SlideShare a Scribd company logo
1 of 53
Download to read offline
CHAPTER  10  
  
Using  Nuclear  Magne8c  Resonance  
Spectroscopy  to  Deduce  Structure
In	
  this	
  diagram,	
  frequency	
  is	
  specified	
  in	
  units	
  of	
  wavenumbers,	
  defined	
  as	
  1/λ,	
  
which	
  is	
  the	
  number	
  of	
  waves	
  per	
  cen=meter.	
  
Wavenumbers	
  are	
  used	
  to	
  specify	
  energy	
  in	
  infrared	
  spectroscopy.	
  
5	
  
NMR	
  Schema=c	
  
Many	
  nuclei	
  undergo	
  magne=c	
  resonance.	
  
In	
  general,	
  nuclei	
  composed	
  of	
  an	
  odd	
  number	
  of	
  protons	
  (1H	
  and	
  its	
  isotopes,	
  14N	
  19F,	
  and	
  
31P)	
  or	
  an	
  odd	
  number	
  of	
  neutrons	
  (13	
  C)	
  show	
  magne=c	
  behavior.	
  
If	
  both	
  the	
  proton	
  and	
  neutron	
  counts	
  are	
  even	
  (12C	
  or	
  16O)	
  the	
  nuclei	
  are	
  non-­‐magne=c.	
  
7	
  
•  An NMR spectrum is a plot of the intensity of a peak against its
chemical shift, measured in parts per million (ppm).
1H NMR Spectra
8	
  
8	
  
•  Position of signals: indicates what types of hydrogen the
molecule contains.
•  Number of signals: indicates the number of different
types of hydrogen in a molecule.
•  Intensity of signals: indicates the relative amounts (how
many) of each kind of hydrogen in the molecule.
•  Spin-spin splitting of signals: gives further information of
the neighboring environment for the various hydrogens
in the molecule.
Structural Information from Features of a
1H NMR Spectrum
9	
  
•  Protons in a given environment absorb in a predictable
region in an NMR spectrum.
•  Two important factors: electronegativity and magnetic
anisotropy
Shielding and Chemical Shift
10	
  
Shielding and Chemical Shift
The	
  degree	
  of	
  shielding	
  of	
  a	
  nucleus	
  depends	
  upon	
  its	
  surrounding	
  electron	
  density.	
  
Adding	
  electrons	
  increases	
  shielding.	
  
Removing	
  electrons	
  causes	
  deshielding.	
  
11	
  
Characteristic Chemical Shifts Relative to TMS (0 ppm)
12	
  
•  The chemical shift of a C−H bond increases with increasing
alkyl substitution or electronegative atoms attached.
Electronegativity and Chemical Shift
RCH2-­‐H	
   RCH2-­‐OH	
  
The	
  absorp=ons	
  of	
  alkane	
  hydrogens	
  occur	
  at	
  rela=vely	
  high	
  field.	
  
Hydrogens	
  close	
  to	
  an	
  electron	
  withdrawing	
  group	
  (halogen	
  or	
  oxygen)	
  are	
  shiZed	
  to	
  
rela=vely	
  lower	
  field	
  (deshielding).	
  
The	
  more	
  electronega=ve	
  the	
  atom,	
  the	
  more	
  the	
  deshielded	
  methyl	
  hydrogens	
  are	
  
rela=ve	
  to	
  methane.	
  
Mul=ple	
  subs=tuents	
  exert	
  a	
  cumula=ve	
  effect.	
  
The	
  deshielding	
  influence	
  of	
  electron	
  withdrawing	
  groups	
  diminishes	
  rapidly	
  with	
  distance.	
  
16	
  
•  In a magnetic field, the six π electrons in benzene circulate
around the ring creating a ring current.
•  The magnetic field induced by these moving electrons reinforces
the applied magnetic field in the vicinity of the protons.
•  The protons thus feel a stronger magnetic field and a higher
frequency is needed for resonance meaning they are deshielded
and absorb downfield.
Aromatic Deshielding and Anisotropy
17	
  
•  In a magnetic field, the π electrons of a carbon-carbon triple
bond are induced to circulate, but in this case the induced
magnetic field opposes the applied magnetic field (B0).
•  The proton thus feels a weaker magnetic field, so a lower
frequency is needed for resonance.
•  The nucleus is shielded and the absorption is upfield.
Alkyne Chemical Shifts
18	
  
