SlideShare a Scribd company logo
1 of 29
6.6 
De Moivre’s 
Theorem and 
nth Roots 
Copyright © 2011 Pearson, Inc.
What you’ll learn about 
 The Complex Plane 
 Trigonometric Form of Complex Numbers 
 Multiplication and Division of Complex Numbers 
 Powers of Complex Numbers 
 Roots of Complex Numbers 
… and why 
The material extends your equation-solving technique 
to include equations of the form zn = c, n is an integer 
and c is a complex number. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 2
Complex Plane 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 3
Absolute Value (Modulus) of a 
Complex Number 
The absolute value or modulus 
of a complex number 
z  a  bi z  a  bi  a  
b 
is | | | | . 
2 2 
a bi a bi 
In the complex plane, | | is the distance of 
from the origin. 
  
Copyright © 2011 Pearson, Inc. Slide 6.1 - 4
Graph of z = a + bi 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 5
Trigonometric Form of a Complex 
Number 
The trigonometric form of the complex number 
z  a  bi is 
z  rcos  isin  
where a  r cos , b  r sin , r  a2  b2 , 
and tan  b / a. The number r is the absolute 
value or modulus of z, and  is an argument of z. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 6
Example Finding Trigonometric 
Form 
Find the trigonometric form with 0    2 for the 
complex number 1 3i. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 7
Example Finding Trigonometric 
Form 
Find the trigonometric form with 0    2 for the 
complex number 1 3i. 
Find r: r |1 3i | 12  32 
 2. 
Find  : tan  
3 
1 
so   
 
3 
. 
 
Therefore, 1 3i  2 cos 
 
3 
 isin 
 
 
3 
  
  
. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 8
Product and Quotient of Complex 
Numbers 
Let z1  r1 cos1  isin1   and z2  r2 cos 2  isin 2  . 
Then 
1. z1  z2  r1r2 cos 1  2   isin 1  2    
 
. 
2. 
z1 
z2 
 
r1 
r2 
cos 1  2   isin 1  2     
, r2  0. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 9
Example Multiplying Complex 
Numbers 
Express the product of z1 and z2 in standard form. 
 
z1  4 cos 
 
4 
 isin 
 
 
4 
  
  
 
, z2  2 cos 
 
6 
 isin 
 
 
6 
  
  
Copyright © 2011 Pearson, Inc. Slide 6.1 - 10
Example Multiplying Complex 
Numbers 
Express the product of z1 and z2 in standard form. 
 
z1  4 cos 
 
4 
 isin 
 
 
4 
  
  
 
, z2  2 cos 
 
6 
 isin 
  
z1  z2  r1r2 cos 1  2   isin 1  2    
 
 
 4 2 cos 
 
4 
 
 
 
6 
 
  
  
 isin 
 
4 
 
 
 
6 
 
  
  
  
 
 
6 
 
  
 
 4 2 cos 
 
5 
12 
 
  
  
 isin 
 
5 
12 
 
  
  
  
 
  
  
 4 20.259  i0.966 1.464  5.464i 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 11
A Geometric Interpretation of z2 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 12
De Moivre’s Theorem 
Let z  rcos  isin  and let n be a positive integer. 
Then 
zn  r cos  isin    
 
 
 
n 
 r n cosn  isin n . 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 13
Example Using De Moivre’s Theorem 
 
Find  
3 
2 
 i 
1 
2 
  
 
  
4 
using De Moivre's theorem. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 14
Example Using De Moivre’s Theorem 
 
Find  
3 
2 
 i 
1 
2 
  
 
  
4 
using De Moivre's theorem. 
The argument of z   
3 
2 
 i 
1 
2 
is   
7 
6 
, 
and its modulus  
3 
2 
 i 
1 
2 
 
3 
4 
 
1 
4 
 1. 
Hence, 
z  2cos 
7 
6 
 isin 
7 
6 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 15
Example Using De Moivre’s Theorem 
4 
using De Moivre's theorem. 
 
 i 
1 
2 
 
  
z4  cos 4  
 
7 
6 
  
  
 
 isin 4  
 
7 
6 
  
  
 cos 
 
14 
3 
 
  
  
 isin 
 
14 
3 
 
  
  
 cos 
 
2 
3 
 
  
  
 isin 
 
2 
3 
 
  
  
