SlideShare a Scribd company logo
1 of 22
Download to read offline
Page 1
INTERNATIONAL SCHOOL OF
PHOTONICS
SONU KUMAR SINGH
b-13 isp,cusat
ORGANIC
LIGHT
EMITTING
DIODE
Page 2
CONTENTS
 Abstract
 Introduction
 Organic electronics
 History
 Application
 OLED
 Why so much excitement about OLED?
 Inorganic vs organic semiconductor
 What is OLED & it’s working?
 Types of OLED
 Difference between LEDs Incandescent Bulb & CFLs
 Energy Efficiency & Energy Costs
 Environmental
 Impact
 Important Facts
 Light Output
 COMPARISION BETWEEN LED AND OLED
 What is an LED?
 Black Level
 Brightness
 Color space
 Response time
 Viewing angles
 Size
 Lifespan
 Size, weight, power consumption
 Price
 DIFFERENCE BETWEEN OLED &LCD
 Operating principle
 Performance matrix
 Color saturation
 Response time
 Lifetime
 Energy savings
 Resolution
 Ambient contrast ratio
 Viewing angle
 Potential game – changers
 Challenges
 Conclusion
Page 3
Abstract
Organic Light Emitting Diodes (OLED) are a different type of solid-state lighting source. An OLED device is
typically formed in a sheet with emissive organic layer(s) located between a cathode and anode and deposited on
a substrate. The substrate can be rigid such as glass or metal or flexible using a polymer plastic. The number of
emissive layers depends on the desired light output of the device. OLED technology has great potential for new
uses such flexible paper-thin OLED panels, transparent OLED panels and white OLED. White OLED was
developed as device with extremely high power efficiency and long lifetime. The performance achieved was
64lm/W, and 10.000 hours of lifetime at initial luminance of 1000cd/m2
with light out-coupling technique. New
technologies, such as sophisticated organic layer structure, were applied to the device. The device also exhibited
good durability such as storage stability, which is important performance in practical use. We hope that this paper
will show possibilities to practical use of OLED in different types of displays, lighting sources for illumination
use, back light and others. From a recent environmental problem and energy supply circumstances, light sources
of low energy consumption and eco-friendly are demanded. An enormous amount of research effort goes into the
field. Organic light-emitting diode (OLED) is regarded as a powerful candidate because it is an area light source,
can be driven at low voltage, and does not include a material which is harmful to the human body and environment
like mercury. As a light source for illumination or backlight, a white light is usually required. To realize a white
OLED device, plural light emissive materials such as blue, green, red are used generally.
Page 4
Introduction
OLED (Organic Light Emitting Diodes) is a flat light emitting technology, made by placing a series of organic
thin films between two conductors. When electrical current is applied, a bright light is emitted. OLEDs can be
used to make displays and lighting. Because OLEDs emit light they do not require a backlight and so are thinner
and more efficient than LCD displays (which do require a white backlight). An OLED 'light bulb' is a thin film
of material that emits light. OLED is the only technology that can create large "area" lighting panels (as opposed
to point or line lighting enabled by LEDs and Fluorescent bulbs). OLEDs can be used to make flexible and
transparent panels, and can also be color-tunable. OLEDs emit beautiful soft diffused light - in fact OLEDs
lighting is the closest light source to natural light (with the exception of the old incandescent lamps).
There are several types of OLED materials. The most basic division is between small-molecule OLEDs and large
molecule ones (called Polymer OLEDs, or P-OLEDs). All commercial OLEDs today are SM-OLED based. These
evaporable materials perform better than P-OLED materials (in terms of efficiency, lifetime, etc.). P-OLEDs had
great promise as they are naturally solution process able (and so can be used in Inkjet printing and spin-coating
fabrication methods). Intensive research is being performed to develop efficient solution-process able SM-
OLEDs.
OLED emitter materials are classified as either fluorescent or phosphorescent. Fluorescent materials last longer
but are much less efficient than phosphorescent materials. Currently most OLED displays use phosphorescent
emitter materials - except for the blue color which is still fluorescent as the lifetime is still not good enough.
Universal Display Corporation is pioneering PHOLED research, holding the basic patents in this area. An OLED
TV screen uses a new display technology called OLED (Organic Light Emitting Diodes). OLED televisions are
brighter, more efficient, and thinner feature better refresh rates and contrast than either LCD or Plasma. OLED
TVs deliver the best picture quality ever.
Page 5
Organic electronics
Organic electronics is a field of materials science concerning the design, synthesis, characterization, and
application of organic small molecules or polymers that show desirable electronic properties such as conductivity.
Unlike conventional inorganic conductors and semiconductors, organic electronic materials are constructed from
organic (carbon-based) small molecules or polymers using synthetic strategies developed in the context of organic
and polymer chemistry. One of the benefits of organic electronics is their low cost compared to traditional
inorganic electronics.
History
Conductive materials are substances that can transmit electrical charges. Traditionally, most known conductive
materials have been inorganic. Metals such as copper and aluminum are the most familiar conductive materials,
and have high electrical conductivity due to their abundance of delocalized electrons that move freely throughout
the inter-atomic spaces. Some metallic conductors are alloys of two or more metal elements, common examples
of such alloys include steel, brass, bronze, and pewter.
In the eighteenth and early nineteenth centuries, people began to study the electrical conduction in metals. In his
experiments with lightning, Benjamin Franklin proved that an electrical charge travels along a metallic rod. Later,
Georg Simon Ohm discovered that the current passing through a substance is directly proportional to the potential
difference, known as Ohm's law. This relationship between potential difference and current became a widely used
measure of the ability of various materials to conduct electricity. Since the discovery of conductivity, studies have
focused primarily on inorganic conductive materials with only a few exceptions.
Henry Letheby discovered the earliest known organic conductive material in 1862. Using anodic oxidation of
aniline in sulfuric acid, he produced a partly conductive material that was later identified as polyaniline. In the
1950s, the phenomenon that polycyclic aromatic compounds formed semi-conducting charge-transfer complex
salts with halogens was discovered, showing that some organic compounds could be conductive as well.
More recent work has expanded the range of known organic conductive materials. A high conductivity of 1 S/cm
(S = Siemens) was reported in 1963 for a derivative of tetraiodopyrrole. In 1972, researchers found metallic
conductivity (conductivity comparable to a metal) in the charge-transfer complex TTF-TCNQ.
In 1977, it was discovered that polyacetylene can be oxidized with halogens to produce conducting materials from
either insulating or semiconducting materials. In recent decades, research on conductive polymers has prospered,
and the 2000 Nobel Prize in Chemistry was awarded to Alan J. Heeger, Alan G. MacDiarmid, and Hideki
Shirakawa jointly for their work on conductive polymers.
Conductive plastics have recently undergone development for applications in industry. In 1987, the first organic
diode device of was produced at Eastman Kodak by Ching W. Tang and Steven Van Slyke. Spawning the field
of organic light-emitting diodes (OLED) research and device production. For his work, Ching W. Tang is widely
considered as the father of organic electronics.
Page 6
Technology for plastic electronics constructed on thin and flexible plastic substrates was developed in the 1990s.
In 2000, the company Plastic Logic was founded as a spin-off of Cavendish Laboratory to develop a broad range
of products using the plastic electronics technology
Attractive properties of polymer conductors include a wide range of electrical conductivity that can be tuned by
varying the concentrations of chemical dopants, mechanical flexibility, and high thermal stability. Organic
conductive materials can be grouped into two main classes: conductive polymers and conductive small molecules.
Conductive materials
Conductive small molecules are usually used in the construction of organic semiconductors, which exhibit degrees
of electrical conductivity between those of insulators and metals. Semiconducting small molecules include
polycyclic aromatic compounds such as pentacene, anthracene and rubrene.
Conductive polymers are typically intrinsically conductive. Their conductivity can be comparable to metals or
semiconductors. Most conductive polymers are not thermoformable, during production. However they can
provide very high electrical conductivity without showing similar mechanical properties to other commercially
available polymers. Both organic synthesis and advanced dispersion techniques can be used to tune the electrical
properties of conductive polymers, unlike typical inorganic conductors. The well-studied class of conductive
polymers is the so-called linear-backbone “polymer blacks” including polyacetylene, polypyrrole, polyaniline,
and their copolymers. Poly (p-phenylene vinylene) and its derivatives are used for electroluminescent
semiconducting polymers. Poly (3-alkythiophenes) are also a typical material for use in solar cells and transistors.
Page 7
Application of organic electronics
There are four major application areas: displays; lighting; photovoltaics and integrated smart systems. While
OLAE technology is currently used in many manufacturing processes, new applications are entering the
marketplace rapidly.
While organic light- emitting diodes (OLEDs) are already used commercially in displays of mobile devices and
significant progress has been made in applying organic photovoltaic cells to light-weight flexible fabrics to
generate low-cost solar energy, a brand new range of applications is possible such as biomedical implants and
disposable biodegradable RFID packaging tags.
In addition, low cost organic solar cells have the potential to drive down the cost of photovoltaics to levels, which
are not achievable with mono or poly-crystalline solar cells. Similarly, organic light emitting diodes will
revolutionize current lighting applications, significantly reducing CO2 impact. Also, smart devices incorporating
organic and printed circuits, sensors and energy sources will enable new approaches in logistics and consumer
packaging, and new flexible displays with exceptionally low energy consumption will be used anywhere and
anytime.
What are the possibilities?
The possibilities are limitless as the technology is evolving at such a rapid pace. Industrial designers across all
sectors and markets should be aware of the technology and looking at ways of harnessing its power and benefits
into new product design.
 Possible applications could include:
 Memory or logic devices
 Detectors, lasers and light emitters
 Information displays – advertising billboards and other media
 Micro lenses
 Batteries
 Power or light sources
 Subsystem packaging
 Image patterning
 Electrical or optical fibers
 Transistors
 Photoconductors
Page 8
Organic LED
Why so much excitement about Organic LED?
 Easy to process
 Processing is low cost
 Less temperature required to fabricate
 They can possess to low –cost substrates (i.e., plastic, paper even cloth)
 Directly integrated to packages as it is light weight.
 Solution processing is possible basically means that if we want to make them thin film for silicon we
have to use high cost evaporation technique but organic semiconductor just we can take a solution Spink
coated put on substrate new way of manufacturing technique is low cost.
Inorganic semiconductor Organic semiconductor
 Crystalline in nature
 Covalent bond, coordinate bond
 More energy to make them
