SlideShare a Scribd company logo
1 of 6
Download to read offline
Relationship between Postharvest Diseases Resistance and Mineral
Composition of Citrus Fruit
C. Nunes, A. Duarte and T. Manso
CDCTPV, Universidade do Algarve
Gambelas, Ed. 8, 8005-139 Faro
Portugal
C. Weiland
Universidad de Huelva
La Rábida Huelva
Spain
J.M. García, J.A. Cayuela, K. Yousfi and
M.C. Martínez
Instituto de la Grasa (CSIC), Sevilla
Spain
M. Salazar
Instituto Universitário D. Alfonso III
Loulé
Portugal
Keywords: nutrients, Penicillium decay, postharvest decay, production systems
Abstract
Green and blue moulds, due to the pathogenic action of Penicillium digitatum
and Penicillium italicum respectively are the main cause of orange losses during
postharvest. Under Mediterranean climate conditions, both together are responsible
for 80% of total postharvest citrus fruit decay. The type of orchard production
system, field location with different types of climate and soil has a main influence on
mineral composition of fruits. The mineral composition of fruits can have a
significant impact on fruit quality and shelf life during postharvest period. These
include effects on fruit colour, texture, disease susceptibility, juice composition and
development of physiological disorders. Oranges from different regions from South
of Spain and Portugal and from three different production systems (conventional,
integrated and organic) were studied to evaluate whether both factors (origin and
production system) affected the degree of fruit sensitivity to decay. Results indicate
that the sensitivity to green or blue mould is determined better by the origin of fruit
than by the system of production.
INTRODUCTION
Penicillium italicum and Penicillium digitatum are the most common postharvest
pathogens of citrus fruits. P. digitatum works by producing ethylene to accelerate
ripening. It covers the fruit with green conidia, causing the fruit to shrivel and dry out. P.
italicum causes slimy rot and produces blue-green conidia. This species likes cooler
temperatures, which explains why they are usually found on foods left too long in the
refrigerator. Both diseases resemble each other in colour characteristics, style of decay,
and infection symptoms; they fall under a general category called green and blue mould,
when caused by P. digitatum and P. italicum respectively. These fungi live a long time
and are quite durable, including even stable adverse conditions. Sometimes, fruits
infected by P. italicum will adhere to each other to create synnemata. Penicillium growth
typically occurs as a result of wound infections in produce. To prevent the development
of these pathogens and to limit losses in commercial fruit shipments, treatment with
chemical fungicides is a widely used procedure. However, such treatment may produce
serious problems, with residues on the fruit (Cabras et al., 1999; Palou et al., 2008),
appearance of fungicide-resistant strains of P. digitatum (Ben-Yehoshua et al., 1994), and
their possible accumulation in human adipose tissue constituting an additional health
threat (Suwalsky et al., 1999). As alternative to these fungicides some treatments have
obtained successful results controlling postharvest decay. Thus, curing (holding fruits at
relatively high temperature and humidity for 24 to 72 h), dipping fruit in CO3HNa,
solutions at 40 to 50ºC for 1 to 3 min or the use of antagonist microorganisms have been
demonstrated to be a very effective alternative treatments to avoid Penicillium spp.
proliferation on citrus fruit (Nunes et al., 2007; Torres et al., 2007; Pérez et al., 2008a).
However, these non-contaminant systems habitually exhibit a poorer
417Proc. VIth
IS on Mineral Nutrition of Fruit Crops
Eds.: M. Pestana and P.J. Correia
Acta Hort. 868, ISHS 2010
reproducibility than fungicides (Palou et al., 2008). Recently, Pérez et al. (2008b)
observed that fruit obtained from integrated or organic production exhibited a significant
higher sensibility to Penicillium infection than the conventional ones. It means that the
reduction or elimination of chemical synthesis compounds in the citrus production would
cause a significant increase in sensitivity of fruits towards Penicillium. It is well known
than the principal factor that impacts the preservation of harvested commodities is the
physiological status of the tissue and its susceptibility to pathogen attack increases due to
weakened natural defences mechanisms, as well as partial degradation of cell walls and
subsequent increase leakage of solutes (Droby et al., 2001). Also some studies have
looked at the possible role that phenolic compounds might play as phytoalexins in some
Citrus species (Ortuño et al., 1997; Del Río, 1998; Arcas et al., 2000; Del Río et al.,
2004). The level of presence of these compounds should be determinant for the progress
of fungal infection and for the efficiency of the alternative system to control it. However,
the reason why this presence differs with seasons and locations has not been yet
explained. In this paper a possible relationship between chemical peel components (N, P,
K, Ca, Mg, Fe, Cu, Zn, Mn) of citrus fruit obtained by different production systems from
different origin and the level of sensibility to P. digitatum and P. italicum infection has
been studied to explain this variability.
MATERIAL AND METHODS
Plant Material
Oranges (Citrus sinensis ‘Valencia Late’) were harvest randomly from
conventional, integrated and organic production systems and different regions of
Southwest of Spain (Lepe - seaside of Huelva - and Río Tinto - range of Huelva) and
South of Portugal (Silves - west Algarve - and Tavira - east Algarve) and were harvested
in the beginning of May, June and July.
Fungal Inoculation and Fruit Decay Incidence Evaluation
P. digitatum and P. italicum isolated from decayed oranges from 3 locations
(Lepe, Rio Tinto and South of Portugal) and maintained on potato dextrose agar medium
(PDA), periodically transfer to fruit. Conidia of a 7-12 days culture grown at 25ºC were
suspended in sterile distilled water with Tween 80. The suspension was adjusted to 106
conidia/ml using a haemacitometer. Oranges in sets of 4 replicates of 60 fruits from each
origin and each production system were dipped in the suspensions of P. digitatum or P.
italicum for 30 s. Decay incidence of each treatment was monitored after 15 days of
storage at 20ºC and 80% RH.
Quality Studies
At harvest moment, fruit firmness was evaluated using 20 non-inoculated fruits
from each treatment with a Zwick 3300 non-destructive hand densimeter. Subsequently
fruits were distributed in 4 groups of 5 oranges, which were separately extracted to
determine the percentage of juice and the percentage of peel in front of the total fresh
weight of each group of fruits. The soluble solids concentration (SSC) with a
refractometer and the titratable acidity with an automatic titrator that measured the
volume of 0.1 N NaOH required by 10 ml of juice to reach pH 8.0 were also measured.
Data were expressed as ºBrix and percentage of citric acid, respectively. Maturity index
(MI) was evaluated by the ratio: ºBrix / % Citric acid for each extracted juice.
Mineral Composition
Peel of nine fruits, distributed in three groups of three fruits were dried at 60°C for
48 h, grounded, ashed at 450ºC, and digested in 10 cm3
HCl 1 N. Standardized procedures
(AOAC, 1990) were used to measure nutrient concentrations. Nitrogen was analysed by
the Kjeldahl method, P was determined colorimetrically by the molybdo-vanadate
method, K was measured by flame photometry, and Mg, Ca, Fe, Cu, Mn and Zn were
418
measured by atomic absorption spectrometry.
Statistical Analysis
In all the parameter studied the results presented correspond to the mean values
obtained in the three different harvesting dates tested. A 2-way analysis of variance
(ANOVA) procedure was used for testing the possible significant effect (P≤0.05) of the
origin and the production system of the samples on the global decay incidence,
independently for each fungi inoculation. A 1-way analysis of variance (ANOVA)
procedure was used for testing possible significant effect (P≤0.05) of the different
combinations of origins and production systems on mineral contents and quality
parameters. When the effect of the treatment was significant, means were analysed by the
Tukey’s HSD test (P≤0.05). The performed data was statistically analysed using CoStat
5.01™ statistical software (Cohort Software Minneapolis, MN, USA).
RESULTS AND DISCUSSION
Results of fruit quality are shown in Table 1, decay incidence in Table 2 and
mineral composition in Table 3. Globally considered, no significant effect on Penicillium
decay was found as consequence of the different production systems tested (Table 2).
However, conventional fruits cultured in Lepe showed a significant lower sensibility to
both fungi than the oranges obtained by integrated production in the same culture
location. In opposite, Silves oranges cultured under organic production exhibited
significant lower incidence of P. digitatum decay than the fruits of the same origin
produced under the other two systems. On the other hand, independently of the
production system how they were cultured, Lepe oranges showed lower mean values of
decay incidence than the fruits of other locations. In consequence, results seem to indicate
that the sensitivity to green or blue mould is determined better by the origin of fruit than
