SlideShare a Scribd company logo
1 of 61
Quantum Computing
Fundamentals via OO
Carl Belle – carlyman@outlook.com
ALT.NET Melbourne 2016
Thank You
About me
VITAL STATISTICS
Human Male
Height: 183 cm
Weight: 82 kg
Favourite Enzyme: ATP Synthase
PROFESSIONAL
Bachelor of IT (RMIT)
Research Student (RMIT):
Computational Materials
Discovery
Senior Developer @ Xero
Me != Physicist
Me != Mathematician
Agenda
β€’ Introduction
β€’ Theory – some maths will happen!
β€’ Q# – a OO quantum computing simulator for .NET
β€’ Futures
Why?
Why?
The question:
Can we simulate physics on a computer?
The answer:
Yes.
But also no.
Hardware
Hardware
Particle Isolated in a wafer Superconductor
Classical vs. Quantum Systems
Absolutes vs. Probabilities
Classical vs. Quantum Systems
CLASSICAL
Manipulation of a register using Boolean algebra
One operation = one result
QUANTUM
Manipulation of a register using Matrix algebra
One operation = many results
Matrix Fundamentals
Maths will shortly happen!
Matrix Multiplication
π‘š Γ— 𝑛 Γ— 𝑛 Γ— 𝑝 = π‘š Γ— 𝑝
0 1
1 0
Γ—
0
1
0 Γ— 0 + (1 Γ— 1)
1 Γ— 0 + (0 Γ— 1)
=
1
0
Matrix Tensor Multiplication
𝐴 ⨂ 𝐡
1 0
0 1
⨂
0 1
1 0
1 Γ—
0 1
1 0
0 Γ—
0 1
1 0
0 Γ—
0 1
1 0
1 Γ—
0 1
1 0
=
0 1
1 0
0 0
0 0
0 0
0 0
0 1
1 0
The Register
The Register
β€’ Constructed from qubits
β€’ Consists of computational basis states
β€’ Can be referred to as the β€˜state vector’
β€’ Preparation
β€’ Normalisation
The Register - Superposition
A quantum state added to another quantum state yields a further
quantum state.
Classical:
𝑦 = π‘₯
16 = 16 β†’ 16 π‘π‘™π‘Žπ‘ π‘ π‘–π‘π‘Žπ‘™ 𝑏𝑖𝑑𝑠
Quantum:
𝑦 = 2 π‘₯
16 = 24
β†’ 4 π‘žπ‘’π‘π‘–π‘‘π‘ 
1 Qubit Register
β€’ 𝑄0 = 𝐴 0 + 𝐡|1⟩)
β€’ πœ“ = 𝐴 0 + 𝐡 1
2 Qubit Register
β€’ 𝑄0 = 𝐴 0 + 𝐡|1⟩)
β€’ 𝑄1 = 𝐢 0 + 𝐷 1 )
β€’ πœ“ = 𝐴𝐢 00 + 𝐴𝐷 01 + 𝐡𝐢 10 + 𝐡𝐷|11⟩
3 Qubit Register
β€’ 𝑄0 = 𝐴 0 + 𝐡|1⟩)
β€’ 𝑄1 = 𝐢 0 + 𝐷 1 )
β€’ 𝑄2 = 𝐸 0 + 𝐹|1⟩)
β€’ πœ“ = 𝐴𝐢𝐸 000 + 𝐴𝐢𝐹 001 + 𝐴𝐷𝐸 010 + 𝐴𝐷𝐹 011 +
𝐡𝐢𝐸 100 + 𝐡𝐢𝐹 101 + 𝐡𝐷𝐸 110 + 𝐡𝐷𝐹|111⟩
The Register – Normalisation
The state vector which a quantum register represents has the following
property:
𝛼 2 + 𝛽 2 + β‹― + 𝑛 2 = 1
Qubits
More on Absolutes vs. Probabilities
Classical Bits vs. Quantum Bits
CLASSICAL
Absolutes
QUANTUM
Probabilities
𝐿𝑒𝑑 𝐴|0⟩ = 0.8, 𝐡|1⟩ = βˆ’0.6
0.8 2
+ βˆ’0.6 2
= 0.64 + 0.36
= 1
β†’ 0 @ 64%, 1 @ 36%
|1⟩
|0⟩
Gates
Doing stuff with quantum things
Pauli-X Gate
β€’ Acts on a single qubit
β€’ Maps |0⟩ to |1⟩ and |1⟩ to |0⟩
β€’ Represented by the following matrix:
0 1
1 0
Pauli-X Gate
πœ“ = 𝐴 0 + 𝐡 1
0 1
1 0
Γ—
𝐴|0⟩
𝐡|1⟩
(0 Γ— 𝐴|0⟩) + (1 Γ— 𝐡|1⟩)
(1 Γ— 𝐴|0⟩) + (0 Γ— 𝐡|1⟩)
=
𝐡|1⟩
𝐴|0⟩
Pauli-Z Gate
β€’ Acts on a single qubit
β€’ Leaves the basis state |0⟩ unchanged, and maps |1⟩ to βˆ’|1⟩
β€’ Represented by the following matrix:
1 0
0 βˆ’1
Pauli-Z Gate
πœ“ = 𝐴 0 + 𝐡 1
1 0
0 βˆ’1
Γ—
𝐴|0⟩
𝐡|1⟩
(1 Γ— 𝐴|0⟩) + ( 0 Γ— 𝐡|1⟩)
(0 Γ— 𝐴|0⟩) + (βˆ’1 Γ— 𝐡|1⟩)
=
𝐴|0⟩
βˆ’π΅|1⟩
Pauli-Y Gate
β€’ Acts on a single qubit
β€’ Maps |0⟩ to 𝑖|1⟩ and |1⟩ to βˆ’π‘–|0⟩
β€’ Represented by the following matrix:
0 βˆ’π‘–
𝑖 0
Imaginary Numbers
β€’ The imaginary number 𝑖 has the following property:
𝑖2 = βˆ’1
β€’ When 𝑖 is squared, the sign of the term is changed
β€’ Example:
5𝑖2
= 5 Γ— βˆ’1
= βˆ’5
Pauli-Y Gate
πœ“ = 𝐴 0 + 𝐡 1
0 βˆ’π‘–
𝑖 0
Γ—
𝐴|0⟩
𝐡|1⟩
(0 Γ— 𝐴|0⟩) + (βˆ’π‘– Γ— 𝐡|1⟩)
(𝑖 Γ— 𝐴|0⟩) + ( 0 Γ— 𝐡|1⟩)
=
βˆ’π‘–π΅|1⟩
𝑖𝐴|0⟩
SINGLE Qubit Gate, Multi qubit system
β€’ State vector in a 2 qubit system contains 4 rows
β€’ Single-qubit matrices contain 2 columns: not big enough to
participate
β€’ Single-qubit matrix must be β€˜stepped-up’ to be the appropriate size
β€’ β€˜Step-up’ is achieved with the help of the identity matrix
Identity Matrix
β€’ Simple diagonal matrix
1 0
0 1
β€’ Specifying the index of the qubit the gate is operating on
β€’ Tensor operations with an identity matrix
Pauli-X Gate, 2 Qubit System
0 1
1 0
⨂
1 0
0 1
=
0 0
0 0
1 0
0 1
1 0
0 1
0 0
0 0
0 0
0 0
1 0
0 1
1 0
0 1
0 0
0 0
Γ—
𝐴𝐢|00⟩
𝐴𝐷|01⟩
𝐡𝐢|10⟩
𝐡𝐷|11⟩
0 Γ— 𝐴𝐢|00⟩ + 0 Γ— 𝐴𝐷|01⟩ + (1 Γ— 𝐡𝐢|10⟩) + (0 Γ— 𝐡𝐷|11⟩)
(0 Γ— 𝐴𝐢|00⟩) + (0 Γ— 𝐴𝐷|01⟩) + (0 Γ— 𝐡𝐢|10⟩) + (1 Γ— 𝐡𝐷|11⟩)
(1 Γ— 𝐴𝐢|00⟩) + (0 Γ— 𝐴𝐷|01⟩) + (0 Γ— 𝐡𝐢|10⟩) + (0 Γ— 𝐡𝐷|11⟩)
(0 Γ— 𝐴𝐢|00⟩) + (1 Γ— 𝐴𝐷|01⟩) + (0 Γ— 𝐡𝐢|10⟩) + (0 Γ— 𝐡𝐷|11⟩)
=
𝐡𝐢|00⟩
𝐡𝐷|01⟩
𝐴𝐢|10⟩
𝐴𝐷|11⟩
Pauli-X Gate, 3 Qubit System (1)
1 0
0 1
⨂
0 1
1 0
=
0 1
1 0
0 0
0 0
0 0
0 0
0 1
1 0
0 1
1 0
0 0
0 0
0 0
0 0
0 1
1 0
⨂
1 0
0 1
=
0 1
1 0
0 0
0 0
0 0
0 0
0 1
1 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 1
1 0
0 0
0 0
0 0
0 0
0 1
1 0
Pauli-X Gate, 3 Qubit System (2)
(0 Γ— 𝐴𝐢𝐸|000⟩) + (0 Γ— 𝐴𝐢𝐹|001⟩) + (1 Γ— 𝐴𝐷𝐸|010⟩) + (0 Γ— 𝐴𝐷𝐹|011⟩) + (0 Γ— 𝐡𝐢𝐸|100⟩) + (0 Γ— 𝐡𝐢𝐹|101⟩) + (0 Γ— 𝐡𝐷𝐸|110⟩) + (0 Γ— 𝐡𝐷𝐹|111⟩)
(0 Γ— 𝐴𝐢𝐸|000⟩) + (0 Γ— 𝐴𝐢𝐹|001⟩) + (0 Γ— 𝐴𝐷𝐸|010⟩) + (1 Γ— 𝐴𝐷𝐹|011⟩) + (0 Γ— 𝐡𝐢𝐸|100⟩) + (0 Γ— 𝐡𝐢𝐹|101⟩) + (0 Γ— 𝐡𝐷𝐸|110⟩) + (0 Γ— 𝐡𝐷𝐹|111⟩)
(1 Γ— 𝐴𝐢𝐸|000⟩) + (0 Γ— 𝐴𝐢𝐹|001⟩) + (0 Γ— 𝐴𝐷𝐸|010⟩) + (0 Γ— 𝐴𝐷𝐹|011⟩) + (0 Γ— 𝐡𝐢𝐸|100⟩) + (0 Γ— 𝐡𝐢𝐹|101⟩) + (0 Γ— 𝐡𝐷𝐸|110⟩) + (0 Γ— 𝐡𝐷𝐹|111⟩)
(0 Γ— 𝐴𝐢𝐸|000⟩) + (1 Γ— 𝐴𝐢𝐹|001⟩) + (0 Γ— 𝐴𝐷𝐸|010⟩) + (0 Γ— 𝐴𝐷𝐹|011⟩) + (0 Γ— 𝐡𝐢𝐸|100⟩) + (0 Γ— 𝐡𝐢𝐹|101⟩) + (0 Γ— 𝐡𝐷𝐸|110⟩) + (0 Γ— 𝐡𝐷𝐹|111⟩)
(0 Γ— 𝐴𝐢𝐸|000⟩) + (0 Γ— 𝐴𝐢𝐹|001⟩) + (0 Γ— 𝐴𝐷𝐸|010⟩) + (0 Γ— 𝐴𝐷𝐹|011⟩) + (0 Γ— 𝐡𝐢𝐸|100⟩) + (0 Γ— 𝐡𝐢𝐹|101⟩) + (1 Γ— 𝐡𝐷𝐸|110⟩) + (0 Γ— 𝐡𝐷𝐹|111⟩)
(0 Γ— 𝐴𝐢𝐸|000⟩) + (0 Γ— 𝐴𝐢𝐹|001⟩) + (0 Γ— 𝐴𝐷𝐸|010⟩) + (0 Γ— 𝐴𝐷𝐹|011⟩) + (0 Γ— 𝐡𝐢𝐸|100⟩) + (0 Γ— 𝐡𝐢𝐹|101⟩) + (0 Γ— 𝐡𝐷𝐸|110⟩) + (1 Γ— 𝐡𝐷𝐹|111⟩)
