SlideShare a Scribd company logo
1 of 35
College of Engineering
Department of Aerospace and Mechanical Engineering
Yile Hu
8/21/2014
Advisor: Prof. Erdogan Madenci
The University of Arizona
Peridynamic Simulation of
Delamination Propagation in Fiber-
Reinforced Composite
Page 2
Yile Hu
Peridynamic Simulation of Delamination
Propagation in Fiber-Reinforced Composite
Outline
• Introduction of Peridynamic Theory
• Equilibrium Equation
• Force Density Function
• Explicit & Implicit Solver
• Bond-Based Peridynamics for composites
• MicroModulus
• Critical Stretch
• Simulation Examples
• Crack Propagation (Mixed Implicit-Explicit)
• Double Cantilever Beam (Mode I)
• Transverse Crack Tension (Mode II)
• Future Work & Pending Publication
• Acknowledgements
Page 3
Yile Hu
1. Introduction of Peridynamic Theory
Peridynamic Theory [1] is a new nonlocal continuum
mechanics theory based on integral function.
“Peri” comes from a Greek root for “near”.
[1] Silling SA. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal
of the Mechanics and Physics of Solids,2000,48:175-209.
• Allows for crack initiation in
unguided locations;
• Allows for damage propagation
along unguided paths;
• Allows for multi-crack emergence
and their interactions;
• No numerical difficulties after
discontinuities (cracks) occur;
Force Density
Function
Page 4
Yile Hu
1. Introduction of Peridynamic Theory
Relationship between local and nonlocal continuum models [2]
In Peridynamics, one material point interacts with other
material points located in its horizon with a radius δ,
through the prescribed force density function which
contains all of the constitutive information associated with
the material.
[2] Erdogan Madenci, Erkan Oterkus. Peridynamic Theory and Its Applications. Springer, 2014.
Page 5
Yile Hu
1. Introduction of Peridynamic Theory
3. Kalthoff-Winkler Experiment [2]
1. Diagonally Loaded Square Plate [3]
2. Compact Tension Test [3]
4. Open Hole Tension [3]
[3] Kyle Colavito. Peridynamics for failure and residual strength prediction of fiber-reinforced
composites. PhD dissertation, 2013, University of Arizona, Tucson.
Page 6
Yile Hu
1.1 Peridynamic Equilibrium Equation
Peridynamic Theory [4]:
In numerical implementation, the integral term is replaced by a finite summation:
Classical Continuum Mechanics [5]:
Equilibrium Equation:
     ', , ', , ', , (1)
x
xH
t t dV t  u x f u u x x b x&&
   '
1
, ', , ', , , , ,
i
x
N
x ij i j i j jH
j
t dV t dV

  f u u x x f u u x x
[4] Silling S.A., Askari E. A meshfree method based on the peridynamic model of solid
mechanics[J]. Computers and Structures, 2005, Vol.83, 1526-1535.
[5] Askari E. Xu JF. Peridynamic Analysis of Damage and Failure in Composites[J].In:44th AIAA
Aerospace Sciences Meeting and Exhibition,No.2006-88,Reno,Nevada,2006.
     , , , , (2)t t t   u x σ u x b x&&
Reference
Configuration
Deformed
Configurationi
j j
i
Page 7
Yile Hu
1.2 Force Density Function
Classification of Peridynamic methods [2]
Bond-Based
(Opposite direction and same magnitude)
Ordinary State-Based
(Opposite direction but different magnitude)
Nonordinary State-Based
(Different directions, different magnitude)
Page 8
Yile Hu
1.2 Force Density Function
Bond-Based force density function [4]:
 
'
, ', , ' (3)
'
c s

   

y y
f u u x x
y y
Where  is the status variable:
0
0
1, intact bond, s<s
(4)
0, damaged bond, s s


 

c is the micro-modulus (more later);
s is the stretch: (5)s


η ξ
ξ
'
'


y y
y y
defines the direction of force density.
Bond
Stretch
“Bond
Force”
S0
c
Critical Stretch
Micromodulus
Page 9
Yile Hu
1.3 Explicit Solver
 
1
, , , , (8)
iN
n n n
ij i j i j
n
j
n
i
j
it V

 u u x bf u x&&
 ,n n
i i tu u xWhere , use finite difference for the acceleration term:
1 1
2
( )
2
9
n n n
i i in
i
t
 
 


u u
u
u
&&
We can obtain an explicit form for displacement:
1
1
2
1
2 (10)
iN
n n n
i i i ij j
j
n
i
t
V

 

 
  
 
  u bu u f
Interior point: i
Boundary point: 0,n
i u&&i
1
(12)
iN
ij j
j
n
i V

 fb
0,n
i b 1
2
1
1
( 12 1 )
iN
n n n
i i i ij j
j
t
V

 


  u u u f
ib
Equilibrium Equation:
Page 10
Yile Hu
1.4 Implicit Solver
   
   
 2 2, ,
, , , (16)O
 
    

 
           
 
ψ u ψ u
ψ u u ψ u u u
u
Equilibrium Equation:
   
1
, , , , (13)
iN
n n n
ij i j i ji j i
j
n n
t V

  u f u u x x b b&& L u
Static Problem:
   , (14)   ψ u L u b 0
   , , (15)       ψ u u ψ u 0
Taylor Expansion:
   
T
, ,
(17)
 


 
       
 
ψ u ψ u
u K u b
u
On n+1 sub-step: 1 1
T (18)n n n 
  K u b Solve a linear system
Page 11
Yile Hu
1.4 Implicit Solver
   