by the system of production. It is possible to conclude that the reduction or elimination of
chemical synthesis compounds in the citrus production does not cause a significant
increase in sensitivity of fruits towards Penicillium. It seems that the higher resistance to
the pathogen could be bound more to the edafoclimatic factors of a certain culture area
that to the provision type that is applied externally to it.
Although to identify clearly a determined element, whose presence or absence was
coincident with higher or lower decay incidences, is not possible. Lepe oranges showed
the highest mean values of N, Mg and Fe and the lowest of Co and Mn (Table 3).
Furthermore, Lepe oranges obtained by conventional production exhibited higher values
of N and Fe than the integrated ones, but these differences did not reach a statistical
significance. The higher presence of N and Fe could be directly related with a higher
presence of proteins associated to Fe in the peel fruit. For instance, lipoxigenase is a Fe-
protein associated to natural plant defence-related compounds biosynthesis, such as
hexanal (C6H12O hexyl aldehyde) and it is induced by cell wall breaking in plant tissues
(Royo et al., 1996). At the other hand, a higher presence of Mg suggests higher
chlorophyll content in the fruit peel and, in consequence, a lower level of fruit maturity
and a higher resistance to fungal infection.
The significant lower MI values showed by Lepe oranges explained both the
higher resistance to decay due to Penicillium and the higher Mg content in comparison to
the mean values exhibited by Silves and Tavira oranges (Table 1). However, Río Tinto
fruits in spite of showing similar MI values to Lepe oranges exhibited a higher sensibility
to fungal infection. This fact indicates that Rio Tinto oranges are especially sensible to
Penicillium attack, since they showed similar levels of decay incidence than the riper
oranges produced in Portugal. In a previous work, Nunes et al. (2007) after a treatment of
curing during 18 h at 40 ºV observed that artificially inoculated with P. digitatum and P.
italicum Valencia fruit of this origin presented about 5% of decay incidence, whereas
similar treated fruits cultured in Tarragona (northwest Spain) or Tavira did not exhibit any
decay. As Río Tinto oranges are characterised for exhibiting the highest contents of Mn
(Table 3), results suggest that a special attention should be dedicated to the presence of
419
this element in the orange peel, because it may be a limiting factor required for
Penicillium infection. It is well known that numerous enzymes are Mn-dependant,
especially a lot of them related with nucleotide biosynthesis and replication.
ACKNOWLEDGEMENTS
Interreg IIIA of the European Community: Project Citrisaude (SP5.P120/03).
Literature Cited
AOAC 1990. Methods of Analysis (15th ed.). Association of Official Analytical Chemist,
Washington, D.C.
Arcas, M.C., Botía, J.M., Ortuño, A. and Del Río, J.A. 2000. UV Irradiation alters the
levels of flavonoids involved in the defence mechanisms of Citrus aurantium fruits
against Penicillium digitatum. Eur. J. Plant Pathol. 106:617-622.
Ben-Yehoshua, S, Goldschmidt, E.E. and Bar-Joseph, M. 1994. Citrus fruits. p.357-378.
In: Encyclopedia of Agricultural Science Vol. 1, Academic Press, Inc., New York.
Cabras, P., Schirra, M., Pirisi, F.M., Garau, V.L. and Angioni, A. 1999. Factors affecting
imazalil and thiabendazole uptake and persistence in Citrus fruits following dip
treatments. J. Agr. Food Chem. 47:3352-3354.
Del Río, A., Arcas, M.C., Benavente-García, O. and Ortuño, A. 1988. Citrus
polymethoxylated flavones can confer resistance against Phytophthora citrophthora,
Penicillium digitatum and Geotrichum species. J. Agr. Food Chem. 46:4423-4428.
Del Río, J.A., Gómez, P., Báidez, G.A., Arcas, M.C., Botía, J.M. and Ortuño, A. 2004.
Changes in the level of polymethoxyflavones and flavones as part of the defence
mechanism of Citrus sinensis (cv. Valencia late) fruits against Phytophthora
citrophthora. J. Agr. Food Chem. 52:1913-1917.
Droby, S., Wilson, C.L., Wisniewski, M. and El-Ghaouth, A. 2001. Biologically based
technology for the control of postharvest diseases of fruits and vegetables. p.187-205.
In: C. Wilson and S. Droby (eds.), Microbial food contamination. CRC Press, Boca
Raton.
Nunes, C., Usall, J., Manso, T., Torres, R., Olmo, M. and García, J.M. 2007. Effect of
high temperature treatments on growth of Penicillium spp. and their development on
‘Valencia’ oranges. Food. Sci. Tech. Int. 13:63-68.
Palou, L., Smilanick, J. and Droby, S. 2008. Alternatives to conventional fungicides for
the control of citrus postharvest green and blue molds. Stewart Postharvest Review
2:2-16.
Pérez, E., Weiland, C.M., García, J.M., Domínguez, A., Bastida, F., Menéndez, J.,
Manso, T. and Nunes, C. 2008a. Tratamientos post-cosecha para controlar Penicillium
sp. en frutos de cítricos. 2º C. Nacional de Citricultura. 24-26 June. Faro (Portugal).
p.16.
Pérez, E., Weiland, C.M., García, J.M, Domínguez, A., Bastida, F., Nieta, D., Manso, T.
and Nunes, C. 2008b. Incidencia de Penicillum sp. en cítricos en post-cosecha según
el modo de producción: convencional, integrada y ecológica. 2º C. Nacional de
Citricultura. 24-26 June. Faro (Portugal). p.17.
Ortuño, A., Reynaldo, I., Fuster, M.D., Botía, J.M., García-Puig, D. and Sabater, F. 1997.
Citrus cultivars with high flavonoid contens in the fruits. Scientia Hort. 68:231-236.
Royo, J., Vancanneyt, G., Pérez A.G., Sanz C., Störmann, K., Rosahl, S. and Sánchez-
Serrano, J.J. 1996. Characterization of three potato lipoxigenases with distinct
enzymatic activities and different organ-specific and wound- regulated expression
patterns. J. Biol. Chem. 271:21012-21019.
Suwalsky, M., Rodríguez, C., Villena, F., Aguilar, F. and Sotomayor, C.P. 1999. The
pesticide hexachlorobenzene induces alterations in the human erythrocyte membrana.
Pestic. Biochem. Phys. 10:205-214.
Torres, R., Nunes C., Garcıa, J.M., Abadias, M., Viñas, I., Manso, T., Olmo, M. and
Usall, J. 2007. Application of Pantoea agglomerans CPA-2 in combination with
heated sodium bicarbonate solutions to control the major postharvest diseases
affecting citrus fruit at several Mediterranean locations. Eur. J. Plant Pathol. 118:73-83.
420
Tables
Table 1. Quality parameters of ‘Valencia Late’ oranges from different origins and
production systems.
Origin and
Production
systemx
Weight
(g)
Firmness
(N)
Peel
(% fruit
weight)
Juice
(%)
Pulp
(%)
pH
Acidity
(%
Citric)
S. solids
(ºBrix)
Maturity
Index
(ºBrix / %
Citric)
Lepe
Conventional 141.9ab 20.4b 24.9a 52.5a 37.2 3.3 23.6b 12.7c 0.54a
Lepe
Integrated 149.5ab 20.7b 25.9a 55.8a 35.5 3.3 22.1b 11.9bc 0.54a
Rio Tinto
Integrated 129.0a 18.5a 24.4b 57.8a 36.7 3.7 20.7b 10.2a 0.49a
Rio Tinto
Organic 177.7bc 20.2b 29.1a 64.7a 36.5 4.1 22.6b 10.4ab 0.46a
Tavira
Integrated 215.1cd 19.2ab 21.7a 93.7b 43.6 3.5 10.1a 12.0c 1.19b
Silves
Conventional 132.9a 20.4b 26.1a 57.2a 39.2 3.6 12.0a 12.8c 1.07b
Silves
Integrated 239.9d 20.3b 24.3a 88.6b 36.6 3.6 9.6a 11.7bc 1.22b
X
Mean values of 9 determinations (3 harvest dates × 3 replicates). Within each column the same lower case letter
indicate no significant difference due to origin and production system according to Tukey’s HSD test (P≤0.05). No
letters indicate no significant effect due to the cited factor detected by ANOVA (P≤0.05)
Table 2. Decay incidence decay of ‘Valencia Late’ oranges from different origins and
production systems.
Decay
Incidencez
(%)
Production system
Species of Penicillium inoculated
Sample Conventional Integrated Organic Average
origin P. dig. P. ital. P. dig. P. ital. P. dig. P. ital. P. dig. P. ital.
Lepe 82.1 bB 82.1 bB 95.7 aB 87.1 aB - - 88.9 B 84.6 B
Río Tinto - - 98.5 AB 97.0 A 100.0 A 98.5 99.2 A 97.8 A
Tavira 100.0 A 97.1 A - - - - 100 A 97.1 A
Silves 98.5 aA 100.0 A 100.0 aA 100 A 95.6 bB 97.0 98.0 A 99.0 A
Average 93.5 93.1 96.3 93.7 97.8 97,8 95.7 94.4
z
Means of the 3 harvest dates. Within origin and fungal disease the same lower case letter indicate no significant
difference between decay incidences due to production system, and within system production the same capital letters
indicate no significant difference between decay incidences due to origin, according to Tukey’s HSD test (P≤0.05). No
letters indicate no significant effect due to these 2 factors detected by ANOVA (P≤0.05).
421
Table 3. Mineral composition of Valencia Late oranges from different origins and
production systems.
Mineral compositionz
Macronutrients (g kg-1
)y
and Micronutrients (mg kg-1
)y
Sample
origin
Production
system
N P K Ca Mg Fe Co Zn Mn
Lepe Conventional 11.5
b
0.8
ab
6.1
a
4.8
ab
1.4
b
8.3
b
4.0
b
6.0
ab
7.0
b
Lepe Integrated 10.2
ab
0.7
a
5.4
a
6.8
bc
1.5
b
7.5
ab
5.0
b
6.0
ab
7.0
b
Río Tinto Integrated 9.6
ab
0.9
c
9.0
b
5.1
ab
1.2
ab
7.3
ab
8.0
b
8.0
b
12.0
a
Río Tinto Organic 10.5
ab
1.0
c
9.0
b
4.4
a
1.2
ab
7.2
ab
8.0
b
6.0
ab
14.0
a
Tavira Conventional 10.7
ab
0.9
ab
7.1
ab
6.7
bc
0.9
a
6.6
ab
13.0
a
7.0
ab
9.0 b
Silves Conventional 9.9
ab
0.8
ab
5.4
a
8.7
cd
0.8
a
6.0
a
7.0
b
4.0
a
7.0 b
Silves Integrated 9.1
a
0.8
ab
5.0
a
9.2
d
1.2
ab
6.7
ab
6.0
b
4.0
a
8.0 b
z
Means of the 3 harvest dates. Within each column the same lower case letter indicate no significant difference due to
origin and production system according to Tukey’s HSD test (P≤ 0.05).
y
Dry weight
422