(0 Γ— 𝐴𝐢𝐸|000⟩) + (0 Γ— 𝐴𝐢𝐹|001⟩) + (0 Γ— 𝐴𝐷𝐸|010⟩) + (0 Γ— 𝐴𝐷𝐹|011⟩) + (1 Γ— 𝐡𝐢𝐸|100⟩) + (0 Γ— 𝐡𝐢𝐹|101⟩) + (0 Γ— 𝐡𝐷𝐸|110⟩) + (0 Γ— 𝐡𝐷𝐹|111⟩)
(0 Γ— 𝐴𝐢𝐸|000⟩) + (0 Γ— 𝐴𝐢𝐹|001⟩) + (0 Γ— 𝐴𝐷𝐸|010⟩) + (0 Γ— 𝐴𝐷𝐹|011⟩) + (0 Γ— 𝐡𝐢𝐸|100⟩) + (1 Γ— 𝐡𝐢𝐹|101⟩) + (0 Γ— 𝐡𝐷𝐸|110⟩) + (0 Γ— 𝐡𝐷𝐹|111⟩)
=
𝐴𝐷𝐸|010⟩
𝐴𝐷𝐹|011⟩
𝐴𝐢𝐸|000⟩
𝐴𝐢𝐹|001⟩
𝐡𝐷𝐸|110⟩
𝐡𝐷𝐹|111⟩
𝐡𝐢𝐸|100⟩
𝐡𝐢𝐹|101⟩
This protracted manual calculation
is horrible, surely there must be a
better way?
Hadamard Gate
β€’ Acts on a single qubit
β€’ Maps the basis state |0⟩ to (|0⟩ + |1⟩)/ 2 and |1⟩ to (|0⟩ βˆ’
|1⟩)/ 2
β€’ Represented by the following matrix:
1
2
1 1
1 βˆ’1
CNOT Gate
β€’ Acts on two qubits
β€’ Flips the target qubit if and only if the control qubit is 1
β€’ Singly-controlled NOT gate
β€’ Represented by the following matrix:
1 0
0 1
0 0
0 0
0 0
0 0
0 1
1 0
CNOT GATE, 2 Qubit System
CNOT(0, 1)
1 0
0 1
0 0
0 0
0 0
0 0
0 1
1 0
Γ—
𝐴𝐢|00⟩
𝐴𝐷|01⟩
𝐡𝐢|10⟩
𝐡𝐷|11⟩
=
𝐴𝐢|00⟩
𝐴𝐷|01⟩
𝐡𝐷|11⟩
𝐡𝐢|10⟩
CNOT(1, 0)
1 0
0 0
0 0
0 1
0 0
0 1
1 0
0 0
Γ—
𝐴𝐢|00⟩
𝐴𝐷|01⟩
𝐡𝐢|10⟩
𝐡𝐷|11⟩
=
𝐴𝐢|00⟩
𝐡𝐷|01⟩
𝐡𝐢|10⟩
𝐴𝐷|11⟩
Why are there two different
CNOT matrices? Could it
have anything to do with
finding a nicer way of
performing these
calculations by hand?
CNOT Gate, 3 Qubit System
CT
012
000
001
010
011
100
101
110
111
000
001
010
011
110
111
100
101
CT
012
ACE|000⟩
ACF|001⟩
ADE|010⟩
ADF|011⟩
BCE|100⟩
BCF|101⟩
BDE|110⟩
BDF|111⟩
β‡’
ACE|000⟩
ACF|001⟩
ADE|010⟩
ADF|011⟩
BDE|110⟩
BDF|111⟩
BCE|100⟩
BCF|101⟩
=
ADE|000⟩
ADF|001⟩
ACE|010⟩
ACF|011⟩
BDE|100⟩
BDF|101⟩
BCE|110⟩
BCF|111⟩
Control qubit is
1, so the target
qubit is flipped
CNOT Gate, 4 Qubit System
CT
0123
ACEG|0000⟩
ACEH|0001⟩
ACFG|0010⟩
ACFH|0011⟩
ADEG|0100⟩
ADEH|0101⟩
ADFG|0110⟩
ADFH|0111⟩
BCEG|1000⟩
BCEH|1001⟩
BCFG|1010⟩
BCFH|1011⟩
BDEG|1100⟩
BDEH|1101⟩
BDFG|1110⟩
BDFH|1111⟩
CT
β‡’ 0123
ACEG|0000⟩
ACEH|0001⟩
ACFG|0010⟩
ACFH|0011⟩
ADFG|0110⟩
ADFH|0111⟩
ADEG|0100⟩
ADEH|0101⟩
BCEG|1000⟩
BCEH|1001⟩
BCFG|1010⟩
BCFH|1011⟩
BDFG|1110⟩
BDFH|1111⟩
BDEG|1100⟩
BDEH|1101⟩
CT
= 0123
ACEG|0000⟩
ACEH|0001⟩
ACFG|0010⟩
ACFH|0011⟩
ADFG|0100⟩
ADFH|0101⟩
ADEG|0110⟩
ADEH|0111⟩
BCEG|1000⟩
BCEH|1001⟩
BCFG|1010⟩
BCFH|1011⟩
BDFG|1100⟩
BDFH|1101⟩
BDEG|1110⟩
BDEH|1111⟩
Gee, that sure is a lot
easier than that other
method. The person
who developed this
must be truly amazing!
And his personal
hygiene must be
second-to-none!
Differing CNOT Matrices – CNOT(0,1)
1 0
0 1
0 0
0 0
0 0
0 0
0 1
1 0
CT
01
AC|00⟩
AD|01⟩
BC|10⟩
BD|11⟩
AC AD BC BD
AC
AD
BD
BC
β‡’
AC|00⟩
AD|01⟩
BD|11⟩
BC|10⟩
=
AC|00⟩
AD|01⟩
BD|10⟩
BC|11⟩
Differing CNOT Matrices – CNOT(1,0)
1 0
0 0
0 0
0 1
0 0
0 1
1 0
0 0
TC
01
AC|00⟩
AD|01⟩
BC|10⟩
BD|11⟩
AC AD BC BD
AC
BD
BC
AD
β‡’
AC|00⟩
BD|11⟩
BC|10⟩
AD|01⟩
=
AC|00⟩
BD|01⟩
BC|10⟩
AD|11⟩
Tofolli Gate
β€’ Acts on three qubits
β€’ Flips the target qubit if and only if both control qubits are 1
β€’ Doubly-controlled NOT gate
β€’ Represented by the following matrix:
1 0
0 1
0 0
0 0
0 0
0 0
1 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 1
0 0
0 0
0 0
0 0
0 1
1 0
Measurement
Did the thing work?
Measurement
β€’ Measure in X
β€’ Measure in Z
β€’ Result is classical
OO
Object-oriented quantuming!
Q#
An object-oriented quantum computing simulator for .NET
Q# 1.0.0.4
β€’ An object-oriented quantum simulator written in C#
β€’ Nuget package QSharp Mathematics
β€’ Command parser
β€’ Supports the following gates: CNOT, CSWAP, CZ, Hadamard, X, Y, Z,
Swap, Toffoli
β€’ Good for about 8 qubits
Q# Code Example 1
β€’ Create a register using 3 random qubits
β€’ Print the initial state to the console
Q# Code Example 2
β€’ Create a register using 3 random qubits
β€’ Print the initial state to the console
β€’ Create a Pauli X gate
β€’ Apply the X gate to qubit 0
β€’ Print the state to the console
β€’ Apply the X gate to qubit 1
β€’ Print the final state to the console
Q# Code Example 3
β€’ Create a register using 5 random qubits
β€’ Print the initial state to the console
β€’ Read commands from a file
β€’ Apply the commands using the Parser type
β€’ Print the final state to the console
β€’ Use the command results to generate a circuit diagram
Q# 1.0.0.5 – More Explosions!
β€’ Rewritten matrix storage – huge memory savings!
β€’ Supports custom Command types
β€’ Good for 25 qubits (on my machine, anyway)
β€’ Bigger, faster, more explosions! *
β€’ Coming soon:
β€’ .NET 1.0.0.5
β€’ C++ libraries
β€’ Java libraries (maybe)
β€’ * May (or may not) cause actual explosions
Remaining Challenges
How long before we get our own quantum computers?
And can we play Overwatch on them?
Remaining Challenges
β€’ Hardware production
β€’ Scaling
β€’ Error correction
β€’ Writing quantum software
Practical Quantum Computing
What can I use it for?
D-Wave
β€’ Controversial claims about β€˜quantumness’
β€’ Is it actually a quantum computer?
β€’ Adiabatic device
What an impressive beastie!
Practical Quantum Computing
β€’ Quantum chemistry
β€’ Complex molecule design and modelling
β€’ Complex materials research
β€’ Encryption and communication
β€’ Searching large databases
β€’ Solving complex systems of equations
Futures
Quantum Computing Futures
β€’ Industry fragmentation
β€’ Hardware production hurdles
β€’ Large corporations (Microsoft, Google etc.) have their own quantum
programs
β€’ There is a lot of work to do!
Thank you very much