Summary of π Electron and Chemical Shift
19	
  
Regions in the 1H NMR Spectrum
20	
  
20	
  
•  Position of signals: indicates what types of hydrogen the
molecule contains.
•  Number of signals: indicates the number of different
types of hydrogen in a molecule.
•  Intensity of signals: indicates the relative amounts (how
many) of each kind of hydrogen in the molecule.
•  Spin-spin splitting of signals: gives further information of
the neighboring environment for the various hydrogens
in the molecule.
Structural Information from Features of a
1H NMR Spectrum
Chemically	
  equivalent	
  hydrogens	
  in	
  a	
  molecule	
  all	
  have	
  iden=cal	
  electronic	
  
environments	
  and	
  therefore	
  show	
  NMR	
  peaks	
  at	
  the	
  same	
  posi=on.	
  
In	
  the	
  NMR	
  spectrum	
  of	
  2,2-­‐dimethyl-­‐a-­‐propanol,	
  there	
  are	
  three	
  different	
  peaks	
  
due	
  to	
  absorp=ons	
  by:	
  
Nine	
  equivalent	
  methyl	
  hydrogens	
  on	
  the	
  butyl	
  group	
  (most	
  shielded);	
  
One	
  hydrogen	
  on	
  the	
  OH;	
  
Two	
  equivalent	
  methylene	
  hydrogens.	
  
Tests  for  Chemical  Equivalence
10-5
Molecular	
  symmetry	
  helps	
  establish	
  chemical	
  equivalence.	
  
Rota=onal	
  symmetry	
  
results	
  in	
  equivalent	
  
protons	
  when	
  the	
  group	
  
of	
  protons	
  is	
  rapidly	
  
rota=ng,	
  as	
  in	
  a	
  methyl	
  
group.	
  
Conforma=onal	
  interconversion	
  may	
  result	
  in	
  equivalence	
  on	
  the	
  NMR	
  
=me	
  scale.	
  
In	
  the	
  case	
  of	
  the	
  rapid	
  rota=on	
  of	
  the	
  methyl	
  group	
  in	
  chloroethane,	
  or	
  the	
  rapid	
  
conforma=on	
  flip	
  in	
  cyclohexane,	
  the	
  observed	
  chemical	
  shiZs	
  are	
  the	
  averages	
  of	
  
the	
  values	
  that	
  would	
  be	
  observed	
  without	
  the	
  rapid	
  rota=on	
  or	
  flip.	
  
For	
  cyclohexane,	
  the	
  single	
  line	
  in	
  the	
  NMR	
  spectra	
  at	
  	
  δ	
  =	
  1.36	
  ppm	
  at	
  room	
  
temperature	
  becomes	
  two	
  lines	
  at	
  a	
  temperature	
  of	
  -­‐90o	
  C,	
  one	
  at	
  δ	
  =	
  1.12	
  ppm	
  
for	
  the	
  six	
  axial	
  hydrogens	
  and	
  one	
  at	
  δ	
  =	
  1.60	
  for	
  the	
  six	
  equatorial	
  hydrogens.	
  
24	
  
24	
  
•  Position of signals: indicates what types of hydrogen the
molecule contains.
•  Number of signals: indicates the number of different
types of hydrogen in a molecule.
•  Intensity of signals: indicates the relative amounts (how
many) of each kind of hydrogen in the molecule.
•  Spin-spin splitting of signals: gives further information of
the neighboring environment for the various hydrogens
in the molecule.
Structural Information from Features of a
1H NMR Spectrum
25	
  
1H NMR Integration
•  Modern NMR spectrometers automatically calculate and plot
the value of each integral in arbitrary units.
•  The ratio of integrals to one another gives the ratio of
absorbing protons in a spectrum.
•  Note that this gives a ratio, and not the absolute number, of
absorbing protons.
26	
  
2.35	
   1.0	
   1.43	
  
27	
  
27	
  
•  Position of signals: indicates what types of hydrogen the
molecule contains.
•  Number of signals: indicates the number of different
types of hydrogen in a molecule.
•  Intensity of signals: indicates the relative amounts (how
many) of each kind of hydrogen in the molecule.
•  Spin-spin splitting of signals: gives further information of
the neighboring environment for the various hydrogens
in the molecule.
Structural Information from Features of a
1H NMR Spectrum
28	
  
1H NMR—Spin-Spin Splitting
•  The spectra up to this point have been limited to single
absorptions called singlets.
•  Often signals for different protons are split into more
than one peak.
Spin-­‐Spin  Coupling:  The  Effect  of  Non-­‐Equivalent  
Neighboring  Hydrogens
10-7
When	
  non-­‐equivalent	
  hydrogen	
  atoms	
  are	
  not	
  separated	
  by	
  at	
  least	
  one	
  carbon	
  
or	
  oxygen	
  atom,	
  an	
  addi=onal	
  phenomenon	
  called	
  “spin-­‐spin	
  splibng”	
  or	
  “spin-­‐
spin	
  coupling”	
  occurs.	
  