More Related Content

What's hot

ultraviolet light and ultrasound as non thermal treatments
ultraviolet light and ultrasound as non thermal treatmentsultraviolet light and ultrasound as non thermal treatments
ultraviolet light and ultrasound as non thermal treatmentsImer Ruben Gonzales Sobrados
 
Effects of acalypha wilkesiana leaf extract, hot and boiling
Effects of acalypha wilkesiana leaf extract, hot and boilingEffects of acalypha wilkesiana leaf extract, hot and boiling
Effects of acalypha wilkesiana leaf extract, hot and boilingAlexander Decker
 
Using next generation sequencing to describe epiphytic microbiota associated ...
Using next generation sequencing to describe epiphytic microbiota associated ...Using next generation sequencing to describe epiphytic microbiota associated ...
Using next generation sequencing to describe epiphytic microbiota associated ...Agriculture Journal IJOEAR
 
Effect of Chitosan on Disease Control and Yield Parameters of Rambutan (Nephe...
Effect of Chitosan on Disease Control and Yield Parameters of Rambutan (Nephe...Effect of Chitosan on Disease Control and Yield Parameters of Rambutan (Nephe...
Effect of Chitosan on Disease Control and Yield Parameters of Rambutan (Nephe...AI Publications
 
Potentials of Compost Tea of Certain Botanicals for Minimizing Root- Knot and...
Potentials of Compost Tea of Certain Botanicals for Minimizing Root- Knot and...Potentials of Compost Tea of Certain Botanicals for Minimizing Root- Knot and...
Potentials of Compost Tea of Certain Botanicals for Minimizing Root- Knot and...Premier Publishers
 
Biochemical Resistance Mechanism Study of Jatropha curcas (Euphorbiaceae) Aga...
Biochemical Resistance Mechanism Study of Jatropha curcas (Euphorbiaceae) Aga...Biochemical Resistance Mechanism Study of Jatropha curcas (Euphorbiaceae) Aga...
Biochemical Resistance Mechanism Study of Jatropha curcas (Euphorbiaceae) Aga...Journal of Agriculture and Crops
 
In-vivo anthelmintic evaluation of a processed herbal drug from Entada leptos...
In-vivo anthelmintic evaluation of a processed herbal drug from Entada leptos...In-vivo anthelmintic evaluation of a processed herbal drug from Entada leptos...
In-vivo anthelmintic evaluation of a processed herbal drug from Entada leptos...IOSR Journals
 
The proximate and phytochemical composition of SI and CS at different stages ...
The proximate and phytochemical composition of SI and CS at different stages ...The proximate and phytochemical composition of SI and CS at different stages ...
The proximate and phytochemical composition of SI and CS at different stages ...OGUNSOLA OLADELE KAYODE
 
Anthelmintic activity of leaves of different extracts of Gossypium herbaceum ...
Anthelmintic activity of leaves of different extracts of Gossypium herbaceum ...Anthelmintic activity of leaves of different extracts of Gossypium herbaceum ...
Anthelmintic activity of leaves of different extracts of Gossypium herbaceum ...SriramNagarajan16
 
Glucosinolates, glycosidically bound volatiles and antimicrobial activity of ...
Glucosinolates, glycosidically bound volatiles and antimicrobial activity of ...Glucosinolates, glycosidically bound volatiles and antimicrobial activity of ...
Glucosinolates, glycosidically bound volatiles and antimicrobial activity of ...Alexander Decker
 
Jauhar ali. vol 4. screening for abiotic and biotic stress tolerances
Jauhar ali. vol 4. screening for abiotic and biotic stress tolerancesJauhar ali. vol 4. screening for abiotic and biotic stress tolerances
Jauhar ali. vol 4. screening for abiotic and biotic stress tolerancesFOODCROPS
 
Published Research
Published ResearchPublished Research
Published ResearchTravis Lee
 
Insecticidal activity of Tagetes sp. on Sitophilus zeamais Mots
Insecticidal activity of Tagetes sp. on Sitophilus zeamais MotsInsecticidal activity of Tagetes sp. on Sitophilus zeamais Mots
Insecticidal activity of Tagetes sp. on Sitophilus zeamais MotsAgriculture Journal IJOEAR
 
Identification of Ralstonia Solanacearum in Kyrgyzstan’s Potato Fields and th...
Identification of Ralstonia Solanacearum in Kyrgyzstan’s Potato Fields and th...Identification of Ralstonia Solanacearum in Kyrgyzstan’s Potato Fields and th...
Identification of Ralstonia Solanacearum in Kyrgyzstan’s Potato Fields and th...Agriculture Journal IJOEAR
 
Acute and sub acute toxicological evaluation of ethanolic leaves extract of p...
Acute and sub acute toxicological evaluation of ethanolic leaves extract of p...Acute and sub acute toxicological evaluation of ethanolic leaves extract of p...
Acute and sub acute toxicological evaluation of ethanolic leaves extract of p...Alexander Decker
 
Impact of Compost Prepared from Invasive Alien Species in Alleviating Water S...
Impact of Compost Prepared from Invasive Alien Species in Alleviating Water S...Impact of Compost Prepared from Invasive Alien Species in Alleviating Water S...
Impact of Compost Prepared from Invasive Alien Species in Alleviating Water S...YogeshIJTSRD
 

What's hot (20)

ultraviolet light and ultrasound as non thermal treatments
ultraviolet light and ultrasound as non thermal treatmentsultraviolet light and ultrasound as non thermal treatments
ultraviolet light and ultrasound as non thermal treatments
 
Effects of acalypha wilkesiana leaf extract, hot and boiling
Effects of acalypha wilkesiana leaf extract, hot and boilingEffects of acalypha wilkesiana leaf extract, hot and boiling
Effects of acalypha wilkesiana leaf extract, hot and boiling
 
Using next generation sequencing to describe epiphytic microbiota associated ...
Using next generation sequencing to describe epiphytic microbiota associated ...Using next generation sequencing to describe epiphytic microbiota associated ...
Using next generation sequencing to describe epiphytic microbiota associated ...
 
