SlideShare a Scribd company logo
1 of 27
Download to read offline
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

 r n cos n  i sin n 
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5

 r n cos n  i sin n 
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5

 r n cos n  i sin n 

z  12   1

2

 2
  1
arg z  tan  
 1 
1




4
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n

this extends to;

r cos  i sin  

n

e.g . 1  i 

5

z  12   1

2


   
  2cis



 r n cos n  i sin n 

 4 

5

 2
  1
arg z  tan  
 1 
1




4
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5



z  12   1

2


   
  2cis



 r n cos n  i sin n 

 4 

5

 2

  1
arg z  tan  
5
 1 
  5 
2  cis


 4 

4
1
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5

z  12   1

2


   
  2cis



 r n cos n  i sin n 

 4 

5

 2

  1
arg z  tan  
5
 1 
  5 
  2  cis


 4 

4
3 
 4 2cis 

 4 
1
De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5

z  12   1

2


   
  2cis



 r n cos n  i sin n 

 4 

5

 2

  1
arg z  tan  
5
 1 
  5 
  2  cis


 4 

4
3 
 4 2cis 

 4 
1

1  i 

5

 cos 3  i sin 3 
 4 2

4
4 

De Moivre’s Theorem
 cos  i sin    cos n  i sin n
n

for all integers n
this extends to;

r cos  i sin  

n

e.g . 1  i 

5

z  12   1

2


   
  2cis



 r n cos n  i sin n 

 4 

5

 2

  1
arg z  tan  
5
 1 
  5 
  2  cis


 4 

4
3 
 4 2cis 

 4 
1

1  i 

5

 cos 3  i sin 3 
 4 2

4
4 

1
1 
 4 2 

i

2
2 

 4  4i
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 
 n 

n

k  0,1,, n  1
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 
 n 

n

e.g .i  z 2  4i

k  0,1,, n  1
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

2
z  4cis
2

k  0,1,, n  1
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

2
z  4cis
2
 2k   

2
z  2cis 
2 





k  0,1

k  0,1,, n  1
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

2
z  4cis
2
 2k   

2
z  2cis 
2 




5

z  2cis ,2cis
4
4

k  0,1

k  0,1,, n  1
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

2
z  4cis
2
 2k   

2  k  0,1
z  2cis 
2 




5

z  2cis ,2cis
4
4
 1  1 i ,2  1  1 i 
z  2

 
2  
2
2 
 2

k  0,1,, n  1

z  2  2i, 2  2i
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

OR
2
z  4cis
2
 2k   

2  k  0,1
z  2cis 
2 




5

z  2cis ,2cis
4
4
 1  1 i ,2  1  1 i 
z  2

 
2  
2
2 
 2

k  0,1,, n  1
y

x

z  2  2i, 2  2i
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

e.g .i  z 2  4i

OR
2
z  4cis
2
 2k   

2  k  0,1
z  2cis 
2 




5

z  2cis ,2cis
4
4
 1  1 i ,2  1  1 i 
z  2

 
2  
2
2 
 2

k  0,1,, n  1
y
2cis



x

z  2  2i, 2  2i

4
Finding Roots
If z n  x  iy
z n  rcis
 2k   
z  rcis 

 n 
n

k  0,1,, n  1

e.g .i  z 2  4i

OR
2
y
z  4cis

2
2cis
4
 2k   

2  k  0,1
z  2cis 
2 
x




3
2cis 
5

z  2cis ,2cis
4
4
4
 1  1 i ,2  1  1 i 
z  2
z  2  2i, 2  2i

 
2  
2
2 
 2
 ii 

x 4  16  0
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 




k  0,1, 2,3

3
x  2cis 0, 2cis , 2cis , 2cis
2
2
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3



3
x  2cis 0, 2cis , 2cis , 2cis
2
2
x  2, 2i, 2, 2i
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3