 Electron is delocalized in whole
semiconductor
 In case of inorganic electronics charge carriers
are e-
and h+
 Mobility (µn, µp) 100-104
cm2
/v-s
 Amorphous in nature generally
 Molecule in nature Vander walls bonds
 Less energy to make them
 Electron is localized in organic semiconductor
 In case of organic electron interacts with lattice
carriers for charges called polarons.
 Mobility (µn, µp) 10-6
-1 cm2
/v-s
Page 9
Working OLEDs
A typical OLED is composed of an emissive layer, a conductive layer, a substrate, and anode and cathode
terminals. The layers are made of organic molecules that conduct electricity. The layers have conductivity levels
ranging from insulators to conductors, so OLEDs are considered organic semiconductors.
The first, most basic OLEDs consisted of a single organic layer, for example the first light-emitting polymer
device synthesized by Burroughs et al. involved a single layer of poly (p-phenylene vinylene). Multilayer OLEDs
can have more than two layers to improve device efficiency. As well as conductive properties, layers may be
chosen to aid charge injection at electrodes by providing a more gradual electronic profile, or block a charge from
reaching the opposite electrode and being wasted.
fig-2
Fig-1
Schematic of a 2-layer OLED: 1. Cathode (−), 2. Emissive Layer, 3. Emission of radiation, 4. Conductive Layer,
5. Anode (+)
A voltage is applied across the OLED such that the anode is positive with respect to the cathode. This causes a
current of electrons to flow through the device from cathode to anode. Thus, the cathode gives electrons to the
emissive layer and the anode withdraws electrons from the conductive layer; in other words, the anode gives
electron holes to the conductive layer.
Soon, the emissive layer becomes negatively charged, while the conductive layer becomes rich in positively
charged holes. Electrostatic forces bring the electrons and the holes towards each other and they recombine. This
happens closer to the emissive layer, because in organic semiconductors holes are more mobile than electrons.
Page 10
The recombination causes a drop in the energy levels of electrons, accompanied by an emission of radiation whose
frequency is in the visible region. That is why this layer is called emissive.
The device does not work when the anode is put at a negative potential with respect to the cathode. In this
condition, holes move to the anode and electrons to the cathode, so they are moving away from each other and do
not recombine.
Indium tin oxide is commonly used as the anode material. It is transparent to visible light and has a high work
function which promotes injection of holes into the polymer layer. Metals such as aluminum and calcium are
often used for the cathode as they have low work functions which promote injection of electrons into the polymer
layer.
There are different types of OLED based on the construction.
1. Transparent OLED – They have all transparent components like anode, cathode and substrate. OLED
technology enables thin, efficient and bright displays and lighting panels. OLEDs are currently used in many
mobile devices, some TVs and even in some lighting fixtures. OLED displays offer a better image quality
compared to LCD or Plasma displays - and can also be made flexible and transparent.
2. Top emitting OLED – Substrate layer is reflective or opaque. Top-emitting organic light-emitting diodes
(OLEDs), which are beneficial for lighting and display applications, where nontransparent substrates are used.
3. White OLED – Emit white light. These can be made into large sheets to make Fluorescent lamps. White organic
light emitting diodes (white OLEDs) show promise for a major role in ambient lighting in the future. Low material
costs, a wide choice of materials with customized properties, and easy production methods are features of the
OLED technology which have favored its fast development and industrial application in recent time. The
energetically broad emission spectra and almost Lambertian emission of OLEDs are especially favorable for
lighting applications, since they lead to homogeneous illumination and high quality color rendering. The
possibility to produce large area OLED panels will also open new ways for lighting design apart from common
incandescent bulbs or fluorescent tubes.
4. Foldable OLED – A flexible organic light emitting diode (FOLED) is a type of organic light-emitting diode
(OLED) incorporating a flexible plastic substrate on which the electroluminescent organic semiconductor is
deposited. This enables the device to be bent or rolled while still operating. Currently the focus of research in
industrial and academic groups, flexible OLEDs form one method of fabricating a roll able display.
5. Active matrix OLED-AMOLEDs will be similar to passive but will have full layers of cathode, organic
molecules, and anode; the anode layer will have a thin film transistor (TFT) back plate that forms a matrix. The
TFT controls the brightness and which pixel gets turned on to form an image. In AMOLED there will be two
TFT arrays per pixel, one starts and stops the charge and the other keeps a constant electrical current to the pixel.
.
6. Passive OLED – Presumably this will be the first to hit the market since it was the passive LCD screens that
came out first and more than likely OLEDs will follow in those footprints. PMOLEDs will be more expensive
and will need more power than other OLEDs, though they will still use less power than LCDs out today.
Page 11
White OLEDs
Page 12
ADVANTAGES
Difference between LEDs Incandescent Bulb & CFLs
Energy Efficiency
& Energy Costs
Light Emitting Diodes
(LEDs)
Incandescent
Light Bulbs
Fluorescents (CFLs)
Life Span (average) 50,000 hours 1,200 hours 8,000 hours
Watts of electricity
used
(equivalent to 60 watt
bulb).
LEDs use less power
(watts) per unit of light
generated
(lumens). LEDs help
reduce greenhouse gas
emissions from power
plants and lower
electric bills
6 - 8 watts 60 watts 13-15 watts
Kilo-watts of
Electricity used
(30 Incandescent
Bulbs per year
equivalent)
329 KWh/yr. 3285 KWh/yr. 767 KWh/yr.
Page 13
Environmental
Impact
Light Emitting
Diodes (LEDs)
Incandescent
Light Bulbs
Compact Fluorescents
(CFLs)
Contains the
TOXIC Mercury
No No
Yes - Mercury is very toxic to
your health and the environment
RoHS Compliant Yes Yes
No - contains 1mg-5mg of
Mercury and is a major risk to
the environment
Carbon Dioxide
Emissions
(30 bulbs per year)
Lower energy
consumption
decreases: CO2
emissions, sulfur
oxide, and high-
level nuclear waste.
451 pounds/year 4500 pounds/year 1051 pounds/year
Page 14
Important Facts
Light Emitting
Diodes (LEDs)
Incandescent
Light Bulbs
Compact Fluorescents
(CFLs)
Sensitivity to low
temperatures
None Some Yes - may not work under
negative 10 degrees
Fahrenheit or over 120
degrees Fahrenheit
Sensitive to
humidity
No Some Yes
On/off Cycling
Switching a CFL
on/off quickly, in
a closet for
instance, may
decrease the
lifespan of the
bulb.
No Effect Some Yes - can reduce lifespan
drastically
Turns on
instantly
Yes Yes No - takes time to warm up
Durability Very Durable -
LEDs can handle
jarring and
bumping
Not Very Durable - glass
or filament can break
easily
Not Very Durable - glass
can break easily
Heat Emitted 3.4 btu's/hour 85 btu's/hour 30 btu's/hour
Failure Modes Not typical Some Yes - may catch on fire,
smoke, or omit an odor
Page 15
Light Output
Light Emitting
Diodes (LEDs) Incandescent
Light Bulbs
Compact Fluorescents (CFLs)
Lumens Watts Watts Watts
450 4-5 40 9-13
800 6-8 60 13-15
1,100 9-13 75 18-25
1,600 16-20 100 23-30
2,600 25-28 150 30-55
Page 16
COMPARISION BETWEEN LED AND OLED
OLED technology isn’t exactly new to the consumer electronics space anymore. Mobile phones have been using
OLED screens in some form or another since 2001. But now that OLED televisions from Samsung and LG are
beginning to hit showrooms in the US, people’s interest in OLED is beginning to tick up, and they have questions.
What makes an OLED TV better than an LED or LCD TV? How is OLED superior? Are there any disadvantages
to OLDs?
What is an LED?
LED stands for light-emitting diode. These are little solid-state devices that make light because of the movement
of electrons through a semi-conductor. LEDs are relatively small compared to compact fluorescent and
incandescent light bulbs, but they can get extremely bright. However, LEDs aren’t small enough to be used as the
pixels of a television – they’re way too big for that. That’s why LEDs are only used as the backlight for LCD
televisions. For more info on that, visit our LED vs. LCD page.
Black Level – Winner: OLED
A display’s ability to produce deep, dark blacks is arguably the most important factor in achieving excellent
picture quality. Deeper blacks allow for higher contrast and richer colors (among other things) and, thus, a more
realistic and dazzling image. When it comes to black levels, OLED reigns as the undisputed champion.
LED TVs rely on LED backlights shining behind an LCD panel. Even with advanced dimming technology that
dims LEDs that don’t need to be on at full blast, LED TVs struggle to produce dark blacks. They also suffer from
light bleeding out from the edges.
OLED TVs suffer from none of those problems. If an OLED pixel isn’t getting electricity, it doesn’t produce any
light and is, therefore, totally black.
Brightness – Winner (by a smidge): LED/LCD
When it comes to brightness, LED TVs have a slight advantage. LEDs are just really good at getting extremely
bright. OLED TVs can get bright, too, but cranking OLED pixels to maximum brightness for extended periods
not only reduces that pixel’s lifespan, but the pixel also takes a little while to return to total black.
Color space – Winner: OLED
Both of the recently introduced OLED TVs are capable of covering a wider gamut of color space than LED/LCD
televisions. Very basically explained, this means they can reproduce finer shades of more colors within the visible
color spectrum.
Response time – Winner: OLED
While LED/LCD TVs have improved considerably over the past few years, OLED simply blows them out of the
water in terms of response time. In fact, OLED currently offers the fastest response time of any TV technology
in use today, making it a clear winner in this regard. With faster response time comes less motion blur and less
artifacts (source material notwithstanding).
Page 17
Viewing angles – Winner: OLED
This is a tricky topic right now, because both of the OLED TV’s currently available for purchase in the US are
curved. So, while OLED TV’s should offer perfect viewing angles due to the fact that OLEDs produce light rather
than attempt to block it as LED/LCD TVs do, the curve introduces a couple of complications. Foremost, the side
that is curved away from an off-axis viewer will be less visible than the side curved toward that viewer. Second,
because of the curve, anti-glare coatings can tend to tint the image when viewed from extreme angles. With that
said, OLED technology is still superior in this regard and a clear winner overall.
Size – Winner (for now): LED/LCD
One day, in the hopefully-not-too-distant future, we’ll all be dreaming of owning 80-inch OLED TV’s, but for
now, that dream is limited to 55-inches. Meanwhile, Sharp produces a mammoth 90-inch LED/LCD TV that you
can buy right now, albeit at roughly the same price as an OLED TV.
Lifespan – Winner (for now) LED/LCD
OLED is unproven when it comes to lifespan, and there is some cause for concern here because the compound
used to create the color blue in OLED televisions is known to have a shorter life span. As one color degrades, the
rest will go out of whack. Samsung appears to be battling this issue by using a blue pixel that is twice the size of
other colors and reducing the amount of voltage applied to it. LG uses white sub-pixels and lays a color filter over
them to create the desired red, green and blue colors. These bandages may very well work, but only time and use
in the public arena can tell how OLED will hold up on the long term. For that reason, we have to call LED/LCD
the winner, as its lifespan has proven itself to be adequate.
Screen Burn-in – Winner: LED/LCD
We include the section begrudgingly, both because burn-in is a misnomer (that’s just an aggravation) and, for
most folks, the effect will not be an issue.
Page 18
The effect we’ve come to know as burn-in stems from the days of the boxy CRT TV, when prolonged display of