Effect of Chitosan on Disease Control and Yield Parameters of Rambutan (Nephe...
Effect of Chitosan on Disease Control and Yield Parameters of Rambutan (Nephe...Effect of Chitosan on Disease Control and Yield Parameters of Rambutan (Nephe...
Effect of Chitosan on Disease Control and Yield Parameters of Rambutan (Nephe...
 
Potentials of Compost Tea of Certain Botanicals for Minimizing Root- Knot and...
Potentials of Compost Tea of Certain Botanicals for Minimizing Root- Knot and...Potentials of Compost Tea of Certain Botanicals for Minimizing Root- Knot and...
Potentials of Compost Tea of Certain Botanicals for Minimizing Root- Knot and...
 
Biochemical Resistance Mechanism Study of Jatropha curcas (Euphorbiaceae) Aga...
Biochemical Resistance Mechanism Study of Jatropha curcas (Euphorbiaceae) Aga...Biochemical Resistance Mechanism Study of Jatropha curcas (Euphorbiaceae) Aga...
Biochemical Resistance Mechanism Study of Jatropha curcas (Euphorbiaceae) Aga...
 
In-vivo anthelmintic evaluation of a processed herbal drug from Entada leptos...
In-vivo anthelmintic evaluation of a processed herbal drug from Entada leptos...In-vivo anthelmintic evaluation of a processed herbal drug from Entada leptos...
In-vivo anthelmintic evaluation of a processed herbal drug from Entada leptos...
 
Antifungal activity of banana rachis leachate on some fungi responsible for b...
Antifungal activity of banana rachis leachate on some fungi responsible for b...Antifungal activity of banana rachis leachate on some fungi responsible for b...
Antifungal activity of banana rachis leachate on some fungi responsible for b...
 
The proximate and phytochemical composition of SI and CS at different stages ...
The proximate and phytochemical composition of SI and CS at different stages ...The proximate and phytochemical composition of SI and CS at different stages ...
The proximate and phytochemical composition of SI and CS at different stages ...
 
Anthelmintic activity of leaves of different extracts of Gossypium herbaceum ...
Anthelmintic activity of leaves of different extracts of Gossypium herbaceum ...Anthelmintic activity of leaves of different extracts of Gossypium herbaceum ...
Anthelmintic activity of leaves of different extracts of Gossypium herbaceum ...
 
Glucosinolates, glycosidically bound volatiles and antimicrobial activity of ...
Glucosinolates, glycosidically bound volatiles and antimicrobial activity of ...Glucosinolates, glycosidically bound volatiles and antimicrobial activity of ...
Glucosinolates, glycosidically bound volatiles and antimicrobial activity of ...
 
Jauhar ali. vol 4. screening for abiotic and biotic stress tolerances
Jauhar ali. vol 4. screening for abiotic and biotic stress tolerancesJauhar ali. vol 4. screening for abiotic and biotic stress tolerances
Jauhar ali. vol 4. screening for abiotic and biotic stress tolerances
 
Published Research
Published ResearchPublished Research
Published Research
 
Insecticidal activity of Tagetes sp. on Sitophilus zeamais Mots
Insecticidal activity of Tagetes sp. on Sitophilus zeamais MotsInsecticidal activity of Tagetes sp. on Sitophilus zeamais Mots
Insecticidal activity of Tagetes sp. on Sitophilus zeamais Mots
 
Identification of Ralstonia Solanacearum in Kyrgyzstan’s Potato Fields and th...
Identification of Ralstonia Solanacearum in Kyrgyzstan’s Potato Fields and th...Identification of Ralstonia Solanacearum in Kyrgyzstan’s Potato Fields and th...
Identification of Ralstonia Solanacearum in Kyrgyzstan’s Potato Fields and th...
 
2002. influence of leaf, fruit and seed powders and extracts pithecellobium d...
2002. influence of leaf, fruit and seed powders and extracts pithecellobium d...2002. influence of leaf, fruit and seed powders and extracts pithecellobium d...
2002. influence of leaf, fruit and seed powders and extracts pithecellobium d...
 
2004 antifungal activity of seed pachyrhizuz
2004 antifungal activity of seed pachyrhizuz2004 antifungal activity of seed pachyrhizuz
2004 antifungal activity of seed pachyrhizuz
 
Acute and sub acute toxicological evaluation of ethanolic leaves extract of p...
Acute and sub acute toxicological evaluation of ethanolic leaves extract of p...Acute and sub acute toxicological evaluation of ethanolic leaves extract of p...
Acute and sub acute toxicological evaluation of ethanolic leaves extract of p...
 
2003. nematocidal effects of mexican – medicinal plant extracts
2003. nematocidal effects of mexican – medicinal plant extracts2003. nematocidal effects of mexican – medicinal plant extracts
2003. nematocidal effects of mexican – medicinal plant extracts
 
Impact of Compost Prepared from Invasive Alien Species in Alleviating Water S...
Impact of Compost Prepared from Invasive Alien Species in Alleviating Water S...Impact of Compost Prepared from Invasive Alien Species in Alleviating Water S...
Impact of Compost Prepared from Invasive Alien Species in Alleviating Water S...
 

Similar to Relationship between postharvest diseases resistance and mineral composition of citrus fruit

A comparative study of bacteria and fungi associated with spoilage of banana ...
A comparative study of bacteria and fungi associated with spoilage of banana ...A comparative study of bacteria and fungi associated with spoilage of banana ...
A comparative study of bacteria and fungi associated with spoilage of banana ...BRNSSPublicationHubI
 
Bioactive constituents, antioxidant activity and in vitro cancer
Bioactive constituents, antioxidant activity and in vitro cancerBioactive constituents, antioxidant activity and in vitro cancer
Bioactive constituents, antioxidant activity and in vitro cancerAlexander Decker
 
Effect of incubation temperature on lesion diameter of Penicillium expansum o...
Effect of incubation temperature on lesion diameter of Penicillium expansum o...Effect of incubation temperature on lesion diameter of Penicillium expansum o...
Effect of incubation temperature on lesion diameter of Penicillium expansum o...Innspub Net
 
Pseudomonas alcaligenes, potential antagonist against fusarium oxysporum f.s...
Pseudomonas alcaligenes, potential  antagonist against fusarium oxysporum f.s...Pseudomonas alcaligenes, potential  antagonist against fusarium oxysporum f.s...
Pseudomonas alcaligenes, potential antagonist against fusarium oxysporum f.s...Alexander Decker
 
Prevalence, occurrence and biochemical characterization of Xanthomonas campes...
Prevalence, occurrence and biochemical characterization of Xanthomonas campes...Prevalence, occurrence and biochemical characterization of Xanthomonas campes...
Prevalence, occurrence and biochemical characterization of Xanthomonas campes...INNS PUBNET
 
Nutritional composition and fungal spoilage of African pear (Dacryodes edulis...
Nutritional composition and fungal spoilage of African pear (Dacryodes edulis...Nutritional composition and fungal spoilage of African pear (Dacryodes edulis...
Nutritional composition and fungal spoilage of African pear (Dacryodes edulis...Journal of Research in Biology
 
Effects of orange juice p h on survival, urease activity and dna profiles of ...
Effects of orange juice p h on survival, urease activity and dna profiles of ...Effects of orange juice p h on survival, urease activity and dna profiles of ...
Effects of orange juice p h on survival, urease activity and dna profiles of ...Tiensae Teshome
 