1 1
1
1
1 1 1
1
T
,
| | | (19)
N
Ni
NM
j j
i i in n n n
j i j
M M M
j j M

   
   
 
 
 
     
            
 
 
   
   
 
L L L
u u u
L L Lψ u L u
K
u u uu u
L L L
u u u
L
O O O
L L
O O O
L
Peridynamic Tangent Stiffness (PTS) Matrix:
     
T T* * 1 * 1 * 1 * 1 * * 1 * 1 * 1
T T
1
min (20)
2
n n n n n n n n n
f      
          K u b u u K u u b
Convert to an optimization problem;
Solved by Conjugated Gradient Method:
• No inverse of PTS matrix;
• Maintain the sparseness of PTS matrix;
• Matrix-free algorithm.
Page 12
Yile Hu
2. Bond-Based Peridynamics for composites
Peridynamic model for composite laminate:
0°layer
45°layer
90°layer
Horizon
0°bond
45°bond
90°bond
Interlayer bond
Page 13
Yile Hu
2.1 Bond Model
0°bond
90°bond and
Interlayer bond
α°bond
Bond Stretch
“Bond
Force”
S0
c
Critical Stretch
Micromodulus
• Anisotropic properties;
• Brittle material;
Page 14
Yile Hu
2.2 Micromodulus
Micromodulus of composite lamina [7]:
11
(21)
Q
c e c
Q

 
 
 

ξ
Where  4 2 2 4
11 12 66 22cos 2 2 sin cos sin (22)Q Q Q QQ       
Fiber direction
0°bond
α°bond
90°bond
Horizon
2
3
x
x
x


 x
α
[7] Yile Hu, Yin Yu, Hai Wang. Peridynamic analytical method for progressive damage
in notched composite laminates. Composite Structures, 2014, Vol. 108, 801-810.
Page 15
Yile Hu
2.2 Micromodulus
2
11
cos (23)
ij
ij
ij j i
i R j R
Le cs V V E A
Q
Q

 
 
 
 
 
 
 
 
ξ
Micromodulus
Page 16
Yile Hu
2.3 Critical Stretch
Strength-Based Critical Stretch
T
ft
0
11
C
fc
0
11
T
mt
0
22
C
mc
0
22
, 0 fiber bonds
, 0 fiber bonds
(6)
, 0 matrix and interlayer bonds
, 0 matrix and interlayer bonds
X
s s
E
X
s s
E
Y
s s
E
Y
s s
E

 


 


  



 

nodes
( , )
=1 (7)
N
iR
i
i
t 




Damage Index:
Previous Approach
Page 17
Yile Hu
2.3 Critical Stretch
Energy-Based Critical Stretch
Benzeggah-Kenane Fracture Criteria [8]:
  (24)II
c Ic IIc Ic
T
G
G G G G
G

 
    
 
[8] Krueger, R., An approach to assess delamination propagation simulation
capabilities in commercial finite element codes. NASA/TM-2008-215123, 2008.
New Approach
Page 18
Yile Hu
2.3 Critical Stretch
Energy-Based Critical Stretch:
Mode I Mode IIMixed-Mode
cos cos cos
, ,
ij ij ij i j ij ij ij ij i j ij ij ij ij i j ijc s VV du c s VV dv c s VV dw
Gx Gy Gz
A A A
  
  
  
  
(25)II
T
G Gx Gy
G Gx Gy Gz


 
Substitute back to B-K criteria:
  (24)II
c Ic IIc Ic
T
G
G G G G
G

 
    
 
For each
material point
Page 19
Yile Hu
2.3 Critical Stretch
Energy contribution of each bond is
distributed according to the stiffness ratio:
1
(26)i
ijc
ij cN
ij
i
c
G G
c



For each bond
Critical Energy Release Rate cG
Material Point Bond
Stiffness Ratio
i
j
Page 20
Yile Hu
GPU computing
The technology
we are using.
Architecture of
CPU and GPU [6]
[6] NVIDIA, CUDA C Programming Guide. <http://developer.download.nvidia.com/
compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf>
Page 21
Yile Hu
GPU computing
Code Structure:
Start
Read Input File
Discretization
Search Family Member
Compute Bond Properties
Apply Boundary Condition
If iteration <
total steps
No
End
Update Damage
Compute
Displacement
No
Output
Yes
Preprocess Interface
GPU Parallel Computing
Page 22
Yile Hu
3.1 Crack Propagation
Computation Model:
Number of family member
50 , 50 , 20
139400.0 , 10160.0 , 4600 , 0.33
2688 , 1488 , 91.8 , 291.0
:[90], t 0.125mm, 0.5
L T LT LT
T C T C
L mm W mm a mm
E MPa E MPa G MPa v
X MPa X MPa Y MPa Y MPa
Layup Mesh Spacing x mm
  
   
   
  
Node Number = 10,000
Bond Number = 135,698
Page 23
Yile Hu
3.1 Crack Propagation
Displacement X
Implicit:
Explicit:
Displacement Y
Page 24
Yile Hu
3.1 Crack Propagation
Explicit: Mixed Explicit-Implicit:
Explicit
Implicit
Page 25
Yile Hu
3.1 Crack Propagation
Force-Displacement Curve:
0.06125u mm 0.11u mm
0.1335u mm
0.1418u mm
Initial
Crack
Page 26
Yile Hu
3.2 Double Cantilever Beam (Mode I delamination)
11 22 12 12
2 2
139.4 , 10.16 , 0.30, 4.6
170.3 / , 493.6 / , 1.62Ic IIc
E GPa E GPa v G GPa
G J m G J m 
   