  
1 
2 
 i 
3 
2 
 
Find  
3 
2 
  
Copyright © 2011 Pearson, Inc. Slide 6.1 - 16
nth Root of a Complex Number 
A complex number v  a  bi is an nth root of z if 
vn  z. 
If z  1, the v is an nth root of unity. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 17
Finding nth Roots of a Complex 
Number 
If z  rcos  isin , then the n distinct 
complex numbers 
 
r n cos 
  2 k 
n 
 isin 
  2 k 
n 
  
 
 , 
where k  0,1,2,..,n 1, 
are the nth roots of the complex number z. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 18
Example Finding Cube Roots 
Find the cube roots of 1. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 19
Example Finding Cube Roots 
Find the cube roots of 1. 
Write 1 in complex form: z  1 0i  cos0  isin0 
The third roots of 1 are the complex numbers 
cos 
0  2 k 
3 
 isin 
0  2 k 
3 
for k  0,1,2. 
z1  cos0  isin0  1 
z2  cos 
2 
3 
 isin 
2 
3 
  
1 
2 
 
3 
2 
i 
z3  cos 
4 
3 
 isin 
4 
3 
  
1 
2 
 
3 
2 
i 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 20
Quick Review 
1. Write the roots of the equation x2 12  6x in a  bi form. 
2. Write the complex number 1 i3 
in standard form a  bi. 
3. Find all real solutions to x3  27  0. 
Find an angle  in 0    2 which satisfies both equations. 
4. sin  
1 
2 
and cos   
3 
2 
5. sin   
2 
2 
and cos   
2 
2 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 21
Quick Review Solutions 
1. Write the roots of the equation x2 12  6x in a  bi form. 
3 3i, 3 3i 
2. Write the complex number 1 i3 
in standard form a  bi. 
2  2i 
3. Find all real solutions to x3  27  0. x  3 
Find an angle  in 0    2 which satisfies both equations. 
4. sin  
1 
2 
and cos   
3 
2 
  5 / 6 
5. sin   
2 
2 
and cos   
2 
2 
  5 / 4 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 22
Chapter Test 
1. Let u  2, 1 and v  4,2 . Find u v. 
2. Let A  (2, 1),B  (3,1),C  (4,2), and D  (1, 5). 
Find the component form and magnitude of the vector 
uuur 
uuur 
AC 
+BD 
3. Given A  (4,0) and B  (2,1), find (a) a unit vector in 
uuur 
the direction of AB 
and (b) a vector of magnitude 3 in 
the opposite direction. 
4. Given u  4,3 and v  2,5 , find (a) the direction 
angles of u and v and (b) the angle between u and v. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 23
Chapter Test 
5. Convert the polar coordinate (  2.5,25o) to a rectangular 
coordinate. 
6. Eliminate the parameter t. x  4  t, y  8  5t,  3  t  5. 
7. Find a parameterization for the line through the points 
( 1, 2) and (3,4). 
 
 
8. Use De Moivre's theorem to evaluate 3 cos 
 
4 
 isin 
 
 
4 
  
  
  
 
  
5 
. 
Write your answer in (a) trigonometric form and (b) standard 
form. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 24
Chapter Test 
9. Convert the polar equation r  3cos  2sin to 
rectangular form. 
10. A 3000 pound car is parked on a street that makes 
an angle of 16o with the horizontal. 
(a) Find the force required to keep the car from rolling 
down the hill. 
(b) Find the component of the force perpendicular to 
the street. 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 25
Chapter Test Solutions 
1. Let u  2, 1 and v  4,2 . Find u v. 6 
2. Let A  (2, 1),B  (3,1),C  (4,2), and D  (1, 5). 
Find the component form and magnitude of the vector 
uuur 
uuur 
AC 
+BD 
8, 3 ; 73 
3. Given A  (4,0) and B  (2,1), find (a) a unit vector in 
uuur 
the direction of AB 
and (b) a vector of magnitude 3 in 
the opposite direction. (a)  
2 
5 
, 
1 
5 
(b) 
6 
5 
,  
3 
5 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 26
Chapter Test Solutions 
4. Given u  4,3 and v  2,5 , find (a) the direction 
angles of u and v and (b) the angle between u and v. 
 
(a) tan1 3 
4 
  
 
 
  0.64 tan1 5 
2 
  
 
  1.19 (b)  0.55 
5. Convert the polar coordinate (  2.5,25o) to a 
rectangular coordinate.  (  2.27, 1.06) 
6. Eliminate the parameter t. x  4  t, y  8  5t, 
 3  t  5. y  5x 12 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 27
Chapter Test 
7. Find a parameterization for the line through the points 
( 1, 2) and (3,4). x  2t  3, y  3t  4 
 
 
8. Use De Moivre's theorem to evaluate 3 cos 
 
4 
 isin 
 
 
4 
  
  
 
 
 
 
 
5 
. 
Write your answer in (a) trigonometric form and (b) standard 
form. 
 