a static image would cause that image to appear to “burn” into the screen. But what was actually happening was
the phosphors that coated the back of the TV screen would glow for extended periods of time without any rest,
causing the phosphors to wear out and resulting in the appearance of a burned-in image. We think this should be
called “burn out.” But … whatever.
The same issue is at play with plasma and OLED TVs because the compounds that light up can degrade over
time. If you burn a pixel long and hard enough, you will cause it to dim prematurely and ahead of the rest of the
pixels, creating a dark impression. However, in reality, this is not very likely to cause a problem for anyone.
You’d have to abuse the TV intentionally in order to get it to happen. Even the “bug” (or, logo graphic) that
certain channels use disappears often enough or is made clear so as to avoid causing burn-in. You’d have to watch
ESPN all day every day (for many days) at the brightest possible setting to cause a problem, and even then it still
isn’t very likely.
Size, weight, power consumption – Winner: OLED
OLED panels are extremely thin and they require no backlight. As such, OLED TV’s tend to be lighter than
LED/LCD TVs and considerably thinner. They also require less power, making them more efficient.
Price – Winner: LED/LCD
Currently, an OLED TV is going to cost you either $9,000 (Samsung) or $15,000 (LG). We would be shocked –
shocked! – If LG’s price didn’t come down in the coming months. Either way, $9,000 is a lot to pay for a
television. And even though you can spend a little more on a much larger TV, the vast majority of televisions in
the 55 – 65-inch price point are half OLED TV’s asking price or less. If affordability is a major consideration,
LED/LCD is your best bet, and it probably will be for a few years.
Challenges
They are still many challenges facing the OLED industry. Here's a list of some of the major ones:
 Material lifetime (especially of the blue material)
 Soluble OLED performance
 Soluble-based production processes
 Flexible OLED encapsulation
 Better backplane materials for flexible OLED
 Scaling of evaporation processes beyond Gen-6
 OLED lighting capacity expansion
Page 19
Difference between OLED &LCD
The global display market has exceeded US$120 billion, making it one of the largest optics and photonics
industries. With so much to gain, there is strong competition for market share between Organic light-emitting
diode (OLED) display and liquid-crystal display (LCD) manufactures. the consequences of that competition are
showing up in people's hands: Apple's recently released iPhone 6, for example, uses a state-of-the-art LCD
screen, while Samsung’s flagship Galaxy S5 gave the nod to OlED.so which display will display will take largest
piece of the pie? Even though the answer depends on more than just performance (marketing strategy and
capital investment also influence success), it is interesting to take a look at each display's market potential from
a technical point of view.
Operating principle
Before examining the pros and cons of OLED display's and LCDs, it's important to understand the difference
between their operating principles "OLED displays are emissive - they produce their own light; - they produce
their own light; LCDs are non-emissive - they are illuminated with a backlight.
An OLED display is composed of multilayer film- stack and a circular polarizer that mitigates ambient - light
reflection. Each pixel can be turned on individually and requires multiple thin-film transistor (TFTs) to ensure
stable current flow.
LCD have a modular structure and require a backlight that illuminates the liquid -crystal module to create images
on the screen. The liquid - crystal cell can be optimized for specific applications, like high contrast television or
touch- panel Mobile devices. But unlike OLED displays that are driven by current, LCDs are voltage devices. So,
each pixel only require one TFT as voltage switch.
Performance metrics
To determine which display is technically superior, we conducted a quantitative comparison for eight
performance categories:
Color saturation
Most LCDs use a led backlight and color filters to display images. The color gamut is usually limited to 75 percent
Adobe RGB (a defined color space for displays).OLED displays, however can over 100 percent Adobe RGB and
deliver better image quality.
Response time
OLED displays can be turned on in microsecond by applying electric current. This translates to visually
undetectable frame changes - i.e., no motion blur. LCDs suffer from slow response time and motion blur because
the liquid crystals are unable to change their orientation fast enough from one frame to the next.
Thinness/ flexibility
OLED displays are thinner and more flexible than LCDs because they have fewer components; they do not need
a backlight and they have a solid rather than modular structure.
Page 20
Lifetime
In contrast to LCDs sensitivity to air and moisture greatly reduce an OLED display's long term stability. However,
short life time may not impede OLED technology's potential to capture the mobile display market, because
device lifetime isn't a main concern - smartphone lifespan is typically only two to three years.
Energy savings
OLEDs displays require multiple thin-film transistor (TFTs) per pixel to ensure stable current control. The
grouped TFTs cause high resistive and capacitive loss and require a circular polarizer to mitigate ambient light
reflection from metallic anodes and cathodes, which cuts screen brightness in half. LCDS consume less power
than OLED displays for the same size, brightness and resolution.
Resolution
In LCDs and OLED displays, each pixel is addressed by one or multiple TFTs respectively. When you increase
resolution, aperture ratio decreases and TFT charging time increases. Therefore, higher-electron-mobility TFT
charging time increases. Therefore, higher- electron- mobility TFT materials (e.g., low temperature poly-silicon
and oxide semiconductors) should reduce TFTS size, which in turn increases light output, especially for OLED
displays, which require multiple TFTs per pixel.
Ambient contrast ratio
Readability in bright light is a problems for both displays-
Especially for mobile devices. OLED displays have superior contrast ratio in dark light, because individual pixels
in the display can be switched off when not in use. However, even viewed under direct sunlight, the ambient
light reflected off a smartphone screen degrades the color and image contrast ratio, because a portion of the
reflected light is overserved as noise. LCDs do not have a strong reflection component, but their 75 percent
color gamut in low ambient light drops to less than 50 percent in bright light resulting in washed-out images.
Viewing angle
OLED pixels feature a Lambertian- like radiation pattern that creates pleasing wide - View matte images. State-
of-the art LCDs use compensation film and multidomain structure to expand the viewing angle. Both displays
offer picture accuracy at viewing angle -+ 30 degrees from the center of the screen.
Potential game - changers
OLED's superior response time and color saturation are being challenged by recent LCD advances. Conventional
LCDs rely on molecular reorientation to control light transmittance.
Making response time relatively slow (more than five milliseconds, compared with microseconds for OLEDs).But
emerging blue-phase liquid crystals based on kerr- effect induced isotropic-to- anisotropic transition can achieve
a sub-millisecond gray-to-gray response time. With blue- phase liquid crystals based on Kerr-effect induced
isotropic-to-anisotropic transition can achieve a sub - millisecond gray- to- gary response time would only be
governed by the TFT frame rate, so an LCD with a 240 Hz frame rate will have sharper image than an OLED
display with120 Hz frame rate.
Page 21
Emerging fast-response liquid crystals could enable field sequential color (FSC) displays. In a FSC display, the
backlight sequentially emits RGB lights. The LCD panel is synchronized to the backlight to display gray levels of
each color. This method of color generation does not require spatial color filters or subpixels to reproduce color
filter or subpixels to reproduce colors. As a result, it could offer significantly higher optical efficiency and
resolution density than OLED displays.
New quantum dot (QD) technology would also give LCDs an edge over OLED displays in color saturation, or at
least level the playing field. LCD color reproduction has been limited by white LEDs and color filters. But with
today’s blue LEDs, down – converted QD s added to an LCD can create emission spectra optimized to match the
transmission spectra of color filter, thereby simultaneously boosting LCD optical efficiency and color gamut to
be equal to be equal to or better than OLED. (This QD technique is used in amazon’s kindle fire HDX 7 and Sony’s
triluminos televisions.)
There are also new method for increasing OLED display readability in brighter light, like better green
phosphorene emitters and light extraction techniques. For LCDs sunlight readability could improve with a
“smart“ backlight that concentrates illumination toward the viewer’s eye or with a QD – enhanced backlight to
precompensate the color gamut reduction.
OLED manufacturing can be expensive and complicated because of the required special vacuum and hermetic
packaging – especially for larger displays. For example, a 55- inch OLED screen can cost US$5000- 5 times more
expensive than the equivalent LCD. However as manufacturing technology continues to evolve, the price gap
should gradually narrow.
Disadvantages
Lifetime
While red and green OLED films have longer lifetimes (46,000 to 230,000 hours), blue organics currently have
much shorter lifetimes (up to around 14,000 hours.
Manufacturing
Manufacturing processes are expensive right now.
Water
Water can easily damage OLEDs.
Sunlight Effect:
Another disadvantage of OLED display is that they are hard to see in direct sunlight. So if you have open lobbies
where sunlight reaches directly, you will not get benefit of viewing these screens.
Color purity
Problems of color purity still remains: it is difficult to display fresh and rich colors
Page 22
OLED technology today
The leading AMOLED producer today is Samsung, who's making over 200 million displays a year, and is still
expanding production capacity. Samsung is focused on small displays (5 - 10 inch) mostly for mobile phones and
tablets. LG Display is also producing OLEDs, but only large size (55-77 inch) panels for OLED TV applications.
Both Samsung and LG also produce flexible OLED panels, used in mobile phones and wearable devices.
Production volume is still rather low, but both companies are expected to expand production capacity and
introduce new products and form factors to the market.
In the OLED lighting market, several companies (including as Philips, LG Chem, OSRAM and Konica Minolta)
are already shipping OLED panels, but production capacity is still low and prices are very high. OLED lighting
today is mostly used in premium lighting fixtures and installations.
Conclusion
And the winner is?
Our assessment suggests that there’s no clear winner in the match between OLED, LCD and LED. Each
technology has own unique characteristics to distinguish itself for different applications, and each camp has
invested tremendous resources to perfect the device performances.
Thankfully, no matter which technology dominates, the true winner will be consumers and the optics and
photonics industry as a whole. Consumers will enjoy cheaper, lighter, smarter and brighter displays, while the
companies that make them will benefits from component sales and manufacturing. LCD, LED and OLED displays
are like twin stars; their healthy competition will light up our sky.
REFERENCE:-
# Optics and photonics news feb-2015 (OSA magazine)
# Solid state physics M A Wahb
# http://www.globalmarket.com/sourcingtips/lighting/oled-advantages-vs-disadvantages-4549.html
# http://www.ledesl.com/01-12-2009/oled-working-principle.html
# http://www.digitaltrends.com/home-theater/oled-vs-led-which-is-the-better-tv-technology/
# http://www.explainthatstuff.com/how-oleds-and-leps-work.html
# http://www.oled-info.com/oled-technology
# https://en.wikipedia.org/wiki/OLED