  
Computational Model:
T300/1076 Unidirectional Graphite/Epoxy Prepreg:
Dimension:
0
24
0 1
25.0 , 2 3.0 , 2 150.0 , 30.0
:[0]
6.0 , 20.0 , 0.5
B mm h mm L mm a mm
Layup
b mm b mm x mm
   
   
Node Number = 360,000
Bond Number = 14,520,420
Page 27
Yile Hu
3.2 Double Cantilever Beam (Mode I delamination)
Displacement X
Displacement Y
Deformation Contour
Displacement Z
Page 28
Yile Hu
3.2 Double Cantilever Beam (Mode I delamination)
Peridynamic resultsFE Benchmark [9]
[9] Krueger, R., Development of Benchmark Examples for Quasi-Static
Delamination propagation and Fatigue Growth Predictions. NIA,2012.
Energy/Area
in Z direction
2.936%II
T
G
G

Page 29
Yile Hu
3.2 Double Cantilever Beam (Mode I delamination)
Experiment [8]:
𝛿 2 = 1.2𝑚𝑚 𝛿 2 = 1.5𝑚𝑚 𝛿 2 = 1.8𝑚𝑚𝛿 2 = 0.9𝑚𝑚
Peridynamic Simulation
Page 30
Yile Hu
3.3 Transverse Crack Tension (Mode II delamination)
Node Number = 614,400
Bond Number = 24,786,160
Computational Model:
Dimension:
2 4 4 4 4 8
0 1
140.0 , 380.0 , 20.0 , 0.0
:[0 / 0 ] ,[0 / 0 ] ,[0 / 0 ]
2.0 , 20.0 , 0.5
s s s
L mm W mm b mm a mm
Layup
b mm b mm x mm
   
   
11 22 12 12
2 2
129.0 , 9.256 , 0.28, 5.0
170.0 / , 467.0 / , 1.47Ic IIc
E GPa E GPa v G GPa
G J m G J m 
   
  
T300/914C Unidirectional Carbon/Epoxy Prepreg:
Page 31
Yile Hu
3.3 Transverse Crack Tension (Mode II delamination)
Deformation Contour
Displacement X
Displacement Y
Displacement Z
Page 32
Yile Hu
3.3 Transverse Crack Tension (Mode II delamination)
[10] E.V. Gonzalez, P. Maimi, A. Turon, P.P. Camanho and J. Renart. Simulation of delamination by means of cohesive elements
using an explicit finite element code. CMC, 2009, vol.9, 51-92.
Energy/Area
in Y direction 97.88%II
T
G
G

Results in literature [10] Peridynamic prediction
Page 33
Yile Hu
3.3 Transverse Crack Tension (Mode II delamination)
Comparison with results from literature [11]
 
2
2
11
1
0.467 (N/ mm) (27)
4
c c
IIc
c
t P
G
b E t t t
 

Laminate Experimental
Pc (N)
Eq.27
Pc (N)
FE [11] Peridynamic
Pc (N) Error
(%)
Pc (N) Error
(%)
[02,04]s 8500 8502.45 8963 +5.42 0.519 8128.06 -4.40 0.427
[04,04]s 15219 13884.44 14380 +3.57 0.501 13639.27 -1.77 0.451
[04,08]s 14321 12024.28 13080 +8.78 0.553 12032.12 +0.07 0.468
IIcG IIcG
Page 34
Yile Hu
3.3 Transverse Crack Tension (Mode II delamination)
Experiment [11]:
[11] Ye, L.; Prinz, R.; Klose, R. (1990): Characterization of interlaminar shear fracturetoughness and delamination fatigue
growth of composite materials using TCT specimen. In: Report IB 131-90/15, DLR, Institute for Structural Mechanics.
Peridynamic Simulation
0.856mm 0.860mm 0.920mm0.852mm
Page 35
Yile Hu
Peridynamic Simulation of Delamination
Propagation in Fiber-Reinforced Composite
Acknowledgements
This work is supported by project “Holistic High-Fidelity
Modeling Strategy for Advanced Composite”, by National
Institute of Aerospace (NIA). Discussions with Nelson
Carvalho are gratefully acknowledged. The author also
wants to thank Professor Madenci and Professor Barut
from the University of Arizona for helpful discussion in
Peridynamic theory.

More Related Content

What's hot

Lec9 finite element_beam_structures 1
Lec9 finite element_beam_structures 1Lec9 finite element_beam_structures 1
Lec9 finite element_beam_structures 1Mahdi Damghani
 
Introduction to Theory of elasticity and plasticity Att 6521
Introduction to Theory of elasticity and plasticity Att 6521Introduction to Theory of elasticity and plasticity Att 6521
Introduction to Theory of elasticity and plasticity Att 6521Shekh Muhsen Uddin Ahmed
 
Solving Laplace differential equation using finite element method
Solving Laplace differential equation using finite element methodSolving Laplace differential equation using finite element method
Solving Laplace differential equation using finite element methodPedram Parchebafieh
 
Engineering Mechanics First Year
Engineering Mechanics First YearEngineering Mechanics First Year
Engineering Mechanics First YearEkeeda
 
Solving TD-DFT/BSE equations with Lanczos-Haydock approach
Solving TD-DFT/BSE equations with Lanczos-Haydock approachSolving TD-DFT/BSE equations with Lanczos-Haydock approach
Solving TD-DFT/BSE equations with Lanczos-Haydock approachClaudio Attaccalite
 
Matrix stiffness method 0910
Matrix stiffness method 0910Matrix stiffness method 0910
Matrix stiffness method 0910mullerasmare
 