More Related Content

What's hot

Ke3617561763
Ke3617561763Ke3617561763
Ke3617561763IJERA Editor
Β 
Seminar on quatum
Seminar on quatumSeminar on quatum
Seminar on quatumaprameyabr1
Β 
Introduction to Quantum Computing with Qiskit
Introduction to Quantum Computing with QiskitIntroduction to Quantum Computing with Qiskit
Introduction to Quantum Computing with QiskitSakibul Islam Sazzad
Β 
Quantum computation: past-now-future - 2021-06-19
Quantum computation: past-now-future - 2021-06-19Quantum computation: past-now-future - 2021-06-19
Quantum computation: past-now-future - 2021-06-19Aritra Sarkar
Β 
Quantum Computing
Quantum ComputingQuantum Computing
Quantum ComputingKeshav
Β 
Chaotic substitution box design for block ciphers
Chaotic substitution box design for block  ciphersChaotic substitution box design for block  ciphers
Chaotic substitution box design for block ciphersHammad Haleem
Β 
Complexity of algorithms
Complexity of algorithmsComplexity of algorithms
Complexity of algorithmsJasur Ahmadov
Β 
Programming Existing Quantum Computers
Programming Existing Quantum ComputersProgramming Existing Quantum Computers
Programming Existing Quantum ComputersAnton Karazeev
Β 
Search and optimization on quantum accelerators - 2019-05-23
Search and optimization on quantum accelerators - 2019-05-23Search and optimization on quantum accelerators - 2019-05-23
Search and optimization on quantum accelerators - 2019-05-23Aritra Sarkar
Β 
Libxc a library of exchange and correlation functionals
Libxc a library of exchange and correlation functionalsLibxc a library of exchange and correlation functionals
Libxc a library of exchange and correlation functionalsABDERRAHMANE REGGAD
Β 
Metodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang LandauMetodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang Landauangely alcendra
Β 
Graph Kernelpdf
Graph KernelpdfGraph Kernelpdf
Graph Kernelpdfpratik shukla
Β 
Quantum Computing
Quantum ComputingQuantum Computing
Quantum ComputingAYESHA JAVED
Β 