(a) 243 cos 
5 
4 
 isin 
 
5 
4 
  
  (b) 
243 2 
2 
 
243 2 
2 
i 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 28
Chapter Test 
9. Convert the polar equation r  3cos  2sin to 
 
rectangular form. x  
3 
2 
  
 
  
2 
 y 12 
 
13 
4 
10. A 3000 pound car is parked on a street that makes 
an angle of 16o with the horizontal. 
(a) Find the force required to keep the car from rolling 
down the hill.  826.91 pounds 
(b) Find the component of the force perpendicular to 
the street. 2883.79 pounds 
Copyright © 2011 Pearson, Inc. Slide 6.1 - 29

More Related Content

What's hot

Converting fractions-to-decimals2-ptnbh9
Converting fractions-to-decimals2-ptnbh9Converting fractions-to-decimals2-ptnbh9
Converting fractions-to-decimals2-ptnbh9g2desai
 
Natural and Whole Numbers
Natural and Whole NumbersNatural and Whole Numbers
Natural and Whole NumbersNeha Verma
 
Lesson 6 - Harmonic and Fibonacci Sequence.pptx
Lesson 6 - Harmonic and Fibonacci Sequence.pptxLesson 6 - Harmonic and Fibonacci Sequence.pptx
Lesson 6 - Harmonic and Fibonacci Sequence.pptxkaiserarvin
 
Introduction to Positive and Negative Numbers
Introduction to Positive and Negative NumbersIntroduction to Positive and Negative Numbers
Introduction to Positive and Negative NumbersMelanie_Anderson
 
Inequalities
InequalitiesInequalities
Inequalitiessusoigto
 
Multiplication and Division of Integers
Multiplication and Division of IntegersMultiplication and Division of Integers
Multiplication and Division of IntegersKathy Favazza
 
Number Systems and Binary Aritmetics
Number Systems and Binary AritmeticsNumber Systems and Binary Aritmetics
Number Systems and Binary AritmeticsDelowar Hossain
 
Understanding negative numbers
Understanding negative numbersUnderstanding negative numbers
Understanding negative numbersWorserbay
 
Divisibility Rules
Divisibility RulesDivisibility Rules
Divisibility RulesTim Bonnar
 
1.5 Complementary and Supplementary Angles
1.5 Complementary and Supplementary Angles 1.5 Complementary and Supplementary Angles
1.5 Complementary and Supplementary Angles Dee Black
 
Rational numbers in the number line
Rational numbers in the number line Rational numbers in the number line
Rational numbers in the number line Grace Robledo
 
Addition within 20
Addition within 20Addition within 20
Addition within 20kungfumath
 
Section 5.3 exponential functions
Section 5.3 exponential functions Section 5.3 exponential functions
Section 5.3 exponential functions Wong Hsiung
 

What's hot (20)

Converting fractions-to-decimals2-ptnbh9
Converting fractions-to-decimals2-ptnbh9Converting fractions-to-decimals2-ptnbh9
Converting fractions-to-decimals2-ptnbh9
 
Natural and Whole Numbers
Natural and Whole NumbersNatural and Whole Numbers
Natural and Whole Numbers
 
Lesson 6 - Harmonic and Fibonacci Sequence.pptx
Lesson 6 - Harmonic and Fibonacci Sequence.pptxLesson 6 - Harmonic and Fibonacci Sequence.pptx
Lesson 6 - Harmonic and Fibonacci Sequence.pptx
 
Introduction to Positive and Negative Numbers
Introduction to Positive and Negative NumbersIntroduction to Positive and Negative Numbers
Introduction to Positive and Negative Numbers
 
Inequalities
InequalitiesInequalities
Inequalities
 
Multiplication and Division of Integers
Multiplication and Division of IntegersMultiplication and Division of Integers
Multiplication and Division of Integers
 
Complex number
Complex numberComplex number
Complex number
 
Ppt on real numbers
Ppt on real numbersPpt on real numbers
Ppt on real numbers
 
Adding Integers Ppt
Adding Integers PptAdding Integers Ppt
Adding Integers Ppt
 
Number Systems and Binary Aritmetics
Number Systems and Binary AritmeticsNumber Systems and Binary Aritmetics
Number Systems and Binary Aritmetics
 