Instead	
  of	
  single	
  peaks	
  (singlets),	
  more	
  complex	
  paderns	
  occur	
  called	
  mul=plets	
  
(doublets,	
  triplets	
  or	
  quartets).	
  
The	
  number	
  and	
  kind	
  of	
  hydrogen	
  atoms	
  directly	
  adjacent	
  to	
  the	
  absorbing	
  nuclei	
  
can	
  be	
  deduced	
  from	
  the	
  mul=plicity	
  of	
  the	
  peak.	
  
Spin-­‐spin	
  splibng	
  is	
  usually	
  observed	
  only	
  between	
  hydrogen	
  atoms	
  bound	
  to	
  the	
  
same	
  carbon	
  (geminal	
  coupling)	
  or	
  to	
  adjacent	
  carbons	
  (vicinal	
  coupling).	
  
Hydrogen	
  nuclei	
  separated	
  by	
  more	
  than	
  two	
  carbon	
  atoms	
  	
  	
  	
  	
  (1,3	
  coupling)	
  is	
  
usually	
  negligible.	
  
Finally,	
  equivalent	
  nuclei	
  do	
  not	
  exhibit	
  
mutual	
  spin-­‐spin	
  splibng.	
  	
  Ethane	
  exhibits	
  
only	
  a	
  single	
  line	
  at	
  δ	
  =	
  0.85	
  ppm.	
  
Splibng	
  is	
  observed	
  only	
  between	
  nuclei	
  with	
  
different	
  chemical	
  shiZs.	
  
Local-­‐field	
  contribu=ons	
  from	
  more	
  than	
  one	
  hydrogen	
  are	
  addi=ve.	
  
Consider	
  the	
  triplet	
  above.	
  It	
  corresponds	
  to	
  the	
  methyl	
  protons	
  being	
  split	
  by	
  
the	
  methylene	
  protons.	
  
The	
  methylene	
  proton	
  spins	
  will	
  sta=s=cally	
  orient	
  in	
  the	
  external	
  magne=c	
  field	
  
as	
  αα,	
  αβ,	
  βα	
  	
  and	
  ββ.	
  Each	
  methyl	
  proton	
  will	
  see	
  an	
  increased	
  field	
  25%	
  of	
  
the	
  =me	
  (αα),	
  no	
  change	
  50%	
  of	
  the	
  =me	
  (αβ	
  and	
  βα),	
  and	
  a	
  decreased	
  field	
  
25%	
  of	
  the	
  =me	
  (ββ).	
  	
  
The	
  integrated	
  intensity	
  of	
  the	
  triplet	
  will	
  be	
  6	
  since	
  there	
  are	
  a	
  total	
  of	
  6	
  
equivalent	
  methyl	
  protons.	
  
In	
  the	
  case	
  of	
  the	
  methylene	
  protons,	
  the	
  methyl	
  proton	
  spins	
  will	
  sta=s=cally	
  
distribute	
  as	
  ααα,	
  ααβ,	
  αβα,	
  βαα,	
  αββ,	
  βαβ,	
  ββα,	
  and	
  βββ.	
  
This	
  will	
  result	
  in	
  a	
  1:3:3:1	
  quartet	
  of	
  peaks.	
  
The	
  integrated	
  intensity	
  of	
  the	
  quartet	
  will	
  be	
  4,	
  corresponding	
  to	
  the	
  4	
  
equivalent	
  methylene	
  protons.	
  
In	
  many	
  cases,	
  spin-­‐spin	
  splibng	
  is	
  given	
  by	
  the	
  N+1	
  rule.	
  
A	
  simple	
  set	
  of	
  rules:	
  
Equivalent	
  nuclei	
  located	
  adjacent	
  to	
  one	
  neighboring	
  hydrogen	
  resonate	
  as	
  a	
  
doublet.	
  