More Related Content

What's hot (20)

FUTURE OF OLEDs as LIGHTING SOLUTIONS & DISPLAYS
FUTURE OF OLEDs as LIGHTING SOLUTIONS & DISPLAYSFUTURE OF OLEDs as LIGHTING SOLUTIONS & DISPLAYS
FUTURE OF OLEDs as LIGHTING SOLUTIONS & DISPLAYS
 
Oled+ppt sid
Oled+ppt sidOled+ppt sid
Oled+ppt sid
 
OLED Dispaly Technology
OLED Dispaly TechnologyOLED Dispaly Technology
OLED Dispaly Technology
 
OLED (Organic Light Emitting Diode)
OLED (Organic Light Emitting Diode)OLED (Organic Light Emitting Diode)
OLED (Organic Light Emitting Diode)
 
OLED Technology
OLED TechnologyOLED Technology
OLED Technology
 
Organic light emitting diodes
Organic light emitting diodesOrganic light emitting diodes
Organic light emitting diodes
 
Full oled
Full  oledFull  oled
Full oled
 
OLED 2014 PPT
OLED 2014 PPTOLED 2014 PPT
OLED 2014 PPT
 
Organic Light Emitting Diode
Organic Light Emitting DiodeOrganic Light Emitting Diode
Organic Light Emitting Diode
 
OLED
OLEDOLED
OLED
 
OLED report 2014
OLED report 2014OLED report 2014
OLED report 2014
 
OLED full PPT
OLED full PPTOLED full PPT
OLED full PPT
 
Organic Light Emitting Diode
Organic Light Emitting DiodeOrganic Light Emitting Diode
Organic Light Emitting Diode
 
Organic light emitting diode
Organic light emitting diodeOrganic light emitting diode
Organic light emitting diode
 
Organic Light Emitting Diode (OLED)
Organic Light Emitting Diode (OLED)Organic Light Emitting Diode (OLED)
Organic Light Emitting Diode (OLED)
 
Oled seminar
Oled seminarOled seminar
Oled seminar
 
OLED technology Seminar Ppt
OLED technology Seminar PptOLED technology Seminar Ppt
OLED technology Seminar Ppt
 
Organic LED's
Organic LED'sOrganic LED's
Organic LED's
 
presentation on OLED
presentation on OLEDpresentation on OLED
presentation on OLED
 
Organic light emitting diodes
Organic light emitting diodesOrganic light emitting diodes
Organic light emitting diodes
 

Viewers also liked

ORGANIC LIGHT EMITTING DIODE
ORGANIC LIGHT EMITTING DIODEORGANIC LIGHT EMITTING DIODE
ORGANIC LIGHT EMITTING DIODEANANDHU THAMPI
 
Organic light emitting diode
Organic light emitting diodeOrganic light emitting diode
Organic light emitting diodeharshivaishu
 
Strategies for Optimization of an OLED Device
Strategies for Optimization of an OLED DeviceStrategies for Optimization of an OLED Device
Strategies for Optimization of an OLED DeviceDavid Lee
 
Organic Light Emitting Diode
Organic Light Emitting Diode Organic Light Emitting Diode
Organic Light Emitting Diode Mridul Gupta
 
[Marco mazzeo] organic_light_emitting_diode(book_zz.org)
[Marco mazzeo] organic_light_emitting_diode(book_zz.org)[Marco mazzeo] organic_light_emitting_diode(book_zz.org)
[Marco mazzeo] organic_light_emitting_diode(book_zz.org)bennun78
 
Quantum Dot Light Emitting Diode
Quantum Dot Light Emitting Diode Quantum Dot Light Emitting Diode
Quantum Dot Light Emitting Diode Zohaib HUSSAIN
 
seminar report on night vision technology
seminar report on night vision technologyseminar report on night vision technology
seminar report on night vision technologyAmit Satyam
 
Seminar Report On O.L.E.D.
Seminar Report On O.L.E.D.Seminar Report On O.L.E.D.
Seminar Report On O.L.E.D.Sushant Shankar
 

Viewers also liked (9)

ORGANIC LIGHT EMITTING DIODE
ORGANIC LIGHT EMITTING DIODEORGANIC LIGHT EMITTING DIODE
ORGANIC LIGHT EMITTING DIODE
 
Organic light emitting diode
Organic light emitting diodeOrganic light emitting diode
Organic light emitting diode
 
Strategies for Optimization of an OLED Device
Strategies for Optimization of an OLED DeviceStrategies for Optimization of an OLED Device
Strategies for Optimization of an OLED Device
 
Organic Light Emitting Diode
Organic Light Emitting Diode Organic Light Emitting Diode
Organic Light Emitting Diode
 
[Marco mazzeo] organic_light_emitting_diode(book_zz.org)
[Marco mazzeo] organic_light_emitting_diode(book_zz.org)[Marco mazzeo] organic_light_emitting_diode(book_zz.org)
[Marco mazzeo] organic_light_emitting_diode(book_zz.org)
 
Quantum Dot Light Emitting Diode
Quantum Dot Light Emitting Diode Quantum Dot Light Emitting Diode
Quantum Dot Light Emitting Diode
 
seminar report on night vision technology
seminar report on night vision technologyseminar report on night vision technology
seminar report on night vision technology
 
Seminar Report On O.L.E.D.
Seminar Report On O.L.E.D.Seminar Report On O.L.E.D.
Seminar Report On O.L.E.D.
 
Highly efficient organic devices.
Highly efficient organic devices.Highly efficient organic devices.
Highly efficient organic devices.
 