What's hot (20)

QUANTUM COMP 22
QUANTUM COMP 22QUANTUM COMP 22
QUANTUM COMP 22
Β 
Ke3617561763
Ke3617561763Ke3617561763
Ke3617561763
Β 
Seminar on quatum
Seminar on quatumSeminar on quatum
Seminar on quatum
Β 
Quantum computing meghaditya
Quantum computing meghadityaQuantum computing meghaditya
Quantum computing meghaditya
Β 
1542 inner products
1542 inner products1542 inner products
1542 inner products
Β 
Introduction to Quantum Computing with Qiskit
Introduction to Quantum Computing with QiskitIntroduction to Quantum Computing with Qiskit
Introduction to Quantum Computing with Qiskit
Β 
Quantum computation: past-now-future - 2021-06-19
Quantum computation: past-now-future - 2021-06-19Quantum computation: past-now-future - 2021-06-19
Quantum computation: past-now-future - 2021-06-19
Β 
Quantum Computing
Quantum ComputingQuantum Computing
Quantum Computing
Β 
Chaotic substitution box design for block ciphers
Chaotic substitution box design for block  ciphersChaotic substitution box design for block  ciphers
Chaotic substitution box design for block ciphers
Β 
Quantum computing
Quantum computingQuantum computing
Quantum computing
Β 
Complexity of algorithms
Complexity of algorithmsComplexity of algorithms
Complexity of algorithms
Β 
What is the point of Boson sampling?
What is the point of Boson sampling?What is the point of Boson sampling?
What is the point of Boson sampling?
Β 
Programming Existing Quantum Computers
Programming Existing Quantum ComputersProgramming Existing Quantum Computers
Programming Existing Quantum Computers
Β 
Search and optimization on quantum accelerators - 2019-05-23
Search and optimization on quantum accelerators - 2019-05-23Search and optimization on quantum accelerators - 2019-05-23
Search and optimization on quantum accelerators - 2019-05-23
Β 
Libxc a library of exchange and correlation functionals
Libxc a library of exchange and correlation functionalsLibxc a library of exchange and correlation functionals
Libxc a library of exchange and correlation functionals
Β 
CRDTs and Redis
CRDTs and RedisCRDTs and Redis
CRDTs and Redis
Β 
Computer Science Final Project
Computer Science Final ProjectComputer Science Final Project
Computer Science Final Project
Β 
Metodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang LandauMetodo Monte Carlo -Wang Landau
Metodo Monte Carlo -Wang Landau
Β 
Graph Kernelpdf
Graph KernelpdfGraph Kernelpdf
Graph Kernelpdf
Β 
Quantum Computing
Quantum ComputingQuantum Computing
Quantum Computing
Β 

Viewers also liked

Quantum computing
Quantum computingQuantum computing
Quantum computingKrishna Patel
Β 
Quantum Computing. 10,000x faster (Vasyl Mylko Technology Stream)
Quantum Computing. 10,000x faster (Vasyl Mylko Technology Stream)Quantum Computing. 10,000x faster (Vasyl Mylko Technology Stream)
Quantum Computing. 10,000x faster (Vasyl Mylko Technology Stream)IT Arena
Β 
Quantum computing
Quantum computingQuantum computing
Quantum computingdharmsinghggu
Β 
Quantum computing
Quantum computingQuantum computing
Quantum computingsuraj4
Β 
Quantum logic synthesis (srikanth)
Quantum logic synthesis (srikanth)Quantum logic synthesis (srikanth)
Quantum logic synthesis (srikanth)bitra11
Β 
Monal Yadav_PMO
Monal Yadav_PMOMonal Yadav_PMO
Monal Yadav_PMOMonal Yadav
Β 
D-Wave One and Quantum Computing
D-Wave One and Quantum ComputingD-Wave One and Quantum Computing
D-Wave One and Quantum Computingsgranade
Β 
Quantum Computers PART 3 Computer That Program itself by Prof. Lili Saghafi
Quantum Computers PART 3 Computer That Program itself by Prof. Lili SaghafiQuantum Computers PART 3 Computer That Program itself by Prof. Lili Saghafi
Quantum Computers PART 3 Computer That Program itself by Prof. Lili SaghafiProfessor Lili Saghafi
Β 
Quantum Computing Report
Quantum Computing ReportQuantum Computing Report
Quantum Computing ReportAbhishek Jaisingh
Β 
Quantum Entanglement
Quantum EntanglementQuantum Entanglement
Quantum Entanglementpixiejen
Β 
Qunatum computing
Qunatum computing Qunatum computing
Qunatum computing Shivangi Gupta
Β 
Applications of Quantum Entanglement Presentation
Applications of Quantum Entanglement PresentationApplications of Quantum Entanglement Presentation
Applications of Quantum Entanglement PresentationParis-Anne O'Shea
Β 
Quantum Computers New Generation of Computers Part 9 Quantum Computers Readin...
Quantum Computers New Generation of Computers Part 9 Quantum Computers Readin...Quantum Computers New Generation of Computers Part 9 Quantum Computers Readin...
Quantum Computers New Generation of Computers Part 9 Quantum Computers Readin...Professor Lili Saghafi
Β 
QuantumComputersPresentation
QuantumComputersPresentationQuantumComputersPresentation
QuantumComputersPresentationVinayak Suresh
Β 
Quantum Computing - Challenges in the field of security
Quantum Computing - Challenges in the field of securityQuantum Computing - Challenges in the field of security
Quantum Computing - Challenges in the field of securityNavin Pai
Β 
Quantum computing
Quantum computingQuantum computing
Quantum computingmrevanth
Β 
Quantum Computers
Quantum ComputersQuantum Computers
Quantum Computerskathan
Β 

Viewers also liked (20)

Quantum computing
Quantum computingQuantum computing
Quantum computing
Β 
Quantum Computing. 10,000x faster (Vasyl Mylko Technology Stream)
Quantum Computing. 10,000x faster (Vasyl Mylko Technology Stream)Quantum Computing. 10,000x faster (Vasyl Mylko Technology Stream)
Quantum Computing. 10,000x faster (Vasyl Mylko Technology Stream)
Β 
Quantum computing
Quantum computingQuantum computing
Quantum computing
Β 
Quantum computing
Quantum computingQuantum computing
Quantum computing
Β 
Quantum logic synthesis (srikanth)
Quantum logic synthesis (srikanth)Quantum logic synthesis (srikanth)
Quantum logic synthesis (srikanth)
Β 
Monal Yadav_PMO
Monal Yadav_PMOMonal Yadav_PMO
Monal Yadav_PMO
Β 
D-Wave One and Quantum Computing
D-Wave One and Quantum ComputingD-Wave One and Quantum Computing
D-Wave One and Quantum Computing
Β 
Presentation1
Presentation1Presentation1
Presentation1
Β 
Quantum Computers PART 3 Computer That Program itself by Prof. Lili Saghafi
Quantum Computers PART 3 Computer That Program itself by Prof. Lili SaghafiQuantum Computers PART 3 Computer That Program itself by Prof. Lili Saghafi
Quantum Computers PART 3 Computer That Program itself by Prof. Lili Saghafi
Β 
Quantum Computing Report
Quantum Computing ReportQuantum Computing Report
Quantum Computing Report
Β 
Quantum Entanglement
Quantum EntanglementQuantum Entanglement
Quantum Entanglement
Β 
Qunatum computing
Qunatum computing Qunatum computing
Qunatum computing
Β 
Applications of Quantum Entanglement Presentation
Applications of Quantum Entanglement PresentationApplications of Quantum Entanglement Presentation
Applications of Quantum Entanglement Presentation
Β 
Quantum Computers New Generation of Computers Part 9 Quantum Computers Readin...
Quantum Computers New Generation of Computers Part 9 Quantum Computers Readin...Quantum Computers New Generation of Computers Part 9 Quantum Computers Readin...
Quantum Computers New Generation of Computers Part 9 Quantum Computers Readin...
Β 
QuantumComputersPresentation
QuantumComputersPresentationQuantumComputersPresentation
QuantumComputersPresentation
Β 
Quantum Computing - Challenges in the field of security
Quantum Computing - Challenges in the field of securityQuantum Computing - Challenges in the field of security
Quantum Computing - Challenges in the field of security
Β 
CA_final_paper
CA_final_paperCA_final_paper
CA_final_paper
Β 
Quantum Computing
Quantum ComputingQuantum Computing
Quantum Computing
Β 
Quantum computing
Quantum computingQuantum computing
Quantum computing
Β 
Quantum Computers
Quantum ComputersQuantum Computers
Quantum Computers
Β 