MICROORGANISMS ASSOCIATED WITH THE SPOILAGE OF CUCUMBER, GARDEN EGG AND PAWPA...
MICROORGANISMS ASSOCIATED WITH THE SPOILAGE OF CUCUMBER, GARDEN EGG AND PAWPA...MICROORGANISMS ASSOCIATED WITH THE SPOILAGE OF CUCUMBER, GARDEN EGG AND PAWPA...
MICROORGANISMS ASSOCIATED WITH THE SPOILAGE OF CUCUMBER, GARDEN EGG AND PAWPA...paperpublications3
 
Genotypic pathogenic microbes associated with deterioration of sweet orange (...
Genotypic pathogenic microbes associated with deterioration of sweet orange (...Genotypic pathogenic microbes associated with deterioration of sweet orange (...
Genotypic pathogenic microbes associated with deterioration of sweet orange (...Professor Bashir Omolaran Bello
 
Two research articles on pesticides in cambodia 2011 02 28 vs 07 2011
Two research articles on pesticides in cambodia 2011 02 28 vs 07 2011Two research articles on pesticides in cambodia 2011 02 28 vs 07 2011
Two research articles on pesticides in cambodia 2011 02 28 vs 07 2011Scheewe
 
Madrau m articolo_2009_effect
Madrau m articolo_2009_effectMadrau m articolo_2009_effect
Madrau m articolo_2009_effectvaishali0123
 
Short Communication: Natural Prophylaxis to the Control of Swine Coccidiosis
Short Communication: Natural Prophylaxis to the Control of Swine CoccidiosisShort Communication: Natural Prophylaxis to the Control of Swine Coccidiosis
Short Communication: Natural Prophylaxis to the Control of Swine CoccidiosisAgriculture Journal IJOEAR
 
Colletotrichum gloeosporioides from mango Ataulfo: morphological, physiologic...
Colletotrichum gloeosporioides from mango Ataulfo: morphological, physiologic...Colletotrichum gloeosporioides from mango Ataulfo: morphological, physiologic...
Colletotrichum gloeosporioides from mango Ataulfo: morphological, physiologic...Journal of Research in Biology
 
Effect of Pectimorf® - A traditional growth regulator on the development and ...
Effect of Pectimorf® - A traditional growth regulator on the development and ...Effect of Pectimorf® - A traditional growth regulator on the development and ...
Effect of Pectimorf® - A traditional growth regulator on the development and ...Journal of Research in Biology
 
Ecklonia Maxima Extract Effect in Tissue Regeneration of Symbionts at in Vivo...
Ecklonia Maxima Extract Effect in Tissue Regeneration of Symbionts at in Vivo...Ecklonia Maxima Extract Effect in Tissue Regeneration of Symbionts at in Vivo...
Ecklonia Maxima Extract Effect in Tissue Regeneration of Symbionts at in Vivo...IJEAB
 
Mitochondrial Complex 1is Important for Plant Tolerance to Fungal Biotic Stress
Mitochondrial Complex 1is Important for Plant Tolerance to  Fungal Biotic StressMitochondrial Complex 1is Important for Plant Tolerance to  Fungal Biotic Stress
Mitochondrial Complex 1is Important for Plant Tolerance to Fungal Biotic StressSryahwa Publications
 

Similar to Relationship between postharvest diseases resistance and mineral composition of citrus fruit (20)

A comparative study of bacteria and fungi associated with spoilage of banana ...
A comparative study of bacteria and fungi associated with spoilage of banana ...A comparative study of bacteria and fungi associated with spoilage of banana ...
A comparative study of bacteria and fungi associated with spoilage of banana ...
 
Bioactive constituents, antioxidant activity and in vitro cancer
Bioactive constituents, antioxidant activity and in vitro cancerBioactive constituents, antioxidant activity and in vitro cancer
Bioactive constituents, antioxidant activity and in vitro cancer
 
Effect of incubation temperature on lesion diameter of Penicillium expansum o...
Effect of incubation temperature on lesion diameter of Penicillium expansum o...Effect of incubation temperature on lesion diameter of Penicillium expansum o...
Effect of incubation temperature on lesion diameter of Penicillium expansum o...
 
Non-chemical Control of Potato Early Blight Caused by Alternaria alternata
Non-chemical Control of Potato Early Blight Caused by Alternaria alternataNon-chemical Control of Potato Early Blight Caused by Alternaria alternata
Non-chemical Control of Potato Early Blight Caused by Alternaria alternata
 
Pseudomonas alcaligenes, potential antagonist against fusarium oxysporum f.s...
Pseudomonas alcaligenes, potential  antagonist against fusarium oxysporum f.s...Pseudomonas alcaligenes, potential  antagonist against fusarium oxysporum f.s...
Pseudomonas alcaligenes, potential antagonist against fusarium oxysporum f.s...
 
Prevalence, occurrence and biochemical characterization of Xanthomonas campes...
Prevalence, occurrence and biochemical characterization of Xanthomonas campes...Prevalence, occurrence and biochemical characterization of Xanthomonas campes...
Prevalence, occurrence and biochemical characterization of Xanthomonas campes...
 
Nutritional composition and fungal spoilage of African pear (Dacryodes edulis...
Nutritional composition and fungal spoilage of African pear (Dacryodes edulis...Nutritional composition and fungal spoilage of African pear (Dacryodes edulis...
Nutritional composition and fungal spoilage of African pear (Dacryodes edulis...
 
Effects of orange juice p h on survival, urease activity and dna profiles of ...
Effects of orange juice p h on survival, urease activity and dna profiles of ...Effects of orange juice p h on survival, urease activity and dna profiles of ...
Effects of orange juice p h on survival, urease activity and dna profiles of ...
 
Schmidt et al JPDP 2015
Schmidt et al JPDP 2015Schmidt et al JPDP 2015
Schmidt et al JPDP 2015
 
MICROORGANISMS ASSOCIATED WITH THE SPOILAGE OF CUCUMBER, GARDEN EGG AND PAWPA...
MICROORGANISMS ASSOCIATED WITH THE SPOILAGE OF CUCUMBER, GARDEN EGG AND PAWPA...MICROORGANISMS ASSOCIATED WITH THE SPOILAGE OF CUCUMBER, GARDEN EGG AND PAWPA...
MICROORGANISMS ASSOCIATED WITH THE SPOILAGE OF CUCUMBER, GARDEN EGG AND PAWPA...
 
Genotypic pathogenic microbes associated with deterioration of sweet orange (...
Genotypic pathogenic microbes associated with deterioration of sweet orange (...Genotypic pathogenic microbes associated with deterioration of sweet orange (...
Genotypic pathogenic microbes associated with deterioration of sweet orange (...
 
Termal stab
Termal stabTermal stab
Termal stab
 
Two research articles on pesticides in cambodia 2011 02 28 vs 07 2011
Two research articles on pesticides in cambodia 2011 02 28 vs 07 2011Two research articles on pesticides in cambodia 2011 02 28 vs 07 2011
Two research articles on pesticides in cambodia 2011 02 28 vs 07 2011
 
Madrau m articolo_2009_effect
Madrau m articolo_2009_effectMadrau m articolo_2009_effect
Madrau m articolo_2009_effect
 
Short Communication: Natural Prophylaxis to the Control of Swine Coccidiosis
Short Communication: Natural Prophylaxis to the Control of Swine CoccidiosisShort Communication: Natural Prophylaxis to the Control of Swine Coccidiosis
Short Communication: Natural Prophylaxis to the Control of Swine Coccidiosis
 
Colletotrichum gloeosporioides from mango Ataulfo: morphological, physiologic...
Colletotrichum gloeosporioides from mango Ataulfo: morphological, physiologic...Colletotrichum gloeosporioides from mango Ataulfo: morphological, physiologic...
Colletotrichum gloeosporioides from mango Ataulfo: morphological, physiologic...
 
Effect of Pectimorf® - A traditional growth regulator on the development and ...
Effect of Pectimorf® - A traditional growth regulator on the development and ...Effect of Pectimorf® - A traditional growth regulator on the development and ...
Effect of Pectimorf® - A traditional growth regulator on the development and ...
 