Similar to report on OLEDs

Organic electronics ppt
Organic electronics  pptOrganic electronics  ppt
Organic electronics pptdnl kzhl
 
Conducting and Light Emmiting Polymers
Conducting and Light Emmiting PolymersConducting and Light Emmiting Polymers
Conducting and Light Emmiting PolymersNouman Ali
 
Organic Light Emitting Diods
Organic Light Emitting DiodsOrganic Light Emitting Diods
Organic Light Emitting Diodsbapu thorat
 
OLED: Organic Light Emitting Device
OLED: Organic Light Emitting DeviceOLED: Organic Light Emitting Device
OLED: Organic Light Emitting DeviceVaibhaw Mishra
 
Design and Simulation of Dye Sensitized Solar Cell as a Cost-Effective Alt...
Design and Simulation of  Dye  Sensitized Solar Cell as a Cost-Effective  Alt...Design and Simulation of  Dye  Sensitized Solar Cell as a Cost-Effective  Alt...
Design and Simulation of Dye Sensitized Solar Cell as a Cost-Effective Alt...Scientific Review SR
 
Organic electronics
Organic electronicsOrganic electronics
Organic electronicsPrince Joshy
 
conductingpolymers-2justin-190617165209 (1).pdf
conductingpolymers-2justin-190617165209 (1).pdfconductingpolymers-2justin-190617165209 (1).pdf
conductingpolymers-2justin-190617165209 (1).pdfVaibhavKuhikar
 
Conducting polymers 2 justin
Conducting polymers 2 justinConducting polymers 2 justin
Conducting polymers 2 justinJustin K George
 
Light Emitted Diode (LED)
Light Emitted Diode (LED) Light Emitted Diode (LED)
Light Emitted Diode (LED) Omar Hussein
 
Organic electronic
Organic electronicOrganic electronic
Organic electronicAzurah Razak
 
Organic Electronic Materials
Organic Electronic MaterialsOrganic Electronic Materials
Organic Electronic Materialsguest8e7624
 
Blue light emitting diode innovation
Blue light emitting diode innovationBlue light emitting diode innovation
Blue light emitting diode innovationAryaprasadsntc
 
Blue light emitting diode innovation
Blue light emitting diode innovationBlue light emitting diode innovation
Blue light emitting diode innovationAryaprasadsntc
 

Similar to report on OLEDs (20)

Oled
Oled Oled
Oled
 
Oled
OledOled
Oled
 
Organic electronics ppt
Organic electronics  pptOrganic electronics  ppt
Organic electronics ppt
 
Transparent Electronics
Transparent ElectronicsTransparent Electronics
Transparent Electronics
 
Transparent Electronics
Transparent ElectronicsTransparent Electronics
Transparent Electronics
 
Conducting and Light Emmiting Polymers
Conducting and Light Emmiting PolymersConducting and Light Emmiting Polymers
Conducting and Light Emmiting Polymers
 
Organic Light Emitting Diods
Organic Light Emitting DiodsOrganic Light Emitting Diods
Organic Light Emitting Diods
 
OLEDs
OLEDsOLEDs
OLEDs
 
OLED: Organic Light Emitting Device
OLED: Organic Light Emitting DeviceOLED: Organic Light Emitting Device
OLED: Organic Light Emitting Device
 
Design and Simulation of Dye Sensitized Solar Cell as a Cost-Effective Alt...
Design and Simulation of  Dye  Sensitized Solar Cell as a Cost-Effective  Alt...Design and Simulation of  Dye  Sensitized Solar Cell as a Cost-Effective  Alt...
Design and Simulation of Dye Sensitized Solar Cell as a Cost-Effective Alt...
 
Poly led presentation
Poly led presentationPoly led presentation
Poly led presentation
 
Organic electronics
Organic electronicsOrganic electronics
Organic electronics
 
conductingpolymers-2justin-190617165209 (1).pdf
conductingpolymers-2justin-190617165209 (1).pdfconductingpolymers-2justin-190617165209 (1).pdf
conductingpolymers-2justin-190617165209 (1).pdf
 
Conducting polymers 2 justin
Conducting polymers 2 justinConducting polymers 2 justin
Conducting polymers 2 justin
 
Organic Light Emitting Diode
Organic Light Emitting DiodeOrganic Light Emitting Diode
Organic Light Emitting Diode
 
Light Emitted Diode (LED)
Light Emitted Diode (LED) Light Emitted Diode (LED)
Light Emitted Diode (LED)
 
Organic electronic
Organic electronicOrganic electronic
Organic electronic
 
Organic Electronic Materials
Organic Electronic MaterialsOrganic Electronic Materials
Organic Electronic Materials
 
Blue light emitting diode innovation
Blue light emitting diode innovationBlue light emitting diode innovation
Blue light emitting diode innovation
 
Blue light emitting diode innovation
Blue light emitting diode innovationBlue light emitting diode innovation
Blue light emitting diode innovation
 

Recently uploaded

THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxNandakishor Bhaurao Deshmukh
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensorsonawaneprad
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationColumbia Weather Systems
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxJorenAcuavera1
 
User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In DubaiDubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubaikojalkojal131
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentationtahreemzahra82
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPirithiRaju
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayupadhyaymani499
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 
Functional group interconversions(oxidation reduction)
Functional group interconversions(oxidation reduction)Functional group interconversions(oxidation reduction)
Functional group interconversions(oxidation reduction)itwameryclare
 
Good agricultural practices 3rd year bpharm. herbal drug technology .pptx
Good agricultural practices 3rd year bpharm. herbal drug technology .pptxGood agricultural practices 3rd year bpharm. herbal drug technology .pptx
Good agricultural practices 3rd year bpharm. herbal drug technology .pptxSimeonChristian
 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfWildaNurAmalia2
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuinethapagita
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxpriyankatabhane
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naJASISJULIANOELYNV
 

Recently uploaded (20)

THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensor
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort ServiceHot Sexy call girls in  Moti Nagar,🔝 9953056974 🔝 escort Service
Hot Sexy call girls in Moti Nagar,🔝 9953056974 🔝 escort Service
 
User Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather StationUser Guide: Capricorn FLX™ Weather Station
User Guide: Capricorn FLX™ Weather Station
 
Topic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptxTopic 9- General Principles of International Law.pptx
Topic 9- General Principles of International Law.pptx
 
User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)User Guide: Orion™ Weather Station (Columbia Weather Systems)
User Guide: Orion™ Weather Station (Columbia Weather Systems)
 
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In DubaiDubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentation
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
 
Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdf
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyay
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
 
Functional group interconversions(oxidation reduction)
Functional group interconversions(oxidation reduction)Functional group interconversions(oxidation reduction)
Functional group interconversions(oxidation reduction)
 
Good agricultural practices 3rd year bpharm. herbal drug technology .pptx
Good agricultural practices 3rd year bpharm. herbal drug technology .pptxGood agricultural practices 3rd year bpharm. herbal drug technology .pptx
Good agricultural practices 3rd year bpharm. herbal drug technology .pptx
 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by na
 