Understanding negative numbers
Understanding negative numbersUnderstanding negative numbers
Understanding negative numbers
 
Ppt for 4
Ppt for 4Ppt for 4
Ppt for 4
 
Divisibility Rules
Divisibility RulesDivisibility Rules
Divisibility Rules
 
Types of Numbers
Types of NumbersTypes of Numbers
Types of Numbers
 
Stage 6 fraction
Stage 6  fractionStage 6  fraction
Stage 6 fraction
 
1.5 Complementary and Supplementary Angles
1.5 Complementary and Supplementary Angles 1.5 Complementary and Supplementary Angles
1.5 Complementary and Supplementary Angles
 
Number – place value
Number – place valueNumber – place value
Number – place value
 
Rational numbers in the number line
Rational numbers in the number line Rational numbers in the number line
Rational numbers in the number line
 
Addition within 20
Addition within 20Addition within 20
Addition within 20
 
Section 5.3 exponential functions
Section 5.3 exponential functions Section 5.3 exponential functions
Section 5.3 exponential functions
 

Viewers also liked

Viewers also liked (15)

Unit 6.1
Unit 6.1Unit 6.1
Unit 6.1
 
Unit 6.3
Unit 6.3Unit 6.3
Unit 6.3
 
Unit 6.4
Unit 6.4Unit 6.4
Unit 6.4
 
Unit 6.5
Unit 6.5Unit 6.5
Unit 6.5
 
Unit 6.2
Unit 6.2Unit 6.2
Unit 6.2
 
X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)X2 t01 05 de moivres theorem (2012)
X2 t01 05 de moivres theorem (2012)
 
1 complex numbers
1 complex numbers 1 complex numbers
1 complex numbers
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 
Unit 5.5
Unit 5.5Unit 5.5
Unit 5.5
 
Unit 5.6
Unit 5.6Unit 5.6
Unit 5.6
 
Unit 5.3
Unit 5.3Unit 5.3
Unit 5.3
 
Unit 5.4
Unit 5.4Unit 5.4
Unit 5.4
 
Unit 5.2
Unit 5.2Unit 5.2
Unit 5.2
 
Unit 5.1
Unit 5.1Unit 5.1
Unit 5.1
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 

Similar to Unit 6.6

3-Special Factoring.ppt
3-Special Factoring.ppt3-Special Factoring.ppt
3-Special Factoring.pptAllanLego
 
11.4 The Binomial Theorem
11.4 The Binomial Theorem11.4 The Binomial Theorem
11.4 The Binomial Theoremsmiller5
 
Complex numbers precalculus
Complex numbers   precalculusComplex numbers   precalculus
Complex numbers precalculusItumeleng Segona
 
1273900307 holiday homework class x
1273900307 holiday homework class x1273900307 holiday homework class x
1273900307 holiday homework class xAbhishek Kumar
 
Ppt kbsm t4 matematik k1
Ppt kbsm t4 matematik k1Ppt kbsm t4 matematik k1
Ppt kbsm t4 matematik k1Saya Unigfx
 
Mathematics Mid Year Form 4 Paper 2 2010
Mathematics Mid Year Form 4 Paper 2 2010Mathematics Mid Year Form 4 Paper 2 2010
Mathematics Mid Year Form 4 Paper 2 2010sue sha
 
Pure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - TextbookPure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - TextbookRushane Barnes
 
Q paper I puc-2014(MATHEMATICS)
Q paper I puc-2014(MATHEMATICS)Q paper I puc-2014(MATHEMATICS)
Q paper I puc-2014(MATHEMATICS)Bagalkot
 
Demo slides in math editedppt
Demo slides in math editedpptDemo slides in math editedppt
Demo slides in math editedpptDoods Bautista
 
Tenth class-state syllabus-model paper-em-ap-mathematics
Tenth class-state syllabus-model paper-em-ap-mathematicsTenth class-state syllabus-model paper-em-ap-mathematics
Tenth class-state syllabus-model paper-em-ap-mathematicsNaukriTuts
 

Similar to Unit 6.6 (20)

Unit 5.4
Unit 5.4Unit 5.4
Unit 5.4
 
Unit .7
Unit .7Unit .7
Unit .7
 
3-Special Factoring.ppt
3-Special Factoring.ppt3-Special Factoring.ppt
3-Special Factoring.ppt
 
3-Special Factoring.ppt
3-Special Factoring.ppt3-Special Factoring.ppt
3-Special Factoring.ppt
 