Ch04 section14 stress_concentration
Ch04 section14 stress_concentrationCh04 section14 stress_concentration
Ch04 section14 stress_concentrationParalafakyou Mens
 
Stress/strain Relationship for Solids
Stress/strain Relationship for SolidsStress/strain Relationship for Solids
Stress/strain Relationship for SolidsLatif Hyder Wadho
 
FEA unit 1 to 5 qb
FEA unit 1 to 5 qbFEA unit 1 to 5 qb
FEA unit 1 to 5 qbgokulfea
 
Finite Element Analysis - UNIT-1
Finite Element Analysis - UNIT-1Finite Element Analysis - UNIT-1
Finite Element Analysis - UNIT-1propaul
 
Theory of elasticity and plasticity (Equations sheet part 01) Att 8676
Theory of elasticity and plasticity (Equations sheet part 01) Att 8676Theory of elasticity and plasticity (Equations sheet part 01) Att 8676
Theory of elasticity and plasticity (Equations sheet part 01) Att 8676Shekh Muhsen Uddin Ahmed
 
Green’s Function Solution of Non-homogenous Singular Sturm-Liouville Problem
Green’s Function Solution of Non-homogenous Singular Sturm-Liouville ProblemGreen’s Function Solution of Non-homogenous Singular Sturm-Liouville Problem
Green’s Function Solution of Non-homogenous Singular Sturm-Liouville ProblemIJSRED
 
Optical properties materials_studio_55
Optical properties materials_studio_55Optical properties materials_studio_55
Optical properties materials_studio_55BIOVIA
 

What's hot (20)

Lec9 finite element_beam_structures 1
Lec9 finite element_beam_structures 1Lec9 finite element_beam_structures 1
Lec9 finite element_beam_structures 1
 
Introduction to Theory of elasticity and plasticity Att 6521
Introduction to Theory of elasticity and plasticity Att 6521Introduction to Theory of elasticity and plasticity Att 6521
Introduction to Theory of elasticity and plasticity Att 6521
 
J integral report
J integral reportJ integral report
J integral report
 
Solving Laplace differential equation using finite element method
Solving Laplace differential equation using finite element methodSolving Laplace differential equation using finite element method
Solving Laplace differential equation using finite element method
 
Engineering Mechanics First Year
Engineering Mechanics First YearEngineering Mechanics First Year
Engineering Mechanics First Year
 
Fracture mechanics
Fracture mechanicsFracture mechanics
Fracture mechanics
 
Statics
StaticsStatics
Statics
 
Solving TD-DFT/BSE equations with Lanczos-Haydock approach
Solving TD-DFT/BSE equations with Lanczos-Haydock approachSolving TD-DFT/BSE equations with Lanczos-Haydock approach
Solving TD-DFT/BSE equations with Lanczos-Haydock approach
 
Strength of materials
Strength of materialsStrength of materials
Strength of materials
 
Matrix stiffness method 0910
Matrix stiffness method 0910Matrix stiffness method 0910
Matrix stiffness method 0910
 
Ch04 section14 stress_concentration
Ch04 section14 stress_concentrationCh04 section14 stress_concentration
Ch04 section14 stress_concentration
 
Stress/strain Relationship for Solids
Stress/strain Relationship for SolidsStress/strain Relationship for Solids
Stress/strain Relationship for Solids
 
FEA unit 1 to 5 qb
FEA unit 1 to 5 qbFEA unit 1 to 5 qb
FEA unit 1 to 5 qb
 
Finite Element Analysis - UNIT-1
Finite Element Analysis - UNIT-1Finite Element Analysis - UNIT-1
Finite Element Analysis - UNIT-1
 
Theory of elasticity and plasticity (Equations sheet part 01) Att 8676
Theory of elasticity and plasticity (Equations sheet part 01) Att 8676Theory of elasticity and plasticity (Equations sheet part 01) Att 8676
Theory of elasticity and plasticity (Equations sheet part 01) Att 8676
 
Finite element method
Finite element methodFinite element method
Finite element method
 
Photoelasticity
Photoelasticity Photoelasticity
Photoelasticity
 
Solution manual 9
Solution manual 9Solution manual 9
Solution manual 9
 
Green’s Function Solution of Non-homogenous Singular Sturm-Liouville Problem
Green’s Function Solution of Non-homogenous Singular Sturm-Liouville ProblemGreen’s Function Solution of Non-homogenous Singular Sturm-Liouville Problem
Green’s Function Solution of Non-homogenous Singular Sturm-Liouville Problem
 
Optical properties materials_studio_55
Optical properties materials_studio_55Optical properties materials_studio_55
Optical properties materials_studio_55
 

Similar to Peridynamic simulation of delamination propagation in fiber-reinforced composite

Presentation IDETC
Presentation IDETCPresentation IDETC
Presentation IDETCXiao Wang
 
techDynamic characteristics and stability of cylindrical textured journal bea...
techDynamic characteristics and stability of cylindrical textured journal bea...techDynamic characteristics and stability of cylindrical textured journal bea...
techDynamic characteristics and stability of cylindrical textured journal bea...ijmech
 
Efficient analytical and hybrid simulations using OpenSees
Efficient analytical and hybrid simulations using OpenSeesEfficient analytical and hybrid simulations using OpenSees
Efficient analytical and hybrid simulations using OpenSeesopenseesdays
 
