linearized error dynamics near qe = [ xe ye θe ]T = 0: ˙qe = Aqe A =   −kx ωr 0 −ωr 0 vr 0 −vr kθky −vr kθ   (12) Φ(s) = det(sI − A) = s3 + a2s2 + a1s + ao where a2 = kx + vr kθ, a1 = v2 r ky kθ + vr kx kθ + ω2 r , ao = vr ω2 r kθ + v2 r kx ky kθ. A is hurwitz if a2a1 > ao. vr > 0, kx , ky , kθ > 0 (Assumption) kx = 0.75, ky = 4, kth = 4.5 (Hardware Implementation) If ˙vr and ˙ωr are sufficiently small (Low, 2012), the equilibrium qe = 0 is locally exponentially stable. Lyapunov analysis and Barlabat’s Lemma have been used. 11/23
  • 12. Minimum Jerk Trajectory Generation x∗ (t) = argmin x(t) T 0 L( ... x , ¨x, ˙x, x, t)dt = argmin x(t) T 0 ... x (t)dt (13) We solve the Euler Lagrange Equation: ∂L ∂x − d dt ( ∂L ∂ ˙x ) + d2 dt2 ( ∂L ∂¨x ) − d3 dt3 ( ∂L ∂x(3) ) = 0 (14) x(t) = ∞ n=0 αntn (15) x∗(t) = α0 + α1t + α2t2 + α3t3 + α4t4 + α5t5 6 coefficients, 6 tunable parameters, 6 boundary conditions Initial Condition [xi , ˙xi , ¨xi ], Final Condition [xf , ˙xf , ¨xf ] α0 = xi , α1 = ˙xi , α2 = 1 2 ¨xi   T3 T4 T5 3T2 4T3 5T4 6T 12T2 20T3   ×   α3 α4 α5   =   xf − (xi + ˙xi T + 1 2 ¨xT2 ) ˙xf − ( ˙xi + ¨xi T) ¨xf − ¨xi   (16) 12/23
  • 13. Conversion : Cartesian → Frenet The center line determines the ideal path. s denotes covered arc length of the center line. d denotes perpendicular offset from center line −→ tr , −→nr are tangential and normal vectors at a certain point on reference path. Conversion of cartesian coordinate frame to frenet frame (Werling 2010). −→x (s(t), d(t)) = −→r (s(t)) + d(t)−→nr (s(t)) (17) where s(t) denotes the covered arc length of the center line, −→ tx , −→nx are tangential and normal vectors of resulting trajectory −→x (s(t), d(t)) 13/23
  • 14. Generation of Trajectories Generation of 1D trajectories for s(arc length) and d(deviation). argmin s(t) Cs (t) s.t. t ∈ [t1, t2], where Cs (t) = k1 t2 t1 ... s (t)dt + k2t2 + k3(sref (t2) − s(t2))2 t1 = t0 t2 = t0 + T Jerk optimal trajectory from [si , ˙si , ¨si , t1] → [starget , ˙starget , ¨starget , t2] argmin d(t) Cd (t) s.t. t ∈ [t1, t2], where Cd (t) = k4 t0+T t0 ... d (t)dt + k5t2 + k6(dref (t2) − d(t2))2 t1 = t0 t2 = t0 + T Jerk optimal trajectory from [di , ˙di , ¨di , t1] → [dtarget , 0, 0, t2] Neglecting trajectories which intersect with obstacles, we select the trajectory with the minimum Cs(t) + Cd (t). 14/23
  • 15. Trajectory Planner: Leader Trajectory Planner for Leader Velocity keeping trajectory planner. [s0, ˙s0, ¨s0, t1] → [ ˙starget , ¨starget , t2] [d0, ˙d0, ¨d0, t1] → [d, 0, 0, t2] where dtarget − < d < dtarget + Minimize the cost functional argmin s(t) k1 t2 t1 ... s (t)dt + k2t2 + k3( ˙starget (t2) − ˙s(t2))2 s.t. t ∈ [t1, t2], argmin d(t) k4 t2 t1 ... d (t)dt + k4t2 + k6(dtarget (t2) − d(t2))2 s.t. t ∈ [t1, t2], s∗(t) = 4 n=0 αntn (Quartic Polynomial) d∗(t) = 5 n=0 αntn (Quintic Polynomial) Target point is tracked by leader using Kanayama nonlinear controller(Kanayama 1990). 15/23