Ecklonia Maxima Extract Effect in Tissue Regeneration of Symbionts at in Vivo...
Ecklonia Maxima Extract Effect in Tissue Regeneration of Symbionts at in Vivo...Ecklonia Maxima Extract Effect in Tissue Regeneration of Symbionts at in Vivo...
Ecklonia Maxima Extract Effect in Tissue Regeneration of Symbionts at in Vivo...
 
Mitochondrial Complex 1is Important for Plant Tolerance to Fungal Biotic Stress
Mitochondrial Complex 1is Important for Plant Tolerance to  Fungal Biotic StressMitochondrial Complex 1is Important for Plant Tolerance to  Fungal Biotic Stress
Mitochondrial Complex 1is Important for Plant Tolerance to Fungal Biotic Stress
 
Emerging Trends to Minimize the Post Harvest Decay of Perishable Fruits
Emerging Trends to Minimize the Post Harvest Decay of Perishable FruitsEmerging Trends to Minimize the Post Harvest Decay of Perishable Fruits
Emerging Trends to Minimize the Post Harvest Decay of Perishable Fruits
 

More from Amílcar Duarte

Tangerinas, mandarinas e pequenos frutos
Tangerinas, mandarinas e pequenos frutosTangerinas, mandarinas e pequenos frutos
Tangerinas, mandarinas e pequenos frutosAmílcar Duarte
 
Bioactive compounds of citrus as health promoters
 Bioactive compounds of citrus as health promoters Bioactive compounds of citrus as health promoters
Bioactive compounds of citrus as health promotersAmílcar Duarte
 
2012 breves notas sobre a citricultura portuguesa-pages40to44from agrotec--3_...
2012 breves notas sobre a citricultura portuguesa-pages40to44from agrotec--3_...2012 breves notas sobre a citricultura portuguesa-pages40to44from agrotec--3_...
2012 breves notas sobre a citricultura portuguesa-pages40to44from agrotec--3_...Amílcar Duarte
 
Áreas de gestão fitossanitária para Ceratitis capitata e Trioza erytreae. Nov...
Áreas de gestão fitossanitária para Ceratitis capitata e Trioza erytreae. Nov...Áreas de gestão fitossanitária para Ceratitis capitata e Trioza erytreae. Nov...
Áreas de gestão fitossanitária para Ceratitis capitata e Trioza erytreae. Nov...Amílcar Duarte
 
CITRUS AS A COMPONENT OF THE MEDITERRANEAN DIET
CITRUS AS A COMPONENT OF THE MEDITERRANEAN DIETCITRUS AS A COMPONENT OF THE MEDITERRANEAN DIET
CITRUS AS A COMPONENT OF THE MEDITERRANEAN DIETAmílcar Duarte
 
Código de boas praticas de higiene no processamento de citrinos para comercia...
Código de boas praticas de higiene no processamento de citrinos para comercia...Código de boas praticas de higiene no processamento de citrinos para comercia...
Código de boas praticas de higiene no processamento de citrinos para comercia...Amílcar Duarte
 

More from Amílcar Duarte (6)

Tangerinas, mandarinas e pequenos frutos
Tangerinas, mandarinas e pequenos frutosTangerinas, mandarinas e pequenos frutos
Tangerinas, mandarinas e pequenos frutos
 
Bioactive compounds of citrus as health promoters
 Bioactive compounds of citrus as health promoters Bioactive compounds of citrus as health promoters
Bioactive compounds of citrus as health promoters
 
2012 breves notas sobre a citricultura portuguesa-pages40to44from agrotec--3_...
2012 breves notas sobre a citricultura portuguesa-pages40to44from agrotec--3_...2012 breves notas sobre a citricultura portuguesa-pages40to44from agrotec--3_...
2012 breves notas sobre a citricultura portuguesa-pages40to44from agrotec--3_...
 
Áreas de gestão fitossanitária para Ceratitis capitata e Trioza erytreae. Nov...
Áreas de gestão fitossanitária para Ceratitis capitata e Trioza erytreae. Nov...Áreas de gestão fitossanitária para Ceratitis capitata e Trioza erytreae. Nov...
Áreas de gestão fitossanitária para Ceratitis capitata e Trioza erytreae. Nov...
 
CITRUS AS A COMPONENT OF THE MEDITERRANEAN DIET
CITRUS AS A COMPONENT OF THE MEDITERRANEAN DIETCITRUS AS A COMPONENT OF THE MEDITERRANEAN DIET
CITRUS AS A COMPONENT OF THE MEDITERRANEAN DIET
 
Código de boas praticas de higiene no processamento de citrinos para comercia...
Código de boas praticas de higiene no processamento de citrinos para comercia...Código de boas praticas de higiene no processamento de citrinos para comercia...
Código de boas praticas de higiene no processamento de citrinos para comercia...
 

Recently uploaded

LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxmalonesandreagweneth
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)riyaescorts54
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsssuserddc89b
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuinethapagita
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxFarihaAbdulRasheed
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringPrajakta Shinde
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxEran Akiva Sinbar
 
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptxSulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptxnoordubaliya2003
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPirithiRaju
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentationtahreemzahra82
 
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRlizamodels9
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationColumbia Weather Systems
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayupadhyaymani499
 
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingNetHelix
 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPirithiRaju
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxJorenAcuavera1
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptArshadWarsi13
 
preservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptxpreservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptxnoordubaliya2003
 
Solution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsSolution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsHajira Mahmood
 

Recently uploaded (20)

LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physics
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical Engineering
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptx
 
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptxSulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdf
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentation
 
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
 
User Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather StationUser Guide: Magellan MX™ Weather Station
User Guide: Magellan MX™ Weather Station
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyay
 
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptx
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.ppt
 
preservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptxpreservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptx
 
Solution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsSolution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutions
 

Relationship between postharvest diseases resistance and mineral composition of citrus fruit