Equivalent	
  nuclei	
  located	
  adjacent	
  to	
  two	
  hydrogens	
  of	
  a	
  second	
  set	
  of	
  
equivalent	
  nuclei	
  resonate	
  as	
  a	
  triplet.	
  
Equivalent	
  nuclei	
  located	
  adjacent	
  to	
  a	
  set	
  of	
  three	
  equivalent	
  hydrogens	
  
resonate	
  as	
  a	
  quartet.	
  
This	
  table	
  illustrates	
  the	
  N+1	
  rule:	
  Nuclei	
  having	
  N	
  adjacent	
  equivalent	
  neighbors	
  
split	
  into	
  N+1	
  peaks.	
  The	
  heights	
  of	
  the	
  N+1	
  peaks	
  follow	
  Pascal’s	
  triangle.	
  
In	
  many	
  cases,	
  spin-­‐spin	
  splibng	
  is	
  given	
  by	
  the	
  N+1	
  rule.	
  
It	
  is	
  important	
  to	
  note	
  that	
  non-­‐equivalent	
  nuclei	
  split	
  each	
  other.	
  
A	
  split	
  in	
  one	
  requires	
  a	
  split	
  in	
  the	
  other.	
  In	
  addi=on,	
  the	
  coupling	
  constants	
  will	
  
be	
  the	
  same	
  for	
  each	
  type	
  of	
  nuclei.	
  
Two	
  addi=onal	
  examples:	
  
Spin-­‐Spin  SpliJng:  Some  Complica8ons
10-8
The	
  N+1	
  rule	
  may	
  not	
  apply	
  in	
  a	
  direct	
  way	
  if	
  several	
  neighboring	
  hydrogens	
  
having	
  fairly	
  different	
  coupling	
  constants	
  are	
  coupled	
  to	
  the	
  resona=ng	
  nucleus.	
  
In	
  this	
  case,	
  the	
  rule	
  is	
  revised	
  to	
  (n1+1)	
  *	
  (n2	
  +	
  1).	
  
40	
  
1H NMR of Vinyl Acetate
In	
  the	
  case	
  of	
  1-­‐bromopropane,	
  the	
  hydrogens	
  on	
  C2	
  are	
  also	
  coupled	
  to	
  two	
  non-­‐
equivalent	
  sets	
  of	
  neighbors.	
  A	
  theore=cal	
  analysis	
  of	
  this	
  resonance	
  would	
  
predict	
  as	
  many	
  as	
  12	
  lines	
  (a	
  quartet	
  of	
  triplets).	
  
Because	
  the	
  coupling	
  constants	
  are	
  very	
  similar,	
  however,	
  many	
  of	
  the	
  lines	
  
overlap,	
  thus	
  simplifying	
  the	
  padern.	
  
Carbon-­‐13  Nuclear  Magne8c  Resonance
10-9
The	
  NMR	
  spectroscopy	
  of	
  13C	
  is	
  very	
  useful	
  for	
  structural	
  determina=on.	
  
1H-­‐Decoupling	
  
43	
  
•  13C Spectra are easier to analyze than 1H spectra because the
signal splitting can be avoided.
•  Each type of carbon atom appears as a single peak with 1H-
decoupling.
13C NMR Spectrum Example
The	
  numbers	
  of	
  non-­‐equivalent	
  carbons	
  in	
  the	
  isomers	
  of	
  C7H14	
  are	
  clearly	
  
demonstrated	
  by	
  the	
  numbers	
  of	
  13C	
  peaks	
  in	
  their	
  NMR	
  spectra.	
  
45	
  
•  In contrast to the small range of chemical shifts in 1H NMR (1-10
ppm usually), 13C NMR absorptions occur over a much broader
range (0-220 ppm).
•  The chemical shifts of carbon atoms in 13C NMR depend on the
same effects as the chemical shifts of protons in 1H NMR.
Chemical Shifts in 13C NMR
Common	
  13C-­‐NMR	
  chemical	
  shiZ	
  values	
  
46	
  
13C NMR of 1-Propanol
47	
  
13C NMR of Methyl Acetate
48	
  
Magne=c	
  Resonance	
  Imaging	
  (MRI)	
  
How to determine structures of compounds from their spectra?
1.  Determine	
  the	
  molecular	
  formula	
  and	
  degree	
  of	
  unsatura=on	
  