3
x  2cis 0, 2cis , 2cis , 2cis
2
2
x  2, 2i, 2, 2i

OR

y

x
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3



3
x  2cis 0, 2cis , 2cis , 2cis
2
2
x  2, 2i, 2, 2i

OR

y

2cis 0
x
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3



3
x  2cis 0, 2cis , 2cis , 2cis
2
2
x  2, 2i, 2, 2i

OR

y

2cis


2

2cis

2cis 0
x
2cis 


2
 ii 

x 4  16  0

x 4  16
x 4  16cis 0
 2 k 
x  2cis 
 4 


k  0,1, 2,3



3
x  2cis 0, 2cis , 2cis , 2cis
2
2
x  2, 2i, 2, 2i

OR

y

2cis

Patel: Exercise 4E;
1 to 4 ac


2

2cis

2cis 0
x
2cis 

Cambridge: Exercise 7A;
1, 2, 3 abef, 5, 6, 7,
9 to 14, 16 to 18


2

More Related Content

What's hot

Double Integral Powerpoint
Double Integral PowerpointDouble Integral Powerpoint
Double Integral Powerpointoaishnosaj
 
Limits And Derivative
Limits And DerivativeLimits And Derivative
Limits And DerivativeAshams kurian
 
Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradientKunj Patel
 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Viraj Patel
 
Gaussian quadratures
Gaussian quadraturesGaussian quadratures
Gaussian quadraturesTarun Gehlot
 
Vector calculus
Vector calculusVector calculus
Vector calculusraghu ram
 
Gauss jordan and Guass elimination method
Gauss jordan and Guass elimination methodGauss jordan and Guass elimination method
Gauss jordan and Guass elimination methodMeet Nayak
 
The wave eqution presentation
The wave eqution presentationThe wave eqution presentation
The wave eqution presentationMuhammad Saqib
 
Cauchy integral theorem & formula (complex variable & numerical method )
Cauchy integral theorem & formula (complex variable & numerical method )Cauchy integral theorem & formula (complex variable & numerical method )
Cauchy integral theorem & formula (complex variable & numerical method )Digvijaysinh Gohil
 
Methods of solving ODE
Methods of solving ODEMethods of solving ODE
Methods of solving ODEkishor pokar
 
Tangent and normal
Tangent and normalTangent and normal
Tangent and normalRameshMakar
 
Relations and functions
Relations and functionsRelations and functions
Relations and functionscannout
 
Relations and functions
Relations and functionsRelations and functions
Relations and functionsDreams4school
 

What's hot (20)

Vector space
Vector spaceVector space
Vector space
 
Double Integral Powerpoint
Double Integral PowerpointDouble Integral Powerpoint
Double Integral Powerpoint
 
Limits And Derivative
Limits And DerivativeLimits And Derivative
Limits And Derivative
 
Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradient
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations
 
Cramer's Rule
Cramer's RuleCramer's Rule
Cramer's Rule
 
Gaussian quadratures
Gaussian quadraturesGaussian quadratures
Gaussian quadratures
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Gauss jordan and Guass elimination method
Gauss jordan and Guass elimination methodGauss jordan and Guass elimination method
Gauss jordan and Guass elimination method
 
Introduction of Partial Differential Equations
Introduction of Partial Differential EquationsIntroduction of Partial Differential Equations
Introduction of Partial Differential Equations
 
The wave eqution presentation
The wave eqution presentationThe wave eqution presentation
The wave eqution presentation
 
Cauchy integral theorem & formula (complex variable & numerical method )
Cauchy integral theorem & formula (complex variable & numerical method )Cauchy integral theorem & formula (complex variable & numerical method )
Cauchy integral theorem & formula (complex variable & numerical method )
 
Lagrange’s interpolation formula
Lagrange’s interpolation formulaLagrange’s interpolation formula
Lagrange’s interpolation formula
 
Methods of solving ODE
Methods of solving ODEMethods of solving ODE
Methods of solving ODE
 