11.4 The Binomial Theorem
11.4 The Binomial Theorem11.4 The Binomial Theorem
11.4 The Binomial Theorem
 
Complex numbers precalculus
Complex numbers   precalculusComplex numbers   precalculus
Complex numbers precalculus
 
Unit .6
Unit .6Unit .6
Unit .6
 
Unit .2
Unit .2Unit .2
Unit .2
 
1273900307 holiday homework class x
1273900307 holiday homework class x1273900307 holiday homework class x
1273900307 holiday homework class x
 
Ppt kbsm t4 matematik k1
Ppt kbsm t4 matematik k1Ppt kbsm t4 matematik k1
Ppt kbsm t4 matematik k1
 
Complex nos demo 2
Complex nos demo 2Complex nos demo 2
Complex nos demo 2
 
Core 1 revision booklet edexcel
Core 1 revision booklet edexcelCore 1 revision booklet edexcel
Core 1 revision booklet edexcel
 
Mathematics Mid Year Form 4 Paper 2 2010
Mathematics Mid Year Form 4 Paper 2 2010Mathematics Mid Year Form 4 Paper 2 2010
Mathematics Mid Year Form 4 Paper 2 2010
 
Pure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - TextbookPure Mathematics Unit 2 - Textbook
Pure Mathematics Unit 2 - Textbook
 
Q paper I puc-2014(MATHEMATICS)
Q paper I puc-2014(MATHEMATICS)Q paper I puc-2014(MATHEMATICS)
Q paper I puc-2014(MATHEMATICS)
 
Demo slides in math editedppt
Demo slides in math editedpptDemo slides in math editedppt
Demo slides in math editedppt
 
Unit 4.3
Unit 4.3Unit 4.3
Unit 4.3
 
Binomial
BinomialBinomial
Binomial
 
Unit .5
Unit .5Unit .5
Unit .5
 
Tenth class-state syllabus-model paper-em-ap-mathematics
Tenth class-state syllabus-model paper-em-ap-mathematicsTenth class-state syllabus-model paper-em-ap-mathematics
Tenth class-state syllabus-model paper-em-ap-mathematics
 

More from Mark Ryder

Geometry 201 Unit 4.1
Geometry 201 Unit 4.1Geometry 201 Unit 4.1
Geometry 201 Unit 4.1Mark Ryder
 
Algebra 302 unit 11.4
Algebra 302 unit 11.4Algebra 302 unit 11.4
Algebra 302 unit 11.4Mark Ryder
 
Algebra 2 unit 10.6
Algebra 2 unit 10.6Algebra 2 unit 10.6
Algebra 2 unit 10.6Mark Ryder
 
Algebra 2 unit 10.7
Algebra 2 unit 10.7Algebra 2 unit 10.7
Algebra 2 unit 10.7Mark Ryder
 
Algebra 2 unit 10.5
Algebra 2 unit 10.5Algebra 2 unit 10.5
Algebra 2 unit 10.5Mark Ryder
 
Algebra 2 unit 10.4
Algebra 2 unit 10.4Algebra 2 unit 10.4
Algebra 2 unit 10.4Mark Ryder
 
Algebra 2 unit 10.3
Algebra 2 unit 10.3Algebra 2 unit 10.3
Algebra 2 unit 10.3Mark Ryder
 
Algebra 2 unit 10.2
Algebra 2 unit 10.2Algebra 2 unit 10.2
Algebra 2 unit 10.2Mark Ryder
 
11.1 combination and permutations
11.1 combination and permutations11.1 combination and permutations
11.1 combination and permutationsMark Ryder
 
Unit 11.3 probability of multiple events
Unit 11.3 probability of multiple eventsUnit 11.3 probability of multiple events
Unit 11.3 probability of multiple eventsMark Ryder
 
Unit 11.2 experimental probability
Unit 11.2 experimental probabilityUnit 11.2 experimental probability
Unit 11.2 experimental probabilityMark Ryder
 
Unit 11.2 theoretical probability
Unit 11.2 theoretical probabilityUnit 11.2 theoretical probability
Unit 11.2 theoretical probabilityMark Ryder
 
11.1 11.1 combination and permutations
11.1 11.1 combination and permutations11.1 11.1 combination and permutations
11.1 11.1 combination and permutationsMark Ryder
 
Geometry 201 unit 5.7
Geometry 201 unit 5.7Geometry 201 unit 5.7
Geometry 201 unit 5.7Mark Ryder
 
Geometry 201 unit 5.5
Geometry 201 unit 5.5Geometry 201 unit 5.5
Geometry 201 unit 5.5Mark Ryder
 