2.  From	
  13C-­‐NMR,	
  determine	
  #	
  of	
  signals	
  and	
  chemical	
  shiZs	
  
3.  From	
  1H-­‐NMR,	
  determine	
  #	
  of	
  signals,	
  #	
  of	
  protons	
  in	
  each	
  signal,	
  	
  
	
  	
  	
  	
  	
  	
  	
  peak	
  splibng	
  paderns	
  and	
  chemical	
  shiZs	
  
Molecular	
  formula:	
  C4H7O2Cl	
  
O
O
Cl
Molecular	
  formula:	
  C5H10O	
  
O
Molecular	
  formula:	
  C7H7Br	
  
Br
Formula	
  	
  
C5H10O2	
  

More Related Content

Similar to Ch_10_Lecture_Presentation.pdf

Proton nmr spectroscopy present
Proton nmr spectroscopy presentProton nmr spectroscopy present
Proton nmr spectroscopy present
Leeya Najwa
 
BT631-16-NMR_1
BT631-16-NMR_1BT631-16-NMR_1
BT631-16-NMR_1
Rajesh G
 
BITS PILANI, HYD_Lecture 26_TC_20.10.23.pptx
BITS PILANI, HYD_Lecture 26_TC_20.10.23.pptxBITS PILANI, HYD_Lecture 26_TC_20.10.23.pptx
BITS PILANI, HYD_Lecture 26_TC_20.10.23.pptx
f20230477
 
NMR Spectroscopy
NMR SpectroscopyNMR Spectroscopy
NMR Spectroscopy
krishslide
 

Similar to Ch_10_Lecture_Presentation.pdf (20)

Proton nmr spectroscopy present
Proton nmr spectroscopy presentProton nmr spectroscopy present
Proton nmr spectroscopy present
 
NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY
NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPYNUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY
NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY
 
Spin spin coupling and decoupling
Spin spin coupling and decouplingSpin spin coupling and decoupling
Spin spin coupling and decoupling
 
interpretation of NMR spectroscopy
interpretation of  NMR spectroscopyinterpretation of  NMR spectroscopy
interpretation of NMR spectroscopy
 
NMR spectroscopy
NMR spectroscopyNMR spectroscopy
NMR spectroscopy
 
nmr2_pl.ppt
nmr2_pl.pptnmr2_pl.ppt
nmr2_pl.ppt
 
NMR
NMRNMR
NMR
 
NMR - KRISHNAN
NMR - KRISHNANNMR - KRISHNAN
NMR - KRISHNAN
 
BT631-16-NMR_1
BT631-16-NMR_1BT631-16-NMR_1
BT631-16-NMR_1
 
Nuclear magnetic resonance 1
Nuclear magnetic resonance 1Nuclear magnetic resonance 1
Nuclear magnetic resonance 1
 
NMR SPECTROSCOPY
NMR SPECTROSCOPYNMR SPECTROSCOPY
NMR SPECTROSCOPY
 
NMR
NMRNMR
NMR
 
BITS PILANI, HYD_Lecture 26_TC_20.10.23.pptx
BITS PILANI, HYD_Lecture 26_TC_20.10.23.pptxBITS PILANI, HYD_Lecture 26_TC_20.10.23.pptx
BITS PILANI, HYD_Lecture 26_TC_20.10.23.pptx
 
NMR Spectroscopy
NMR SpectroscopyNMR Spectroscopy
NMR Spectroscopy
 
Nmr2 pl
Nmr2 plNmr2 pl
Nmr2 pl
 
Nmr2 pl
Nmr2 plNmr2 pl
Nmr2 pl
 
Introduction to NMR
Introduction to NMRIntroduction to NMR
Introduction to NMR
 
Parts per million
Parts per millionParts per million
Parts per million
 
nmr spectroscopy and decription of nmr in details
nmr spectroscopy and decription of nmr in detailsnmr spectroscopy and decription of nmr in details
nmr spectroscopy and decription of nmr in details
 
NMR spectroscopy by G Shashikanth
NMR spectroscopy by G ShashikanthNMR spectroscopy by G Shashikanth
NMR spectroscopy by G Shashikanth
 

Recently uploaded

1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
PECB
 

Recently uploaded (20)

Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 

Ch_10_Lecture_Presentation.pdf

  • 1. CHAPTER  10     Using  Nuclear  Magne8c  Resonance   Spectroscopy  to  Deduce  Structure
  • 2. In  this  diagram,  frequency  is  specified  in  units  of  wavenumbers,  defined  as  1/λ,   which  is  the  number  of  waves  per  cen=meter.   Wavenumbers  are  used  to  specify  energy  in  infrared  spectroscopy.  
  • 3.
  • 4.
  • 6. Many  nuclei  undergo  magne=c  resonance.   In  general,  nuclei  composed  of  an  odd  number  of  protons  (1H  and  its  isotopes,  14N  19F,  and   31P)  or  an  odd  number  of  neutrons  (13  C)  show  magne=c  behavior.   If  both  the  proton  and  neutron  counts  are  even  (12C  or  16O)  the  nuclei  are  non-­‐magne=c.  
  • 7. 7   •  An NMR spectrum is a plot of the intensity of a peak against its chemical shift, measured in parts per million (ppm). 1H NMR Spectra
  • 8. 8   8   •  Position of signals: indicates what types of hydrogen the molecule contains. •  Number of signals: indicates the number of different types of hydrogen in a molecule. •  Intensity of signals: indicates the relative amounts (how many) of each kind of hydrogen in the molecule. •  Spin-spin splitting of signals: gives further information of the neighboring environment for the various hydrogens in the molecule. Structural Information from Features of a 1H NMR Spectrum
  • 9. 9   •  Protons in a given environment absorb in a predictable region in an NMR spectrum. •  Two important factors: electronegativity and magnetic anisotropy Shielding and Chemical Shift
  • 10. 10   Shielding and Chemical Shift The  degree  of  shielding  of  a  nucleus  depends  upon  its  surrounding  electron  density.   Adding  electrons  increases  shielding.   Removing  electrons  causes  deshielding.  
  • 11. 11   Characteristic Chemical Shifts Relative to TMS (0 ppm)
  • 12. 12   •  The chemical shift of a C−H bond increases with increasing alkyl substitution or electronegative atoms attached. Electronegativity and Chemical Shift RCH2-­‐H   RCH2-­‐OH  
  • 13. The  absorp=ons  of  alkane  hydrogens  occur  at  rela=vely  high  field.   Hydrogens  close  to  an  electron  withdrawing  group  (halogen  or  oxygen)  are  shiZed  to   rela=vely  lower  field  (deshielding).   The  more  electronega=ve  the  atom,  the  more  the  deshielded  methyl  hydrogens  are   rela=ve  to  methane.  
  • 14. Mul=ple  subs=tuents  exert  a  cumula=ve  effect.  
  • 15. The  deshielding  influence  of  electron  withdrawing  groups  diminishes  rapidly  with  distance.  
  • 16. 16   •  In a magnetic field, the six π electrons in benzene circulate around the ring creating a ring current. •  The magnetic field induced by these moving electrons reinforces the applied magnetic field in the vicinity of the protons. •  The protons thus feel a stronger magnetic field and a higher frequency is needed for resonance meaning they are deshielded and absorb downfield. Aromatic Deshielding and Anisotropy
  • 17. 17   •  In a magnetic field, the π electrons of a carbon-carbon triple bond are induced to circulate, but in this case the induced magnetic field opposes the applied magnetic field (B0). •  The proton thus feels a weaker magnetic field, so a lower frequency is needed for resonance. •  The nucleus is shielded and the absorption is upfield. Alkyne Chemical Shifts
  • 18. 18   Summary of π Electron and Chemical Shift
  • 19. 19   Regions in the 1H NMR Spectrum
  • 20. 20   20   •  Position of signals: indicates what types of hydrogen the molecule contains. •  Number of signals: indicates the number of different types of hydrogen in a molecule. •  Intensity of signals: indicates the relative amounts (how many) of each kind of hydrogen in the molecule. •  Spin-spin splitting of signals: gives further information of the neighboring environment for the various hydrogens in the molecule. Structural Information from Features of a 1H NMR Spectrum