report on OLEDs

  • 1. Page 1 INTERNATIONAL SCHOOL OF PHOTONICS SONU KUMAR SINGH b-13 isp,cusat ORGANIC LIGHT EMITTING DIODE
  • 2. Page 2 CONTENTS  Abstract  Introduction  Organic electronics  History  Application  OLED  Why so much excitement about OLED?  Inorganic vs organic semiconductor  What is OLED & it’s working?  Types of OLED  Difference between LEDs Incandescent Bulb & CFLs  Energy Efficiency & Energy Costs  Environmental  Impact  Important Facts  Light Output  COMPARISION BETWEEN LED AND OLED  What is an LED?  Black Level  Brightness  Color space  Response time  Viewing angles  Size  Lifespan  Size, weight, power consumption  Price  DIFFERENCE BETWEEN OLED &LCD  Operating principle  Performance matrix  Color saturation  Response time  Lifetime  Energy savings  Resolution  Ambient contrast ratio  Viewing angle  Potential game – changers  Challenges  Conclusion
  • 3. Page 3 Abstract Organic Light Emitting Diodes (OLED) are a different type of solid-state lighting source. An OLED device is typically formed in a sheet with emissive organic layer(s) located between a cathode and anode and deposited on a substrate. The substrate can be rigid such as glass or metal or flexible using a polymer plastic. The number of emissive layers depends on the desired light output of the device. OLED technology has great potential for new uses such flexible paper-thin OLED panels, transparent OLED panels and white OLED. White OLED was developed as device with extremely high power efficiency and long lifetime. The performance achieved was 64lm/W, and 10.000 hours of lifetime at initial luminance of 1000cd/m2 with light out-coupling technique. New technologies, such as sophisticated organic layer structure, were applied to the device. The device also exhibited good durability such as storage stability, which is important performance in practical use. We hope that this paper will show possibilities to practical use of OLED in different types of displays, lighting sources for illumination use, back light and others. From a recent environmental problem and energy supply circumstances, light sources of low energy consumption and eco-friendly are demanded. An enormous amount of research effort goes into the field. Organic light-emitting diode (OLED) is regarded as a powerful candidate because it is an area light source, can be driven at low voltage, and does not include a material which is harmful to the human body and environment like mercury. As a light source for illumination or backlight, a white light is usually required. To realize a white OLED device, plural light emissive materials such as blue, green, red are used generally.
  • 4. Page 4 Introduction OLED (Organic Light Emitting Diodes) is a flat light emitting technology, made by placing a series of organic thin films between two conductors. When electrical current is applied, a bright light is emitted. OLEDs can be used to make displays and lighting. Because OLEDs emit light they do not require a backlight and so are thinner and more efficient than LCD displays (which do require a white backlight). An OLED 'light bulb' is a thin film of material that emits light. OLED is the only technology that can create large "area" lighting panels (as opposed to point or line lighting enabled by LEDs and Fluorescent bulbs). OLEDs can be used to make flexible and transparent panels, and can also be color-tunable. OLEDs emit beautiful soft diffused light - in fact OLEDs lighting is the closest light source to natural light (with the exception of the old incandescent lamps). There are several types of OLED materials. The most basic division is between small-molecule OLEDs and large molecule ones (called Polymer OLEDs, or P-OLEDs). All commercial OLEDs today are SM-OLED based. These evaporable materials perform better than P-OLED materials (in terms of efficiency, lifetime, etc.). P-OLEDs had great promise as they are naturally solution process able (and so can be used in Inkjet printing and spin-coating fabrication methods). Intensive research is being performed to develop efficient solution-process able SM- OLEDs. OLED emitter materials are classified as either fluorescent or phosphorescent. Fluorescent materials last longer but are much less efficient than phosphorescent materials. Currently most OLED displays use phosphorescent emitter materials - except for the blue color which is still fluorescent as the lifetime is still not good enough. Universal Display Corporation is pioneering PHOLED research, holding the basic patents in this area. An OLED TV screen uses a new display technology called OLED (Organic Light Emitting Diodes). OLED televisions are brighter, more efficient, and thinner feature better refresh rates and contrast than either LCD or Plasma. OLED TVs deliver the best picture quality ever.
  • 5. Page 5 Organic electronics Organic electronics is a field of materials science concerning the design, synthesis, characterization, and application of organic small molecules or polymers that show desirable electronic properties such as conductivity. Unlike conventional inorganic conductors and semiconductors, organic electronic materials are constructed from organic (carbon-based) small molecules or polymers using synthetic strategies developed in the context of organic and polymer chemistry. One of the benefits of organic electronics is their low cost compared to traditional inorganic electronics. History Conductive materials are substances that can transmit electrical charges. Traditionally, most known conductive materials have been inorganic. Metals such as copper and aluminum are the most familiar conductive materials, and have high electrical conductivity due to their abundance of delocalized electrons that move freely throughout the inter-atomic spaces. Some metallic conductors are alloys of two or more metal elements, common examples of such alloys include steel, brass, bronze, and pewter. In the eighteenth and early nineteenth centuries, people began to study the electrical conduction in metals. In his experiments with lightning, Benjamin Franklin proved that an electrical charge travels along a metallic rod. Later, Georg Simon Ohm discovered that the current passing through a substance is directly proportional to the potential difference, known as Ohm's law. This relationship between potential difference and current became a widely used measure of the ability of various materials to conduct electricity. Since the discovery of conductivity, studies have focused primarily on inorganic conductive materials with only a few exceptions. Henry Letheby discovered the earliest known organic conductive material in 1862. Using anodic oxidation of aniline in sulfuric acid, he produced a partly conductive material that was later identified as polyaniline. In the 1950s, the phenomenon that polycyclic aromatic compounds formed semi-conducting charge-transfer complex salts with halogens was discovered, showing that some organic compounds could be conductive as well. More recent work has expanded the range of known organic conductive materials. A high conductivity of 1 S/cm (S = Siemens) was reported in 1963 for a derivative of tetraiodopyrrole. In 1972, researchers found metallic conductivity (conductivity comparable to a metal) in the charge-transfer complex TTF-TCNQ. In 1977, it was discovered that polyacetylene can be oxidized with halogens to produce conducting materials from either insulating or semiconducting materials. In recent decades, research on conductive polymers has prospered, and the 2000 Nobel Prize in Chemistry was awarded to Alan J. Heeger, Alan G. MacDiarmid, and Hideki Shirakawa jointly for their work on conductive polymers. Conductive plastics have recently undergone development for applications in industry. In 1987, the first organic diode device of was produced at Eastman Kodak by Ching W. Tang and Steven Van Slyke. Spawning the field of organic light-emitting diodes (OLED) research and device production. For his work, Ching W. Tang is widely considered as the father of organic electronics.
  • 6. Page 6 Technology for plastic electronics constructed on thin and flexible plastic substrates was developed in the 1990s. In 2000, the company Plastic Logic was founded as a spin-off of Cavendish Laboratory to develop a broad range of products using the plastic electronics technology Attractive properties of polymer conductors include a wide range of electrical conductivity that can be tuned by varying the concentrations of chemical dopants, mechanical flexibility, and high thermal stability. Organic conductive materials can be grouped into two main classes: conductive polymers and conductive small molecules. Conductive materials Conductive small molecules are usually used in the construction of organic semiconductors, which exhibit degrees of electrical conductivity between those of insulators and metals. Semiconducting small molecules include polycyclic aromatic compounds such as pentacene, anthracene and rubrene. Conductive polymers are typically intrinsically conductive. Their conductivity can be comparable to metals or semiconductors. Most conductive polymers are not thermoformable, during production. However they can provide very high electrical conductivity without showing similar mechanical properties to other commercially available polymers. Both organic synthesis and advanced dispersion techniques can be used to tune the electrical properties of conductive polymers, unlike typical inorganic conductors. The well-studied class of conductive polymers is the so-called linear-backbone “polymer blacks” including polyacetylene, polypyrrole, polyaniline, and their copolymers. Poly (p-phenylene vinylene) and its derivatives are used for electroluminescent semiconducting polymers. Poly (3-alkythiophenes) are also a typical material for use in solar cells and transistors.
  • 7. Page 7 Application of organic electronics There are four major application areas: displays; lighting; photovoltaics and integrated smart systems. While OLAE technology is currently used in many manufacturing processes, new applications are entering the marketplace rapidly. While organic light- emitting diodes (OLEDs) are already used commercially in displays of mobile devices and significant progress has been made in applying organic photovoltaic cells to light-weight flexible fabrics to generate low-cost solar energy, a brand new range of applications is possible such as biomedical implants and disposable biodegradable RFID packaging tags. In addition, low cost organic solar cells have the potential to drive down the cost of photovoltaics to levels, which are not achievable with mono or poly-crystalline solar cells. Similarly, organic light emitting diodes will revolutionize current lighting applications, significantly reducing CO2 impact. Also, smart devices incorporating organic and printed circuits, sensors and energy sources will enable new approaches in logistics and consumer packaging, and new flexible displays with exceptionally low energy consumption will be used anywhere and anytime. What are the possibilities? The possibilities are limitless as the technology is evolving at such a rapid pace. Industrial designers across all sectors and markets should be aware of the technology and looking at ways of harnessing its power and benefits into new product design.  Possible applications could include:  Memory or logic devices  Detectors, lasers and light emitters  Information displays – advertising billboards and other media  Micro lenses  Batteries  Power or light sources  Subsystem packaging  Image patterning  Electrical or optical fibers  Transistors  Photoconductors
  • 8. Page 8 Organic LED Why so much excitement about Organic LED?  Easy to process  Processing is low cost  Less temperature required to fabricate  They can possess to low –cost substrates (i.e., plastic, paper even cloth)  Directly integrated to packages as it is light weight.  Solution processing is possible basically means that if we want to make them thin film for silicon we have to use high cost evaporation technique but organic semiconductor just we can take a solution Spink coated put on substrate new way of manufacturing technique is low cost. Inorganic semiconductor Organic semiconductor  Crystalline in nature  Covalent bond, coordinate bond  More energy to make them  Electron is delocalized in whole semiconductor  In case of inorganic electronics charge carriers are e- and h+  Mobility (µn, µp) 100-104 cm2 /v-s  Amorphous in nature generally  Molecule in nature Vander walls bonds  Less energy to make them  Electron is localized in organic semiconductor  In case of organic electron interacts with lattice carriers for charges called polarons.  Mobility (µn, µp) 10-6 -1 cm2 /v-s