Similar to Quantum Computing Fundamentals via OO

Quantum Computation For AI
Quantum Computation For AIQuantum Computation For AI
Quantum Computation For AIPrasenjit Mukherjee
Β 
Quantum computing - A Compilation of Concepts
Quantum computing - A Compilation of ConceptsQuantum computing - A Compilation of Concepts
Quantum computing - A Compilation of ConceptsGokul Alex
Β 
HiPEAC'19 Tutorial on Quantum algorithms using QX - 2019-01-23
HiPEAC'19 Tutorial on Quantum algorithms using QX - 2019-01-23HiPEAC'19 Tutorial on Quantum algorithms using QX - 2019-01-23
HiPEAC'19 Tutorial on Quantum algorithms using QX - 2019-01-23Aritra Sarkar
Β 
Quantum Computing 101, Part 1 - Hello Quantum World
Quantum Computing 101, Part 1 - Hello Quantum WorldQuantum Computing 101, Part 1 - Hello Quantum World
Quantum Computing 101, Part 1 - Hello Quantum WorldAaronTurner9
Β 
Quantum Computation 101 (Almost)
Quantum Computation 101 (Almost)Quantum Computation 101 (Almost)
Quantum Computation 101 (Almost)Ping Sheng Kao
Β 
Ahsan 10X Engineering Talk (Quantum Computing).pptx
Ahsan 10X Engineering Talk (Quantum Computing).pptxAhsan 10X Engineering Talk (Quantum Computing).pptx
Ahsan 10X Engineering Talk (Quantum Computing).pptxMuhammad Ahsan
Β 
Deep learning study 2
Deep learning study 2Deep learning study 2
Deep learning study 2San Kim
Β 
QX Simulator and quantum programming - 2020-04-28
QX Simulator and quantum programming - 2020-04-28QX Simulator and quantum programming - 2020-04-28
QX Simulator and quantum programming - 2020-04-28Aritra Sarkar
Β 
Quntum error
Quntum errorQuntum error
Quntum errormetowantthis
Β 
Quantum Computing - Are We There Yet?
Quantum Computing - Are We There Yet?Quantum Computing - Are We There Yet?
Quantum Computing - Are We There Yet?Ciprian Jichici
Β 
quantumComputers.ppt
quantumComputers.pptquantumComputers.ppt
quantumComputers.pptAbhayGill3
Β 
quantumComputers.ppt
quantumComputers.pptquantumComputers.ppt
quantumComputers.pptTassianeNatany
Β 
quantumComputers.ppt
quantumComputers.pptquantumComputers.ppt
quantumComputers.pptApdirahmanHassan
Β 
quantumComputers.ppt
quantumComputers.pptquantumComputers.ppt
quantumComputers.pptRaja Shekar
Β 
quantumComputers.ppt
quantumComputers.pptquantumComputers.ppt
quantumComputers.pptAjayRaj912848
Β 
quantumComputers.ppt
quantumComputers.pptquantumComputers.ppt
quantumComputers.pptraju980973
Β 
quantumComputers (1).ppt
quantumComputers (1).pptquantumComputers (1).ppt
quantumComputers (1).pptharithasahasra
Β 
quantumComputers.ppt
quantumComputers.pptquantumComputers.ppt
quantumComputers.pptTrushaKyada
Β 
quantumComputers.pptICICI-An HR perspective
quantumComputers.pptICICI-An HR perspectivequantumComputers.pptICICI-An HR perspective
quantumComputers.pptICICI-An HR perspectiveBenjinkumarNimmala
Β 

Similar to Quantum Computing Fundamentals via OO (20)

Quantum Computation For AI
Quantum Computation For AIQuantum Computation For AI
Quantum Computation For AI
Β 
Quantum computing - A Compilation of Concepts
Quantum computing - A Compilation of ConceptsQuantum computing - A Compilation of Concepts
Quantum computing - A Compilation of Concepts
Β 
HiPEAC'19 Tutorial on Quantum algorithms using QX - 2019-01-23
HiPEAC'19 Tutorial on Quantum algorithms using QX - 2019-01-23HiPEAC'19 Tutorial on Quantum algorithms using QX - 2019-01-23
HiPEAC'19 Tutorial on Quantum algorithms using QX - 2019-01-23
Β 
Quantum Computing 101, Part 1 - Hello Quantum World
Quantum Computing 101, Part 1 - Hello Quantum WorldQuantum Computing 101, Part 1 - Hello Quantum World
Quantum Computing 101, Part 1 - Hello Quantum World
Β 
Quantum Computation 101 (Almost)
Quantum Computation 101 (Almost)Quantum Computation 101 (Almost)
Quantum Computation 101 (Almost)
Β 
Ahsan 10X Engineering Talk (Quantum Computing).pptx
Ahsan 10X Engineering Talk (Quantum Computing).pptxAhsan 10X Engineering Talk (Quantum Computing).pptx
Ahsan 10X Engineering Talk (Quantum Computing).pptx
Β 
Deep learning study 2
Deep learning study 2Deep learning study 2
Deep learning study 2
Β 
QX Simulator and quantum programming - 2020-04-28
QX Simulator and quantum programming - 2020-04-28QX Simulator and quantum programming - 2020-04-28
QX Simulator and quantum programming - 2020-04-28
Β 
Quntum error
Quntum errorQuntum error
Quntum error
Β 
Quantum Computing - Are We There Yet?
Quantum Computing - Are We There Yet?Quantum Computing - Are We There Yet?
Quantum Computing - Are We There Yet?
Β 
02-gates-w.pptx
02-gates-w.pptx02-gates-w.pptx
02-gates-w.pptx
Β 
quantumComputers.ppt
quantumComputers.pptquantumComputers.ppt
quantumComputers.ppt
Β 
quantumComputers.ppt
quantumComputers.pptquantumComputers.ppt
quantumComputers.ppt
Β 
quantumComputers.ppt
quantumComputers.pptquantumComputers.ppt
quantumComputers.ppt
Β 
quantumComputers.ppt
quantumComputers.pptquantumComputers.ppt
quantumComputers.ppt
Β 
quantumComputers.ppt
quantumComputers.pptquantumComputers.ppt
quantumComputers.ppt
Β 
quantumComputers.ppt
quantumComputers.pptquantumComputers.ppt
quantumComputers.ppt
Β 
quantumComputers (1).ppt
quantumComputers (1).pptquantumComputers (1).ppt
quantumComputers (1).ppt
Β 
quantumComputers.ppt
quantumComputers.pptquantumComputers.ppt
quantumComputers.ppt
Β 
quantumComputers.pptICICI-An HR perspective
quantumComputers.pptICICI-An HR perspectivequantumComputers.pptICICI-An HR perspective
quantumComputers.pptICICI-An HR perspective
Β 