  • 21. Chemically  equivalent  hydrogens  in  a  molecule  all  have  iden=cal  electronic   environments  and  therefore  show  NMR  peaks  at  the  same  posi=on.   In  the  NMR  spectrum  of  2,2-­‐dimethyl-­‐a-­‐propanol,  there  are  three  different  peaks   due  to  absorp=ons  by:   Nine  equivalent  methyl  hydrogens  on  the  butyl  group  (most  shielded);   One  hydrogen  on  the  OH;   Two  equivalent  methylene  hydrogens.  
  • 22. Tests  for  Chemical  Equivalence 10-5 Molecular  symmetry  helps  establish  chemical  equivalence.   Rota=onal  symmetry   results  in  equivalent   protons  when  the  group   of  protons  is  rapidly   rota=ng,  as  in  a  methyl   group.  
  • 23. Conforma=onal  interconversion  may  result  in  equivalence  on  the  NMR   =me  scale.   In  the  case  of  the  rapid  rota=on  of  the  methyl  group  in  chloroethane,  or  the  rapid   conforma=on  flip  in  cyclohexane,  the  observed  chemical  shiZs  are  the  averages  of   the  values  that  would  be  observed  without  the  rapid  rota=on  or  flip.   For  cyclohexane,  the  single  line  in  the  NMR  spectra  at    δ  =  1.36  ppm  at  room   temperature  becomes  two  lines  at  a  temperature  of  -­‐90o  C,  one  at  δ  =  1.12  ppm   for  the  six  axial  hydrogens  and  one  at  δ  =  1.60  for  the  six  equatorial  hydrogens.  
  • 24. 24   24   •  Position of signals: indicates what types of hydrogen the molecule contains. •  Number of signals: indicates the number of different types of hydrogen in a molecule. •  Intensity of signals: indicates the relative amounts (how many) of each kind of hydrogen in the molecule. •  Spin-spin splitting of signals: gives further information of the neighboring environment for the various hydrogens in the molecule. Structural Information from Features of a 1H NMR Spectrum
  • 25. 25   1H NMR Integration •  Modern NMR spectrometers automatically calculate and plot the value of each integral in arbitrary units. •  The ratio of integrals to one another gives the ratio of absorbing protons in a spectrum. •  Note that this gives a ratio, and not the absolute number, of absorbing protons.
  • 26. 26   2.35   1.0   1.43  
  • 27. 27   27   •  Position of signals: indicates what types of hydrogen the molecule contains. •  Number of signals: indicates the number of different types of hydrogen in a molecule. •  Intensity of signals: indicates the relative amounts (how many) of each kind of hydrogen in the molecule. •  Spin-spin splitting of signals: gives further information of the neighboring environment for the various hydrogens in the molecule. Structural Information from Features of a 1H NMR Spectrum
  • 28. 28   1H NMR—Spin-Spin Splitting •  The spectra up to this point have been limited to single absorptions called singlets. •  Often signals for different protons are split into more than one peak.
  • 29. Spin-­‐Spin  Coupling:  The  Effect  of  Non-­‐Equivalent   Neighboring  Hydrogens 10-7 When  non-­‐equivalent  hydrogen  atoms  are  not  separated  by  at  least  one  carbon   or  oxygen  atom,  an  addi=onal  phenomenon  called  “spin-­‐spin  splibng”  or  “spin-­‐ spin  coupling”  occurs.   Instead  of  single  peaks  (singlets),  more  complex  paderns  occur  called  mul=plets   (doublets,  triplets  or  quartets).   The  number  and  kind  of  hydrogen  atoms  directly  adjacent  to  the  absorbing  nuclei   can  be  deduced  from  the  mul=plicity  of  the  peak.  
  • 30. Spin-­‐spin  splibng  is  usually  observed  only  between  hydrogen  atoms  bound  to  the   same  carbon  (geminal  coupling)  or  to  adjacent  carbons  (vicinal  coupling).   Hydrogen  nuclei  separated  by  more  than  two  carbon  atoms          (1,3  coupling)  is   usually  negligible.   Finally,  equivalent  nuclei  do  not  exhibit   mutual  spin-­‐spin  splibng.    Ethane  exhibits   only  a  single  line  at  δ  =  0.85  ppm.   Splibng  is  observed  only  between  nuclei  with   different  chemical  shiZs.  
  • 31.