Tangent and normal
Tangent and normalTangent and normal
Tangent and normal
 
Determinants
DeterminantsDeterminants
Determinants
 
Power method
Power methodPower method
Power method
 
Relations and functions
Relations and functionsRelations and functions
Relations and functions
 
Relations and functions
Relations and functionsRelations and functions
Relations and functions
 

Viewers also liked

X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)Nigel Simmons
 
X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)Nigel Simmons
 
1 complex numbers
1 complex numbers 1 complex numbers
1 complex numbers gandhinagar
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 
X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)Nigel Simmons
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)Nigel Simmons
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)Nigel Simmons
 
Powers and Roots of Complex numbers
Powers and Roots of Complex numbersPowers and Roots of Complex numbers
Powers and Roots of Complex numbersLeo Crisologo
 
Power Series,Taylor's and Maclaurin's Series
Power Series,Taylor's and Maclaurin's SeriesPower Series,Taylor's and Maclaurin's Series
Power Series,Taylor's and Maclaurin's SeriesShubham Sharma
 
Taylor and maclaurian series
Taylor and maclaurian seriesTaylor and maclaurian series
Taylor and maclaurian seriesNishant Patel
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbersswartzje
 
Taylor series and maclaurin with exercices
Taylor series and maclaurin with exercicesTaylor series and maclaurin with exercices
Taylor series and maclaurin with exercicesHernanFula
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbersitutor
 

Viewers also liked (20)

X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)X2 t01 07 locus & complex nos 1 (2013)
X2 t01 07 locus & complex nos 1 (2013)
 
X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)
 
1 complex numbers
1 complex numbers 1 complex numbers
1 complex numbers
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
Sequencias e series
Sequencias e series Sequencias e series
Sequencias e series
 
X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)X2 t01 04 mod arg form(2013)
X2 t01 04 mod arg form(2013)
 
X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)X2 t01 05 conjugate properties (2013)
X2 t01 05 conjugate properties (2013)
 
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 08  locus & complex nos 2 (2013)X2 t01 08  locus & complex nos 2 (2013)
X2 t01 08 locus & complex nos 2 (2013)
 
Unit 6.6
Unit 6.6Unit 6.6
Unit 6.6
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)X2 t01 06 geometrical representation (2013)
X2 t01 06 geometrical representation (2013)
 
Powers and Roots of Complex numbers
Powers and Roots of Complex numbersPowers and Roots of Complex numbers
Powers and Roots of Complex numbers
 
Chap4
Chap4Chap4
Chap4
 
Power Series,Taylor's and Maclaurin's Series
Power Series,Taylor's and Maclaurin's SeriesPower Series,Taylor's and Maclaurin's Series
Power Series,Taylor's and Maclaurin's Series
 
Taylor and maclaurian series
Taylor and maclaurian seriesTaylor and maclaurian series
Taylor and maclaurian series
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 
Taylor series and maclaurin with exercices
Taylor series and maclaurin with exercicesTaylor series and maclaurin with exercices
Taylor series and maclaurin with exercices
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)X2 t01 03 argand diagram (2013)
X2 t01 03 argand diagram (2013)
 