  • 1. Relationship between Postharvest Diseases Resistance and Mineral Composition of Citrus Fruit C. Nunes, A. Duarte and T. Manso CDCTPV, Universidade do Algarve Gambelas, Ed. 8, 8005-139 Faro Portugal C. Weiland Universidad de Huelva La Rábida Huelva Spain J.M. García, J.A. Cayuela, K. Yousfi and M.C. Martínez Instituto de la Grasa (CSIC), Sevilla Spain M. Salazar Instituto Universitário D. Alfonso III Loulé Portugal Keywords: nutrients, Penicillium decay, postharvest decay, production systems Abstract Green and blue moulds, due to the pathogenic action of Penicillium digitatum and Penicillium italicum respectively are the main cause of orange losses during postharvest. Under Mediterranean climate conditions, both together are responsible for 80% of total postharvest citrus fruit decay. The type of orchard production system, field location with different types of climate and soil has a main influence on mineral composition of fruits. The mineral composition of fruits can have a significant impact on fruit quality and shelf life during postharvest period. These include effects on fruit colour, texture, disease susceptibility, juice composition and development of physiological disorders. Oranges from different regions from South of Spain and Portugal and from three different production systems (conventional, integrated and organic) were studied to evaluate whether both factors (origin and production system) affected the degree of fruit sensitivity to decay. Results indicate that the sensitivity to green or blue mould is determined better by the origin of fruit than by the system of production. INTRODUCTION Penicillium italicum and Penicillium digitatum are the most common postharvest pathogens of citrus fruits. P. digitatum works by producing ethylene to accelerate ripening. It covers the fruit with green conidia, causing the fruit to shrivel and dry out. P. italicum causes slimy rot and produces blue-green conidia. This species likes cooler temperatures, which explains why they are usually found on foods left too long in the refrigerator. Both diseases resemble each other in colour characteristics, style of decay, and infection symptoms; they fall under a general category called green and blue mould, when caused by P. digitatum and P. italicum respectively. These fungi live a long time and are quite durable, including even stable adverse conditions. Sometimes, fruits infected by P. italicum will adhere to each other to create synnemata. Penicillium growth typically occurs as a result of wound infections in produce. To prevent the development of these pathogens and to limit losses in commercial fruit shipments, treatment with chemical fungicides is a widely used procedure. However, such treatment may produce serious problems, with residues on the fruit (Cabras et al., 1999; Palou et al., 2008), appearance of fungicide-resistant strains of P. digitatum (Ben-Yehoshua et al., 1994), and their possible accumulation in human adipose tissue constituting an additional health threat (Suwalsky et al., 1999). As alternative to these fungicides some treatments have obtained successful results controlling postharvest decay. Thus, curing (holding fruits at relatively high temperature and humidity for 24 to 72 h), dipping fruit in CO3HNa, solutions at 40 to 50ºC for 1 to 3 min or the use of antagonist microorganisms have been demonstrated to be a very effective alternative treatments to avoid Penicillium spp. proliferation on citrus fruit (Nunes et al., 2007; Torres et al., 2007; Pérez et al., 2008a). However, these non-contaminant systems habitually exhibit a poorer 417Proc. VIth IS on Mineral Nutrition of Fruit Crops Eds.: M. Pestana and P.J. Correia Acta Hort. 868, ISHS 2010
  • 2. reproducibility than fungicides (Palou et al., 2008). Recently, Pérez et al. (2008b) observed that fruit obtained from integrated or organic production exhibited a significant higher sensibility to Penicillium infection than the conventional ones. It means that the reduction or elimination of chemical synthesis compounds in the citrus production would cause a significant increase in sensitivity of fruits towards Penicillium. It is well known than the principal factor that impacts the preservation of harvested commodities is the physiological status of the tissue and its susceptibility to pathogen attack increases due to weakened natural defences mechanisms, as well as partial degradation of cell walls and subsequent increase leakage of solutes (Droby et al., 2001). Also some studies have looked at the possible role that phenolic compounds might play as phytoalexins in some Citrus species (Ortuño et al., 1997; Del Río, 1998; Arcas et al., 2000; Del Río et al., 2004). The level of presence of these compounds should be determinant for the progress of fungal infection and for the efficiency of the alternative system to control it. However, the reason why this presence differs with seasons and locations has not been yet explained. In this paper a possible relationship between chemical peel components (N, P, K, Ca, Mg, Fe, Cu, Zn, Mn) of citrus fruit obtained by different production systems from different origin and the level of sensibility to P. digitatum and P. italicum infection has been studied to explain this variability. MATERIAL AND METHODS Plant Material Oranges (Citrus sinensis ‘Valencia Late’) were harvest randomly from conventional, integrated and organic production systems and different regions of Southwest of Spain (Lepe - seaside of Huelva - and Río Tinto - range of Huelva) and South of Portugal (Silves - west Algarve - and Tavira - east Algarve) and were harvested in the beginning of May, June and July. Fungal Inoculation and Fruit Decay Incidence Evaluation P. digitatum and P. italicum isolated from decayed oranges from 3 locations (Lepe, Rio Tinto and South of Portugal) and maintained on potato dextrose agar medium (PDA), periodically transfer to fruit. Conidia of a 7-12 days culture grown at 25ºC were suspended in sterile distilled water with Tween 80. The suspension was adjusted to 106 conidia/ml using a haemacitometer. Oranges in sets of 4 replicates of 60 fruits from each origin and each production system were dipped in the suspensions of P. digitatum or P. italicum for 30 s. Decay incidence of each treatment was monitored after 15 days of storage at 20ºC and 80% RH. Quality Studies At harvest moment, fruit firmness was evaluated using 20 non-inoculated fruits from each treatment with a Zwick 3300 non-destructive hand densimeter. Subsequently fruits were distributed in 4 groups of 5 oranges, which were separately extracted to determine the percentage of juice and the percentage of peel in front of the total fresh weight of each group of fruits. The soluble solids concentration (SSC) with a refractometer and the titratable acidity with an automatic titrator that measured the volume of 0.1 N NaOH required by 10 ml of juice to reach pH 8.0 were also measured. Data were expressed as ºBrix and percentage of citric acid, respectively. Maturity index (MI) was evaluated by the ratio: ºBrix / % Citric acid for each extracted juice. Mineral Composition Peel of nine fruits, distributed in three groups of three fruits were dried at 60°C for 48 h, grounded, ashed at 450ºC, and digested in 10 cm3 HCl 1 N. Standardized procedures (AOAC, 1990) were used to measure nutrient concentrations. Nitrogen was analysed by the Kjeldahl method, P was determined colorimetrically by the molybdo-vanadate method, K was measured by flame photometry, and Mg, Ca, Fe, Cu, Mn and Zn were 418
  • 3. measured by atomic absorption spectrometry. Statistical Analysis In all the parameter studied the results presented correspond to the mean values obtained in the three different harvesting dates tested. A 2-way analysis of variance (ANOVA) procedure was used for testing the possible significant effect (P≤0.05) of the origin and the production system of the samples on the global decay incidence, independently for each fungi inoculation. A 1-way analysis of variance (ANOVA) procedure was used for testing possible significant effect (P≤0.05) of the different combinations of origins and production systems on mineral contents and quality parameters. When the effect of the treatment was significant, means were analysed by the Tukey’s HSD test (P≤0.05). The performed data was statistically analysed using CoStat 5.01™ statistical software (Cohort Software Minneapolis, MN, USA). RESULTS AND DISCUSSION Results of fruit quality are shown in Table 1, decay incidence in Table 2 and mineral composition in Table 3. Globally considered, no significant effect on Penicillium decay was found as consequence of the different production systems tested (Table 2). However, conventional fruits cultured in Lepe showed a significant lower sensibility to both fungi than the oranges obtained by integrated production in the same culture location. In opposite, Silves oranges cultured under organic production exhibited significant lower incidence of P. digitatum decay than the fruits of the same origin produced under the other two systems. On the other hand, independently of the production system how they were cultured, Lepe oranges showed lower mean values of decay incidence than the fruits of other locations. In consequence, results seem to indicate that the sensitivity to green or blue mould is determined better by the origin