  • 32. Local-­‐field  contribu=ons  from  more  than  one  hydrogen  are  addi=ve.   Consider  the  triplet  above.  It  corresponds  to  the  methyl  protons  being  split  by   the  methylene  protons.   The  methylene  proton  spins  will  sta=s=cally  orient  in  the  external  magne=c  field   as  αα,  αβ,  βα    and  ββ.  Each  methyl  proton  will  see  an  increased  field  25%  of   the  =me  (αα),  no  change  50%  of  the  =me  (αβ  and  βα),  and  a  decreased  field   25%  of  the  =me  (ββ).    
  • 33. The  integrated  intensity  of  the  triplet  will  be  6  since  there  are  a  total  of  6   equivalent  methyl  protons.  
  • 34. In  the  case  of  the  methylene  protons,  the  methyl  proton  spins  will  sta=s=cally   distribute  as  ααα,  ααβ,  αβα,  βαα,  αββ,  βαβ,  ββα,  and  βββ.   This  will  result  in  a  1:3:3:1  quartet  of  peaks.   The  integrated  intensity  of  the  quartet  will  be  4,  corresponding  to  the  4   equivalent  methylene  protons.  
  • 35. In  many  cases,  spin-­‐spin  splibng  is  given  by  the  N+1  rule.   A  simple  set  of  rules:   Equivalent  nuclei  located  adjacent  to  one  neighboring  hydrogen  resonate  as  a   doublet.   Equivalent  nuclei  located  adjacent  to  two  hydrogens  of  a  second  set  of   equivalent  nuclei  resonate  as  a  triplet.   Equivalent  nuclei  located  adjacent  to  a  set  of  three  equivalent  hydrogens   resonate  as  a  quartet.  
  • 36. This  table  illustrates  the  N+1  rule:  Nuclei  having  N  adjacent  equivalent  neighbors   split  into  N+1  peaks.  The  heights  of  the  N+1  peaks  follow  Pascal’s  triangle.   In  many  cases,  spin-­‐spin  splibng  is  given  by  the  N+1  rule.  
  • 37. It  is  important  to  note  that  non-­‐equivalent  nuclei  split  each  other.   A  split  in  one  requires  a  split  in  the  other.  In  addi=on,  the  coupling  constants  will   be  the  same  for  each  type  of  nuclei.   Two  addi=onal  examples:  
  • 38.
  • 39. Spin-­‐Spin  SpliJng:  Some  Complica8ons 10-8 The  N+1  rule  may  not  apply  in  a  direct  way  if  several  neighboring  hydrogens   having  fairly  different  coupling  constants  are  coupled  to  the  resona=ng  nucleus.   In  this  case,  the  rule  is  revised  to  (n1+1)  *  (n2  +  1).  
  • 40. 40   1H NMR of Vinyl Acetate
  • 41. In  the  case  of  1-­‐bromopropane,  the  hydrogens  on  C2  are  also  coupled  to  two  non-­‐ equivalent  sets  of  neighbors.  A  theore=cal  analysis  of  this  resonance  would   predict  as  many  as  12  lines  (a  quartet  of  triplets).   Because  the  coupling  constants  are  very  similar,  however,  many  of  the  lines   overlap,  thus  simplifying  the  padern.  
  • 42. Carbon-­‐13  Nuclear  Magne8c  Resonance 10-9 The  NMR  spectroscopy  of  13C  is  very  useful  for  structural  determina=on.   1H-­‐Decoupling  
  • 43. 43   •  13C Spectra are easier to analyze than 1H spectra because the signal splitting can be avoided. •  Each type of carbon atom appears as a single peak with 1H- decoupling. 13C NMR Spectrum Example
  • 44. The  numbers  of  non-­‐equivalent  carbons  in  the  isomers  of  C7H14  are  clearly   demonstrated  by  the  numbers  of  13C  peaks  in  their  NMR  spectra.  
  • 45. 45   •  In contrast to the small range of chemical shifts in 1H NMR (1-10 ppm usually), 13C NMR absorptions occur over a much broader range (0-220 ppm). •  The chemical shifts of carbon atoms in 13C NMR depend on the same effects as the chemical shifts of protons in 1H NMR. Chemical Shifts in 13C NMR Common  13C-­‐NMR  chemical  shiZ  values  
  • 46. 46   13C NMR of 1-Propanol
  • 47. 47   13C NMR of Methyl Acetate
  • 48. 48   Magne=c  Resonance  Imaging  (MRI)  
  • 49. How to determine structures of compounds from their spectra? 1.  Determine  the  molecular  formula  and  degree  of  unsatura=on   2.  From  13C-­‐NMR,  determine  #  of  signals  and  chemical  shiZs   3.  From  1H-­‐NMR,  determine  #  of  signals,  #  of  protons  in  each  signal,                  peak  splibng  paderns  and  chemical  shiZs