Recently uploaded

Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”soniya singh
Β 
Recombination DNA Technology (Microinjection)
Recombination DNA Technology (Microinjection)Recombination DNA Technology (Microinjection)
Recombination DNA Technology (Microinjection)Jshifa
Β 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsssuserddc89b
Β 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSΓ©rgio Sacani
Β 
CALL ON βž₯8923113531 πŸ”Call Girls Kesar Bagh Lucknow best Night Fun service πŸͺ‘
CALL ON βž₯8923113531 πŸ”Call Girls Kesar Bagh Lucknow best Night Fun service  πŸͺ‘CALL ON βž₯8923113531 πŸ”Call Girls Kesar Bagh Lucknow best Night Fun service  πŸͺ‘
CALL ON βž₯8923113531 πŸ”Call Girls Kesar Bagh Lucknow best Night Fun service πŸͺ‘anilsa9823
Β 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxAleenaTreesaSaji
Β 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
Β 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
Β 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
Β 
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.Call Girls in Munirka Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.aasikanpl
Β 
Module 4: Mendelian Genetics and Punnett Square
Module 4:  Mendelian Genetics and Punnett SquareModule 4:  Mendelian Genetics and Punnett Square
Module 4: Mendelian Genetics and Punnett SquareIsiahStephanRadaza
Β 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
Β 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: β€œEg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: β€œEg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: β€œEg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: β€œEg...SΓ©rgio Sacani
Β 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzohaibmir069
Β 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
Β 
Lucknow πŸ’‹ Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow πŸ’‹ Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow πŸ’‹ Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow πŸ’‹ Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
Β 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...SΓ©rgio Sacani
Β 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
Β 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physicsvishikhakeshava1
Β 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
Β 

Recently uploaded (20)

Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”8264348440πŸ”
Β 
Recombination DNA Technology (Microinjection)
Recombination DNA Technology (Microinjection)Recombination DNA Technology (Microinjection)
Recombination DNA Technology (Microinjection)
Β 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physics
Β 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
Β 
CALL ON βž₯8923113531 πŸ”Call Girls Kesar Bagh Lucknow best Night Fun service πŸͺ‘
CALL ON βž₯8923113531 πŸ”Call Girls Kesar Bagh Lucknow best Night Fun service  πŸͺ‘CALL ON βž₯8923113531 πŸ”Call Girls Kesar Bagh Lucknow best Night Fun service  πŸͺ‘
CALL ON βž₯8923113531 πŸ”Call Girls Kesar Bagh Lucknow best Night Fun service πŸͺ‘
Β 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptx
Β 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Β 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
Β 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
Β 
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.Call Girls in Munirka Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Call Girls in Munirka Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Β 
Module 4: Mendelian Genetics and Punnett Square
Module 4:  Mendelian Genetics and Punnett SquareModule 4:  Mendelian Genetics and Punnett Square
Module 4: Mendelian Genetics and Punnett Square
Β 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
Β 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: β€œEg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: β€œEg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: β€œEg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: β€œEg...
Β 
zoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistanzoogeography of pakistan.pptx fauna of Pakistan
zoogeography of pakistan.pptx fauna of Pakistan
Β 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
Β 
Lucknow πŸ’‹ Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow πŸ’‹ Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow πŸ’‹ Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow πŸ’‹ Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Β 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Β 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
Β 
Work, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE PhysicsWork, Energy and Power for class 10 ICSE Physics
Work, Energy and Power for class 10 ICSE Physics
Β 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
Β 