  • 9. Page 9 Working OLEDs A typical OLED is composed of an emissive layer, a conductive layer, a substrate, and anode and cathode terminals. The layers are made of organic molecules that conduct electricity. The layers have conductivity levels ranging from insulators to conductors, so OLEDs are considered organic semiconductors. The first, most basic OLEDs consisted of a single organic layer, for example the first light-emitting polymer device synthesized by Burroughs et al. involved a single layer of poly (p-phenylene vinylene). Multilayer OLEDs can have more than two layers to improve device efficiency. As well as conductive properties, layers may be chosen to aid charge injection at electrodes by providing a more gradual electronic profile, or block a charge from reaching the opposite electrode and being wasted. fig-2 Fig-1 Schematic of a 2-layer OLED: 1. Cathode (−), 2. Emissive Layer, 3. Emission of radiation, 4. Conductive Layer, 5. Anode (+) A voltage is applied across the OLED such that the anode is positive with respect to the cathode. This causes a current of electrons to flow through the device from cathode to anode. Thus, the cathode gives electrons to the emissive layer and the anode withdraws electrons from the conductive layer; in other words, the anode gives electron holes to the conductive layer. Soon, the emissive layer becomes negatively charged, while the conductive layer becomes rich in positively charged holes. Electrostatic forces bring the electrons and the holes towards each other and they recombine. This happens closer to the emissive layer, because in organic semiconductors holes are more mobile than electrons.
  • 10. Page 10 The recombination causes a drop in the energy levels of electrons, accompanied by an emission of radiation whose frequency is in the visible region. That is why this layer is called emissive. The device does not work when the anode is put at a negative potential with respect to the cathode. In this condition, holes move to the anode and electrons to the cathode, so they are moving away from each other and do not recombine. Indium tin oxide is commonly used as the anode material. It is transparent to visible light and has a high work function which promotes injection of holes into the polymer layer. Metals such as aluminum and calcium are often used for the cathode as they have low work functions which promote injection of electrons into the polymer layer. There are different types of OLED based on the construction. 1. Transparent OLED – They have all transparent components like anode, cathode and substrate. OLED technology enables thin, efficient and bright displays and lighting panels. OLEDs are currently used in many mobile devices, some TVs and even in some lighting fixtures. OLED displays offer a better image quality compared to LCD or Plasma displays - and can also be made flexible and transparent. 2. Top emitting OLED – Substrate layer is reflective or opaque. Top-emitting organic light-emitting diodes (OLEDs), which are beneficial for lighting and display applications, where nontransparent substrates are used. 3. White OLED – Emit white light. These can be made into large sheets to make Fluorescent lamps. White organic light emitting diodes (white OLEDs) show promise for a major role in ambient lighting in the future. Low material costs, a wide choice of materials with customized properties, and easy production methods are features of the OLED technology which have favored its fast development and industrial application in recent time. The energetically broad emission spectra and almost Lambertian emission of OLEDs are especially favorable for lighting applications, since they lead to homogeneous illumination and high quality color rendering. The possibility to produce large area OLED panels will also open new ways for lighting design apart from common incandescent bulbs or fluorescent tubes. 4. Foldable OLED – A flexible organic light emitting diode (FOLED) is a type of organic light-emitting diode (OLED) incorporating a flexible plastic substrate on which the electroluminescent organic semiconductor is deposited. This enables the device to be bent or rolled while still operating. Currently the focus of research in industrial and academic groups, flexible OLEDs form one method of fabricating a roll able display. 5. Active matrix OLED-AMOLEDs will be similar to passive but will have full layers of cathode, organic molecules, and anode; the anode layer will have a thin film transistor (TFT) back plate that forms a matrix. The TFT controls the brightness and which pixel gets turned on to form an image. In AMOLED there will be two TFT arrays per pixel, one starts and stops the charge and the other keeps a constant electrical current to the pixel. . 6. Passive OLED – Presumably this will be the first to hit the market since it was the passive LCD screens that came out first and more than likely OLEDs will follow in those footprints. PMOLEDs will be more expensive and will need more power than other OLEDs, though they will still use less power than LCDs out today.
  • 12. Page 12 ADVANTAGES Difference between LEDs Incandescent Bulb & CFLs Energy Efficiency & Energy Costs Light Emitting Diodes (LEDs) Incandescent Light Bulbs Fluorescents (CFLs) Life Span (average) 50,000 hours 1,200 hours 8,000 hours Watts of electricity used (equivalent to 60 watt bulb). LEDs use less power (watts) per unit of light generated (lumens). LEDs help reduce greenhouse gas emissions from power plants and lower electric bills 6 - 8 watts 60 watts 13-15 watts Kilo-watts of Electricity used (30 Incandescent Bulbs per year equivalent) 329 KWh/yr. 3285 KWh/yr. 767 KWh/yr.
  • 13. Page 13 Environmental Impact Light Emitting Diodes (LEDs) Incandescent Light Bulbs Compact Fluorescents (CFLs) Contains the TOXIC Mercury No No Yes - Mercury is very toxic to your health and the environment RoHS Compliant Yes Yes No - contains 1mg-5mg of Mercury and is a major risk to the environment Carbon Dioxide Emissions (30 bulbs per year) Lower energy consumption decreases: CO2 emissions, sulfur oxide, and high- level nuclear waste. 451 pounds/year 4500 pounds/year 1051 pounds/year
  • 14. Page 14 Important Facts Light Emitting Diodes (LEDs) Incandescent Light Bulbs Compact Fluorescents (CFLs) Sensitivity to low temperatures None Some Yes - may not work under negative 10 degrees Fahrenheit or over 120 degrees Fahrenheit Sensitive to humidity No Some Yes On/off Cycling Switching a CFL on/off quickly, in a closet for instance, may decrease the lifespan of the bulb. No Effect Some Yes - can reduce lifespan drastically Turns on instantly Yes Yes No - takes time to warm up Durability Very Durable - LEDs can handle jarring and bumping Not Very Durable - glass or filament can break easily Not Very Durable - glass can break easily Heat Emitted 3.4 btu's/hour 85 btu's/hour 30 btu's/hour Failure Modes Not typical Some Yes - may catch on fire, smoke, or omit an odor
  • 15. Page 15 Light Output Light Emitting Diodes (LEDs) Incandescent Light Bulbs Compact Fluorescents (CFLs) Lumens Watts Watts Watts 450 4-5 40 9-13 800 6-8 60 13-15 1,100 9-13 75 18-25 1,600 16-20 100 23-30 2,600 25-28 150 30-55
  • 16. Page 16 COMPARISION BETWEEN LED AND OLED OLED technology isn’t exactly new to the consumer electronics space anymore. Mobile phones have been using OLED screens in some form or another since 2001. But now that OLED televisions from Samsung and LG are beginning to hit showrooms in the US, people’s interest in OLED is beginning to tick up, and they have questions. What makes an OLED TV better than an LED or LCD TV? How is OLED superior? Are there any disadvantages to OLDs? What is an LED? LED stands for light-emitting diode. These are little solid-state devices that make light because of the movement of electrons through a semi-conductor. LEDs are relatively small compared to compact fluorescent and incandescent light bulbs, but they can get extremely bright. However, LEDs aren’t small enough to be used as the pixels of a television – they’re way too big for that. That’s why LEDs are only used as the backlight for LCD televisions. For more info on that, visit our LED vs. LCD page. Black Level – Winner: OLED A display’s ability to produce deep, dark blacks is arguably the most important factor in achieving excellent picture quality. Deeper blacks allow for higher contrast and richer colors (among other things) and, thus, a more realistic and dazzling image. When it comes to black levels, OLED reigns as the undisputed champion. LED TVs rely on LED backlights shining behind an LCD panel. Even with advanced dimming technology that dims LEDs that don’t need to be on at full blast, LED TVs struggle to produce dark blacks. They also suffer from light bleeding out from the edges. OLED TVs suffer from none of those problems. If an OLED pixel isn’t getting electricity, it doesn’t produce any light and is, therefore, totally black. Brightness – Winner (by a smidge): LED/LCD When it comes to brightness, LED TVs have a slight advantage. LEDs are just really good at getting extremely bright. OLED TVs can get bright, too, but cranking OLED pixels to maximum brightness for extended periods not only reduces that pixel’s lifespan, but the pixel also takes a little while to return to total black. Color space – Winner: OLED Both of the recently introduced OLED TVs are capable of covering a wider gamut of color space than LED/LCD televisions. Very basically explained, this means they can reproduce finer shades of more colors within the visible color spectrum. Response time – Winner: OLED While LED/LCD TVs have improved considerably over the past few years, OLED simply blows them out of the water in terms of response time. In fact, OLED currently offers the fastest response time of any TV technology in use today, making it a clear winner in this regard. With faster response time comes less motion blur and less artifacts (source material notwithstanding).
  • 17. Page 17 Viewing angles – Winner: OLED This is a tricky topic right now, because both of the OLED TV’s currently available for purchase in the US are curved. So, while OLED TV’s should offer perfect viewing angles due to the fact that OLEDs produce light rather than attempt to block it as LED/LCD TVs do, the curve introduces a couple of complications. Foremost, the side that is curved away from an off-axis viewer will be less visible than the side curved toward that viewer. Second, because of the curve, anti-glare coatings can tend to tint the image when viewed from extreme angles. With that said, OLED technology is still superior in this regard and a clear winner overall. Size – Winner (for now): LED/LCD One day, in the hopefully-not-too-distant future, we’ll all be dreaming of owning 80-inch OLED TV’s, but for now, that dream is limited to 55-inches. Meanwhile, Sharp produces a mammoth 90-inch LED/LCD TV that you can buy right now, albeit at roughly the same price as an OLED TV. Lifespan – Winner (for now) LED/LCD OLED is unproven when it comes to lifespan, and there is some cause for concern here because the compound used to create the color blue in OLED televisions is known to have a shorter life span. As one color degrades, the rest will go out of whack. Samsung appears to be battling this issue by using a blue pixel that is twice the size of other colors and reducing the amount of voltage applied to it. LG uses white sub-pixels and lays a color filter over them to create the desired red, green and blue colors. These bandages may very well work, but only time and use in the public arena can tell how OLED will hold up on the long term. For that reason, we have to call LED/LCD the winner, as its lifespan has proven itself to be adequate. Screen Burn-in – Winner: LED/LCD We include the section begrudgingly, both because burn-in is a misnomer (that’s just an aggravation) and, for most folks, the effect will not be an issue.