IRJET- 5th Order Shear Deformation Theory for Fixed Deep Beam
IRJET- 5th Order Shear Deformation Theory for Fixed Deep BeamIRJET- 5th Order Shear Deformation Theory for Fixed Deep Beam
IRJET- 5th Order Shear Deformation Theory for Fixed Deep BeamIRJET Journal
 
ON APPROACH TO INCREASE INTEGRATION RATE OF ELEMENTS OF AN COMPARATOR CIRCUIT
ON APPROACH TO INCREASE INTEGRATION RATE OF ELEMENTS OF AN COMPARATOR CIRCUITON APPROACH TO INCREASE INTEGRATION RATE OF ELEMENTS OF AN COMPARATOR CIRCUIT
ON APPROACH TO INCREASE INTEGRATION RATE OF ELEMENTS OF AN COMPARATOR CIRCUITjedt_journal
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...IJMEJournal1
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ijmejournal
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...IJMEJournal1
 
IRJET- Cantilever Beam Crack Detection using FEA and FFT Analyser
IRJET- Cantilever Beam Crack Detection using FEA and FFT AnalyserIRJET- Cantilever Beam Crack Detection using FEA and FFT Analyser
IRJET- Cantilever Beam Crack Detection using FEA and FFT AnalyserIRJET Journal
 
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...antjjournal
 
Ds31568573
Ds31568573Ds31568573
Ds31568573IJMER
 
Finite Element Analysis in Metal Forming processes
Finite Element Analysis in Metal Forming processesFinite Element Analysis in Metal Forming processes
Finite Element Analysis in Metal Forming processesabhishek_hukkerikar
 
On vertical integration framework
On vertical integration frameworkOn vertical integration framework
On vertical integration frameworkijaceeejournal
 
ON VERTICAL INTEGRATION FRAMEWORK ELEMENT OF TRANSISTOR-TRANSISTOR LOGIC
ON VERTICAL INTEGRATION FRAMEWORK ELEMENT OF TRANSISTOR-TRANSISTOR LOGICON VERTICAL INTEGRATION FRAMEWORK ELEMENT OF TRANSISTOR-TRANSISTOR LOGIC
ON VERTICAL INTEGRATION FRAMEWORK ELEMENT OF TRANSISTOR-TRANSISTOR LOGICijaceeejournal
 
Multi-direction Nonlinear PZT Energy Harvesters
Multi-direction Nonlinear PZT Energy HarvestersMulti-direction Nonlinear PZT Energy Harvesters
Multi-direction Nonlinear PZT Energy Harvesters玄真 盧
 
IRJET- Parabolic Loading in Fixed Deep Beam using 5th Order Shear Deformation...
IRJET- Parabolic Loading in Fixed Deep Beam using 5th Order Shear Deformation...IRJET- Parabolic Loading in Fixed Deep Beam using 5th Order Shear Deformation...
IRJET- Parabolic Loading in Fixed Deep Beam using 5th Order Shear Deformation...IRJET Journal
 
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ijaceeejournal
 
IRJET- Bending Analysis of Functionally Graded Beam Curved in Elevation u...
IRJET-  	  Bending Analysis of Functionally Graded Beam Curved in Elevation u...IRJET-  	  Bending Analysis of Functionally Graded Beam Curved in Elevation u...
IRJET- Bending Analysis of Functionally Graded Beam Curved in Elevation u...IRJET Journal
 

Similar to Peridynamic simulation of delamination propagation in fiber-reinforced composite (20)

Modeling and vibration Analyses of a rotor having multiple disk supported by ...
Modeling and vibration Analyses of a rotor having multiple disk supported by ...Modeling and vibration Analyses of a rotor having multiple disk supported by ...
Modeling and vibration Analyses of a rotor having multiple disk supported by ...
 
Presentation IDETC
Presentation IDETCPresentation IDETC
Presentation IDETC
 
techDynamic characteristics and stability of cylindrical textured journal bea...
techDynamic characteristics and stability of cylindrical textured journal bea...techDynamic characteristics and stability of cylindrical textured journal bea...
techDynamic characteristics and stability of cylindrical textured journal bea...
 
Efficient analytical and hybrid simulations using OpenSees
Efficient analytical and hybrid simulations using OpenSeesEfficient analytical and hybrid simulations using OpenSees
Efficient analytical and hybrid simulations using OpenSees
 
IRJET- 5th Order Shear Deformation Theory for Fixed Deep Beam
IRJET- 5th Order Shear Deformation Theory for Fixed Deep BeamIRJET- 5th Order Shear Deformation Theory for Fixed Deep Beam
IRJET- 5th Order Shear Deformation Theory for Fixed Deep Beam
 
ON APPROACH TO INCREASE INTEGRATION RATE OF ELEMENTS OF AN COMPARATOR CIRCUIT
ON APPROACH TO INCREASE INTEGRATION RATE OF ELEMENTS OF AN COMPARATOR CIRCUITON APPROACH TO INCREASE INTEGRATION RATE OF ELEMENTS OF AN COMPARATOR CIRCUIT
ON APPROACH TO INCREASE INTEGRATION RATE OF ELEMENTS OF AN COMPARATOR CIRCUIT
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
 
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
ON APPROACH TO INCREASE INTEGRATION RATE OF FIELD-EFFECT HETEROTRANSISTORS IN...
 
IRJET- Cantilever Beam Crack Detection using FEA and FFT Analyser
IRJET- Cantilever Beam Crack Detection using FEA and FFT AnalyserIRJET- Cantilever Beam Crack Detection using FEA and FFT Analyser
IRJET- Cantilever Beam Crack Detection using FEA and FFT Analyser
 
Seminar iitkgp
Seminar iitkgpSeminar iitkgp
Seminar iitkgp
 
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
MODELING OF MANUFACTURING OF A FIELDEFFECT TRANSISTOR TO DETERMINE CONDITIONS...
 
