Review of Exponential Rules

                  

                         
                       
                       
                         
                         
                       
Simplifying Expressions with Rational Exponents

Radicals can also be expressed as a rational (or fractional) 
 power of an expression.   It will sometimes be easier to 
use this new method of expressing a radical to simplify a 
                   radical expression.   
                          1
                      b = b
                          n       n

 When you see a radical 
      expression, 
 you can convert it to a                     
                                                                                    

                                            
   fractional power.
Example 1           Write each expression in Radical Form


            1
                             6
1) x        6
                                 x

                2
                             3       2
 2) m           3
                                 m
Example 2     Write each radical using Rational Exponents

                                      1
          5
1)            b                   b   5



                                 1        5     7
                  5   7
2)    3
            6x y             6 x y
                                 3        3     3
Example 3   Evaluate Each Expression




            −1                         1
1) 49        2

                                       7
Rational Exponents
For any nonzero Real number a and 
any integers m and n, with n > 1

 m
a = ( a) = a
 n         n        m       n        m
Notice:   The index of the radical becomes the 
denominator of the rational power, and the exponent of the 
radicand (expression inside the radical) becomes the 
numerator.
 Look at these examples:
 (1)                        (2)                             (3) 
                                                                                        




                                                                  power
              root
                            x   power
                                                           =x      ro ot
Remember the Rules of Exponents?
They are still valid for rational exponents!!!
              Rule                                   Example


                                                                               



                                               
                                                                          



                                           
                                                                             
Example 4   Evaluate 
                  2
  (−125)          3



  ( − 125 )
    3             2




    25
Example 5    Evaluate 
            −3
 36        2

 
 49 
    343
    216
Simplify


    (3a )(− 7a )
Example 6

            3              1
            2              5




                     17
   − 21a             10
Check out how these problems are done 
using the rules of exponents:

 Evaluate:


                                  
                                                                                      




 Evaluate:
            
                                                                            
Simplify each expression completely




        =
Expression with Rational Exponents
An expression with Rational Exponents is simplified when:

 1.  It has no negative exponents

 2.  It has no Fractional Exponents in the denominator

 3.   It is not a Complex Fraction

 4.  The index of any remaining radical is the least 
 number possible.
Simplifying radicals is often                       Simplify:              


easier using rational exponents.                       3     
Look at this "rational" example,
                                                        3
   solved two ways.     ==>
                           
                                                            3
Solved by Rationalizing the                         Solved by Using
Denominator                                         Rational Exponents

                                                                                    
Example 7        Simplify


  (8x y )   3
            4     2
                      −1
                       3



                                  3     1
            1
                                x 4   y 3
      1           2         =
   2x 4         y 3              2 xy
Example 8       Simplify

       −7
        4
   n
            3
      n     7



      n
Example 9   Simplify
      2                17
 n               n     12         5
                            =n
      3

      1
               =                 12
 n    4
                  n
Example 8     Simplify
                      Multiply 
Change to Same Base                Add Exponents
                      Exponents 




Subtract 
Exponents
                                                   4
                                             2     5

                                           =
                                             4
Example 9     Simplify


    2 a −3        − a +1             a −2
x            ⋅x                 x
            2 a −4
                            =
     (x )                       x   2a −8



=x     (a – 2) – (2a – 8)
                                =x      -a + 6
Example 10    Simplify

      1
    y +1
      2

      1
    y −1
      2




          1
   y + 2y 2         +1
             y −1

Rational Exponents