  • 16. Trajectory Planner: Leader d is varied to generate a family of trajectories Trajectories which intersect with obstacles are neglected Trajectory with minimum jerk is selected. Figure: Family of Trajectories Figure: Avoiding Obstacles Software Demonstration (ROS) Link (CLICK HERE) Hardware Demonstration (ROS) Link (CLICK HERE) 16/23
  • 17. Trajectory Planner: Follower Trajectory Planner for follower Use of Constant time-gap law for safety. [starget, ˙starget, ¨starget, t1] → [slv , ˙slv , ¨slv , t2] starget = slv − (D0 + τ ˙slv ) ˙starget = ˙slv − τ ¨slv ¨starget = ¨slv [slv , ˙slv , ¨slv , t2] represents position of Leader. [starget, ˙starget, ¨starget, t1] represents desired position of Follower. D0 is the standstill distance between robots τ is the time-constant of the Constant time-gap law. [dtarget, ˙dtarget, ¨dtarget, t1] → [dlv , 0, 0, t2] dv is the perpendicular deviation from reference trajectory. The target point is tracked by follower using Kanayama Controller(Kanayama 1990). 17/23
  • 18. Trajectory Planner: Follower Figure: Follower Trajectory Software Demonstration (ROS) Link (CLICK HERE) 18/23
  • 19. Localization Adaptive Monte Carlo Localization (http://wiki.ros.org/amcl) Localizes against pre-existing map in 2D space. Map generated using SLAM (http://wiki.ros.org/gmapping) Kullback Leibler divergence (KLD Sampling) Variable Particle Size Sample size is proportional to error between odometry position and sample based position. Smaller sample size when particles have converged. Use of Odometry data for Prediction step. Use of Lidar Scan data for Update step. Figure: Uncertain Initial Position Figure: Updated Position 19/23
  • 20. Constant Timegap Policy (τ = 1 sec) Platoon of 3 robots D0 = 1 meter, τ = 1 sec Inter robot distance converges to 1 meter at standstill. Inter robot distance amplifies down the platoon Velocity amplifies during transients. No String Stability. Hardware Demonstration Link Link (CLICK HERE) 20/23
  • 21. Constant Timegap Policy (τ = 2 sec) Platoon of 3 robots D0 = 1 meter, τ = 2 sec Inter robot distance converges to 1 meter at standstill. Inter robot distance amplifies down the platoon Velocity amplifies during transients. No String Stability. 21/23
  • 22. Platoon with Obstacle Figure: Robot deviation from the reference D0 = 1 meter, τ = 1 sec No string stability of lateral deviation. Deviation amplifies !! Hardware Demonstration Link 3 robots Link (CLICK HERE) 2 robots Link (CLICK HERE) 22/23
  • 23. References S. Sheikholeslam, C.A. Desoer, Longitudinal Control of a Platoon of Vehicles with no Communication of Lead Vehicle Information: A System Level Study, IEEE transactions on Vehicle Technology, Vol. 42, No.4, 1993. S. Sheikholeslam, C.A. Desoer, Longitudinal Control of Platoons, American Control Conference(ACC), pp. 291-296, IEEE, 1990. R. Rajamani, Vehicle Dynamics and Control, Springer Science, 1995. Y. Kanayama, Y. Kimura, F. Miyazaki, T. Noguchi, A stable tracking control method for an autonomous mobile robot, 1990. C. Low, A trajectory tracking control scheme design for nonholonomic wheeled mobile robots with low-level control systems, 2012 IEEE 51st Annual Conf on Decision and Control (CDC), pp. 536543, IEEE, 2012. 23/23