  • 18. Page 18 The effect we’ve come to know as burn-in stems from the days of the boxy CRT TV, when prolonged display of a static image would cause that image to appear to “burn” into the screen. But what was actually happening was the phosphors that coated the back of the TV screen would glow for extended periods of time without any rest, causing the phosphors to wear out and resulting in the appearance of a burned-in image. We think this should be called “burn out.” But … whatever. The same issue is at play with plasma and OLED TVs because the compounds that light up can degrade over time. If you burn a pixel long and hard enough, you will cause it to dim prematurely and ahead of the rest of the pixels, creating a dark impression. However, in reality, this is not very likely to cause a problem for anyone. You’d have to abuse the TV intentionally in order to get it to happen. Even the “bug” (or, logo graphic) that certain channels use disappears often enough or is made clear so as to avoid causing burn-in. You’d have to watch ESPN all day every day (for many days) at the brightest possible setting to cause a problem, and even then it still isn’t very likely. Size, weight, power consumption – Winner: OLED OLED panels are extremely thin and they require no backlight. As such, OLED TV’s tend to be lighter than LED/LCD TVs and considerably thinner. They also require less power, making them more efficient. Price – Winner: LED/LCD Currently, an OLED TV is going to cost you either $9,000 (Samsung) or $15,000 (LG). We would be shocked – shocked! – If LG’s price didn’t come down in the coming months. Either way, $9,000 is a lot to pay for a television. And even though you can spend a little more on a much larger TV, the vast majority of televisions in the 55 – 65-inch price point are half OLED TV’s asking price or less. If affordability is a major consideration, LED/LCD is your best bet, and it probably will be for a few years. Challenges They are still many challenges facing the OLED industry. Here's a list of some of the major ones:  Material lifetime (especially of the blue material)  Soluble OLED performance  Soluble-based production processes  Flexible OLED encapsulation  Better backplane materials for flexible OLED  Scaling of evaporation processes beyond Gen-6  OLED lighting capacity expansion
  • 19. Page 19 Difference between OLED &LCD The global display market has exceeded US$120 billion, making it one of the largest optics and photonics industries. With so much to gain, there is strong competition for market share between Organic light-emitting diode (OLED) display and liquid-crystal display (LCD) manufactures. the consequences of that competition are showing up in people's hands: Apple's recently released iPhone 6, for example, uses a state-of-the-art LCD screen, while Samsung’s flagship Galaxy S5 gave the nod to OlED.so which display will display will take largest piece of the pie? Even though the answer depends on more than just performance (marketing strategy and capital investment also influence success), it is interesting to take a look at each display's market potential from a technical point of view. Operating principle Before examining the pros and cons of OLED display's and LCDs, it's important to understand the difference between their operating principles "OLED displays are emissive - they produce their own light; - they produce their own light; LCDs are non-emissive - they are illuminated with a backlight. An OLED display is composed of multilayer film- stack and a circular polarizer that mitigates ambient - light reflection. Each pixel can be turned on individually and requires multiple thin-film transistor (TFTs) to ensure stable current flow. LCD have a modular structure and require a backlight that illuminates the liquid -crystal module to create images on the screen. The liquid - crystal cell can be optimized for specific applications, like high contrast television or touch- panel Mobile devices. But unlike OLED displays that are driven by current, LCDs are voltage devices. So, each pixel only require one TFT as voltage switch. Performance metrics To determine which display is technically superior, we conducted a quantitative comparison for eight performance categories: Color saturation Most LCDs use a led backlight and color filters to display images. The color gamut is usually limited to 75 percent Adobe RGB (a defined color space for displays).OLED displays, however can over 100 percent Adobe RGB and deliver better image quality. Response time OLED displays can be turned on in microsecond by applying electric current. This translates to visually undetectable frame changes - i.e., no motion blur. LCDs suffer from slow response time and motion blur because the liquid crystals are unable to change their orientation fast enough from one frame to the next. Thinness/ flexibility OLED displays are thinner and more flexible than LCDs because they have fewer components; they do not need a backlight and they have a solid rather than modular structure.
  • 20. Page 20 Lifetime In contrast to LCDs sensitivity to air and moisture greatly reduce an OLED display's long term stability. However, short life time may not impede OLED technology's potential to capture the mobile display market, because device lifetime isn't a main concern - smartphone lifespan is typically only two to three years. Energy savings OLEDs displays require multiple thin-film transistor (TFTs) per pixel to ensure stable current control. The grouped TFTs cause high resistive and capacitive loss and require a circular polarizer to mitigate ambient light reflection from metallic anodes and cathodes, which cuts screen brightness in half. LCDS consume less power than OLED displays for the same size, brightness and resolution. Resolution In LCDs and OLED displays, each pixel is addressed by one or multiple TFTs respectively. When you increase resolution, aperture ratio decreases and TFT charging time increases. Therefore, higher-electron-mobility TFT charging time increases. Therefore, higher- electron- mobility TFT materials (e.g., low temperature poly-silicon and oxide semiconductors) should reduce TFTS size, which in turn increases light output, especially for OLED displays, which require multiple TFTs per pixel. Ambient contrast ratio Readability in bright light is a problems for both displays- Especially for mobile devices. OLED displays have superior contrast ratio in dark light, because individual pixels in the display can be switched off when not in use. However, even viewed under direct sunlight, the ambient light reflected off a smartphone screen degrades the color and image contrast ratio, because a portion of the reflected light is overserved as noise. LCDs do not have a strong reflection component, but their 75 percent color gamut in low ambient light drops to less than 50 percent in bright light resulting in washed-out images. Viewing angle OLED pixels feature a Lambertian- like radiation pattern that creates pleasing wide - View matte images. State- of-the art LCDs use compensation film and multidomain structure to expand the viewing angle. Both displays offer picture accuracy at viewing angle -+ 30 degrees from the center of the screen. Potential game - changers OLED's superior response time and color saturation are being challenged by recent LCD advances. Conventional LCDs rely on molecular reorientation to control light transmittance. Making response time relatively slow (more than five milliseconds, compared with microseconds for OLEDs).But emerging blue-phase liquid crystals based on kerr- effect induced isotropic-to- anisotropic transition can achieve a sub-millisecond gray-to-gray response time. With blue- phase liquid crystals based on Kerr-effect induced isotropic-to-anisotropic transition can achieve a sub - millisecond gray- to- gary response time would only be governed by the TFT frame rate, so an LCD with a 240 Hz frame rate will have sharper image than an OLED display with120 Hz frame rate.
  • 21. Page 21 Emerging fast-response liquid crystals could enable field sequential color (FSC) displays. In a FSC display, the backlight sequentially emits RGB lights. The LCD panel is synchronized to the backlight to display gray levels of each color. This method of color generation does not require spatial color filters or subpixels to reproduce color filter or subpixels to reproduce colors. As a result, it could offer significantly higher optical efficiency and resolution density than OLED displays. New quantum dot (QD) technology would also give LCDs an edge over OLED displays in color saturation, or at least level the playing field. LCD color reproduction has been limited by white LEDs and color filters. But with today’s blue LEDs, down – converted QD s added to an LCD can create emission spectra optimized to match the transmission spectra of color filter, thereby simultaneously boosting LCD optical efficiency and color gamut to be equal to be equal to or better than OLED. (This QD technique is used in amazon’s kindle fire HDX 7 and Sony’s triluminos televisions.) There are also new method for increasing OLED display readability in brighter light, like better green phosphorene emitters and light extraction techniques. For LCDs sunlight readability could improve with a “smart“ backlight that concentrates illumination toward the viewer’s eye or with a QD – enhanced backlight to precompensate the color gamut reduction. OLED manufacturing can be expensive and complicated because of the required special vacuum and hermetic packaging – especially for larger displays. For example, a 55- inch OLED screen can cost US$5000- 5 times more expensive than the equivalent LCD. However as manufacturing technology continues to evolve, the price gap should gradually narrow. Disadvantages Lifetime While red and green OLED films have longer lifetimes (46,000 to 230,000 hours), blue organics currently have much shorter lifetimes (up to around 14,000 hours. Manufacturing Manufacturing processes are expensive right now. Water Water can easily damage OLEDs. Sunlight Effect: Another disadvantage of OLED display is that they are hard to see in direct sunlight. So if you have open lobbies where sunlight reaches directly, you will not get benefit of viewing these screens. Color purity Problems of color purity still remains: it is difficult to display fresh and rich colors
  • 22. Page 22 OLED technology today The leading AMOLED producer today is Samsung, who's making over 200 million displays a year, and is still expanding production capacity. Samsung is focused on small displays (5 - 10 inch) mostly for mobile phones and tablets. LG Display is also producing OLEDs, but only large size (55-77 inch) panels for OLED TV applications. Both Samsung and LG also produce flexible OLED panels, used in mobile phones and wearable devices. Production volume is still rather low, but both companies are expected to expand production capacity and introduce new products and form factors to the market. In the OLED lighting market, several companies (including as Philips, LG Chem, OSRAM and Konica Minolta) are already shipping OLED panels, but production capacity is still low and prices are very high. OLED lighting today is mostly used in premium lighting fixtures and installations. Conclusion And the winner is? Our assessment suggests that there’s no clear winner in the match between OLED, LCD and LED. Each technology has own unique characteristics to distinguish itself for different applications, and each camp has invested tremendous resources to perfect the device performances. Thankfully, no matter which technology dominates, the true winner will be consumers and the optics and photonics industry as a whole. Consumers will enjoy cheaper, lighter, smarter and brighter displays, while the companies that make them will benefits from component sales and manufacturing. LCD, LED and OLED displays are like twin stars; their healthy competition will light up our sky. REFERENCE:- # Optics and photonics news feb-2015 (OSA magazine) # Solid state physics M A Wahb # http://www.globalmarket.com/sourcingtips/lighting/oled-advantages-vs-disadvantages-4549.html # http://www.ledesl.com/01-12-2009/oled-working-principle.html # http://www.digitaltrends.com/home-theater/oled-vs-led-which-is-the-better-tv-technology/ # http://www.explainthatstuff.com/how-oleds-and-leps-work.html # http://www.oled-info.com/oled-technology # https://en.wikipedia.org/wiki/OLED