Geometry 201 unit 5.4
Geometry 201 unit 5.4Geometry 201 unit 5.4
Geometry 201 unit 5.4Mark Ryder
 
Geometry 201 unit 5.3
Geometry 201 unit 5.3Geometry 201 unit 5.3
Geometry 201 unit 5.3Mark Ryder
 
Geometry 201 unit 4.7
Geometry 201 unit 4.7Geometry 201 unit 4.7
Geometry 201 unit 4.7Mark Ryder
 
Geometry 201 unit 4.4
Geometry 201 unit 4.4Geometry 201 unit 4.4
Geometry 201 unit 4.4Mark Ryder
 
Geometry 201 unit 4.3
Geometry 201 unit 4.3Geometry 201 unit 4.3
Geometry 201 unit 4.3Mark Ryder
 

More from Mark Ryder (20)

Geometry 201 Unit 4.1
Geometry 201 Unit 4.1Geometry 201 Unit 4.1
Geometry 201 Unit 4.1
 
Algebra 302 unit 11.4
Algebra 302 unit 11.4Algebra 302 unit 11.4
Algebra 302 unit 11.4
 
Algebra 2 unit 10.6
Algebra 2 unit 10.6Algebra 2 unit 10.6
Algebra 2 unit 10.6
 
Algebra 2 unit 10.7
Algebra 2 unit 10.7Algebra 2 unit 10.7
Algebra 2 unit 10.7
 
Algebra 2 unit 10.5
Algebra 2 unit 10.5Algebra 2 unit 10.5
Algebra 2 unit 10.5
 
Algebra 2 unit 10.4
Algebra 2 unit 10.4Algebra 2 unit 10.4
Algebra 2 unit 10.4
 
Algebra 2 unit 10.3
Algebra 2 unit 10.3Algebra 2 unit 10.3
Algebra 2 unit 10.3
 
Algebra 2 unit 10.2
Algebra 2 unit 10.2Algebra 2 unit 10.2
Algebra 2 unit 10.2
 
11.1 combination and permutations
11.1 combination and permutations11.1 combination and permutations
11.1 combination and permutations
 
Unit 11.3 probability of multiple events
Unit 11.3 probability of multiple eventsUnit 11.3 probability of multiple events
Unit 11.3 probability of multiple events
 
Unit 11.2 experimental probability
Unit 11.2 experimental probabilityUnit 11.2 experimental probability
Unit 11.2 experimental probability
 
Unit 11.2 theoretical probability
Unit 11.2 theoretical probabilityUnit 11.2 theoretical probability
Unit 11.2 theoretical probability
 
11.1 11.1 combination and permutations
11.1 11.1 combination and permutations11.1 11.1 combination and permutations
11.1 11.1 combination and permutations
 
Geometry 201 unit 5.7
Geometry 201 unit 5.7Geometry 201 unit 5.7
Geometry 201 unit 5.7
 
Geometry 201 unit 5.5
Geometry 201 unit 5.5Geometry 201 unit 5.5
Geometry 201 unit 5.5
 
Geometry 201 unit 5.4
Geometry 201 unit 5.4Geometry 201 unit 5.4
Geometry 201 unit 5.4
 
Geometry 201 unit 5.3
Geometry 201 unit 5.3Geometry 201 unit 5.3
Geometry 201 unit 5.3
 
Geometry 201 unit 4.7
Geometry 201 unit 4.7Geometry 201 unit 4.7
Geometry 201 unit 4.7
 
Geometry 201 unit 4.4
Geometry 201 unit 4.4Geometry 201 unit 4.4
Geometry 201 unit 4.4
 
Geometry 201 unit 4.3
Geometry 201 unit 4.3Geometry 201 unit 4.3
Geometry 201 unit 4.3
 

Recently uploaded

Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 

Recently uploaded (20)

Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 

Unit 6.6

  • 1. 6.6 De Moivre’s Theorem and nth Roots Copyright © 2011 Pearson, Inc.
  • 2. What you’ll learn about  The Complex Plane  Trigonometric Form of Complex Numbers  Multiplication and Division of Complex Numbers  Powers of Complex Numbers  Roots of Complex Numbers … and why The material extends your equation-solving technique to include equations of the form zn = c, n is an integer and c is a complex number. Copyright © 2011 Pearson, Inc. Slide 6.1 - 2
  • 3. Complex Plane Copyright © 2011 Pearson, Inc. Slide 6.1 - 3
  • 4. Absolute Value (Modulus) of a Complex Number The absolute value or modulus of a complex number z  a  bi z  a  bi  a  b is | | | | . 2 2 a bi a bi In the complex plane, | | is the distance of from the origin.   Copyright © 2011 Pearson, Inc. Slide 6.1 - 4
  • 5. Graph of z = a + bi Copyright © 2011 Pearson, Inc. Slide 6.1 - 5
  • 6. Trigonometric Form of a Complex Number The trigonometric form of the complex number z  a  bi is z  rcos  isin  where a  r cos , b  r sin , r  a2  b2 , and tan  b / a. The number r is the absolute value or modulus of z, and  is an argument of z. Copyright © 2011 Pearson, Inc. Slide 6.1 - 6
  • 7. Example Finding Trigonometric Form Find the trigonometric form with 0    2 for the complex number 1 3i. Copyright © 2011 Pearson, Inc. Slide 6.1 - 7
  • 8. Example Finding Trigonometric Form Find the trigonometric form with 0    2 for the complex number 1 3i. Find r: r |1 3i | 12  32  2. Find  : tan  3 1 so    3 .  Therefore, 1 3i  2 cos  3  isin   3     . Copyright © 2011 Pearson, Inc. Slide 6.1 - 8
  • 9. Product and Quotient of Complex Numbers Let z1  r1 cos1  isin1   and z2  r2 cos 2  isin 2  . Then 1. z1  z2  r1r2 cos 1  2   isin 1  2     . 2. z1 z2  r1 r2 cos 1  2   isin 1  2     , r2  0. Copyright © 2011 Pearson, Inc. Slide 6.1 - 9
  • 10. Example Multiplying Complex Numbers Express the product of z1 and z2 in standard form.  z1  4 cos  4  isin   4      , z2  2 cos  6  isin   6     Copyright © 2011 Pearson, Inc. Slide 6.1 - 10
  • 11. Example Multiplying Complex Numbers Express the product of z1 and z2 in standard form.  z1  4 cos  4  isin   4      , z2  2 cos  6  isin   z1  z2  r1r2 cos 1  2   isin 1  2       4 2 cos  4    6       isin  4    6          6      4 2 cos  5 12       isin  5 12              4 20.259  i0.966 1.464  5.464i Copyright © 2011 Pearson, Inc. Slide 6.1 - 11
  • 12. A Geometric Interpretation of z2 Copyright © 2011 Pearson, Inc. Slide 6.1 - 12
  • 13. De Moivre’s Theorem Let z  rcos  isin  and let n be a positive integer. Then zn  r cos  isin       n  r n cosn  isin n . Copyright © 2011 Pearson, Inc. Slide 6.1 - 13
  • 14. Example Using De Moivre’s Theorem  Find  3 2  i 1 2      4 using De Moivre's theorem. Copyright © 2011 Pearson, Inc. Slide 6.1 - 14
  • 15. Example Using De Moivre’s Theorem  Find  3 2  i 1 2      4 using De Moivre's theorem. The argument of z   3 2  i 1 2 is   7 6 , and its modulus  3 2  i 1 2  3 4  1 4  1. Hence, z  2cos 7 6  isin 7 6 Copyright © 2011 Pearson, Inc. Slide 6.1 - 15
  • 16. Example Using De Moivre’s Theorem 4 using De Moivre's theorem.   i 1 2    z4  cos 4   7 6       isin 4   7 6      cos  14 3       isin  14 3       cos  2 3       isin  2 3        1 2  i 3 2  Find  3 2   Copyright © 2011 Pearson, Inc. Slide 6.1 - 16
  • 17. nth Root of a Complex Number A complex number v  a  bi is an nth root of z if vn  z. If z  1, the v is an nth root of unity. Copyright © 2011 Pearson, Inc. Slide 6.1 - 17
  • 18. Finding nth Roots of a Complex Number If z  rcos  isin , then the n distinct complex numbers  r n cos   2 k n  isin   2 k n     , where k  0,1,2,..,n 1, are the nth roots of the complex number z. Copyright © 2011 Pearson, Inc. Slide 6.1 - 18
  • 19. Example Finding Cube Roots Find the cube roots of 1. Copyright © 2011 Pearson, Inc. Slide 6.1 - 19