Ds31568573
Ds31568573Ds31568573
Ds31568573
 
Finite Element Analysis in Metal Forming processes
Finite Element Analysis in Metal Forming processesFinite Element Analysis in Metal Forming processes
Finite Element Analysis in Metal Forming processes
 
On vertical integration framework
On vertical integration frameworkOn vertical integration framework
On vertical integration framework
 
ON VERTICAL INTEGRATION FRAMEWORK ELEMENT OF TRANSISTOR-TRANSISTOR LOGIC
ON VERTICAL INTEGRATION FRAMEWORK ELEMENT OF TRANSISTOR-TRANSISTOR LOGICON VERTICAL INTEGRATION FRAMEWORK ELEMENT OF TRANSISTOR-TRANSISTOR LOGIC
ON VERTICAL INTEGRATION FRAMEWORK ELEMENT OF TRANSISTOR-TRANSISTOR LOGIC
 
Multi-direction Nonlinear PZT Energy Harvesters
Multi-direction Nonlinear PZT Energy HarvestersMulti-direction Nonlinear PZT Energy Harvesters
Multi-direction Nonlinear PZT Energy Harvesters
 
IRJET- Parabolic Loading in Fixed Deep Beam using 5th Order Shear Deformation...
IRJET- Parabolic Loading in Fixed Deep Beam using 5th Order Shear Deformation...IRJET- Parabolic Loading in Fixed Deep Beam using 5th Order Shear Deformation...
IRJET- Parabolic Loading in Fixed Deep Beam using 5th Order Shear Deformation...
 
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
ON OPTIMIZATION OF MANUFACTURING PLANAR DOUBLE-BASE HETEROTRANSISTORS TO DECR...
 
IRJET- Bending Analysis of Functionally Graded Beam Curved in Elevation u...
IRJET-  	  Bending Analysis of Functionally Graded Beam Curved in Elevation u...IRJET-  	  Bending Analysis of Functionally Graded Beam Curved in Elevation u...
IRJET- Bending Analysis of Functionally Graded Beam Curved in Elevation u...
 