of fruit than by the system of production. It is possible to conclude that the reduction or elimination of chemical synthesis compounds in the citrus production does not cause a significant increase in sensitivity of fruits towards Penicillium. It seems that the higher resistance to the pathogen could be bound more to the edafoclimatic factors of a certain culture area that to the provision type that is applied externally to it. Although to identify clearly a determined element, whose presence or absence was coincident with higher or lower decay incidences, is not possible. Lepe oranges showed the highest mean values of N, Mg and Fe and the lowest of Co and Mn (Table 3). Furthermore, Lepe oranges obtained by conventional production exhibited higher values of N and Fe than the integrated ones, but these differences did not reach a statistical significance. The higher presence of N and Fe could be directly related with a higher presence of proteins associated to Fe in the peel fruit. For instance, lipoxigenase is a Fe- protein associated to natural plant defence-related compounds biosynthesis, such as hexanal (C6H12O hexyl aldehyde) and it is induced by cell wall breaking in plant tissues (Royo et al., 1996). At the other hand, a higher presence of Mg suggests higher chlorophyll content in the fruit peel and, in consequence, a lower level of fruit maturity and a higher resistance to fungal infection. The significant lower MI values showed by Lepe oranges explained both the higher resistance to decay due to Penicillium and the higher Mg content in comparison to the mean values exhibited by Silves and Tavira oranges (Table 1). However, Río Tinto fruits in spite of showing similar MI values to Lepe oranges exhibited a higher sensibility to fungal infection. This fact indicates that Rio Tinto oranges are especially sensible to Penicillium attack, since they showed similar levels of decay incidence than the riper oranges produced in Portugal. In a previous work, Nunes et al. (2007) after a treatment of curing during 18 h at 40 ºV observed that artificially inoculated with P. digitatum and P. italicum Valencia fruit of this origin presented about 5% of decay incidence, whereas similar treated fruits cultured in Tarragona (northwest Spain) or Tavira did not exhibit any decay. As Río Tinto oranges are characterised for exhibiting the highest contents of Mn (Table 3), results suggest that a special attention should be dedicated to the presence of 419
  • 4. this element in the orange peel, because it may be a limiting factor required for Penicillium infection. It is well known that numerous enzymes are Mn-dependant, especially a lot of them related with nucleotide biosynthesis and replication. ACKNOWLEDGEMENTS Interreg IIIA of the European Community: Project Citrisaude (SP5.P120/03). Literature Cited AOAC 1990. Methods of Analysis (15th ed.). Association of Official Analytical Chemist, Washington, D.C. Arcas, M.C., Botía, J.M., Ortuño, A. and Del Río, J.A. 2000. UV Irradiation alters the levels of flavonoids involved in the defence mechanisms of Citrus aurantium fruits against Penicillium digitatum. Eur. J. Plant Pathol. 106:617-622. Ben-Yehoshua, S, Goldschmidt, E.E. and Bar-Joseph, M. 1994. Citrus fruits. p.357-378. In: Encyclopedia of Agricultural Science Vol. 1, Academic Press, Inc., New York. Cabras, P., Schirra, M., Pirisi, F.M., Garau, V.L. and Angioni, A. 1999. Factors affecting imazalil and thiabendazole uptake and persistence in Citrus fruits following dip treatments. J. Agr. Food Chem. 47:3352-3354. Del Río, A., Arcas, M.C., Benavente-García, O. and Ortuño, A. 1988. Citrus polymethoxylated flavones can confer resistance against Phytophthora citrophthora, Penicillium digitatum and Geotrichum species. J. Agr. Food Chem. 46:4423-4428. Del Río, J.A., Gómez, P., Báidez, G.A., Arcas, M.C., Botía, J.M. and Ortuño, A. 2004. Changes in the level of polymethoxyflavones and flavones as part of the defence mechanism of Citrus sinensis (cv. Valencia late) fruits against Phytophthora citrophthora. J. Agr. Food Chem. 52:1913-1917. Droby, S., Wilson, C.L., Wisniewski, M. and El-Ghaouth, A. 2001. Biologically based technology for the control of postharvest diseases of fruits and vegetables. p.187-205. In: C. Wilson and S. Droby (eds.), Microbial food contamination. CRC Press, Boca Raton. Nunes, C., Usall, J., Manso, T., Torres, R., Olmo, M. and García, J.M. 2007. Effect of high temperature treatments on growth of Penicillium spp. and their development on ‘Valencia’ oranges. Food. Sci. Tech. Int. 13:63-68. Palou, L., Smilanick, J. and Droby, S. 2008. Alternatives to conventional fungicides for the control of citrus postharvest green and blue molds. Stewart Postharvest Review 2:2-16. Pérez, E., Weiland, C.M., García, J.M., Domínguez, A., Bastida, F., Menéndez, J., Manso, T. and Nunes, C. 2008a. Tratamientos post-cosecha para controlar Penicillium sp. en frutos de cítricos. 2º C. Nacional de Citricultura. 24-26 June. Faro (Portugal). p.16. Pérez, E., Weiland, C.M., García, J.M, Domínguez, A., Bastida, F., Nieta, D., Manso, T. and Nunes, C. 2008b. Incidencia de Penicillum sp. en cítricos en post-cosecha según el modo de producción: convencional, integrada y ecológica. 2º C. Nacional de Citricultura. 24-26 June. Faro (Portugal). p.17. Ortuño, A., Reynaldo, I., Fuster, M.D., Botía, J.M., García-Puig, D. and Sabater, F. 1997. Citrus cultivars with high flavonoid contens in the fruits. Scientia Hort. 68:231-236. Royo, J., Vancanneyt, G., Pérez A.G., Sanz C., Störmann, K., Rosahl, S. and Sánchez- Serrano, J.J. 1996. Characterization of three potato lipoxigenases with distinct enzymatic activities and different organ-specific and wound- regulated expression patterns. J. Biol. Chem. 271:21012-21019. Suwalsky, M., Rodríguez, C., Villena, F., Aguilar, F. and Sotomayor, C.P. 1999. The pesticide hexachlorobenzene induces alterations in the human erythrocyte membrana. Pestic. Biochem. Phys. 10:205-214. Torres, R., Nunes C., Garcıa, J.M., Abadias, M., Viñas, I., Manso, T., Olmo, M. and Usall, J. 2007. Application of Pantoea agglomerans CPA-2 in combination with heated sodium bicarbonate solutions to control the major postharvest diseases affecting citrus fruit at several Mediterranean locations. Eur. J. Plant Pathol. 118:73-83. 420
  • 5. Tables Table 1. Quality parameters of ‘Valencia Late’ oranges from different origins and production systems. Origin and Production systemx Weight (g) Firmness (N) Peel (% fruit weight) Juice (%) Pulp (%) pH Acidity (% Citric) S. solids (ºBrix) Maturity Index (ºBrix / % Citric) Lepe Conventional 141.9ab 20.4b 24.9a 52.5a 37.2 3.3 23.6b 12.7c 0.54a Lepe Integrated 149.5ab 20.7b 25.9a 55.8a 35.5 3.3 22.1b 11.9bc 0.54a Rio Tinto Integrated 129.0a 18.5a 24.4b 57.8a 36.7 3.7 20.7b 10.2a 0.49a Rio Tinto Organic 177.7bc 20.2b 29.1a 64.7a 36.5 4.1 22.6b 10.4ab 0.46a Tavira Integrated 215.1cd 19.2ab 21.7a 93.7b 43.6 3.5 10.1a 12.0c 1.19b Silves Conventional 132.9a 20.4b 26.1a 57.2a 39.2 3.6 12.0a 12.8c 1.07b Silves Integrated 239.9d 20.3b 24.3a 88.6b 36.6 3.6 9.6a 11.7bc 1.22b X Mean values of 9 determinations (3 harvest dates × 3 replicates). Within each column the same lower case letter indicate no significant difference due to origin and production system according to Tukey’s HSD test (P≤0.05). No letters indicate no significant effect due to the cited factor detected by ANOVA (P≤0.05) Table 2. Decay incidence decay of ‘Valencia Late’ oranges from different origins and production systems. Decay Incidencez (%) Production system Species of Penicillium inoculated Sample Conventional Integrated Organic Average origin P. dig. P. ital. P. dig. P. ital. P. dig. P. ital. P. dig. P. ital. Lepe 82.1 bB 82.1 bB 95.7 aB 87.1 aB - - 88.9 B 84.6 B Río Tinto - - 98.5 AB 97.0 A 100.0 A 98.5 99.2 A 97.8 A Tavira 100.0 A 97.1 A - - - - 100 A 97.1 A Silves 98.5 aA 100.0 A 100.0 aA 100 A 95.6 bB 97.0 98.0 A 99.0 A Average 93.5 93.1 96.3 93.7 97.8 97,8 95.7 94.4 z Means of the 3 harvest dates. Within origin and fungal disease the same lower case letter indicate no significant difference between decay incidences due to production system, and within system production the same capital letters indicate no significant difference between decay incidences due to origin, according to Tukey’s HSD test (P≤0.05). No letters indicate no significant effect due to these 2 factors detected by ANOVA (P≤0.05). 421
  • 6. Table 3. Mineral composition of Valencia Late oranges from different origins and production systems. Mineral compositionz Macronutrients (g kg-1 )y and Micronutrients (mg kg-1 )y Sample origin Production system N P K Ca Mg Fe Co Zn Mn Lepe Conventional 11.5 b 0.8 ab 6.1 a 4.8 ab 1.4 b 8.3 b 4.0 b 6.0 ab 7.0 b Lepe Integrated 10.2 ab 0.7 a 5.4 a 6.8 bc 1.5 b 7.5 ab 5.0 b 6.0 ab 7.0 b Río Tinto Integrated 9.6 ab 0.9 c 9.0 b 5.1 ab 1.2 ab 7.3 ab 8.0 b 8.0 b 12.0 a Río Tinto Organic 10.5 ab 1.0 c 9.0 b 4.4 a 1.2 ab 7.2 ab 8.0 b 6.0 ab 14.0 a Tavira Conventional 10.7 ab 0.9 ab 7.1 ab 6.7 bc 0.9 a 6.6 ab 13.0 a 7.0 ab 9.0 b Silves Conventional 9.9 ab 0.8 ab 5.4 a 8.7 cd 0.8 a 6.0 a 7.0 b 4.0 a 7.0 b Silves Integrated 9.1 a 0.8 ab 5.0 a 9.2 d 1.2 ab 6.7 ab 6.0 b 4.0 a 8.0 b z Means of the 3 harvest dates. Within each column the same lower case letter indicate no significant difference due to origin and production system according to Tukey’s HSD test (P≤ 0.05). y Dry weight 422