X2 t01 09 de moivres theorem

  • 1. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n
  • 2. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n  r n cos n  i sin n 
  • 3. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5  r n cos n  i sin n 
  • 4. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5  r n cos n  i sin n  z  12   1 2  2   1 arg z  tan    1  1   4
  • 5. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5 z  12   1 2        2cis    r n cos n  i sin n   4  5  2   1 arg z  tan    1  1   4
  • 6. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5  z  12   1 2        2cis    r n cos n  i sin n   4  5  2   1 arg z  tan   5  1    5  2  cis    4   4 1
  • 7. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5 z  12   1 2        2cis    r n cos n  i sin n   4  5  2   1 arg z  tan   5  1    5    2  cis    4   4 3   4 2cis    4  1
  • 8. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5 z  12   1 2        2cis    r n cos n  i sin n   4  5  2   1 arg z  tan   5  1    5    2  cis    4   4 3   4 2cis    4  1 1  i  5  cos 3  i sin 3   4 2  4 4  
  • 9. De Moivre’s Theorem  cos  i sin    cos n  i sin n n for all integers n this extends to; r cos  i sin   n e.g . 1  i  5 z  12   1 2        2cis    r n cos n  i sin n   4  5  2   1 arg z  tan   5  1    5    2  cis    4   4 3   4 2cis    4  1 1  i  5  cos 3  i sin 3   4 2  4 4   1 1   4 2   i  2 2    4  4i
  • 10. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis   n   n k  0,1,, n  1
  • 11. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis   n   n e.g .i  z 2  4i k  0,1,, n  1
  • 12. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  2 z  4cis 2 k  0,1,, n  1
  • 13. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  2 z  4cis 2  2k     2 z  2cis  2      k  0,1 k  0,1,, n  1
  • 14. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  2 z  4cis 2  2k     2 z  2cis  2      5  z  2cis ,2cis 4 4 k  0,1 k  0,1,, n  1
  • 15. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  2 z  4cis 2  2k     2  k  0,1 z  2cis  2      5  z  2cis ,2cis 4 4  1  1 i ,2  1  1 i  z  2    2   2 2   2 k  0,1,, n  1 z  2  2i, 2  2i
  • 16. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  OR 2 z  4cis 2  2k     2  k  0,1 z  2cis  2      5  z  2cis ,2cis 4 4  1  1 i ,2  1  1 i  z  2    2   2 2   2 k  0,1,, n  1 y x z  2  2i, 2  2i
  • 17. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n e.g .i  z 2  4i  OR 2 z  4cis 2  2k     2  k  0,1 z  2cis  2      5  z  2cis ,2cis 4 4  1  1 i ,2  1  1 i  z  2    2   2 2   2 k  0,1,, n  1 y 2cis  x z  2  2i, 2  2i 4
  • 18. Finding Roots If z n  x  iy z n  rcis  2k    z  rcis    n  n k  0,1,, n  1 e.g .i  z 2  4i  OR 2 y z  4cis  2 2cis 4  2k     2  k  0,1 z  2cis  2  x     3 2cis  5  z  2cis ,2cis 4 4 4  1  1 i ,2  1  1 i  z  2 z  2  2i, 2  2i    2   2 2   2
  • 19.  ii  x 4  16  0
  • 20.  ii  x 4  16  0 x 4  16 x 4  16cis 0
  • 21.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3
  • 22.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4    k  0,1, 2,3 3 x  2cis 0, 2cis , 2cis , 2cis 2 2
  • 23.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3  3 x  2cis 0, 2cis , 2cis , 2cis 2 2 x  2, 2i, 2, 2i
  • 24.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3  3 x  2cis 0, 2cis , 2cis , 2cis 2 2 x  2, 2i, 2, 2i OR y x
  • 25.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3  3 x  2cis 0, 2cis , 2cis , 2cis 2 2 x  2, 2i, 2, 2i OR y 2cis 0 x
  • 26.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3  3 x  2cis 0, 2cis , 2cis , 2cis 2 2 x  2, 2i, 2, 2i OR y 2cis  2 2cis 2cis 0 x 2cis   2
  • 27.  ii  x 4  16  0 x 4  16 x 4  16cis 0  2 k  x  2cis   4   k  0,1, 2,3  3 x  2cis 0, 2cis , 2cis , 2cis 2 2 x  2, 2i, 2, 2i OR y 2cis Patel: Exercise 4E; 1 to 4 ac  2 2cis 2cis 0 x 2cis  Cambridge: Exercise 7A; 1, 2, 3 abef, 5, 6, 7, 9 to 14, 16 to 18  2