Peridynamic simulation of delamination propagation in fiber-reinforced composite

  • 1. College of Engineering Department of Aerospace and Mechanical Engineering Yile Hu 8/21/2014 Advisor: Prof. Erdogan Madenci The University of Arizona Peridynamic Simulation of Delamination Propagation in Fiber- Reinforced Composite
  • 2. Page 2 Yile Hu Peridynamic Simulation of Delamination Propagation in Fiber-Reinforced Composite Outline • Introduction of Peridynamic Theory • Equilibrium Equation • Force Density Function • Explicit & Implicit Solver • Bond-Based Peridynamics for composites • MicroModulus • Critical Stretch • Simulation Examples • Crack Propagation (Mixed Implicit-Explicit) • Double Cantilever Beam (Mode I) • Transverse Crack Tension (Mode II) • Future Work & Pending Publication • Acknowledgements
  • 3. Page 3 Yile Hu 1. Introduction of Peridynamic Theory Peridynamic Theory [1] is a new nonlocal continuum mechanics theory based on integral function. “Peri” comes from a Greek root for “near”. [1] Silling SA. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids,2000,48:175-209. • Allows for crack initiation in unguided locations; • Allows for damage propagation along unguided paths; • Allows for multi-crack emergence and their interactions; • No numerical difficulties after discontinuities (cracks) occur; Force Density Function
  • 4. Page 4 Yile Hu 1. Introduction of Peridynamic Theory Relationship between local and nonlocal continuum models [2] In Peridynamics, one material point interacts with other material points located in its horizon with a radius δ, through the prescribed force density function which contains all of the constitutive information associated with the material. [2] Erdogan Madenci, Erkan Oterkus. Peridynamic Theory and Its Applications. Springer, 2014.
  • 5. Page 5 Yile Hu 1. Introduction of Peridynamic Theory 3. Kalthoff-Winkler Experiment [2] 1. Diagonally Loaded Square Plate [3] 2. Compact Tension Test [3] 4. Open Hole Tension [3] [3] Kyle Colavito. Peridynamics for failure and residual strength prediction of fiber-reinforced composites. PhD dissertation, 2013, University of Arizona, Tucson.
  • 6. Page 6 Yile Hu 1.1 Peridynamic Equilibrium Equation Peridynamic Theory [4]: In numerical implementation, the integral term is replaced by a finite summation: Classical Continuum Mechanics [5]: Equilibrium Equation:      ', , ', , ', , (1) x xH t t dV t  u x f u u x x b x&&    ' 1 , ', , ', , , , , i x N x ij i j i j jH j t dV t dV    f u u x x f u u x x [4] Silling S.A., Askari E. A meshfree method based on the peridynamic model of solid mechanics[J]. Computers and Structures, 2005, Vol.83, 1526-1535. [5] Askari E. Xu JF. Peridynamic Analysis of Damage and Failure in Composites[J].In:44th AIAA Aerospace Sciences Meeting and Exhibition,No.2006-88,Reno,Nevada,2006.      , , , , (2)t t t   u x σ u x b x&& Reference Configuration Deformed Configurationi j j i
  • 7. Page 7 Yile Hu 1.2 Force Density Function Classification of Peridynamic methods [2] Bond-Based (Opposite direction and same magnitude) Ordinary State-Based (Opposite direction but different magnitude) Nonordinary State-Based (Different directions, different magnitude)
  • 8. Page 8 Yile Hu 1.2 Force Density Function Bond-Based force density function [4]:   ' , ', , ' (3) ' c s       y y f u u x x y y Where  is the status variable: 0 0 1, intact bond, s<s (4) 0, damaged bond, s s      c is the micro-modulus (more later); s is the stretch: (5)s   η ξ ξ ' '   y y y y defines the direction of force density. Bond Stretch “Bond Force” S0 c Critical Stretch Micromodulus
  • 9. Page 9 Yile Hu 1.3 Explicit Solver   1 , , , , (8) iN n n n ij i j i j n j n i j it V   u u x bf u x&&  ,n n i i tu u xWhere , use finite difference for the acceleration term: 1 1 2 ( ) 2 9 n n n i i in i t       u u u u && We can obtain an explicit form for displacement: 1 1 2 1 2 (10) iN n n n i i i ij j j n i t V              u bu u f Interior point: i Boundary point: 0,n i u&&i 1 (12) iN ij j j n i V   fb 0,n i b 1 2 1 1 ( 12 1 ) iN n n n i i i ij j j t V        u u u f ib Equilibrium Equation:
  • 10. Page 10 Yile Hu 1.4 Implicit Solver          2 2, , , , , (16)O                         ψ u ψ u ψ u u ψ u u u u Equilibrium Equation:     1 , , , , (13) iN n n n ij i j i ji j i j n n t V    u f u u x x b b&& L u Static Problem:    , (14)   ψ u L u b 0    , , (15)       ψ u u ψ u 0 Taylor Expansion:     T , , (17)                 ψ u ψ u u K u b u On n+1 sub-step: 1 1 T (18)n n n    K u b Solve a linear system
  • 11. Page 11 Yile Hu 1.4 Implicit Solver     1 1 1 1 1 1 1 1 T , | | | (19) N Ni NM j j i i in n n n j i j M M M j j M                                                 L L L u u u L L Lψ u L u K u u uu u L L L u u u L O O O L L O O O L Peridynamic Tangent Stiffness (PTS) Matrix:       T T* * 1 * 1 * 1 * 1 * * 1 * 1 * 1 T T 1 min (20) 2 n n n n n n n n n f                 K u b u u K u u b Convert to an optimization problem; Solved by Conjugated Gradient Method: • No inverse of PTS matrix; • Maintain the sparseness of PTS matrix; • Matrix-free algorithm.
  • 12. Page 12 Yile Hu 2. Bond-Based Peridynamics for composites Peridynamic model for composite laminate: 0°layer 45°layer 90°layer Horizon 0°bond 45°bond 90°bond Interlayer bond
  • 13. Page 13 Yile Hu 2.1 Bond Model 0°bond 90°bond and Interlayer bond α°bond Bond Stretch “Bond Force” S0 c Critical Stretch Micromodulus • Anisotropic properties; • Brittle material;
  • 14. Page 14 Yile Hu 2.2 Micromodulus Micromodulus of composite lamina [7]: 11 (21) Q c e c Q         ξ Where  4 2 2 4 11 12 66 22cos 2 2 sin cos sin (22)Q Q Q QQ        Fiber direction 0°bond α°bond 90°bond Horizon 2 3 x x x    x α [7] Yile Hu, Yin Yu, Hai Wang. Peridynamic analytical method for progressive damage in notched composite laminates. Composite Structures, 2014, Vol. 108, 801-810.