Quantum Computing Fundamentals via OO

  • 1. Quantum Computing Fundamentals via OO Carl Belle – carlyman@outlook.com ALT.NET Melbourne 2016
  • 3. About me VITAL STATISTICS Human Male Height: 183 cm Weight: 82 kg Favourite Enzyme: ATP Synthase PROFESSIONAL Bachelor of IT (RMIT) Research Student (RMIT): Computational Materials Discovery Senior Developer @ Xero
  • 4. Me != Physicist Me != Mathematician
  • 5. Agenda β€’ Introduction β€’ Theory – some maths will happen! β€’ Q# – a OO quantum computing simulator for .NET β€’ Futures
  • 7. Why? The question: Can we simulate physics on a computer? The answer: Yes. But also no.
  • 9. Hardware Particle Isolated in a wafer Superconductor
  • 10. Classical vs. Quantum Systems Absolutes vs. Probabilities
  • 11. Classical vs. Quantum Systems CLASSICAL Manipulation of a register using Boolean algebra One operation = one result QUANTUM Manipulation of a register using Matrix algebra One operation = many results
  • 13. Matrix Multiplication π‘š Γ— 𝑛 Γ— 𝑛 Γ— 𝑝 = π‘š Γ— 𝑝 0 1 1 0 Γ— 0 1 0 Γ— 0 + (1 Γ— 1) 1 Γ— 0 + (0 Γ— 1) = 1 0
  • 14. Matrix Tensor Multiplication 𝐴 ⨂ 𝐡 1 0 0 1 ⨂ 0 1 1 0 1 Γ— 0 1 1 0 0 Γ— 0 1 1 0 0 Γ— 0 1 1 0 1 Γ— 0 1 1 0 = 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0
  • 16. The Register β€’ Constructed from qubits β€’ Consists of computational basis states β€’ Can be referred to as the β€˜state vector’ β€’ Preparation β€’ Normalisation
  • 17. The Register - Superposition A quantum state added to another quantum state yields a further quantum state. Classical: 𝑦 = π‘₯ 16 = 16 β†’ 16 π‘π‘™π‘Žπ‘ π‘ π‘–π‘π‘Žπ‘™ 𝑏𝑖𝑑𝑠 Quantum: 𝑦 = 2 π‘₯ 16 = 24 β†’ 4 π‘žπ‘’π‘π‘–π‘‘π‘ 
  • 18. 1 Qubit Register β€’ 𝑄0 = 𝐴 0 + 𝐡|1⟩) β€’ πœ“ = 𝐴 0 + 𝐡 1
  • 19. 2 Qubit Register β€’ 𝑄0 = 𝐴 0 + 𝐡|1⟩) β€’ 𝑄1 = 𝐢 0 + 𝐷 1 ) β€’ πœ“ = 𝐴𝐢 00 + 𝐴𝐷 01 + 𝐡𝐢 10 + 𝐡𝐷|11⟩
  • 20. 3 Qubit Register β€’ 𝑄0 = 𝐴 0 + 𝐡|1⟩) β€’ 𝑄1 = 𝐢 0 + 𝐷 1 ) β€’ 𝑄2 = 𝐸 0 + 𝐹|1⟩) β€’ πœ“ = 𝐴𝐢𝐸 000 + 𝐴𝐢𝐹 001 + 𝐴𝐷𝐸 010 + 𝐴𝐷𝐹 011 + 𝐡𝐢𝐸 100 + 𝐡𝐢𝐹 101 + 𝐡𝐷𝐸 110 + 𝐡𝐷𝐹|111⟩
  • 21. The Register – Normalisation The state vector which a quantum register represents has the following property: 𝛼 2 + 𝛽 2 + β‹― + 𝑛 2 = 1
  • 22. Qubits More on Absolutes vs. Probabilities
  • 23. Classical Bits vs. Quantum Bits CLASSICAL Absolutes QUANTUM Probabilities 𝐿𝑒𝑑 𝐴|0⟩ = 0.8, 𝐡|1⟩ = βˆ’0.6 0.8 2 + βˆ’0.6 2 = 0.64 + 0.36 = 1 β†’ 0 @ 64%, 1 @ 36% |1⟩ |0⟩
  • 24. Gates Doing stuff with quantum things
  • 25. Pauli-X Gate β€’ Acts on a single qubit β€’ Maps |0⟩ to |1⟩ and |1⟩ to |0⟩ β€’ Represented by the following matrix: 0 1 1 0
  • 26. Pauli-X Gate πœ“ = 𝐴 0 + 𝐡 1 0 1 1 0 Γ— 𝐴|0⟩ 𝐡|1⟩ (0 Γ— 𝐴|0⟩) + (1 Γ— 𝐡|1⟩) (1 Γ— 𝐴|0⟩) + (0 Γ— 𝐡|1⟩) = 𝐡|1⟩ 𝐴|0⟩
  • 27. Pauli-Z Gate β€’ Acts on a single qubit β€’ Leaves the basis state |0⟩ unchanged, and maps |1⟩ to βˆ’|1⟩ β€’ Represented by the following matrix: 1 0 0 βˆ’1
  • 28. Pauli-Z Gate πœ“ = 𝐴 0 + 𝐡 1 1 0 0 βˆ’1 Γ— 𝐴|0⟩ 𝐡|1⟩ (1 Γ— 𝐴|0⟩) + ( 0 Γ— 𝐡|1⟩) (0 Γ— 𝐴|0⟩) + (βˆ’1 Γ— 𝐡|1⟩) = 𝐴|0⟩ βˆ’π΅|1⟩
  • 29. Pauli-Y Gate β€’ Acts on a single qubit β€’ Maps |0⟩ to 𝑖|1⟩ and |1⟩ to βˆ’π‘–|0⟩ β€’ Represented by the following matrix: 0 βˆ’π‘– 𝑖 0
  • 30. Imaginary Numbers β€’ The imaginary number 𝑖 has the following property: 𝑖2 = βˆ’1 β€’ When 𝑖 is squared, the sign of the term is changed β€’ Example: 5𝑖2 = 5 Γ— βˆ’1 = βˆ’5
  • 31. Pauli-Y Gate πœ“ = 𝐴 0 + 𝐡 1 0 βˆ’π‘– 𝑖 0 Γ— 𝐴|0⟩ 𝐡|1⟩ (0 Γ— 𝐴|0⟩) + (βˆ’π‘– Γ— 𝐡|1⟩) (𝑖 Γ— 𝐴|0⟩) + ( 0 Γ— 𝐡|1⟩) = βˆ’π‘–π΅|1⟩ 𝑖𝐴|0⟩
  • 32. SINGLE Qubit Gate, Multi qubit system β€’ State vector in a 2 qubit system contains 4 rows β€’ Single-qubit matrices contain 2 columns: not big enough to participate β€’ Single-qubit matrix must be β€˜stepped-up’ to be the appropriate size β€’ β€˜Step-up’ is achieved with the help of the identity matrix
  • 33. Identity Matrix β€’ Simple diagonal matrix 1 0 0 1 β€’ Specifying the index of the qubit the gate is operating on β€’ Tensor operations with an identity matrix
  • 34. Pauli-X Gate, 2 Qubit System 0 1 1 0 ⨂ 1 0 0 1 = 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 Γ— 𝐴𝐢|00⟩ 𝐴𝐷|01⟩ 𝐡𝐢|10⟩ 𝐡𝐷|11⟩ 0 Γ— 𝐴𝐢|00⟩ + 0 Γ— 𝐴𝐷|01⟩ + (1 Γ— 𝐡𝐢|10⟩) + (0 Γ— 𝐡𝐷|11⟩) (0 Γ— 𝐴𝐢|00⟩) + (0 Γ— 𝐴𝐷|01⟩) + (0 Γ— 𝐡𝐢|10⟩) + (1 Γ— 𝐡𝐷|11⟩) (1 Γ— 𝐴𝐢|00⟩) + (0 Γ— 𝐴𝐷|01⟩) + (0 Γ— 𝐡𝐢|10⟩) + (0 Γ— 𝐡𝐷|11⟩) (0 Γ— 𝐴𝐢|00⟩) + (1 Γ— 𝐴𝐷|01⟩) + (0 Γ— 𝐡𝐢|10⟩) + (0 Γ— 𝐡𝐷|11⟩) = 𝐡𝐢|00⟩ 𝐡𝐷|01⟩ 𝐴𝐢|10⟩ 𝐴𝐷|11⟩
  • 35. Pauli-X Gate, 3 Qubit System (1) 1 0 0 1 ⨂ 0 1 1 0 = 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 ⨂ 1 0 0 1 = 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0
  • 36. Pauli-X Gate, 3 Qubit System (2) (0 Γ— 𝐴𝐢𝐸|000⟩) + (0 Γ— 𝐴𝐢𝐹|001⟩) + (1 Γ— 𝐴𝐷𝐸|010⟩) + (0 Γ— 𝐴𝐷𝐹|011⟩) + (0 Γ— 𝐡𝐢𝐸|100⟩) + (0 Γ— 𝐡𝐢𝐹|101⟩) + (0 Γ— 𝐡𝐷𝐸|110⟩) + (0 Γ— 𝐡𝐷𝐹|111⟩) (0 Γ— 𝐴𝐢𝐸|000⟩) + (0 Γ— 𝐴𝐢𝐹|001⟩) + (0 Γ— 𝐴𝐷𝐸|010⟩) + (1 Γ— 𝐴𝐷𝐹|011⟩) + (0 Γ— 𝐡𝐢𝐸|100⟩) + (0 Γ— 𝐡𝐢𝐹|101⟩) + (0 Γ— 𝐡𝐷𝐸|110⟩) + (0 Γ— 𝐡𝐷𝐹|111⟩) (1 Γ— 𝐴𝐢𝐸|000⟩) + (0 Γ— 𝐴𝐢𝐹|001⟩) + (0 Γ— 𝐴𝐷𝐸|010⟩) + (0 Γ— 𝐴𝐷𝐹|011⟩) + (0 Γ— 𝐡𝐢𝐸|100⟩) + (0 Γ— 𝐡𝐢𝐹|101⟩) + (0 Γ— 𝐡𝐷𝐸|110⟩) + (0 Γ— 𝐡𝐷𝐹|111⟩) (0 Γ— 𝐴𝐢𝐸|000⟩) + (1 Γ— 𝐴𝐢𝐹|001⟩) + (0 Γ— 𝐴𝐷𝐸|010⟩) + (0 Γ— 𝐴𝐷𝐹|011⟩) + (0 Γ— 𝐡𝐢𝐸|100⟩) + (0 Γ— 𝐡𝐢𝐹|101⟩) + (0 Γ— 𝐡𝐷𝐸|110⟩) + (0 Γ— 𝐡𝐷𝐹|111⟩) (0 Γ— 𝐴𝐢𝐸|000⟩) + (0 Γ— 𝐴𝐢𝐹|001⟩) + (0 Γ— 𝐴𝐷𝐸|010⟩) + (0 Γ— 𝐴𝐷𝐹|011⟩) + (0 Γ— 𝐡𝐢𝐸|100⟩) + (0 Γ— 𝐡𝐢𝐹|101⟩) + (1 Γ— 𝐡𝐷𝐸|110⟩) + (0 Γ— 𝐡𝐷𝐹|111⟩) (0 Γ— 𝐴𝐢𝐸|000⟩) + (0 Γ— 𝐴𝐢𝐹|001⟩) + (0 Γ— 𝐴𝐷𝐸|010⟩) + (0 Γ— 𝐴𝐷𝐹|011⟩) + (0 Γ— 𝐡𝐢𝐸|100⟩) + (0 Γ— 𝐡𝐢𝐹|101⟩) + (0 Γ— 𝐡𝐷𝐸|110⟩) + (1 Γ— 𝐡𝐷𝐹|111⟩) (0 Γ— 𝐴𝐢𝐸|000⟩) + (0 Γ— 𝐴𝐢𝐹|001⟩) + (0 Γ— 𝐴𝐷𝐸|010⟩) + (0 Γ— 𝐴𝐷𝐹|011⟩) + (1 Γ— 𝐡𝐢𝐸|100⟩) + (0 Γ— 𝐡𝐢𝐹|101⟩) + (0 Γ— 𝐡𝐷𝐸|110⟩) + (0 Γ— 𝐡𝐷𝐹|111⟩) (0 Γ— 𝐴𝐢𝐸|000⟩) + (0 Γ— 𝐴𝐢𝐹|001⟩) + (0 Γ— 𝐴𝐷𝐸|010⟩) + (0 Γ— 𝐴𝐷𝐹|011⟩) + (0 Γ— 𝐡𝐢𝐸|100⟩) + (1 Γ— 𝐡𝐢𝐹|101⟩) + (0 Γ— 𝐡𝐷𝐸|110⟩) + (0 Γ— 𝐡𝐷𝐹|111⟩) = 𝐴𝐷𝐸|010⟩ 𝐴𝐷𝐹|011⟩ 𝐴𝐢𝐸|000⟩ 𝐴𝐢𝐹|001⟩ 𝐡𝐷𝐸|110⟩ 𝐡𝐷𝐹|111⟩ 𝐡𝐢𝐸|100⟩ 𝐡𝐢𝐹|101⟩ This protracted manual calculation is horrible, surely there must be a better way?