  • 20. Example Finding Cube Roots Find the cube roots of 1. Write 1 in complex form: z  1 0i  cos0  isin0 The third roots of 1 are the complex numbers cos 0  2 k 3  isin 0  2 k 3 for k  0,1,2. z1  cos0  isin0  1 z2  cos 2 3  isin 2 3   1 2  3 2 i z3  cos 4 3  isin 4 3   1 2  3 2 i Copyright © 2011 Pearson, Inc. Slide 6.1 - 20
  • 21. Quick Review 1. Write the roots of the equation x2 12  6x in a  bi form. 2. Write the complex number 1 i3 in standard form a  bi. 3. Find all real solutions to x3  27  0. Find an angle  in 0    2 which satisfies both equations. 4. sin  1 2 and cos   3 2 5. sin   2 2 and cos   2 2 Copyright © 2011 Pearson, Inc. Slide 6.1 - 21
  • 22. Quick Review Solutions 1. Write the roots of the equation x2 12  6x in a  bi form. 3 3i, 3 3i 2. Write the complex number 1 i3 in standard form a  bi. 2  2i 3. Find all real solutions to x3  27  0. x  3 Find an angle  in 0    2 which satisfies both equations. 4. sin  1 2 and cos   3 2   5 / 6 5. sin   2 2 and cos   2 2   5 / 4 Copyright © 2011 Pearson, Inc. Slide 6.1 - 22
  • 23. Chapter Test 1. Let u  2, 1 and v  4,2 . Find u v. 2. Let A  (2, 1),B  (3,1),C  (4,2), and D  (1, 5). Find the component form and magnitude of the vector uuur uuur AC +BD 3. Given A  (4,0) and B  (2,1), find (a) a unit vector in uuur the direction of AB and (b) a vector of magnitude 3 in the opposite direction. 4. Given u  4,3 and v  2,5 , find (a) the direction angles of u and v and (b) the angle between u and v. Copyright © 2011 Pearson, Inc. Slide 6.1 - 23
  • 24. Chapter Test 5. Convert the polar coordinate (  2.5,25o) to a rectangular coordinate. 6. Eliminate the parameter t. x  4  t, y  8  5t,  3  t  5. 7. Find a parameterization for the line through the points ( 1, 2) and (3,4).   8. Use De Moivre's theorem to evaluate 3 cos  4  isin   4          5 . Write your answer in (a) trigonometric form and (b) standard form. Copyright © 2011 Pearson, Inc. Slide 6.1 - 24
  • 25. Chapter Test 9. Convert the polar equation r  3cos  2sin to rectangular form. 10. A 3000 pound car is parked on a street that makes an angle of 16o with the horizontal. (a) Find the force required to keep the car from rolling down the hill. (b) Find the component of the force perpendicular to the street. Copyright © 2011 Pearson, Inc. Slide 6.1 - 25
  • 26. Chapter Test Solutions 1. Let u  2, 1 and v  4,2 . Find u v. 6 2. Let A  (2, 1),B  (3,1),C  (4,2), and D  (1, 5). Find the component form and magnitude of the vector uuur uuur AC +BD 8, 3 ; 73 3. Given A  (4,0) and B  (2,1), find (a) a unit vector in uuur the direction of AB and (b) a vector of magnitude 3 in the opposite direction. (a)  2 5 , 1 5 (b) 6 5 ,  3 5 Copyright © 2011 Pearson, Inc. Slide 6.1 - 26
  • 27. Chapter Test Solutions 4. Given u  4,3 and v  2,5 , find (a) the direction angles of u and v and (b) the angle between u and v.  (a) tan1 3 4       0.64 tan1 5 2      1.19 (b)  0.55 5. Convert the polar coordinate (  2.5,25o) to a rectangular coordinate.  (  2.27, 1.06) 6. Eliminate the parameter t. x  4  t, y  8  5t,  3  t  5. y  5x 12 Copyright © 2011 Pearson, Inc. Slide 6.1 - 27
  • 28. Chapter Test 7. Find a parameterization for the line through the points ( 1, 2) and (3,4). x  2t  3, y  3t  4   8. Use De Moivre's theorem to evaluate 3 cos  4  isin   4          5 . Write your answer in (a) trigonometric form and (b) standard form.  (a) 243 cos 5 4  isin  5 4     (b) 243 2 2  243 2 2 i Copyright © 2011 Pearson, Inc. Slide 6.1 - 28
  • 29. Chapter Test 9. Convert the polar equation r  3cos  2sin to  rectangular form. x  3 2      2  y 12  13 4 10. A 3000 pound car is parked on a street that makes an angle of 16o with the horizontal. (a) Find the force required to keep the car from rolling down the hill.  826.91 pounds (b) Find the component of the force perpendicular to the street. 2883.79 pounds Copyright © 2011 Pearson, Inc. Slide 6.1 - 29