  • 15. Page 15 Yile Hu 2.2 Micromodulus 2 11 cos (23) ij ij ij j i i R j R Le cs V V E A Q Q                  ξ Micromodulus
  • 16. Page 16 Yile Hu 2.3 Critical Stretch Strength-Based Critical Stretch T ft 0 11 C fc 0 11 T mt 0 22 C mc 0 22 , 0 fiber bonds , 0 fiber bonds (6) , 0 matrix and interlayer bonds , 0 matrix and interlayer bonds X s s E X s s E Y s s E Y s s E                   nodes ( , ) =1 (7) N iR i i t      Damage Index: Previous Approach
  • 17. Page 17 Yile Hu 2.3 Critical Stretch Energy-Based Critical Stretch Benzeggah-Kenane Fracture Criteria [8]:   (24)II c Ic IIc Ic T G G G G G G           [8] Krueger, R., An approach to assess delamination propagation simulation capabilities in commercial finite element codes. NASA/TM-2008-215123, 2008. New Approach
  • 18. Page 18 Yile Hu 2.3 Critical Stretch Energy-Based Critical Stretch: Mode I Mode IIMixed-Mode cos cos cos , , ij ij ij i j ij ij ij ij i j ij ij ij ij i j ijc s VV du c s VV dv c s VV dw Gx Gy Gz A A A             (25)II T G Gx Gy G Gx Gy Gz     Substitute back to B-K criteria:   (24)II c Ic IIc Ic T G G G G G G           For each material point
  • 19. Page 19 Yile Hu 2.3 Critical Stretch Energy contribution of each bond is distributed according to the stiffness ratio: 1 (26)i ijc ij cN ij i c G G c    For each bond Critical Energy Release Rate cG Material Point Bond Stiffness Ratio i j
  • 20. Page 20 Yile Hu GPU computing The technology we are using. Architecture of CPU and GPU [6] [6] NVIDIA, CUDA C Programming Guide. <http://developer.download.nvidia.com/ compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf>
  • 21. Page 21 Yile Hu GPU computing Code Structure: Start Read Input File Discretization Search Family Member Compute Bond Properties Apply Boundary Condition If iteration < total steps No End Update Damage Compute Displacement No Output Yes Preprocess Interface GPU Parallel Computing
  • 22. Page 22 Yile Hu 3.1 Crack Propagation Computation Model: Number of family member 50 , 50 , 20 139400.0 , 10160.0 , 4600 , 0.33 2688 , 1488 , 91.8 , 291.0 :[90], t 0.125mm, 0.5 L T LT LT T C T C L mm W mm a mm E MPa E MPa G MPa v X MPa X MPa Y MPa Y MPa Layup Mesh Spacing x mm               Node Number = 10,000 Bond Number = 135,698
  • 23. Page 23 Yile Hu 3.1 Crack Propagation Displacement X Implicit: Explicit: Displacement Y
  • 24. Page 24 Yile Hu 3.1 Crack Propagation Explicit: Mixed Explicit-Implicit: Explicit Implicit
  • 25. Page 25 Yile Hu 3.1 Crack Propagation Force-Displacement Curve: 0.06125u mm 0.11u mm 0.1335u mm 0.1418u mm Initial Crack
  • 26. Page 26 Yile Hu 3.2 Double Cantilever Beam (Mode I delamination) 11 22 12 12 2 2 139.4 , 10.16 , 0.30, 4.6 170.3 / , 493.6 / , 1.62Ic IIc E GPa E GPa v G GPa G J m G J m         Computational Model: T300/1076 Unidirectional Graphite/Epoxy Prepreg: Dimension: 0 24 0 1 25.0 , 2 3.0 , 2 150.0 , 30.0 :[0] 6.0 , 20.0 , 0.5 B mm h mm L mm a mm Layup b mm b mm x mm         Node Number = 360,000 Bond Number = 14,520,420
  • 27. Page 27 Yile Hu 3.2 Double Cantilever Beam (Mode I delamination) Displacement X Displacement Y Deformation Contour Displacement Z
  • 28. Page 28 Yile Hu 3.2 Double Cantilever Beam (Mode I delamination) Peridynamic resultsFE Benchmark [9] [9] Krueger, R., Development of Benchmark Examples for Quasi-Static Delamination propagation and Fatigue Growth Predictions. NIA,2012. Energy/Area in Z direction 2.936%II T G G 
  • 29. Page 29 Yile Hu 3.2 Double Cantilever Beam (Mode I delamination) Experiment [8]: 𝛿 2 = 1.2𝑚𝑚 𝛿 2 = 1.5𝑚𝑚 𝛿 2 = 1.8𝑚𝑚𝛿 2 = 0.9𝑚𝑚 Peridynamic Simulation
  • 30. Page 30 Yile Hu 3.3 Transverse Crack Tension (Mode II delamination) Node Number = 614,400 Bond Number = 24,786,160 Computational Model: Dimension: 2 4 4 4 4 8 0 1 140.0 , 380.0 , 20.0 , 0.0 :[0 / 0 ] ,[0 / 0 ] ,[0 / 0 ] 2.0 , 20.0 , 0.5 s s s L mm W mm b mm a mm Layup b mm b mm x mm         11 22 12 12 2 2 129.0 , 9.256 , 0.28, 5.0 170.0 / , 467.0 / , 1.47Ic IIc E GPa E GPa v G GPa G J m G J m         T300/914C Unidirectional Carbon/Epoxy Prepreg:
  • 31. Page 31 Yile Hu 3.3 Transverse Crack Tension (Mode II delamination) Deformation Contour Displacement X Displacement Y Displacement Z
  • 32. Page 32 Yile Hu 3.3 Transverse Crack Tension (Mode II delamination) [10] E.V. Gonzalez, P. Maimi, A. Turon, P.P. Camanho and J. Renart. Simulation of delamination by means of cohesive elements using an explicit finite element code. CMC, 2009, vol.9, 51-92. Energy/Area in Y direction 97.88%II T G G  Results in literature [10] Peridynamic prediction
  • 33. Page 33 Yile Hu 3.3 Transverse Crack Tension (Mode II delamination) Comparison with results from literature [11]   2 2 11 1 0.467 (N/ mm) (27) 4 c c IIc c t P G b E t t t    Laminate Experimental Pc (N) Eq.27 Pc (N) FE [11] Peridynamic Pc (N) Error (%) Pc (N) Error (%) [02,04]s 8500 8502.45 8963 +5.42 0.519 8128.06 -4.40 0.427 [04,04]s 15219 13884.44 14380 +3.57 0.501 13639.27 -1.77 0.451 [04,08]s 14321 12024.28 13080 +8.78 0.553 12032.12 +0.07 0.468 IIcG IIcG
  • 34. Page 34 Yile Hu 3.3 Transverse Crack Tension (Mode II delamination) Experiment [11]: [11] Ye, L.; Prinz, R.; Klose, R. (1990): Characterization of interlaminar shear fracturetoughness and delamination fatigue growth of composite materials using TCT specimen. In: Report IB 131-90/15, DLR, Institute for Structural Mechanics. Peridynamic Simulation 0.856mm 0.860mm 0.920mm0.852mm
  • 35. Page 35 Yile Hu Peridynamic Simulation of Delamination Propagation in Fiber-Reinforced Composite Acknowledgements This work is supported by project “Holistic High-Fidelity Modeling Strategy for Advanced Composite”, by National Institute of Aerospace (NIA). Discussions with Nelson Carvalho are gratefully acknowledged. The author also wants to thank Professor Madenci and Professor Barut from the University of Arizona for helpful discussion in Peridynamic theory.