  • 37. Hadamard Gate β€’ Acts on a single qubit β€’ Maps the basis state |0⟩ to (|0⟩ + |1⟩)/ 2 and |1⟩ to (|0⟩ βˆ’ |1⟩)/ 2 β€’ Represented by the following matrix: 1 2 1 1 1 βˆ’1
  • 38. CNOT Gate β€’ Acts on two qubits β€’ Flips the target qubit if and only if the control qubit is 1 β€’ Singly-controlled NOT gate β€’ Represented by the following matrix: 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0
  • 39. CNOT GATE, 2 Qubit System CNOT(0, 1) 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 Γ— 𝐴𝐢|00⟩ 𝐴𝐷|01⟩ 𝐡𝐢|10⟩ 𝐡𝐷|11⟩ = 𝐴𝐢|00⟩ 𝐴𝐷|01⟩ 𝐡𝐷|11⟩ 𝐡𝐢|10⟩ CNOT(1, 0) 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 Γ— 𝐴𝐢|00⟩ 𝐴𝐷|01⟩ 𝐡𝐢|10⟩ 𝐡𝐷|11⟩ = 𝐴𝐢|00⟩ 𝐡𝐷|01⟩ 𝐡𝐢|10⟩ 𝐴𝐷|11⟩ Why are there two different CNOT matrices? Could it have anything to do with finding a nicer way of performing these calculations by hand?
  • 40. CNOT Gate, 3 Qubit System CT 012 000 001 010 011 100 101 110 111 000 001 010 011 110 111 100 101 CT 012 ACE|000⟩ ACF|001⟩ ADE|010⟩ ADF|011⟩ BCE|100⟩ BCF|101⟩ BDE|110⟩ BDF|111⟩ β‡’ ACE|000⟩ ACF|001⟩ ADE|010⟩ ADF|011⟩ BDE|110⟩ BDF|111⟩ BCE|100⟩ BCF|101⟩ = ADE|000⟩ ADF|001⟩ ACE|010⟩ ACF|011⟩ BDE|100⟩ BDF|101⟩ BCE|110⟩ BCF|111⟩ Control qubit is 1, so the target qubit is flipped
  • 41. CNOT Gate, 4 Qubit System CT 0123 ACEG|0000⟩ ACEH|0001⟩ ACFG|0010⟩ ACFH|0011⟩ ADEG|0100⟩ ADEH|0101⟩ ADFG|0110⟩ ADFH|0111⟩ BCEG|1000⟩ BCEH|1001⟩ BCFG|1010⟩ BCFH|1011⟩ BDEG|1100⟩ BDEH|1101⟩ BDFG|1110⟩ BDFH|1111⟩ CT β‡’ 0123 ACEG|0000⟩ ACEH|0001⟩ ACFG|0010⟩ ACFH|0011⟩ ADFG|0110⟩ ADFH|0111⟩ ADEG|0100⟩ ADEH|0101⟩ BCEG|1000⟩ BCEH|1001⟩ BCFG|1010⟩ BCFH|1011⟩ BDFG|1110⟩ BDFH|1111⟩ BDEG|1100⟩ BDEH|1101⟩ CT = 0123 ACEG|0000⟩ ACEH|0001⟩ ACFG|0010⟩ ACFH|0011⟩ ADFG|0100⟩ ADFH|0101⟩ ADEG|0110⟩ ADEH|0111⟩ BCEG|1000⟩ BCEH|1001⟩ BCFG|1010⟩ BCFH|1011⟩ BDFG|1100⟩ BDFH|1101⟩ BDEG|1110⟩ BDEH|1111⟩ Gee, that sure is a lot easier than that other method. The person who developed this must be truly amazing! And his personal hygiene must be second-to-none!
  • 42. Differing CNOT Matrices – CNOT(0,1) 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 CT 01 AC|00⟩ AD|01⟩ BC|10⟩ BD|11⟩ AC AD BC BD AC AD BD BC β‡’ AC|00⟩ AD|01⟩ BD|11⟩ BC|10⟩ = AC|00⟩ AD|01⟩ BD|10⟩ BC|11⟩
  • 43. Differing CNOT Matrices – CNOT(1,0) 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 TC 01 AC|00⟩ AD|01⟩ BC|10⟩ BD|11⟩ AC AD BC BD AC BD BC AD β‡’ AC|00⟩ BD|11⟩ BC|10⟩ AD|01⟩ = AC|00⟩ BD|01⟩ BC|10⟩ AD|11⟩
  • 44. Tofolli Gate β€’ Acts on three qubits β€’ Flips the target qubit if and only if both control qubits are 1 β€’ Doubly-controlled NOT gate β€’ Represented by the following matrix: 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0
  • 46. Measurement β€’ Measure in X β€’ Measure in Z β€’ Result is classical
  • 48. Q# An object-oriented quantum computing simulator for .NET
  • 49. Q# 1.0.0.4 β€’ An object-oriented quantum simulator written in C# β€’ Nuget package QSharp Mathematics β€’ Command parser β€’ Supports the following gates: CNOT, CSWAP, CZ, Hadamard, X, Y, Z, Swap, Toffoli β€’ Good for about 8 qubits
  • 50. Q# Code Example 1 β€’ Create a register using 3 random qubits β€’ Print the initial state to the console
  • 51. Q# Code Example 2 β€’ Create a register using 3 random qubits β€’ Print the initial state to the console β€’ Create a Pauli X gate β€’ Apply the X gate to qubit 0 β€’ Print the state to the console β€’ Apply the X gate to qubit 1 β€’ Print the final state to the console
  • 52. Q# Code Example 3 β€’ Create a register using 5 random qubits β€’ Print the initial state to the console β€’ Read commands from a file β€’ Apply the commands using the Parser type β€’ Print the final state to the console β€’ Use the command results to generate a circuit diagram
  • 53. Q# 1.0.0.5 – More Explosions! β€’ Rewritten matrix storage – huge memory savings! β€’ Supports custom Command types β€’ Good for 25 qubits (on my machine, anyway) β€’ Bigger, faster, more explosions! * β€’ Coming soon: β€’ .NET 1.0.0.5 β€’ C++ libraries β€’ Java libraries (maybe) β€’ * May (or may not) cause actual explosions
  • 54. Remaining Challenges How long before we get our own quantum computers? And can we play Overwatch on them?
  • 55. Remaining Challenges β€’ Hardware production β€’ Scaling β€’ Error correction β€’ Writing quantum software
  • 56. Practical Quantum Computing What can I use it for?
  • 57. D-Wave β€’ Controversial claims about β€˜quantumness’ β€’ Is it actually a quantum computer? β€’ Adiabatic device What an impressive beastie!
  • 58. Practical Quantum Computing β€’ Quantum chemistry β€’ Complex molecule design and modelling β€’ Complex materials research β€’ Encryption and communication β€’ Searching large databases β€’ Solving complex systems of equations
  • 60. Quantum Computing Futures β€’ Industry fragmentation β€’ Hardware production hurdles β€’ Large corporations (Microsoft, Google etc.) have their own quantum programs β€’ There is a lot of work to do!